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ABSTRACT

Recently presented benchmarks for Neural Architecture Search (NAS) provide the
results of training thousands of different architectures in a specific search space,
thus enabling the fair and rapid comparison of different methods. Based on these
results, we quantify the ranking correlations of single-path architecture search
methods in different search space subsets and under several training variations;
studying their impact on the expected search results. The experiments support the
few-shot approach and Linear Transformers, provide evidence against disabling
cell topology sharing during the training phase or using regularization and other
common training additions in the NAS-Bench-201 search space. Additionally, we
find that super-network size and path sampling strategies require further research
to be understood better.

1 INTRODUCTION

The development and study of algorithms that automatically design neural networks, Neural Archi-
tecture Search (NAS), has become a significant influence in recent years; owed to the promise of
creating better models with less human effort and in shorter time.

Whereas the first generations of algorithms required training thousands of networks in thousands of
GPU hours using reinforcement learning (Zoph & Le (2016); Zoph et al. (2018)), greedy progressive
optimization (Liu et al. (2018a)), regularized evolution (Real et al. (2018)) and more, the invention
of weight sharing during search (Pham et al. (2018)) reduced the computation cost to few GPU
hours, and thus made NAS accessible to a much wider audience.

While this also enables gradient based NAS (Liu et al. (2018b)), the necessity to compare operations
against each other leads to an increased memory requirement. The issue is commonly alleviated by
training a small search network consisting of cells with a shared topology, later scaling the resulting
architecture up by adding more cells and increasing the number of channels. Although the stan-
dalone network is often trained from scratch, reusing the search network weights can increase both
training speed and final accuracy (Yan et al. (2019); Hu et al. (2020)). More recent gradient based
methods require to have only one path in memory (Dong & Yang (2019); Cai et al. (2019); Hu et al.
(2020)) and can even be applied directly to huge data sets.

However, the aforementioned weight sharing methods only yield a single result, require manually
fine-tuning the loss function when there are multiple objectives, and can not guarantee results within
constraints (e.g. latency, FLOPs). The single-path one-shot approach seeks to combine the best
of both worlds, requiring only one additional step in the search phase (Guo et al. (2020)): Firstly
a full sized weight-sharing model (super-network) is fully trained by randomly choosing one of
the available operations at each layer in every training step. Then, as specific architectures can be
evaluated by choosing the model’s operations accordingly, a hyper-parameter optimization method
can be used to find combinations of operations maximizing the super-network accuracy. If the
rankings of the architectures by their respective super-network accuracy and by their stand-alone
model retraining results are consistent, the quality of the discovered candidates is high.

However, since the single-path method’s search spaces are often gigantic and the network training
costly (see e.g. Guo et al. (2020); Chu et al. (2019b;a)), a study of the ranking correlation is usually
limited to a handful of architectures. In this work we study the single-path one-shot super-network
predictions and ranking correlation throughout an entire search space, as all stand-alone model re-

1



Under review as a conference paper at ICLR 2021

sults are known in advance. This enables us to quantify the effects of several super-network training
variations and search space subsets, to gain further insights on the popular single-path one-shot
method itself.

We briefly list the closest related work in Section 2 and introduce the measurement metric, bench-
mark dataset, super-network training and experiment design in Section 3. We then systematically
evaluate several variations in the single-path one-shot approach with a novel method, computing the
ranking correlation of the trained super-networks with the ground-truth top-N best architectures.
Experiments on search space subsets in Section 4.1 once again demonstrate that the ranking is more
difficult as the search space increases in size, and that the operations that make the ranking especially
hard are Zero and Pool. Section 4.2 evaluates Linear Transformers (Chu et al. (2019a)), which we
find to perform very well in specific search space subsets, and otherwise even harmful.
Furthermore, some commonly used training variations such as learning rate warmup, gradient clip-
ping, data augmentation and regularization are evaluated in Section 4.3, where we find that none of
these provides a measurable improvement. We further test disabling cell topology sharing only dur-
ing training time and find that training the network in the same way as evaluating it is more effective.
We finally list some grains of salt in Section 5 and conclude the paper with Section 6.

2 RELATED WORK

A high quality architecture ranking prediction is the foundation of any NAS algorithm. In this
paper we explore the effects of several super-network training variations on the ranking predic-
tion of the aforementioned single-path one-shot approach (Guo et al. (2020)). Recent efforts have
shown improvements by strictly fair operation sampling in the super-network training phase (Chu
et al. (2019b)) and adding a linear 1×1 convolution to skip connections, improving training stability
(Chu et al. (2019a)). Other works divide the search space, exploring multiple models with different
operation-subsets (Zhao et al. (2020)), or one model with several smaller blocks that use a trained
teacher as a guiding signal (Li et al. (2020b)).

Due to the often gigantic search spaces and the inherent randomness of network training and hyper-
parameter optimization algorithms, the reproducibility of NAS methods has become a major con-
cern. NAS Benchmarks attempt to alleviate this issue by providing statistics (e.g. validation loss, ac-
curacy and latency) of several thousand different networks on multiple data sets (Ying et al. (2019);
Dong & Yang (2020)), providing the ground-truth training results that we use for our evaluation.

3 METHOD

3.1 METRIC

As we correlate the super-network accuracy prediction and the benchmark results, but are only
interested in a correct ranking, we need a ranking correlation metric. We choose Kendall’s Tau (τ ,
KT), a commonly used ranking metric (Sciuto et al. (2019); Chu et al. (2019b)) that counts how
often all pairs of observations (xi, yi) and (xj , yj)

1. are concordant, agreeing on a sorting order
(xi < xj and yi < yj ; or xi > xj and yi > yj)

2. are discordant, disagreeing on a sorting order
(xi < xj and yi > yj ; or xi > xj and yi < yj)

3. are neither

and is then calculated by their difference and normalized by the number of possible different pairs.

τ = (num concordant)−(num discordant)

(n2)

τ ranges from -1 in perfect disagreement to +1 in perfect agreement, and is around zero for inde-
pendent X and Y .

A small selection of experiments that use additional metrics can be found in Appendix D.
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Figure 2: Accuracy predictions of a small super-network (x axis) and Bench201 results (y axis,
in percent) for the top-50, top-250 (left and center columns) and 1000 randomly sampled (right
column) benchmark networks on the cifar10-valid data set, ordered by accuracy. While all five
operations are available in the top row, Zero is masked in the bottom row.

3.2 NAS-BENCH-201

NAS-Bench-201 (Dong & Yang (2020)) is a tabular benchmark, which contains training and evalua-
tion statistics of 15625 different architectures on the common vision data sets CIFAR10, CIFAR100
(Krizhevsky et al. (2009)) and a reduced variant of ImageNet (Deng et al. (2009)). The models differ
in the design of the cell, a building block that is stacked several times to create a network. Within
the cell, as visualized in Figure 1, at six specific positions (orange edges), one of five operations
(Zero, Skip, 1×1 Convolution, 3×3 Convolution, 3×3 Average Pooling) is chosen (56 = 15625).
The inputs of each node, such as the cell output (rightmost node) are averaged.

shared cell topology

N *                         Stem
3x3 Conv

zero

skip

conv 1x1

avg pooling 3x3

conv 3x3

reduction
ResNet

N *                         reduction
ResNet

N *                         Head
GAP, Softmax

Figure 1: A NAS-Bench-201
cell with operations on the or-
ange edges

As we are only interested in the final accuracy of each architecture,
we average the benchmark test results over all seeds and the last
three epochs of training. As the models’ rankings are quite con-
sistent across all data sets (Dong & Yang (2020)), we focus on the
CIFAR-10-Valid accuracy. Further results are provided in the sup-
plementary material, see Appendix B.

Since discrepancies of model rankings for the top performing ar-
chitectures became apparent (Dong & Yang (2020)), we measure
the accuracy of the trained super-networks according to the top-N
(10, 25, 50, 150, 250, 500) benchmark architectures, as well as up
to 1000 randomly sampled ones. If a reduced search space (due to
masking operations, 36 = 729) contains fewer than 1000 different
topologies, it is fully evaluated.

3.3 TRAINING

In our experiments we train various NAS-Bench-201 networks. Small variants have 2 cells per stage
(total of 8 cells, with 3 stages and 2 fixed cells for spatial reduction) and 32 channels in the first
cell, which is roughly similar to common topology sharing methods. Medium sized networks have
4 cells per stage and start with 64 channels.

All models were subject to the same training schedule. We used CIFAR10 as training set
(Krizhevsky et al. (2009)), of which we withheld 5000 images for validation. The batch size is
256, we used SGD with momentum of 0.9 and learning rate of 0.025, which was cosine annealed
to 1e-5 over 250 epochs. All results are averaged over five independent runs with different seeds.
Further details are listed in Appendix A.
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3.4 EXPERIMENT DESIGN

All of the following experiments are structured the same way: The top-N network architectures
(ordered by top1 accuracy, measured in NAS-Bench-201) are selected, and an over-complete super-
network predicts their respective accuracy values, as seen in Figure 2. If an operation is not available
to the super-network, the top-N networks are also taken from the bench results without that opera-
tion.

Variations to the search space and the super-network (structure or training process) affect the ranking
correlation τ between the bench results and the super-network predictions. In the case of Figure 2,
removing the Zero operation from the search space improves τ .

To make the figures more compact, the exact benchmark and prediction values are ignored in
the further figures, only average prediction accuracy and τ depending on N will be shown (see
Appendix B for further detailed figures), as seen in e.g. Figure 4. We also add the additional
metric τa which describes the ranking correlation of the average prediction accuracy depending
on N. More formally, τa is computed as described in Section 3.1 on the series of measurements
[(10, A10), (25, A25), (50, A50), ...] where AN is the accuracy of super-network M with topology
Ti and weights θs on the validation data Dvalid, averaged over the top-N topologies and multiple
seeds.

AN =
∑

s∈seeds

1

|seeds|
N∑
i=1

1

N
Acc(M, θs, Ti, Dvalid)

As we increase N (10, 25, 50, ...) AN should monotonically decrease (e.g. 0.7, 0.65, 0.6, ...), so that
τa = −1 is the case where the super-network estimates match the bench results best.

4 EXPERIMENTS

4.1 SEARCH SPACE SUBSETS

The search space itself plays a significant role for NAS algorithms, not only due to its size or the
availability of good models. By preventing specific operations from being used (masking) during
training, validation and in the benchmark results, we can compare different subsets of the search
space.

A visual example of the importance can be found in Figure 2, where for an increasing number
of top-N benchmark networks (columns), the ranking correlation to the super-network predictions
is steadily improving. While there is a large number of networks wrongly predicted as useless
(10% accuracy, right column) in the top row, masking the Zero operation (bottom row) significantly
reduces this portion and thus improves the ranking correlation τ (KT).

To get a deeper understanding of the search space subsets, we take a closer look at the NAS-Bench-
201 rankings, sorted by their top 1 accuracy. Specifically, in Figure 3 we count how many of the
NAS-Bench top-N networks use each available operation and how often it is used, across all bench-
mark results and the five largest subsets (each operation is masked once).

The 3×3 Convolution is arguably the most important operation. Unless it is masked, every single
top-500 Bench network makes use of it. On average, it even makes up roughly half of the operation
choices, in every other subset. This is hardly surprising, since it adds significantly more capacity to
the network than the 1×1 Convolution and especially Zero, Skip, or Pool.

The order of operation importance, as implied in their usage, continues with Skip, 1×1 Convolution,
Zero, and finally Average Pooling. The wide usage of Skip operations was to be expected, as they are
known to make deep networks more easily trainable (He et al. (2016)), however they are not present
in every network. Perhaps the most surprising is the low importance of Average Pooling, even lower
than Zero. It appears that all the benefits of Pool are already covered by the 3×3 Convolution, so
that using the unnecessary operation now decreases the network accuracy.

Two subsets behave notably different than the full search space. Firstly, in the absence of skip con-
nections (top right), it appears that Average Pooling is used as a substitute. And secondly, in the
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Figure 3: Counting how many top-N Bench architectures use an operation at any position in the
architecture (top plot in each of the two rows and three columns) and their total usage (each bottom
plot) over the top-N networks and all possible architectures (x axis). The operations are Zero (green),
Skip (blue), 1×1 Conv (orange), 3×3 Conv (cyan) and 3×3 Avg Pool (purple). One operation is
masked in each of the six pairs, except for the top left one. As an example, if 3 of the top-10 networks
use at least one Pool operation, together a total of 4 Pool operations, and have all 5 operations
available, the usage is 3/10 = 0.3 while the share is 4/(5 · 10) = 0.08.

absence of the 3×3 Convolution (bottom center), Average Poolings and especially 1×1 Convolu-
tions have to make up for the missing capacity and spatial operations.

We now train single-path super-networks in several search space subsets and visualize the results
in Figure 4. Ideally, the super-network validation accuracy is highest for the top Bench networks,
enabling NAS methods to reliably find them, and the ranking correlation τ within the top-N bench
networks is always significantly greater than zero, thus increasing the expected quality of the se-
lected architecture. Neither is the common case. The baseline for small networks (top left, red)
has the same averaged prediction accuracy for the top 10 as for the top 500 networks, resulting in
τa ≈ 0, where the predicted accuracy and the bench accuracy have no statistical correlation.

However, in some search space subsets, the single-path method works significantly better. By mask-
ing out each operation individually (Figure 4, left column), we find the most harmful operations to
be Zero (green, top left, τa=−1) and Pool (purple, bottom left, τa=−1), which are also the least im-
portant ones according to Figure 3. Masking the Convolutions, thus increasing the relative amount
of unparameterized operations, is harmful.

Masking Skip (blue, left) is the most harmful to τa (=1). As seen in Figure 4, the top-N networks
have a worse average predicted accuracy than the top-M (for N<M) networks, and sometimes even
below the random sample, which is terrible. Interestingly τ may improve within the predictions for
the top-N architectures.

We further mask a second operation in addition to Zero (center column) and Pool (right column) in
the remaining columns of Figure 4. On small networks, the masking combination of Zero+Pool and
arguably Zero+Skip perform even better, while masking Pool in almost any combination is harmful.

It is quite obvious that medium sized super-networks require additional care. The super-networks
in several search space subsets fail to generalize at all, even though they learn the training set. In
the other spaces, they still behave differently. This may be beneficial, such as in the baseline (left,
red), but is more often harmful. Even worse, the averaged predicted accuracy of top-N networks
in several subsets is lower than that of a random subset of networks, despite the often improved τ
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Figure 4: Measuring ranking correlations and average accuracy (y axis) of the top N bench networks
(x axis) in different search spaces (color), plotting the mean and std of five runs. We used small sized
(S) super-networks in the top row and medium (M) sized ones in the bottom row.

values. Finally, as seen in Figure 4, the standard deviation over the super-networks that do generalize
is notably greater than for their small sized counterparts.

4.2 LINEAR TRANSFORMERS

Many common search spaces for single-path methods contain exclusively Convolution operations
(or blocks of such). Adding a Skip operation is useful in theory, enabling the discovery of smaller
sized networks, but was also found to impact the stability of the super-network training. After all,
in a sequential super-network, the operations at any layer may directly receive the output of any
previous layer due to the variable size. However, replacing the Skip operation with a linear 1×1
Convolution (Linear Transformer, LT) during the search phase was found to stabilize the training
(Chu et al. (2019a)). All Linear Transformers are removed after the search, resulting in a standalone
network with the same capacity.

Figure 5 visualizes the results of super-networks that have Linear Transformers added to their Skip
or Skip+Pool operations. We also mask Zero (center) and Zero+Pool (right) to observe the super-
network in search spaces with fewer operations that are neither Convolution nor Skip. It is notewor-
thy that in the absence of the Pool operation (right), both variations of the standard super-network
are in fact equal. This is also apparent in the plot, although the randomness of non-deterministic
training can still be seen.

We find it an interesting observation that, unless the search space contains exclusively Skip or Con-
volutions (the context in which the Transformers have been proposed), the Transformers are always
harmful to the ranking correlation τa. The super-networks seem to overestimate the benefit of Skip
and Pool operations, which, again, often causes the best networks to be estimated as below average.
However, in a fitting search space, even the medium sized super-networks generalize very success-
fully, have a very low standard deviation and reliably improve τa.
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Figure 5: Adding Linear Transformers (LT) to Skip and Skip+Pool (color).

Finally, are Linear Transformers for a Pool operation useful? Since the search spaces that suit single-
path networks best do not contain any Pool operation, they are generally not necessary. When a Pool
operation is present, as in Figure 5 left and center-left, we find no empirical evidence that they are
beneficial. Although the additional transformers seem to stabilize training, as seen by the lower
standard deviation, they also worsen the τa problem.

4.3 SHARING, SAMPLING, WARM-UP, AND REGULARIZATION

Finally, we group four further variations to super-network training in Figure 6 and compare them
with the baseline (red).

Topology sharing (green): As sharing cell topologies does not impact the resource costs of single-
path training, it is generally not used. However, they are shared in the NAS-Bench-201 case, raising
the question whether sharing should already be enforced during the super-net training (our default
case), or only for the evaluation.

As seen in Figure 6, disabling the sharing during training for small super-networks (top row) is
generally not beneficial over the baseline, as τa is generally worse and τ almost the same. However,
it enables the medium sized networks in multiple spaces to make any useful predictions at all.

Uniform sampling (blue): Additionally, our default baseline strategy of randomly selecting the
paths during training is strictly fair, so that every |O| steps, every operation o ∈ O is sampled
exactly once; and compare this with the alternative of uniform random sampling.

Interestingly, the absolute validation accuracy value is increased by uniform sampling. However,
this is not relevant, as only the correct ranking matters. We find that, on small super-networks, as
measured by τa, the strictly fair baseline performs equal or better than the uniform random sampling
strategy. Additionally, we see a trend of τ being slightly in favor of strictly fair randomness, at
almost every data point. However, once again, a seemingly inferior method variation enables train-
ing the medium sized super-networks to make above-chance predictions on the validation set. We
hypothesize this to be a downside of the strictly fair weight update schedule, in which an update is
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Figure 6: Further variations to the super-network training (color).

only performed every |O| steps (number of operations) over the accumulated gradients, including
for the weights of stem and output layer, which may result in destructively large steps.

Learning rate warm-up (yellow) and gradient clipping (cyan): To see whether simple learning
rate tweaking already solves the aforementioned issue, we add a warm-up phase, linearly increasing
the learning rate over 5 epochs to the default starting value of 0.025. It does not. In fact, the effects
are detrimental in some search space subsets. On the other hand, clipping the gradients so that their
L2 norm is in [−5, 5], as common practice in e.g. DARTS (Liu et al. (2018b)), has no notable effect.

Further training variations to solve the issue with fairly little effort may be excluding the last layer
and stem weights from the |O|-step update schedule (but losing strict fairness) or lowering their
learning rate. However, a much closer look at it seems preferable, to ascertain the root cause and
study its implications in greater detail.

Regularization (purple): Finally, the super-network is only minimally regularized by default (only
input shifting, horizontal flipping, and normalizing on the data), so we add the CIFAR-10 AutoAug-
ment augmentation policies (Cubuk et al. (2018)) and label smoothing of α = 0.1.

Interestingly, this is also detrimental. As seen in the top left and center-right plots, τa decreases
below the baseline values, as top ranking architectures are underestimated. The effect is worse
with relatively more unparameterized operations available, indicating that the topology estimation
is biased in favor of the regularized Convolutions. The effect on medium sized super-networks can
not be properly measured, as none of these super-networks should be used to rank architectures.
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5 GRAINS OF SALT

As in any empirical study, some grains of salt remain. First and foremost, the limited sample sizes
in our experiments and the benchmark are a typical concern.

We find it disappointing that, aside from limited search spaces, no experiment displayed high values
of τ , even though the top-N network groups may be sorted correctly (τa ≈ −1). This indicates
that a number of good networks are always wrongly estimated, quite likely due to some of the
available operations, or that the single-path one-shot approach is simply not suitable for the given
search space or network architecture. While the accuracy difference between the best and 10th-best
Bench networks is only roughly 0.013%, masking Skip at least increases that difference to roughly
0.027%, possibly also making a correct ranking easier. Considering these marginal differences, it is
very likely that the Bench baseline is also not perfectly correct.

Next, existing NAS benchmarks may be too small or biased. Other research has discovered sur-
prisingly simple methods that achieve state of the art results (e.g. Mellor et al. (2020); White et al.
(2020)), but suffer from an often significantly reduced performance in larger search spaces. This is
hardly surprising, considering that the best architectures consist of mostly 3×3 Convolutions (see
Figure 3).

And finally, our experiments use single-path one-shot methods, which are commonly employed in
search spaces of only Convolution and Skip operations. They are our approach of choice due to
their current popularity in the NAS field and the comparably cheap evaluation of many network
topologies, which also enables us to study more variations of the baseline method.

6 CONCLUSIONS

Some search space subsets are easier to rank. In this specific case, the removal of the Zero and Pool
operations keeps the majority of the top-N networks while also improves how well a single-path
network can rank them.

Linear Transformers are useful when there are no other operations besides Convolutions or Skip, and
enable medium sized super-networks to be used at all. However they introduce systematic ranking
problems in other search space subsets, limiting their general use. We find no evidence that Pool
operations with transformers are beneficial.

Disabling cell topology sharing during the super-network training decreases the ranking correlation
τa, the network should be trained the same way as it is evaluated.

Strictly fair randomness is generally advantageous, but requires further research to be understood
better. Especially several medium sized super-networks were unable to generalize, in contrast to
those trained with uniform sampling, which we believe to be due to the weight updates of the last
layer and the stem. Simply adding learning rate warm-up or gradient clipping is insufficient to fix
this issue.

Strong regularization during the super-network training was found to be detrimental. This is most
likely an issue of the regularization only benefitting Convolutions, biasing the topology estimation,
and may not be a problem in entirely different search spaces that use fewer to no unparameterized
operations.

Whether an increased super-network size is helpful is tricky to evaluate. In few search spaces, e.g.
as seen in Figure 4, the increased network size improved τa, however the generally low validation
accuracy (usually < 20%, on 10 classes) and its huge variance make them too unreliable. Even
worse, the super-networks may fail to generalize at all depending on the search space. In specific
cases this can be alleviated with Linear Transformers, and possibly through a better understanding
of path sampling. We present additional Figures in Appendix D.

Due to the limited space, we have only shown the results for the CIFAR-10-valid Bench accuracy
values. However, we provide all Tensorboard (Abadi et al. (2016)) files and the code to parse and
generate plots in the supplementary material.
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A TRAINING SETUP

A.1 ENVIRONMENT

Each super-network was trained and evaluated on a single Nvidia GTX 1080 Ti GPU, using driver
version 440.64, CUDA version 10.0.130 and CuDNN version 7605 in our Slurm cluster. The code
is run in a Singularity container using Ubuntu 18.04 with Python 3.6.9. We used PyTorch in version
1.5.1 and nas-bench in version 1.3, further details can be found in the provided sysinfo.txt.

A.2 NETWORK

Aside from the deliberate variations in super-network training and the seeds, all of them were trained
and evaluated in the same way, as listed in Table 1. Unless a detail is mentioned there, we are
confident of not using it (e.g. we use no regularization or gradient clipping by default). The full list
of arguments of each training job can be found in the respective log task.txt, see Section B.2.

seeds {0, 1, 2, 3, 4}
CuDNN used, not deterministic
weight init. PyTorch default

Data CIFAR-10 training set
- for validation: same 5000 random images for all
- for training: remaining 45000 images, shuffled
batch size 256

Augmentation like DARTS:
- shifting: 4 pixel
- flipping: horizontally
- normalizing: yes
for validation: only normalizing

Optimizer SGD:
- initial LR 0.025
- momentum 0.9
- weight decay 0.0003

- excluding BN yes

Scheduler Cosine decay:
- final LR 0.00005
- epochs 250

Table 1: default super-network training setup

B PROVIDED DATA AND CODE

Please see the supplementary material for the following data and code. Due to the amount of Ten-
sorboard files, a 7zip compression is necessary to be below the allowed 100MB limit.

B.1 BENCH201

Since the original NAS-Bench-201 contains far more information than we need for the evaluation
and requires impractically many resources (25+ GB RAM), we have a reduced version that averages
results over seeds and contains only the required stats.

The data file (nasbench201 1.1 mini.pt) and the code to use it (code/bench.py) are provided.

B.2 RUN DATA

The relevant logs and Tensorboard files of every run (slurm job) are provided in the run data folder,
grouped by experiments. The code/parse runs.py script is used to extract desired metrics from the
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these files and average them across the jobs that used different seeds. Running the script generates a
text output (csv format) that is used in plots.py.

B.3 PLOTTING

Running plots.py will use the previously generated csv text, containing the mean, standard deviation,
etc. and generate the plots from the paper.

C FURTHER FIGURES

Due to space limitations, we could not add further plots to the paper. The remaining ones for the
evaluation on Cifar10-valid are found below.

If you are interested in evaluation results on the other data sets, please take a look at Appendix B.
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Figure 7: See Figure 4, the left column is kept the same, adding masking combinations with the
1×1 Convolution (center column) and Skip (right column)

13



Under review as a conference paper at ICLR 2021

0.4

0.5

0.6

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

S τa= 0.07

S, LT={Skip} τa= 0.50

S, LT={Skip, Pool} τa= 0.71

0.65

0.70

0.75

0.80

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
729

Top N bench networks

−0.50

−0.25

0.00

0.25

K
T

w
it

h
in

T
op

N

S, mask={Zero, C1x1} τa=-0.79

S, mask={Zero, C1x1}, LT={Skip} τa= 0.21

S, mask={Zero, C1x1}, LT={Skip, Pool} τa= 0.57

0.7

0.8

0.9

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
729

Top N bench networks

0.0

0.2

0.4

K
T

w
it

h
in

T
op

N

S, mask={Zero, Pool} τa=-1.00

S, mask={Zero, Pool}, LT={Skip} τa=-1.00

S, mask={Zero, Pool}, LT={Skip, Pool} τa=-0.96

0.1

0.2

0.3

0.4

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M τa=-0.86

M, LT={Skip} τa= 0.57

M, LT={Skip, Pool} τa= 1.00

0.2

0.4

0.6

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
729

Top N bench networks

−0.4

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M, mask={Zero, C1x1} τa= 0.46

M, mask={Zero, C1x1}, LT={Skip} τa=-0.14

M, mask={Zero, C1x1}, LT={Skip, Pool} τa= 0.86

0.2

0.4

0.6

0.8

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
729

Top N bench networks

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M, mask={Zero, Pool} τa=-0.36

M, mask={Zero, Pool}, LT={Skip} τa=-0.50

M, mask={Zero, Pool}, LT={Skip, Pool} τa=-0.50

0.3

0.4

0.5

0.6

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.50

−0.25

0.00

0.25

K
T

w
it

h
in

T
op

N

S, mask={C1x1} τa= 0.50

S, mask={C1x1}, LT={Skip} τa= 0.64

S, mask={C1x1}, LT={Skip, Pool} τa= 0.86

0.4

0.5

0.6

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.4

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

S, mask={C3x3} τa=-0.21

S, mask={C3x3}, LT={Skip} τa= 0.64

S, mask={C3x3}, LT={Skip, Pool} τa= 0.71

0.4

0.5

0.6

0.7
va

li
d

at
io

n
ac

cu
ra

cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.4

−0.2

0.0

0.2

0.4

K
T

w
it

h
in

T
op

N

S, mask={Pool} τa= 0.14

S, mask={Pool}, LT={Skip} τa= 0.50

S, mask={Pool}, LT={Skip, Pool} τa= 0.50

0.1

0.2

0.3

0.4

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.4

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M, mask={C1x1} τa= 0.50

M, mask={C1x1}, LT={Skip} τa= 0.21

M, mask={C1x1}, LT={Skip, Pool} τa= 1.00

0.1

0.2

0.3

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.6

−0.4

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M, mask={C3x3} τa= 1.00

M, mask={C3x3}, LT={Skip} τa= 0.86

M, mask={C3x3}, LT={Skip, Pool} τa= 0.93

0.1

0.2

0.3

0.4

0.5

va
li

d
at

io
n

ac
cu

ra
cy

10 25 50 100 150 250 500 random
1000

Top N bench networks

−0.4

−0.2

0.0

0.2

K
T

w
it

h
in

T
op

N

M, mask={Pool} τa=-1.00

M, mask={Pool}, LT={Skip} τa= 1.00

M, mask={Pool}, LT={Skip, Pool} τa= 0.86

Figure 8: See Figure 5, further search space subsets with Linear Transformers.
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Figure 9: See Figure 9, the left column is kept the same, adding masking combinations with the
1×1 Convolution (center column) and Zero+Pool (right column)

Figure 10: The accuracy values (x axis) of all architectures on the NAS-Bench-201 data sets and
their respective accuracy on the other three data sets (color, y axis).
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D ADDITIONAL METRICS AND WIDE-CHANNEL SUPER-NETWORKS

In addition to Kendall’s Tau, we now also provide the Spearman Correlation Coefficient (SCC) and
the Pearson Correlation Coefficient (PCC) (Li et al. (2020a)) for a selection of the experiments, and
additional experiments on small but wide super-networks, starting with 96 (instead of 32) channels.
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Figure 11: Additional metrics for small super-networks that start with 32 (left) or 96 channels
(right).
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Figure 12: As Figure 11, adding linear transformers.
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Figure 13: Visualizing some metrics, similar to Figure 2, of the small and wide super-networks
(Figure 12, left, green)
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Figure 14: Super-networks with 1 to 5 normal cells per stage. Smaller sized weight-sharing super-
networks are generally easier to train and better predictors in the full search space.
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