

PIAST: RAPID PROMPTING WITH IN-CONTEXT AUGMENTATION FOR SCARCE TRAINING DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

LLMs are highly sensitive to prompt design, but handcrafting effective prompts is difficult and often requires intricate crafting of few-shot examples. We propose a fast automatic prompt construction algorithm that augments human instructions by generating a small set of few shot examples. Our method iteratively replaces/drops/keeps few-shot examples using Monte Carlo Shapley estimation of example utility. For faster execution, we use aggressive subsampling and a replay buffer for faster evaluations. Our method can be run using different compute time budgets. On a limited budget, we outperform existing automatic prompting methods on text simplification and GSM8K and obtain second best results on classification and summarization. With an extended, but still modest compute budget we set a new state of the art among automatic prompting methods on classification, simplification and GSM8K. Our results show that carefully constructed examples, rather than exhaustive instruction search, are the dominant lever for fast and data efficient prompt engineering. We will make code and data publicly available upon acceptance.

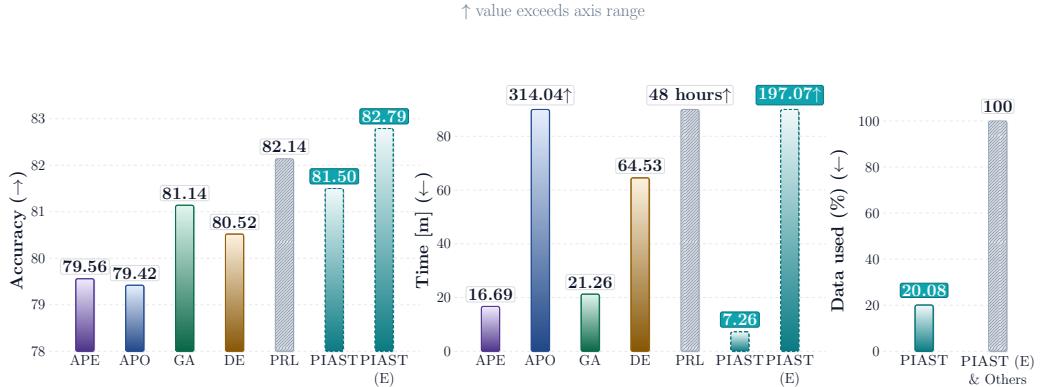


Figure 1: Overview of the results averaged over seven different text classification tasks, each run three times, comparing PIAST against current benchmarks. PIAST is able to generate high-quality prompts very efficiently, while requiring only a small portion of the dataset yielding comparable results to the current SOTA methods.

1 INTRODUCTION

Automatic prompt engineering has emerged as a practical way to adapt LLMs without gradient updates. However, many existing methods are impractical in time and data constrained settings: (i) some require hours of compute to explore a large prompt search space, and (ii) they rely on sizeable training sets to reliably score candidates. Moreover, most prior work optimizes only the instruction string, for example via rephrasing (using e.g. evolutionary algorithms or extensive search), ignoring the most impactful component of in-context learning (ICL): *few-shot examples*. The main exceptions are Batorski et al. (2025), which synthesizes examples, but its computational cost is dozens of hours, and Pryzant et al. (2023), which only selects examples from the training set.

Our method is, to our knowledge, the first method that is fast, synthesizes new few-shot examples not found in the training set and requires relatively less access to training examples. When run long enough, our method additionally obtains new state of the art results among automatic prompting methods for a number of tasks.

Our method works as follows: We first synthesize a proposal set of in-context examples that we append to our initial prompt. Then, in our optimization loop, we evaluate its efficacy on a small randomized evaluation set and identify the least helpful examples using a Monte Carlo Shapley estimator and replace, drop or keep it. If replaced, we draw from a pool of newly proposed few-shot examples. For efficiency and stability, we use a replay buffer for the evaluation set.

Our algorithm has a favorable anytime performance: When run with a small computational budget, we attain second best results among our baselines on classification and summarization and already exceeds previous SoTA on simplification and GSM8K. When run with an extended budget that is still comparable to some other baselines, we exceed previous methods additionally on classification. Interestingly, even when running without the iterative update loop and only using the first generated few-shot examples, we often still get competitive results.

To summarize, our contributions are as follows:

Conceptual: We propose PIAST, an automatic prompt construction method that augments a concise human-written instruction with a small set of automatically generated few-shot examples. We use an iterative improvement loop that improves the current set of few-shot examples using Shapley values to estimate utility of individual examples.

Implementation: For a fast implementation, we approximate Shapley values, KV-cache reuse for shared ICL prefixes, PagedAttention for compact KV memory management and continuous token-level batching to maintain high GPU utilization.

Empirical Results: We demonstrate strong performances using the same set of robust hyperparameters on text classification, summarization and simplification as well as GSM8K. Our approach yields strong anytime performance: When using only a subset of data and a small computational budget we obtain SoTA on text simplification and GSM8K and obtain second best results on summarization and classification. With an extended budget and full training set access we additionally set a new SoTA on classification among automatic prompting methods.

Table 1: Comparison of PIAST with other methods from the literature. Dataset indicates the fraction of the dataset used during construction of the prompt. Refinement shows whether the method iteratively improves the current prompt or generates a new one in a single step. Few-shot specifies whether the method is capable of generating few-shot examples. Auto Gen. denotes whether prompts are generated automatically.

Algorithm	Dataset	Refinement	Few-shot	Auto Gen.	Speed
Manual Instruction Zhang et al. (2022)	✗	✗	✗	✗	██████
APE Zhou et al. (2022)	✓	✗	✗	✓	███
APO Pryzant et al. (2023)	✓	✓	---	✓	██
EvoPrompt Guo et al. (2023)	✓	✓	✗	✓	██
PRL Batorski et al. (2025)	✓	✓	✓	✓	███
PIAST	---	✓	✓	✓	███

Legend: yes no partial Speed: slow, ..., fast.

2 RELATED WORK

Prompt Engineering improves model capabilities without retraining, keeping costs low (Liu et al., 2023). Chain-of-Thought (CoT) (Wei et al., 2022) elicits reasoning via intermediate steps; Tree-of-Thought (ToT) (Yao et al., 2023) explores multiple candidate paths, while Program-of-Thoughts (Chen et al., 2022) and Graph-of-Thoughts (Besta et al., 2024) structure prompts as pro-

grams and graphs. Least-to-Most prompting decomposes problems into simpler subproblems to strengthen compositional reasoning (Zhou et al., 2023); related advances include zero-shot CoT and self-consistency for more robust reasoning (Kojima et al., 2022; Wang et al., 2022). Few-shot prompting (Brown et al., 2020) conditions on in-prompt exemplars and is effective for puzzles and evidence extraction (Xu et al., 2023; Greenblatt, 2024; Sivarajkumar et al., 2024).

Automated Prompt Engineering aims to improve task performance by replacing manual prompt design with automated methods. The Automatic Prompt Engineer (APE) Zhou et al. (2022) generates candidate prompts from input–output examples and filters them based on performance. Since no benefits were observed from in-sample refinement, APE remains a purely generative approach. Pryzant et al. (2023) introduced Automatic Prompt Optimization (APO), which iteratively refines prompts using natural language critiques, effectively simulating a form of gradient descent. APO includes few-shot examples within its prompts, but it is limited to examples drawn from the training dataset. To improve efficiency, APO employs minibatching, beam search, and bandit selection. Guo et al. (2023) proposed EvoPrompt, which evolves a population of prompts using LLMs together with evolutionary operators, achieving strong results without requiring model gradients. Other approaches leverage reinforcement learning, such as RLPrompt Deng et al. (2022), which generates prompts of up to 5 tokens, and PRL Batorski et al. (2025), which synthesizes in-context examples autonomously whenever beneficial.

Among all these methods, only two are capable of incorporating examples into the prompt. The first is APO, which can only reuse examples from the training set, an inherent limitation on its performance. The second is PRL, which can introduce previously unseen examples, but at the cost of tens of hours of computation, making it impractical for scenarios where prompts must be produced quickly.

In contrast, our method PIAST can rapidly generate few-shot examples that are not present in the training data. We argue that the flexibility of deciding whether and which examples to include is directly tied to improved task performance. We give an overview of how PIAST compares to existing methods in Table 1.

3 METHOD

In this section, we present our method, which is composed of three components: the Prompt Proposer, the Prompt Evaluator, and the Prompt Improver. Each component is instantiated as a frozen LLM with a distinct role in the overall pipeline. Our final prompt consists of the hand-crafted instruction proposed by Zhang et al. (2022), concatenated with the in-context examples produced by our optimization procedure.

Example Proposer. The Example Proposer is responsible for generating initial candidate examples. It receives a task-specific initial instruction and produces a set of examples accordingly. To ensure coverage and robustness, the generated examples are deliberately diverse in both topic and length. Each example is then subject to a subsequent replace/drop/keep decision. The prompt for the Example Proposer is given in Appendix D.

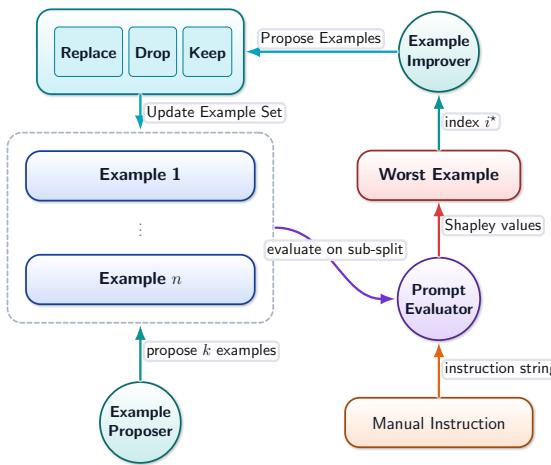


Figure 2: Pipeline of PIAST. Initially, the Example Proposer generates examples, which are then iteratively improved by evaluating them with the Prompt Evaluator and choosing new examples from the Example Improver to incorporate into the set of current in-context examples.

162 **Prompt Evaluator.** The Prompt Evaluator assesses the quality of candidate prompts. Given a
 163 prompt, it evaluates its performance on a subset D of the data using a specified metric f . This step
 164 ensures that only the most effective prompts are selected for further use. In our setup, the evaluated
 165 prompt is the base instruction concatenated with the proposed examples.
 166

167 **Example Improver.** The Example Improver starts from a current prompt and iteratively changes
 168 the in-context examples in a replace/drop/keep cycle. The examples produced may differ in struc-
 169 ture, topic, and length, thereby increasing diversity in the candidate pool. This process mirrors the
 170 behavior of the Prompt Proposer, where randomness in topic and sentence length is also introduced
 171 to encourage exploration. The prompt for the Example Improver is given in Appendix E.
 172

173 The example improver uses Shapley values to estimate quality of examples and implements a re-
 174 place/drop/keep cycle as detailed below.
 175

176 **Example Selection via Shapley Values** Let $[n] = \{1, \dots, n\}$ index the current few-shot examples
 177 and let D denote the subset of training examples on which we evaluate. For any ordered subset
 178 $S = \{i_1 \prec \dots \prec i_n\}$, where $i_1, \dots, i_n \in [n]$, let $P(S)$ be the ICL prompt formed from concatenating
 179 the examples in S according to their order. We define the utility of S as the evaluator’s accuracy on
 D :

$$180 \quad v(S) = \frac{1}{|D|} \sum_{(x,y) \in D} \mathbf{1}\{\hat{y}(x; P(S)) = y\}, \quad (1)$$

183 where $\hat{y}(x; P)$ is the evaluator’s prediction under prompt P . Note that S needs to have an order, since
 184 the prompt $P(S)$ ’s performance depends upon the order in which the few-shot examples occur.
 185

186 For example $i \in [n]$, its Shapley value is the expected marginal contribution for all prompts ran-
 187 domly drawn from $[n]$:

$$188 \quad \phi_i = \frac{1}{n! - (n-1)!} \sum_{\substack{\text{ordered subset } S \text{ of } [n] \\ i \in S}} \left(v(S) - v(S \setminus \{i\}) \right), \quad (2)$$

192 where $S \setminus \{i\}$ is the ordered subset with example i removed. Note that $n! - (n-1)!$ is the number
 193 of ordered subsets of $[n]$ that include i .
 194

195 **Remark 1** We use Shapley values instead of a simpler and faster leave-one-out test because the for-
 196 mer captures redundancy and complementarity of each example in the context of all other examples.
 197 This mitigates misattribution when examples overlap or interact—removal can look harmless if oth-
 198 ers duplicate it, or overly harmful if others depend on it. Empirically, the Shapley-based selector
 199 outperforms leave-one-out in our ablation (see Section 4, Table 2).
 200

201 **Monte-Carlo Approximation** Because summing over all permutations is infeasible, we approx-
 202 imate equation 2 with K independently drawn random ordered subsets $\{S_k\}_{k=1}^K$ where $i \in S_k$ for
 203 all k :

$$204 \quad \hat{\phi}_i = \frac{1}{K} \sum_{k=1}^K \left(v(S_k) - v(S_k \setminus \{i\}) \right), \quad (3)$$

206 The pseudo-code for selecting the worst example is included in Appendix A.
 207

208 **Replace/Drop/Keep decision.** Given the current set of in-context examples $[n]$ we determine the
 209 least helpful example i^* using the Shapley criterion:
 210

$$211 \quad i^* = \arg \min_{i \in [n]} \hat{\phi}_i. \quad (4)$$

214 For this step, the Example Improver proposes m candidate examples $C = \{c_1, \dots, c_m\}$ for potential
 215 appending to the current few shot example set. To decide whether to replace, keep, or drop the index
 i^* , we compute the following scores:
 216

$$\begin{aligned}
 216 & \\
 217 & \\
 218 & r = \max_{c \in \mathcal{C}} v([n] \setminus \{i^*\} \cup \{c\}) & (\text{Replace}) \\
 219 & d = v([n] \setminus \{i^*\}) & (\text{Drop}) \\
 220 & k = v([n]) & (\text{Keep}) \\
 221
 \end{aligned}$$

222 We select replace, keep or drop by checking whichever score is largest. When having ties, we prefer
 223 replace over drop over keep. The next prompt becomes $(N \setminus \{i^*\}) \cup \{c^*\}$ under REPLACE, $N \setminus \{i^*\}$
 224 under DROP, and N under KEEP. This policy ensures we only adopt a modification when it does not
 225 underperform the best available alternative (drop or status quo).

226 **Remark 2** Note that the Replace/Drop/Keep step could also be formulated directly using Shapley
 227 values. However, this would significantly increase the computational cost of each iteration, whereas
 228 our design prioritizes speed and efficiency.

230 **Replay Buffer** Our method relies on sampling a subset of the training data at each iteration. Con-
 231sequently, newly crafted examples can overfit the current subset and fail to generalize to training
 232 subsets drawn in later iterations, since there is no mechanism enforcing that they also perform well
 233 on previously seen data. To mitigate this, after each iteration we store a small portion of the training
 234 data in a *replay buffer*. At the next iteration, this buffer is merged with the freshly sampled subset,
 235 which preserves accuracy across iterations by acting as a regularizer: newly crafted examples must
 236 also succeed on data sampled in prior iterations.

237 **Speed.** To make our implementation fast, we employ the following techniques: We use a KV
 238 cache (Radford et al. (2019)) to avoid recomputing attention over already-processed tokens: Keys
 239 and values for the shared in-context prefix are cached once and then reused across (i) all tokens
 240 within a sequence and (ii) multiple evaluation queries that share this prefix. In addition, we rely on
 241 PagedAttention (Korthikanti et al. (2023)) to store the KV cache in paged memory chunks, which
 242 minimizes fragmentation and data movement while enabling efficient, contiguous access during
 243 decoding. Finally, we leverage continuous (token-level) batching (Yu et al. (2022)), in which the
 244 scheduler dynamically forms a new batch at each decoding step by admitting fresh requests and
 245 retiring completed ones, thereby overlapping prefill and decoding and maintaining high GPU util-
 246 ization.

247 Pseudocode for PIAST can be found in Appendix A.

249 4 EXPERIMENTS

251 All experiments are conducted on single NVIDIA A100 GPU. We use the Qwen2.5-7B-Instruct
 252 model (Yang et al., 2024) as both the Example Generator, Improver and Prompt Evaluator for PI-
 253 AST. Also all baselines are run using the same model, ensuring a fair comparison not distorted by
 254 LLM differences.

256 In this section, we present a series of experiments comparing PIAST against established baselines
 257 from the literature. Our evaluation spans four tasks: text classification, summarization, simplifica-
 258 tion and mathematical reasoning. In addition, we perform ablation studies to assess the contribution
 259 of individual hyperparameters, where each parameter is varied independently while keeping all oth-
 260 ers fixed. All experimental results, including both the main evaluations and ablation studies, are
 261 averaged over three runs for robustness. We use a single set of hyperparameters across all experi-
 262 ments. For hyperparameter values refer to Appendix F.

263 4.1 BASELINES

- 265 • **MI (Manual Instruction)** (Zhang et al., 2022): A set of prompts handcrafted and written by
 266 humans, aiming to improve task-specific performance.
- 267 • **NI (Natural Instruction)** (Mishra et al., 2021): Contains similarly to MI a set of human-written
 268 prompts for classification.
- 269 • **APE (Automatic Prompt Engineer)** (Zhou et al., 2022): Automatically generates multiple in-
 struction candidates with an LLM and selects the most effective prompt based on downstream

270 performance, without further refinement during optimization. This method only rephrases instructions and does not generate few-shot examples.
 271

- 272 • **APO (Automatic Prompt Optimization)** (Pryzant et al., 2023): Frames prompt tuning as a black-box optimization problem, refining prompts through an iterative feedback loop with beam search. Incorporate few-shot examples taken directly from the training dataset.
- 273 • **EvoPrompt** (Guo et al., 2023): Uses evolutionary strategies, selection, crossover, and mutation—to evolve a pool of discrete prompts and discover high-performing candidates. Similar to APE, only rephrases instructions and does not generate few-shot examples.
 - 274 – **DE (Differential Evolution)**: Explores the prompt space using differential evolution strategies.
 - 275 – **GA (Genetic Algorithm)**: Applies genetic operators such as selection, crossover, and mutation to progressively improve prompt quality.
- 276 • **PRL (Prompts from Reinforcement Learning)** (Batorski et al., 2025): Employs a reinforcement learning framework to automatically generate and optimize prompts. PRL also constructs few-shot examples that are not in the training set.
- 277 • **PIAST**: Our method as described in Section 3. The first two variants PIAST and PIAST(E) are used throughout experiments, while the (I) and (LOO) variants are ablations. All variants otherwise have the same hyperparameters.
 - 278 – **PIAST**: With medium runtime budget with limited access to the training set.
 - 279 – **PIAST (E)**: With extended runtime budget and accessing the full dataset.
 - 280 – **PIAST (I)**: Use only the initially generated examples, without the replace/keep/drop cycle. Notably this variant does not access the training set.
 - 281 – **PIAST (LOO)**: Replace Shapley value selection equation 2 by simple leave-one-out.

293 **4.2 RESULTS**

295 **Classification** We evaluate our method on a range of classification benchmarks covering sentiment, question, news, and subjectivity analysis:

297

- 298 • **Binary sentiment classification**: SST-2 (Socher et al., 2013), MR (Pang & Lee, 2005), and CR (Hu & Liu, 2004). The task is to classify each sentence as either positive or negative.
- 299 • **Multiclass sentiment classification**: SST-5 (Socher et al., 2013), extends sentiment analysis to five labels: terrible, bad, okay, good, and great.
- 300 • **Question classification**: TREC (Voorhees & Tice, 2000), questions categorization into one of six classes: Description, Entity, Expression, Human, Location, or Number.
- 301 • **News classification**: AG’s News (Zhang et al., 2015), involves categorizing news articles into one of four topics: World, Sports, Business, or Tech.
- 302 • **Subjectivity classification**: SUBJ (Pang & Lee, 2004), the goal is to determine whether a sentence is subjective or objective.

308 Results are given in Table 2 and summarized in Figure 1, where also averaged runtimes and percentage data used are given. Detailed per-dataset runtimes are reported in Appendix B. As shown, 309 PIAST consistently ranks among the top two methods in classification accuracy, while also being 310 the fastest approach across all benchmarks. This demonstrates that efficient prompt construction 311 not only reduces runtime but also maintains strong performance. Furthermore, the extended variant 312 PIAST (E) yields additional improvements across all benchmarks, establishing new state-of-the-art 313 results on AG’s News and Subj. The example prompts are given in Appendix G.

315 **Simplification** We evaluate PIAST on the sentence simplification task using the ASSET dataset 316 (Alva-Manchego et al., 2020). ASSET is a crowdsourced corpus specifically designed to evaluate 317 simplification models across a range of rewriting operations, including lexical paraphrasing, 318 sentence splitting, deletion, and reordering. Each original sentence is paired with multiple human- 319 written simplifications.

321 For measuring simplification quality, we adopt the SARI metric (Xu et al., 2016), which compares 322 the system output to both the original sentence and the reference simplifications. Results are pre- 323 sented in Table 3. As shown, PIAST achieves the highest SARI score for text simplification while 324 requiring the least runtime. Furthermore, PIAST exhibits the lowest standard deviations across runs,

324 **Table 2:** Accuracy on classification tasks, averaged over three runs. Colours mark the best (red), second-best
325 (orange) and third-best (yellow) numbers in each column; minor differences (≤ 0.05) are treated as ties. The
326 right-most column shows the mean accuracy of each method across the seven datasets.

Method / Dataset	SST-2	CR	MR	SST-5	AG’s News	TREC	Subj	Avg
MI	92.70	87.25	87.40	52.31	82.29	69.20	57.95	75.59
NI	95.77	91.50	90.85	51.90	83.43	66.60	68.10	78.31
APO	93.71 \pm 0.25	93.48 \pm 0.24	89.97 \pm 1.37	53.94 \pm 0.29	83.73 \pm 0.31	71.30 \pm 1.90	69.80 \pm 5.96	79.42
APE	91.23 \pm 0.66	92.87 \pm 0.02	89.90 \pm 0.94	49.37 \pm 5.66	82.58 \pm 1.20	77.07 \pm 1.61	73.92 \pm 1.39	79.56
GA	94.65 \pm 1.04	92.75 \pm 0.40	90.45 \pm 0.72	53.76 \pm 1.13	82.24 \pm 1.00	79.20 \pm 2.83	74.93 \pm 3.12	81.14
DE	93.29 \pm 0.34	93.38 \pm 0.19	89.98 \pm 0.24	55.25 \pm 0.37	82.18 \pm 1.04	76.47 \pm 0.38	73.08 \pm 4.95	80.52
PRL	96.32 \pm 0.04	92.83 \pm 0.24	91.27 \pm 0.05	56.21 \pm 0.15	84.36 \pm 0.08	77.07 \pm 2.36	76.90 \pm 0.95	82.14
PIAST	95.35 \pm 0.14	92.35 \pm 0.05	90.57 \pm 0.21	53.27 \pm 0.66	85.93 \pm 0.62	77.07 \pm 3.30	75.93 \pm 0.40	81.50
PIAST (E)	95.88 \pm 0.24	92.55 \pm 0.35	91.00 \pm 0.65	53.33 \pm 0.35	87.39 \pm 0.35	78.40 \pm 1.22	80.98 \pm 0.67	82.79
PIAST (I)	95.04 \pm 0.18	91.53 \pm 0.65	90.43 \pm 0.21	49.79 \pm 1.05	85.38 \pm 0.20	74.33 \pm 4.77	59.52 \pm 2.29	78.00
PIAST (LOO)	95.70 \pm 0.31	92.15 \pm 0.15	90.42 \pm 0.28	53.18 \pm 1.40	86.43 \pm 0.72	75.87 \pm 2.37	69.73 \pm 3.68	80.50

339 highlighting its stability and robustness. With additional computational time and data, PIAST (E)
340 attains an even higher score on this benchmark. The example prompt is given in Appendix H.

342 **Summarization** We evaluate PIAST on the task of text
343 summarization, where the goal is to extract and condense
344 the most salient information from an input passage pre-
345 serving key content while omitting redundant or irre-
346 relevant details.

347 Our experiments are conducted on the SAMSUM
348 dataset (Gliwa et al., 2019), a collection of English-
349 language chat dialogues designed to resemble real-life
350 messenger conversations.

351 For evaluation, we report scores using the widely adopted
352 ROUGE metrics (Lin, 2004). ROUGE-1 measures uni-
353 gram similarity, reflecting context coverage. ROUGE-2
354 measures bigram similarity, reflecting local coherence and phrasing. ROUGE-L measures longest
355 common subsequence, measuring fluency and structural alignment.

357 **Table 4:** Text summarization results with ROUGE scores and run-
358 time (minutes).

Method	ROUGE-1	ROUGE-2	ROUGE-L	Time [m]
MI	32.76	10.39	28.97	—
APE	37.12 \pm 2.02	12.97 \pm 0.74	33.32 \pm 1.68	60.07 \pm 0.27
GA	39.69 \pm 1.76	14.47 \pm 1.00	35.84 \pm 1.63	89.31 \pm 3.08
DE	33.91 \pm 4.04	12.53 \pm 1.47	31.05 \pm 3.79	76.89 \pm 1.34
PRL	42.47 \pm 0.83	16.17 \pm 0.24	37.73 \pm 0.36	2880.00 \pm 0.00
PIAST	41.13 \pm 0.67	16.07 \pm 0.76	36.74 \pm 0.48	34.48 \pm 0.27
PIAST (E)	42.13 \pm 0.27	16.83 \pm 0.3	37.37 \pm 0.25	737.00 \pm 108.31

368 can indeed enhance performance, the improvements do not reach the level achieved by PRL. More-
369 over, we observe that PIAST (E) further improves the results, attaining state-of-the-art performance
370 on the ROUGE-2 metric as well as on the average of ROUGE-1, ROUGE-2, and ROUGE-L. The
371 example prompt of PIAST is provided in Appendix I.

373 **GSM8K** We evaluate our approach on the GSM8K dataset (Cobbe et al., 2021), a bench-
374 mark that demands explicit, multi-step arithmetic reasoning where answers are unconstrained in-
375 tegers—making robust prompt design especially critical. Prior work has shown that such reasoning
376 performance is highly sensitive to the choice of exemplars (Wei et al., 2022). As summarized in
377 Table 5, methods that only adjust the base prompt (APE, GA, DE) yield modest gains over the MI
baseline, whereas approaches that incorporate few-shot examples (PRL, PIAST) achieve substan-

338 **Table 3:** Simplification task results.

Method	SARI (\uparrow)	Time [m] (\downarrow)
MI	43.77	—
APE	45.33 \pm 0.83	35.69 \pm 0.20
GA	46.25 \pm 0.47	39.60 \pm 0.63
DE	45.79 \pm 0.35	52.77 \pm 1.12
PRL	52.26 \pm 3.51	2880.00 \pm 0.00
PIAST	54.52 \pm 0.07	18.14 \pm 0.42
PIAST (E)	55.06 \pm 0.26	389.78 \pm 113.17

356 Results are summarized in Table 4. As shown, PIAST is the fastest
357 method while consistently ranking second across all evaluation metrics. An interesting observation is that, al-
358 though PRL is capable of generating examples, it does not utilize any for the summarization task. Instead, PRL
359 merely rephrases the manual prompt. The authors of PRL argue that summarization is not particularly suitable
360 for example-based prompting. While we find that incorporating examples

361 can indeed enhance performance, the improvements do not reach the level achieved by PRL. More-

362 over, we observe that PIAST (E) further improves the results, attaining state-of-the-art performance

363 on the ROUGE-2 metric as well as on the average of ROUGE-1, ROUGE-2, and ROUGE-L. The

364 example prompt of PIAST is provided in Appendix I.

365

tially stronger accuracy. Notably, PIAST and PIAST (E) obtain the best and second to best results, respectively, with PIAST also being the fastest among the top-performing methods. These findings indicate that PIAST is both competitive and efficient for reasoning intensive tasks like GSM8K.

4.3 ABLATIONS

Table 5: GSM8K Results.

Method	Acc.	Time [m]
MI	78.20	—
APE	83.43 \pm 1.98	180.81 \pm 2.66
GA	81.62 \pm 1.38	191.96 \pm 1.11
DE	79.52 \pm 0.45	252.57 \pm 3.59
PRL	86.15 \pm 0.55	2880.00 \pm 0.00
PIAST	91.65 \pm 0.31	80.26 \pm 2.95
PIAST (E)	92.12 \pm 0.12	1598.34 \pm 234.54

role, swapping Qwen and Mistral between the (Example Proposer & Improver) and the Prompt Evaluator. Table 7 shows that accuracy remains comparable across configurations, indicating that PIAST is not overly sensitive to a particular model pairing.

Table 6: Cross-model inference on SUBJ: prompts trained with Qwen2.5-7B-Instruct, evaluated with Mistral-7B-Instruct-v0.2.

Method	Acc.
MI	60.30
APE	60.77 \pm 1.08
APO	69.53 \pm 1.33
GA	60.68 \pm 1.60
DE	64.10 \pm 2.20
PRL	70.73 \pm 3.81
PIAST	72.87 \pm 4.16
PIAST (E)	68.75 \pm 3.01

where in-context example selection is non-trivial our optimization loop can help a lot.

Ablation Study: Cross-Model Robustness We assess how well prompts learned by PIAST transfer across models in two settings. **(i) Cross-model inference.** We train prompts with Qwen2.5-7B-Instruct and then evaluate *the same prompts* using Mistral-7B-Instruct-v0.2 Jiang et al. (2023). As shown in Table 6, PIAST attains the strongest transfer on SUBJ, edging out PRL and APO; APE and GA are roughly on par with the manual instruction baseline. Notably, PIAST (E) exhibits a sizable accuracy drop, which we attribute to overfitting to the source evaluator due to its substantially larger improvement iteration budget. These results suggest that, when portability matters, PIAST offers the best cross-model robustness.

(ii) Component swaps. We next vary which model plays each

Ablation Study: Influence of the Replace/Drop/Keep Optimization

In this experiment, we evaluate PIAST without the optimization loop, i.e., the model is tested directly on the proposed initial examples. We include this variant as a baseline, denoted PIAST (I), in Table 2. As shown, for many benchmarks the initial examples already yield strong performance, in some cases even surpassing algorithms that employ optimization loops. Nevertheless, we consistently observe that incorporating our optimization loop further improves the results. For certain tasks, such as binary sentiment classification (e.g., SST-2 or MR), the improvement is marginal. We attribute this to the fact that the initial examples are already highly effective, as the underlying LLM has a strong capability to distinguish between positive and negative samples.

Interestingly, in the subjectivity dataset PIAST without the optimization loop performs poorly, achieving results comparable to those of the Manual Instruction baseline. However, after applying the optimization loop, performance improves significantly by 16.41% and by an additional 5.05% when using PIAST(E), showing that on more difficult tasks

Table 7: Component swaps on SUBJ: accuracy when exchanging the Example Proposer (P) & Improver (I) and the Prompt Evaluator between Qwen and Mistral.

P & I	Eval	Acc.
Qwen	Mistral	75.93 \pm 3.14
Mistral	Qwen	72.52 \pm 1.71
Mistral	Mistral	74.93 \pm 2.54

anytime performance superior to the baselines.

432 **Ablation: Leave–One–Out vs. Shapley for worst–example selection** To test whether a simpler
 433 procedure can replace our Shapley–value selection, we evaluate a *leave–one–out* (LOO) heuristic
 434 for identifying the worst (most harmful) in–context example. Given n examples $E = \{e_i\}_{i=1}^n$, LOO
 435 removes each example once and measures performance on the validation split:

436

$$437 \quad i^* = \arg \max_{i \in \{1, \dots, N\}} v(E \setminus \{e_i\}).$$

438

439 In words, LLO chooses the example whose removal yields the highest accuracy drop. removing a
 440 strongly useful example would decrease it.

442 We run this ablation on all classifi-
 443 cation tasks using the same hyper-
 444 parameters as PIAST and report results
 445 in Table 2. Across several bench-
 446 marks LOO attains results compa-
 447 rable to our full method, but on
 448 SUBJ there is a clear gap between
 449 PIAST and PIAST (LOO). We hy-
 450 pothesize that, for many classifi-
 451 cation tasks, the initial pool already
 452 contains mostly good examples, so LOO can
 453 make small, beneficial adjustments.
 454 In contrast, SUBJ is more sensitive
 455 to initialization (see PIAST (I)), and
 456 the Shapley–based selection is
 457 notably more robust in such settings,
 458 where performance depends heavily
 459 on which examples are initially pre-
 460 sented.

461

462 **Ablation: Number of Shapley Permutations** We study the sensitivity of PIAST to the number of
 463 Monte–Carlo permutations K used in the Shapley–value estimator equation 3. As shown in Table 8,
 464 increasing K beyond 3 yields only marginal accuracy gains (at most 0.39 points from $K = 3$ to
 465 $K = 50$) while substantially increasing runtime. Using $K = 1$ underperforms $K = 3$ by 2.25
 466 points, indicating that a small amount of averaging is beneficial. We therefore adopt $K = 3$ as our
 467 default, which offers a strong performance/speed trade-off.

468

469

5 CONCLUSIONS & LIMITATIONS

470

471 Constructing prompts with in–context exam-
 472 ples is key for performance in automatic
 473 prompting. Our method PIAST shows that
 474 this can be done fast and data–lean.

475

476 It is an interesting open question how PIAST
 477 would perform if the underlying LLM has lit-
 478 tle task specific competence to suggest good
 479 examples. We also believe that, while ar-
 480 guably in–context examples are more impact-
 481 ful overall, combining PIAST with prompt
 482 rewriting might yield some additional ben-
 483 efits. Last, PIAST is in a loose sense similar to
 484 a local neighborhood search heuristics in optimiza-
 485 tion, where our local neighborhood are the current
 examples and changing neighborhoods can be done via dropping or replacing examples. It would
 be an interesting problem to see whether other ideas from primal heuristics could be used to search
 the combinatorial space of few–shot examples effectively.

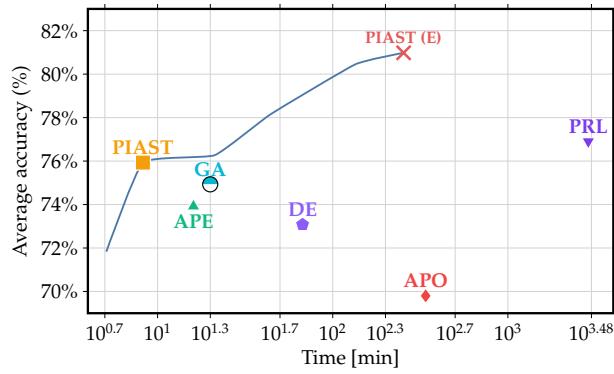


Figure 3: Scaling of PIAST on SUBJ compared to other baselines while increasing the number of improvement iterations.

Table 8: Effect of the number of Shapley permutations on subjectivity.

P	Acc.	Time [m]
1	73.68 ± 1.45	4.61 ± 0.04
3	75.93 ± 0.40	8.25 ± 0.27
10	76.02 ± 1.08	20.88 ± 0.17
50	76.32 ± 1.41	83.90 ± 1.82

486 REFERENCES
487

488 Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lu-
489 cia Specia. Asset: A dataset for tuning and evaluation of sentence simplification models with
490 multiple rewriting transformations. *arXiv preprint arXiv:2005.00481*, 2020.

491 Paweł Batorski, Adrian Kosmala, and Paul Swoboda. Prl: Prompts from reinforcement learning.
492 *arXiv preprint arXiv:2505.14412*, 2025.

493

494 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
495 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of
496 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI
497 Conference on Artificial Intelligence*, volume 38, pp. 17682–17690, 2024.

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

501

502 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
503 ing: Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint
504 arXiv:2211.12588*, 2022.

505

506 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
507 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
508 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
509 2021.

510

511 Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
512 Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
513 learning. *arXiv preprint arXiv:2205.12548*, 2022.

514

515 Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
516 annotated dialogue dataset for abstractive summarization. *arXiv preprint arXiv:1911.12237*,
517 2019.

518

519 Ryan Greenblatt. Getting 50% (sota) on ARC-AGI with GPT-4o, 2024. URL <https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt>.

520

521 Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
522 and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
523 prompt optimizers. *arXiv preprint arXiv:2310.08510*, 2023.

524

525 Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In *Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp.
526 168–177. Association for Computing Machinery, 2004.

527

528 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
529 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
530 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
531 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint arXiv:2310.06825*,
2023. doi: 10.48550/arXiv.2310.06825. URL <https://arxiv.org/abs/2310.06825>.

532

533 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
534 language models are zero-shot reasoners. *Advances in neural information processing systems*,
35:22199–22213, 2022.

535

536 Vijay Korthikanti, Zhaozhuo Yu, Zhun Yao, Yifan Zhu, Zhifan Shao, Le Zheng, Brandon Reagen,
537 Tianqi Chen, and Rahul Jain. vllm: Easy, fast, and cheap llm serving with pagedattention. In
538 *Proceedings of the ACM Symposium on Cloud Computing (SoCC)*, pp. 1–15, 2023.

539 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop*, 2004.

540 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 541 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 542 cessing. *ACM Computing Surveys*, 55(9), 2023. doi: 10.1145/3560815.

543

544 Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
 545 via natural language crowdsourcing instructions. *arXiv preprint arXiv:2104.08773*, 2021.

546

547 Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
 548 rization based on minimum cuts. In *Proceedings of the 42nd Annual Meeting of the Association
 549 for Computational Linguistics*, pp. 271–278. Association for Computational Linguistics, 2004.

550

551 Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
 552 with respect to rating scales. In *Proceedings of the 43rd Annual Meeting of the Association for
 553 Computational Linguistics*, pp. 115–124. Association for Computational Linguistics, 2005.

554

555 Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
 556 optimization with “gradient descent” and beam search. *arXiv preprint arXiv:2305.03495*, 2023.

557

558 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 559 Language models are unsupervised multitask learners. OpenAI Technical Report, 2019.
 560 [https://cdn.openai.com/better-language-models/language_models_](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
 561 [are_unsupervised_multitask_learners.pdf](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).

562

563 Sonish Sivarajkumar, Mark Kelley, Alyssa Samolyk-Mazzanti, Shyam Visweswaran, and Yanshan
 564 Wang. An empirical evaluation of prompting strategies for large language models in zero-shot
 565 clinical natural language processing: algorithm development and validation study. *JMIR Medical
 566 Informatics*, 12:e55318, 2024.

567

568 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
 569 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 570 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language
 571 Processing*, pp. 1631–1642. Association for Computational Linguistics, 2013.

572

573 Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In *Proceed-
 574 ings of the 23rd annual international ACM SIGIR conference on Research and development in
 575 information retrieval*, pp. 200–207, 2000.

576

577 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 578 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 579 *arXiv preprint arXiv:2203.11171*, 2022.

580

581 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 582 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 583 neural information processing systems*, 35:24824–24837, 2022.

584

585 Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing
 586 statistical machine translation for text simplification. *Transactions of the Association for Compu-
 587 tational Linguistics*, 4:401–415, 2016.

588

589 Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. Llms and the
 590 abstraction and reasoning corpus: Successes, failures, and the importance of object-based repre-
 591 sentations. *arXiv preprint arXiv:2305.18354*, 2023.

592

593 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 594 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 595 arXiv:2412.15115*, 2024.

596

597 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 598 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 599 vances in neural information processing systems*, 36:11809–11822, 2023.

594 Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
595 distributed serving system for transformer-based generative models. In *Proceedings of the 16th*
596 *USENIX Symposium on Operating Systems Design and Implementation (OSDI'22)*, pp. 521–538.
597 USENIX Association, 2022. URL <https://www.usenix.org/conference/osdi22/presentation/yu>.

598

599 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
600 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
601 language models. *arXiv preprint arXiv:2205.01068*, 2022.

602

603 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
604 sification. In *Advances in Neural Information Processing Systems*, volume 28, 2015.

605

606 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
607 mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed H. Chi. Least-to-most prompting enables
608 complex reasoning in large language models. In *International Conference on Learning Represen-
609 tations (ICLR)*, 2023. URL <https://openreview.net/forum?id=WZH7099tgfM>.

610 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
611 Jimmy Ba. Large language models are human-level prompt engineers. In *The Eleventh Interna-
612 tional Conference on Learning Representations*, 2022.

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PSEUDOCODES
649650
651
652653 We present concise pseudocodes for our method and its Shapley-driven oracle. Algorithm 1 orches-
654 trates the full crafting loop: starting from k initial examples, it performs I rounds that evaluate on
655 a small subsample (size s) augmented with a replay buffer (size r). In each round, MONTECAR-
656 LOSHAPLEYWORST identifies the least helpful example using P random permutations, the im-
657 prover proposes m candidates, and a conservative REPLACE/DROP/KEEP rule updates the set only
658 when accuracy does not regress. Algorithm 2 details the Shapley routine with memoized coalition
659 values $v(S)$ and permutation-averaged marginal contributions, returning the index with the smallest
660 estimated value.661
662
663
664
665666 **Algorithm 1 PIAST**
667

Require:

- 668 Dataset \mathcal{D}
- 669 Example Proposer M_{prop}
- 670 Prompt Evaluator M_{eval}
- 671 Example Improver M_{impr}
- 672 k (Initial examples)
- 673 I (Number of craft iterations)
- 674 m (Number of refine candidates)
- 675 s (Size of subdataset)
- 676 r (Replay Size)
- 677 P (Number of Shapley Permutations)

Ensure: Crafted example set E^*

678

679 1: $E \leftarrow \text{PROPOSEINITIALEXAMPLES}(M_{\text{prop}}, k)$ $\triangleright |E| = k$

680 2: $R \leftarrow \emptyset$ \triangleright Replay buffer

681 3: **for** $t = 0, 1, \dots, I - 1$ **do**

682 4: $D_t \leftarrow \text{SUBSAMPLE}(\mathcal{D}_{\text{infer}}, s)$

683 5: $\tilde{D}_t \leftarrow D_t \cup R$ \triangleright Union with replay

684 6: $a_{\text{base}} \leftarrow \text{EVALACC}(M_{\text{eval}}, E, \tilde{D}_t)$

685 7: $i^* \leftarrow \text{MONTECARLOSHAPLEYWORST}(E, \tilde{D}_t, M_{\text{eval}}, P)$

686 8: $E_{\setminus i^*} \leftarrow E \setminus \{e_{i^*}\}$

687 9: $a_{\text{drop}} \leftarrow \text{EVALACC}(M_{\text{eval}}, E_{\setminus i^*}, \tilde{D}_t)$

688 10: $C \leftarrow \text{GENERATECANDIDATES}(M_{\text{impr}}, E_{\setminus i^*}, m)$

689 11: $(c^{\text{best}}, a_{\text{best}}) \leftarrow \arg \max_{c \in C} \text{EVALACC}(M_{\text{eval}}, E_{\setminus i^*} \cup \{c\}, \tilde{D}_t)$

690 \triangleright **Decision:** REPLACE vs DROP vs KEEP

691

692 12: **if** $a_{\text{best}} \geq a_{\text{drop}}$ **and** $a_{\text{best}} \geq a_{\text{base}}$ **then**

693 13: $E \leftarrow E_{\setminus i^*} \cup \{c^{\text{best}}\}$ \triangleright REPLACE

694 14: **else if** $a_{\text{drop}} \geq a_{\text{base}}$ **and** $|E| > 1$ **then**

695 15: $E \leftarrow E_{\setminus i^*}$ \triangleright DROP

696 16: **else**

697 17: $E \leftarrow E$ \triangleright KEEP

698 18: **end if**

699 19: $R \leftarrow R \cup \text{SAMPLEREPLAY}(D_t, r)$

700 20: **end for**

701 21: $E^* \leftarrow E$

702 22: **return** E^*

702 **Algorithm 2** MONTECARLOSHAPLEYWORST

703 **Require:**704 Example set $E = \{e_1, \dots, e_n\}$
705 Dataset subset \tilde{D}
706 Prompt Evaluator M_{eval}
707 P (Number of Shapley permutations)708 **Ensure:** Worst index i^*

```

709
710     1:  $\mathcal{V} \leftarrow \emptyset$ 
711     2: For each  $i \in [n]$ , set list  $\Delta_i \leftarrow []$ 
712     3: Define  $v(S) \leftarrow \text{EVALACC}(M_{\text{eval}}, \{e_j : j \in S\}, \tilde{D})$ 
713     4:  $\mathcal{V}[\emptyset] \leftarrow v(\emptyset)$ 
714     5: for  $p = 1, 2, \dots, P$  do
715         6:      $\pi \leftarrow$  a random permutation of  $[n]$ 
716         7:      $S \leftarrow \emptyset$ ;  $v_{\text{prev}} \leftarrow \mathcal{V}[\emptyset]$ 
717         8:     for  $j = 1, 2, \dots, n$  do
718             9:          $i \leftarrow \pi_j$ ;  $S' \leftarrow S \cup \{i\}$ 
719             10:      if  $S' \notin \mathcal{V}$  then
720                 11:          $\mathcal{V}[S'] \leftarrow v(S')$ 
721             12:      end if
722             13:          $v_{\text{new}} \leftarrow \mathcal{V}[S']$ 
723             14:         Append  $(v_{\text{new}} - v_{\text{prev}})$  to  $\Delta_i$      ▷ Marginal contribution of  $e_i$ 
724             15:          $S \leftarrow S'$ ;  $v_{\text{prev}} \leftarrow v_{\text{new}}$ 
725         16:      end for
726         17:      end for
727         18:      for  $i = 1, 2, \dots, n$  do
728             19:          $\phi_i \leftarrow \begin{cases} \frac{1}{|\Delta_i|} \sum_{d \in \Delta_i} d, & |\Delta_i| > 0 \\ 0, & \text{otherwise} \end{cases}$ 
729
730         20:      end for
731         21:       $i^* \leftarrow \arg \min_{i \in [n]} \phi_i$ 
732         22:      return  $i^*$ 

```

733 **B RUNTIME ANALYSIS FOR CLASSIFICATION BENCHMARKS**

734
735 In this section, we report the average runtime (in minutes) across different methods for each classi-
736 fication benchmark. Table 9 summarizes the results, including mean and standard deviation values.
737738 **Table 9:** Average runtime in minutes (mean \pm SD) for each classification benchmark and method. The last
739 row reports the overall average across all APO runs.

740 Dataset	741 APE	742 APO	743 DE	744 GA	745 PRL	746 PIAST	747 PIAST (E)
748 sst2	749 62.85 ± 1.96	750 376.82 ± 0.00	751 62.79 ± 2.54	752 20.21 ± 2.84	753 2880.00 ± 0.00	754 7.49 ± 0.14	755 221.48 ± 8.41
756 cr	757 16.09 ± 5.29	758 302.22 ± 47.40	759 65.06 ± 0.96	760 18.75 ± 4.37	761 2880.00 ± 0.00	762 7.49 ± 0.20	763 181.06 ± 8.67
764 mr	765 4.60 ± 0.45	766 342.03 ± 15.04	767 62.71 ± 1.36	768 28.84 ± 9.18	769 2880.00 ± 26.19	770 7.64 ± 0.11	771 210.40 ± 20.84
772 sst5	773 5.99 ± 1.06	774 430.08 ± 92.80	775 62.09 ± 1.88	776 20.68 ± 1.82	777 2880.00 ± 0.00	778 7.63 ± 0.11	779 155.55 ± 0.35
780 agnews	781 7.33 ± 2.43	782 241.19 ± 28.07	783 65.16 ± 3.59	784 18.08 ± 2.54	785 2880.00 ± 0.00	786 8.38 ± 0.16	787 210.97 ± 38.85
788 trec	789 3.94 ± 0.74	790 256.34 ± 17.55	791 66.01 ± 3.25	792 22.24 ± 6.46	793 2880.00 ± 0.00	794 6.63 ± 0.19	795 146.19 ± 28.15
796 subj	797 16.03 ± 2.63	798 339.44 ± 42.38	799 67.28 ± 0.37	800 19.98 ± 2.33	801 2880.00 ± 0.00	802 8.25 ± 0.27	803 253.83 ± 8.07

797 **C HYPERPARAMETER STUDY**

798 We study the impact of the number of Shapley permutations, number of refine and initial example
799 candidates for performance of PIAST.

756
757
Table 10: Effect of the number of proposed candidates on the subjectivity task.
758
759
760
761
762
763
764
765

m	Acc.	Time (min)
5	70.57 ± 2.33	7.11 ± 0.15
10	75.93 ± 0.07	8.25 ± 0.27
30	76.15 ± 0.48	11.54 ± 0.05
50	76.33 ± 1.53	12.99 ± 0.32

766
767
Hyperparameter Study: Influence of Number of Refine Candidates In this experiment, we
768 analyze how the number of candidate examples m proposed by the example improver influences the
769 final performance. The results are summarized in Table 10.
770

771 We observe that using too few candidates ($m = 5$) leads to a significant drop in accuracy, which
772 can be mitigated by increasing the number of candidates to $m = 10$. For larger values $m = 30$
773 and $m = 50$, accuracy does not improve substantially, suggesting that an initial pool of $m = 10$
774 candidates combined with the replace/drop/keep iteration is sufficient to achieve strong performance.
775 Therefore, in all subsequent experiments we adopt $m = 10$ as the default setting.
776

777
778
779
780
781
782
Hyperparameter Study: Influence of Number of Initial Examples In this experiment, we in-
783 vestigate how performance on the subjectivity task varies with the number of initial examples. The
784 results are reported in Table 11. The number of initial examples does not exhibit a clear mono-
785 tonic trend (e.g., “the more, the better”). Using too few initial examples may lead to underfitting,
786 as they fail to provide sufficient insight into the task. Conversely, using too many examples can in-
787 troduce excessive noise, making it more difficult for the evaluator to identify the weakest examples
788 within a large pool. Based on this analysis, we select 16 examples as the most robust choice for our
789 experiments.
790

791
792
793
794
Table 11: Effect of the number of initial examples on the subjectivity task.

k	Acc.	Time [m]
4	71.77 ± 0.42	2.88 ± 0.12
8	74.20 ± 1.66	4.63 ± 0.14
16	75.93 ± 0.40	8.25 ± 0.27
32	74.77 ± 0.48	16.26 ± 0.26

D PROMPT FOR EXAMPLE GENERATOR

795
796 In this section we give the prompt for the prompt evaluator for binary sentimental analysis task. For
797 other tasks, we prompt is analogical.
798

Example Proposer prompt for CR dataset

801 You are a data generator that writes high-quality in-context learning examples for *binary sentiment* on short
802 movie-review style snippets. Create exactly {NUM.EXAMPLES} training examples in **THIS STRICT**
803 format only:
804

805 Example1:
806 Sentence: ““<text>””
807 Label: {LABEL}
808 Example2:
809 Sentence: ““<text>””
Label: {LABEL}

```

810 ...
811 Example{NUM_EXAMPLES}:
812 Sentence: """<text>"""
813 Label: {LABEL}
814 Diversity plan (MUST FOLLOW):
815 {DIVERSITY_PLAN}
816
817 Rules:
818 - Each example's "Sentence" must contain exactly the number of sentences specified above (1–3).
819 - Keep sentences concise: typically 3–14 words each. Across the set, include at least one very short ( $\leq 5$  words) and one longer (10–14 words).
820 - Use only ASCII characters. Do NOT include double quotes inside the text.
821 - Use exactly ONE 'Sentence:' line per example; if multiple sentences are needed, put them inside the same quotes separated by a space.
822 - Make the writing naturally match the requested label in the everyday sense of the word.
823 - Do NOT mention the label or talk about labels in the text (no meta commentary).
824 - No Markdown/code fences.
825 - Output ONLY the examples in the exact format above; no extra text.
826
827
828
829

```

E PROMPT FOR PROMPT IMPROVER

Example Improver prompt for CR dataset

```

830 You are improving in-context examples for sentiment classification. Generate replacements that diversify
831 length (1–3 sentences) and topic, avoid paraphrasing, and help the task.
832
833 You are given the CURRENT examples (do not repeat or paraphrase them):
834 {CURRENT_EXAMPLES}
835
836 Now create exactly {NUM_CANDIDATES} NEW examples in THIS STRICT format:
837
838 Example1:
839 Sentence: """<text>"""
840 Label: positive|negative
841
842 Example2:
843 Sentence: """<text>"""
844 Label: positive|negative
845
846 ...
847 Example{NUM_CANDIDATES}:
848 Sentence: """<text>"""
849 Label: positive|negative
850
851 Diversity plan (MUST FOLLOW):
852 {DIVERSITY_PLAN}
853
854 Rules:
855 - Use exactly ONE 'Sentence:' line per example. If multiple sentences are needed, put them INSIDE the
856 same quotes separated by a space.
857 - Each example must have exactly the number of sentences specified in the plan above (1–3).
858 - Keep sentences concise: typically 3–14 words each. Across the set, include very short ( $\leq 5$  words) and
859 longer (10–14 words).
860 - ASCII only. Do NOT include double quotes inside the text.
861 - Make topics clearly different from the given examples and from each other; avoid near-duplicates or
862 paraphrases.
863 - Prefer balancing labels; if unsure, choose the minority label: {MINORITY_LABEL}.
864 - Do NOT wrap output in Markdown/code fences.
865 - Output ONLY the examples in the exact format above; no extra text.

```

864 **F HYPERPARAMETERS**
865866 In this section, we present the exact hyperparameters used across all tasks. A single set of hyper-
867 parameters was applied consistently across all tasks, and their values are summarized in Table 12.
868

869	870	Hyperparameter	Value
871		k	16
872		s	70
873		I	15
874		m	10
875		r	5
876		P	3

879 **Table 12:** Hyperparameters used across all tasks. The notation is consistent with the pseudocode provided in
880 Appendix A.882 The hyperparameters for PIAST (E) are identical to those of PIAST, except that we increase the
883 number of iterations I to 150. This adjustment provides the most effective way to scale the perfor-
884 mance of PIAST, as demonstrated in our ablation studies (see Section 4.3).886 **G CLASSIFICATION PROMPTS**
887889 In this section, we describe the most effective prompts for PIAST on classification tasks. The base
890 prompts are taken from Guo et al. (2023), and the examples are produced by our method.891 **SST2**

893 Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from ['negative', 'positive']. Return label only without any other text.
 894 Example1: Sentence: "The film maintains a steady pace. No dull moments. Engaging from beginning to
 895 end." Label: positive
 896 Example2: Sentence: "The set design is detailed. Costumes match the era perfectly. Attention to historical
 897 accuracy is evident." Label: positive
 898 Example3: Sentence: "The lead actor delivers a compelling performance." Label: positive
 899 Example4: Sentence: "The film maintains a brisk pace from start to finish. No lulls or wasted moments,
 900 just continuous action and intrigue." Label: positive
 901 Example5: Sentence: "The soundtrack is loud and distracting, overshadowing the dialogue." Label: nega-
 902 tive
 903 Example6: Sentence: "The editing is seamless, keeping the pace tight. Transitions between scenes are
 904 smooth and impactful." Label: positive
 905 Example7: Sentence: "The lead actor's performance is powerful and moving." Label: positive
 906 Example8: Sentence: "The cinematography is breathtaking, capturing the essence of the story. The use of
 907 light and color enhances every scene." Label: positive
 908 Example9: Sentence: "The lead actress's performance is powerful." Label: positive
 909 Example10: Sentence: "The direction was confusing and lacked focus." Label: negative
 910 Example11: Sentence: "The lead actress shines in every scene." Label: positive
 911 Example12: Sentence: "The dialogue felt forced and unnatural." Label: negative
 912 Example13: Sentence: "The visual effects were poorly done. The CGI looked cheap and unrealistic. It
 913 ruined the immersion." Label: negative
 914 Example14: Sentence: "The director masterfully guides the narrative." Label: positive
 915 Example15: Sentence: "The lead actress's portrayal is emotionally resonant." Label: positive

914 **CR**

916 Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from ['negative', 'positive']. Return label only without any other text.

918

Example1: Sentence: "The cinematography captured the essence of the setting, with stunning visuals that added depth to the story." Label: positive

919

Example2: Sentence: "The editing was precise, enhancing the flow of the story. However, some transitions felt abrupt and jarring." Label: negative

920

Example3: Sentence: "The actors delivered powerful performances, bringing depth to their roles." Label:

921

positive

922

Example4: Sentence: "The screenplay was weak, with dialogue that felt forced and unnatural. Characters lacked development, making their actions confusing. The dialogue felt stiff, with lines that didn't flow naturally. This made the scenes less engaging." Label: negative

923

Example5: Sentence: "The first act was slow and" Label: positive

924

Example6: Sentence: "The editing was seamless, enhancing the flow of the story. Cuts were precise, keeping the pacing tight." Label: positive

925

Example7: Sentence: "The film started slowly but picked up in the middle." Label: negative

926

Example8: Sentence: "The director's vision was clear but the execution was lacking. Scenes felt disjointed, and the overall story was confusing." Label: negative

927

Example9: Sentence: "The editing was choppy and disjointed." Label: negative

928

Example10: Sentence: "The director's vision was clear, but the actors seemed uncomfortable on camera."

929

Label: negative

930

Example11: Sentence: "The screenplay felt rushed, with dialogue that seemed out of place. Characters had little to no development, making their motivations unclear. The plot relied too heavily on clichés, lacking originality." Label: negative

931

Example12: Sentence: "The director's vision was clear and inspiring. However, the final cut felt rushed and incomplete." Label: negative

932

Example13: Sentence: "The soundtrack was inappropriate, detracting from the mood of the scenes." Label:

933

negative

934

Example14: Sentence: "The director skillfully guided the ensemble cast." Label: positive

935

Example15: Sentence: "The screenplay felt rushed, with dialogue that seemed out of place. Characters had little to no development, making their motivations unclear. The plot relied too heavily on clichés, lacking originality." Label: negative

936

937

938

939

940

941

942

943

MR

944

945

Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from ['negative', 'positive']. Return label only without any other text.

946

Example1: Sentence: "The editing was choppy, disrupting the flow of the narrative. Scenes felt disjointed, and the timing was off." Label: negative

947

Example2: Sentence: "The lead actress delivered a nuanced and emotionally rich performance." Label:

948

positive

949

Example3: Sentence: "The movie started slowly but picked up momentum. The second act was particularly well-paced, maintaining tension." Label: positive

950

Example4: Sentence: "The lead actor's performance was powerful and moving." Label: positive

951

Example5: Sentence: "The lead actress captivated the audience with her portrayal." Label: positive

952

Example6: Sentence: "The soundtrack was overbearing and distracting." Label: negative

953

Example7: Sentence: "The soundtrack added a melancholic tone that complemented the film's somber mood." Label: positive

954

Example8: Sentence: "The actor's portrayal was compelling and emotionally resonant." Label: positive

955

Example9: Sentence: "The editing was choppy and disjointed." Label: negative

956

Example10: Sentence: "The lead actor brought depth to the role." Label: positive

957

Example11: Sentence: "The lead actor's portrayal was gripping and heartfelt." Label: positive

958

Example12: Sentence: "The soundtrack added a perfect touch, enhancing the film's dramatic moments." Label: positive

959

Example13: Sentence: "The visual effects were poorly done and noticeable." Label: negative

960

Example14: Sentence: "The director's vision was unclear, leading to a disjointed narrative. The characters felt underdeveloped." Label: negative

961

Example15: Sentence: "The acting was wooden and unconvincing." Label: negative

962

963

964

965

966

967

968

969

970

971

SST5

Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from ['terrible', 'bad', 'okay', 'good', 'great']. Return label only without any other text.

972 Example1: Sentence: "The screenplay was predictable. The dialogue lacked depth, feeling forced. Characters felt flat and uninteresting." Label: bad
 973 Example2: Sentence: "The story lacked coherence and felt rushed. The plot had too many loose ends and
 974 felt unsatisfying." Label: bad
 975 Example3: Sentence: "The screenplay was cliché and predictable. The dialogue lacked depth and felt
 976 forced." Label: bad
 977 Example4: Sentence: "The story was predictable with a weak ending. It lacked the twists needed for a
 978 compelling narrative." Label: okay
 979 Example5: Sentence: "The screenplay was clever and witty. The dialogue was sharp and well-paced. It
 980 captured the essence of the characters perfectly." Label: great
 981 Example6: Sentence: "Direction felt disjointed and confusing." Label: terrible
 982 Example7: Sentence: "Story lacked coherence and felt rushed." Label: terrible
 983 Example8: Sentence: "Dialogue was forced and awkward, breaking the mood." Label: terrible
 984 Example9: Sentence: "Direction kept the pace just right; not too slow or fast." Label: good
 985 Example10: Sentence: "The dialogue was cliché and predictable. The script failed to deliver any surprises." Label: okay
 986 Example11: Sentence: "The director skillfully balanced the dramatic and comedic elements. The pacing
 987 was just right, keeping the audience engaged. The visual storytelling was top-notch." Label: great
 988 Example12: Sentence: "Dialogue was sharp and added depth to the characters." Label: good
 989 Example13: Sentence: "The acting was solid but not memorable. The supporting cast added some depth
 990 to the film." Label: okay
 991 Example14: Sentence: "Acting was wooden and unconvincing." Label: terrible
 992 Example15: Sentence: "Great performances by all; especially the lead actor." Label: good
 993 Example16: Sentence: "The acting was wooden and unconvincing." Label: bad
 994 Example17: Sentence: "The direction felt disjointed and confusing." Label: bad
 995 Example18: Sentence: "The direction was uninspired. The pacing felt slow and the camera work was
 996 basic." Label: okay

AG's News

996 Please perform News Classification task. Given the news item, assign a label from ['World', 'Sports',
 997 'Business', 'Tech']. Return label only without any other text
 998 Example1: Sentence: "Upcoming elections will focus on healthcare reform and immigration policies;
 999 debates intensify." Label: World
 1000 Example2: Sentence: "NASA launches Mars rover to study planet's geology." Label: Tech
 1001 Example3: Sentence: "Supreme Court rules on new labor laws; impact on businesses discussed." Label:
 1002 Business
 1003 Example4: Sentence: "Elections this year will focus on healthcare and education reform." Label: World
 1004 Example5: Sentence: "Telemedicine platforms see surge in usage during pandemic." Label: Tech
 1005 Example6: Sentence: "US and China engage in summit talks to discuss trade and climate issues; tensions
 1006 remain high." Label: Business
 1007 Example7: Sentence: "Vaccination drive reaches remote villages successfully." Label: World
 1008 Example8: Sentence: "Diplomatic talks on climate change continue with mixed progress." Label: World
 1009 Example9: Sentence: "Bombing kills dozens in city center." Label: World
 1010 Example10: Sentence: "Upcoming elections will focus on healthcare and economic reforms; debates
 1011 intensify as candidates present their plans." Label: World
 1012 Example11: Sentence: "Security forces respond to a terrorist attack in the city center; multiple casualties
 1013 reported. Emergency services work to contain the situation." Label: World
 1014 Example12: Sentence: "Diplomatic talks on trade agreements between Asia-Pacific nations continue."
 1015 Label: World
 1016 Example13: Sentence: "Upcoming elections will focus on healthcare and economic reforms; debates
 1017 intensify as candidates present their plans. Voters express concerns about rising costs." Label: World
 1018 Example14: Sentence: "Diplomatic talks between nations on climate change progress despite initial dis-
 1019 agreements." Label: World

TREC

1020 Please perform Question Classification task. Given the question, assign a label from ['Description', 'En-
 1021 'tity', 'Expression', 'Human', 'Location', 'Number']. Return label only without any other text.
 1022 Example1: Sentence: "Calculus is a branch of mathematics that deals with rates of change and slopes of
 1023 curves. It includes differential and integral calculus. The fundamental theorem of calculus links these two
 1024 concepts." Label: Description
 1025

1026
 1027 Example2: Sentence: "Who wrote the screenplay for the movie where the main character delivers a famous
 1028 monologue about the American Dream?" Label: Human
 1029 Example3: Sentence: "The human genome consists of all the genetic information in a human cell. It is
 1030 composed of approximately 3 billion base pairs." Label: Number
 1031 Example4: Sentence: "The Magna Carta, signed in 1215, was a landmark document in English history."
 1032 Label: Description
 1033 Example5: Sentence: "The director chose to shoot the film in black and white to evoke a sense of nostalgia." Label: Description
 1034 Example6: Sentence: "Calculus involves the study of limits, derivatives, integrals, and infinite series. It is
 1035 essential for understanding changes in various quantities." Label: Description
 1036 Example7: Sentence: "She delivered the line with such conviction it seemed real. The audience was
 1037 moved." Label: Expression
 1038 Example8: Sentence: "Which director is known for their innovative use of camera angles in films?" Label:
 1039 Human
 1040 Example9: Sentence: "Meryl Streep has performed in many famous plays." Label: Location
 1041 Example10: Sentence: "He directed the actors to bring out the raw emotion in their performances. The
 1042 result was powerful." Label: Expression
 1043 Example11: Sentence: "The screenplay's dialogue was sharp and witty, setting the tone for the entire
 1044 film." Label: Expression
 1045 Example12: Sentence: "Newton's laws of motion describe how objects move under the influence of
 1046 forces." Label: Description
 1047 Example13: Sentence: "The screenplay features complex dialogue that drives the characters' motivations
 1048 and relationships." Label: Description
 1049 Example14: Sentence: "Recent studies show that vitamin C is crucial for the immune system. It helps in
 1050 fighting infections." Label: Description
 1051 Example15: Sentence: "William Shakespeare's plays, such as 'Hamlet' and 'Macbeth,' are considered
 1052 masterpieces of English literature. They explore complex themes like ambition, revenge, and madness."
 1053 Label: Description

SUBJ

1053 Please perform Subjectivity Classification task. Given the sentence, assign a label from ['subjective',
 1054 'objective']. Return label only without any other text.
 1055 Example1: Sentence: "The soundtrack was moving." Label: subjective
 1056 Example2: Sentence: "The soundtrack added an emotional depth." Label: subjective
 1057 Example3: Sentence: "The pacing started slow. It built tension. The climax felt rushed." Label: subjective
 1058 Example4: Sentence: "The visual effects were impressive. However, a few scenes felt overdone. Enhanced
 1059 the world-building but occasionally distracted from the story." Label: subjective
 1060 Example5: Sentence: "The pacing was uneven. The first half dragged while the second felt rushed." Label:
 1061 subjective
 1062 Example6: Sentence: "The visual effects were impressive, though a few scenes felt overdone. They
 1063 enhanced the world-building but occasionally distracted from the story." Label: subjective
 1064 Example7: Sentence: "The pacing started slow but built tension." Sentence: "Climax felt rushed." Sentence:
 1065 "Overall, uneven." Label: subjective
 1066 Example8: Sentence: "The lead actor brought depth to the role." Label: subjective
 1067 Example9: Sentence: "The pacing started slow. It built tension. The climax felt rushed." Label: subjective
 1068 Example10: Sentence: "The lead actress gave a nuanced performance." Label: subjective
 1069 Example11: Sentence: "The editing was choppy, disrupting the flow. It felt rushed at times." Label:
 1070 subjective
 1071 Example12: Sentence: "The screenplay was tightly constructed. The dialogue flowed naturally. Characters
 1072 spoke authentically, enhancing the plot." Label: subjective
 1073 Example13: Sentence: "The screenplay was tight. The dialogue flowed naturally. Characters spoke
 1074 authentically, enhancing the plot. Subtle hints of conflict kept the audience engaged." Label: subjective
 1075 Example14: Sentence: "The soundtrack added an emotional depth. However, the choice of music was
 1076 sometimes jarring." Label: subjective

H SIMPLIFICATION PROMPT

1077 In this section, we present the best-performing prompts for PIAST on the simplification tasks. The
 1078 base prompts are adapted from Guo et al. (2023), while the examples are generated using our
 1079 method.

1080
1081**SIMPLIFICATION**

1082

Simplify the text.

1083

Example1: Complex: "The Supreme Court decision declared the law unconstitutional, invalidating it." Simple: "The Supreme Court declared the law unconstitutional."

1084

Example2: Complex: "Mount Everest is the highest mountain in the world located in the Himalayas."

1085

Simple: "Mount Everest is the highest mountain in the Himalayas."

1086

Example3: Complex: "The pizza place offers a variety of toppings including pepperoni and mushrooms."

1087

Simple: "The pizza place offers pepperoni and mushrooms."

1088

Example4: Complex: "The Eiffel Tower is a famous landmark in Paris, France." Simple: "The Eiffel Tower is in Paris, France."

1089

Example5: Complex: "The university offers a range of degree programs in various fields of study." Simple:

1090

"The university offers degree programs."

1091

Example6: Complex: "The student passed the exam with excellent grades." Simple: "The student passed with excellent grades."

1092

Example7: Complex: "The basketball game was won by the team with the highest score at the end of the game." Simple: "The team with the highest score won."

1093

Example8: Complex: "The Renaissance was a period of great cultural change and achievement that started in Italy in the 14th century." Simple: "The Renaissance started in Italy in the 14th century."

1094

Example9: Complex: "The Industrial Revolution began in the late 18th century and changed manufacturing methods." Simple: "The Industrial Revolution changed manufacturing methods in the late 18th century."

1095

Example10: Complex: "The Mona Lisa is a famous painting by Leonardo da Vinci." Simple: "The Mona Lisa is a famous painting."

1096

Example11: Complex: "The internet is a global network that connects computers and allows for communication." Simple: "The internet connects computers for communication."

1097

Example12: Complex: "The Supreme Court ruled that the law was unconstitutional." Simple: "The Supreme Court said the law was unconstitutional."

1098

Example13: Complex: "The Renaissance art focused on humanism and realism, emphasizing individual expression and naturalism." Simple: "Renaissance art emphasized individual expression."

1099

Example14: Complex: "The train arrived late due to a track problem." Simple: "The train was late due to a track problem."

1100

Example15: Complex: "The internet protocol is a set of rules that allows computers to communicate over the internet." Simple: "The internet protocol allows computers to communicate."

1101

1102

I SUMMARIZATION PROMPTS

1103

In this section, we present the most effective prompt for PIAST on summarization tasks. The base prompts are adapted from Guo et al. (2023), and the examples are generated by our method.

1104

SUMMARIZATION

1105

How would you rephrase that in a few words?

1106

Example1: Text: ""IBM is an American multinational technology company headquartered in Armonk, New York." Summary: ""IBM is headquartered in New York.""

1107

Example2: Text: ""Apple Inc. is an American multinational technology company headquartered in Cupertino, California." Summary: ""Apple Inc. is headquartered in California.""

1108

Example3: Text: ""Tesla is an American electric vehicle and clean energy company." Summary: ""Tesla is an electric vehicle company.""

1109

Example4: Text: ""The NBA All-Star Game is an annual basketball game featuring the top players from the National Basketball Association." Summary: ""The NBA All-Star Game features top NBA players.""

1110

Example5: Text: ""Global warming is caused by an increase in greenhouse gases, leading to rising temperatures and climate changes." Summary: ""Global warming is caused by rising greenhouse gas levels.""

1111

Example6: Text: ""Tesla is an American electric vehicle and clean energy company founded by Elon Musk, known for its innovative electric cars and energy storage solutions." Summary: ""Tesla is an electric vehicle company.""

1112

Example7: Text: ""The Supreme Court justices are appointed by the President and confirmed by the Senate, serving life terms." Summary: ""Supreme Court justices are appointed by the President and confirmed by the Senate.""

1113

Example8: Text: ""The Supreme Court of the United States is the highest court in the country, responsible for interpreting the Constitution and ensuring federal laws are followed." Summary: ""The Supreme Court of the United States interprets the Constitution.""

1134 Example9: Text: ""The Mona Lisa, a painting by Leonardo da Vinci, is one of the most famous and most
 1135 visited paintings in the world, currently housed in the Louvre Museum in Paris." Summary: ""The Mona
 1136 Lisa is a famous painting by Leonardo da Vinci.""
 1137 Example10: Text: ""The Louvre Abu Dhabi, opened in 2017, is a museum in Abu Dhabi that focuses on
 1138 art and culture from around the world." Summary: ""The Louvre Abu Dhabi opened in 2017 and focuses
 1139 on global art and culture.""
 1140 Example11: Text: ""The Louvre Museum in Paris is one of the largest and most visited art museums in
 1141 the world, with a vast collection of art and artifacts." Summary: ""The Louvre Museum in Paris has a
 1142 large art collection.""
 1143 Example12: Text: ""The American Revolution was a violent conflict between Great Britain and thirteen
 1144 of its North American colonies from 1775 to 1783." Summary: ""The American Revolution lasted from
 1145 1775 to 1783.""
 1146 Example13: Text: ""The Renaissance was a period of great cultural and intellectual growth in Europe,
 1147 spanning the 14th to the 17th century." Summary: ""The Renaissance was a period of cultural and intel-
 1148 lectual growth in Europe.""
 1149 Example14: Text: ""The Renaissance was a period of great cultural and intellectual growth in Europe,
 1150 spanning the 14th to the 17th century, marked by a revival of classical learning." Summary: ""The Re-
 1151 naissance was a period of cultural and intellectual growth in Europe.""
 1152 Example15: Text: ""The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris,
 1153 France." Summary: ""The Eiffel Tower is in Paris, France.""
 1154 Example16: Text: ""The giant panda is a bear species endemic to central China, recognized by its distinc-
 1155 tive black and white fur and diet primarily consisting of bamboo." Summary: ""The giant panda is a bear
 1156 species endemic to China.
 1157

J USE OF LLMS

1158 Large Language Models (LLMs) were employed in this paper for refining and polishing the writing.
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187