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Abstract
Graph-based manifold learning constructs / reveals low dimensional embeddings
of high-dimensional data, however requires out-of-sample-extension methods
to embed new data points. We propose a new framework, ROSE (Riemannian
Out-of-Sample Extension), for out-of-sample extensions for spectral graph-based
embedding algorithms. ROSE is motivated from an optimization perspective of
the underlying eigenvector problem associated with classic manifold learning
problems. Similar to graph-based semi-supervised learning, our approach ex-
ploits the geometry of new points in addition to the sampled points, by treating
the in-sample embedddings as labeled data. ROSE Despite its nonconvexity,
ROSE is solvable by first-order methods, which converge to global minimizers
under certain assumptions.

1 Introduction
Given a graph G = (V,E) on n vertices with adjacency matrix W ∈ Rn×n, the goal of graph
embedding is to map the vertices of G to some d-dimensional vector space in such a way that
geometry of the embedding preserves the geometry of G. For example, we may ask that vertices with
high connectivity in G be assigned to nearby vectors in the embedding space.

Various approaches have been proposed to compute effective graph embeddings. A classic method
that is particularly relevant is the manifold learning approach Laplacian Eigenmaps [1, 2], which
utilizes the graph Laplacian matrix to produce low-dimensional representations of graph vertices.

One challenge of these approaches is that they do not provide an explicit mapping between the vertices
and the low-dimensional embedding. Therefore, when new data is introduced or when large-scale
datasets prevent an embedding of the full dataset due to computational limitations, out-of-sample
extension (OOSE) methods are used to extend the embeddings from the training samples to the rest of
the data or to new unseen data [3]. For instance, in the case of Laplacian Eigenmaps, out-of-sample
extension can be performed using a Nyström approximation. The Nyström method [4] allows for
the efficient approximation of the eigenfunctions of the graph Laplacian on the new data points by
expressing them as a linear combination of the eigenfunctions computed from the original dataset
[4–7]. Beyond these classical methods, more recent approaches the family of spectral and diffusion
networks [3, 8, 9] have been proposed to handle out-of-sample extension in graph embeddings.

In this paper, we propose a new approach to graph-based out-of-sample extensions that builds upon
these traditional methods but introduces a novel optimization perspective. Our method focuses on
directly learning the mapping between the data and the embedding space through an optimization
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framework. This approach allows for a more principled and systematic extension of embeddings
to new data points while preserving the topological and geometric properties of the original graph
embedding. We provide one interpretation of out-of-sample extensions of spectral algorithms as a
quadratic optimization problem over a smooth manifold with special quadratic constraints, for which
one can implement gradient or conjugate gradient methods and Newton methods over geodesic paths
on the manifold [10, 11].

Let St(n, r) denote Stiefel manifold defined as

St(n, r) = {X ∈ Rn×r : X⊤X = Ir}
where Ir denotes the r × r identity matrix. In short, St(n, r) is the set of matrices in Rn×r whose
columns are orthonormal in Rn with respect to the inner product ⟨x, y⟩ = tr(x⊤y).

In this paper, we propose an efficient algorithm to solve out-of-sample extension for manifold learning
problems. Our algorithm is based on a reduction to a quadratic problem of the form

min
X∈St(n,r)

{F (X) = ⟨X,AXC⟩ − ⟨B,X⟩}, (1)

where A ∈ Rn×n is symmetric and C ∈ Rr×r is positive definite and the the inner product ⟨R, T ⟩ is
the trace of the matrix R⊤T for R, T of the same size.

2 Quadratic Minimization for Out-of-Sample-Extension

Given a dataset D = {x1, . . . , xm′} with xi ∈ Rd, D gives rise to a symmetric matrix W ∈ Rm′×m′

derived from a kernel wij = K(xi, xj) ≥ 0, that measures the similarity between pairs of datapoints
xi and xj such that K(xi, xj) is large if xi and xj are similar and small otherwise. This matrix
defines a graph where nodes are data points, and edges represent pairwise similarities, with its
combinatorial Laplacian L = diag(1⊤W )−W capturing the local geometric structure of the data.
The eigenvectors of this matrix are used to embed the data in a lower-dimensional space, preserving
local neighborhood relationships.

Introduce the graph G = (V,E,W ) induced from W and D and with m′ vertices corresponding to
the m′ data points, where V = {v1, v2, . . . , vm′} is the vertex set, E is the edge set and W is the
weight matrix whose entries wij ≥ 0 are the edge weights between vi and vj . Assume that the graph
is symmetric, i.e., wij = wji. An embedding of the vertices into Rr is given by the eigenvectors X
corresponding to the smallest r nontrivial eigenvalues,

min
X∈Rm′×r

⟨X,LX⟩, 1⊤nX = 0, X⊤X = Ir. (2)

In the context of an out-of-sample extension, suppose we are given the embedding associated with
a subset of the m′ samples, and where new points need to be embedded without recomputing the
eigendecomposition.

More concretely, we consider a set of pre-specified “in-sample” data, the “training set” to be
available. I.e., let the in-sample data corresponds to first m vertices Vl := {v1, v2, . . . , vm} with
observations {y1, y2, . . . , ym}, where 0 < m ≪ m′. Let n denote the number of out-of-sample
vertices, n = m′ −m. Our task corresponds to smoothly propagating the observed values over the
out-of-sample vertices Vu := {vm+1, vm+2, . . . , vm′}. Let

L =
[

Ll,l Ll,u

Lu,l Lu,u

]
, Y =

[
Yl

Yu

]
, Yl = [y1, . . . , ym]⊤, X =

[
Xl

Xu

]
. (3)

where subscripts l and u correspond to in-sample and out-of-sample indices, respectively. Let Xl

represent the in-sample vertices. Introduce the associated constraint set

X := {X ∈ Rm′×r : 1⊤nX = 0, X⊤X = X⊤
l Xl +X⊤

u Xu = pI,Xl = Yl}, (4)

for some scalar p = m′/r. The following proposition indicates that the unknown matrix Xu can be
computed from one quadratic minimization problem over a Stiefel manifold, i.e., (8).
Proposition 2.1. Let p be a positive scalar. Given X,L in (3). Given the observed in-sample matrix
Xl ∈ Rm×r and c ∈ Rr, Consider the minimization

min
Xu∈Rn×r

{⟨X,LX⟩ : X ∈ X}. (5)
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Let cl be the column sum of Xl, i.e. = X⊤
l 1m and P = In − 1

n11
⊤ and

A = PLu,uP, B = −P (n−1Lu,u1nc
⊤
l + Lu,lXl), C = pI −X⊤

l Xl −
1

n
clc

⊤
l . (6)

Then, Xu = XC1/2 + 1
n1nc

⊤
l , where X is the minimizer of

min
X∈Rn×r

{
⟨X,AXC⟩ − 2⟨X,BC1/2⟩ : X ∈ St(n, r)

}
(7)

For brevity, we will recast B = BC1/2. To reiterate, given a solution to (7), X∗, one recovers a
solution to (5) via the transformation

X∗C1/2 +
1

n
1r⊤ (8)

2.1 Optimality conditions

Optimization over the Stiefel manifold is a nonconvex problem. Generally, it is not possible to recover
the global minimum. However, we show that in certain special cases recover of high-quality critical
points is likely for first-order methods under an appropriate initialization. First, we define critical
points to be those points that satisfy the following first-order condition

AXC = B +XΛ (9)
for some Λ ∈ Rn×r. Points satisfying this condition can be local maximizers, minimizers, or saddle
points. In general, there can be many critical points satisfying this condition. The following illustrates
that a critical point X satisfying a certain second-order condition is a global minimizer of (1).
Proposition 2.2. Let d1 be the smallest eigenvalue of A and X ′ be a critical point of

min
X

F (X) s.t. X⊤X = I (10)

and let Λ′ be the associated multipliers matrix. Suppose
d1C ≽ Λ′. (11)

Then X ′ is a global minimizer. Suppose d1C ≻ Λ′. Then, X ′ is the unique global minimizer.

Note that in general, the condition in (11) could be too strict to be fulfilled for any critical points. We
introduce the following proposition to describe a less restrictive spectral condition that implies global
optimality for certain special quadratics. The following non-degeneracy condition on B ensures
that any critical point X satisfying a certain condition is a global minimizer. More concretely, the
projection of B on V must sufficiently large compared to the spectral gap dr −d1 such that Λ ≽ drC.

Proposition 2.3. Let V = [v1, v2, . . . , vr] ∈ Rn×r be the eigenvectors of A corresponding to the
smallest r nonzero eigenvalues d1 ≤ d2 ≤ . . . ≤ dr. Let (X,Λ) be a local solution satisfying

AXC = B +XΛ

and λ1, . . . , λr ≤ dr. Let s1 be the smallest singular value of V ⊤BC−1. Suppose
dr − γj ≥ σ for all j = 1, . . . , r, and σ > dr − d1 (12)

Then, all eigenvalues γ1, . . . , γr of the matrix ΛC−1 are less than d1 and X is a global minimizer.

3 Riemannian Out-of-Sample Extension (ROSE)
In this section, we describe our algorithm, termed ROSE, for semi-supervised out-Of-Sample exten-
sion. A standard algorithm for minimizing a smooth objective over the Stiefel Manifold, e.g. (1),
is given in “An introduction to optimization on smooth manifolds” by Nicolas Boumal. For each
U ∈ Rn×r, define the projection P onto the tangent space at X ∈ St(n, r),

PX(U) = Xskew(X⊤U) = X −Xsym(X⊤U) (13)
Where sym(Z) = 1

2 (Z + Z⊤). Let F (X;A,B,C) = ⟨X,AX⟩/2− ⟨X,B⟩ be the objective of (1).
Then, the Euclidean gradient is given by∇F = AXC −B and the projected gradient is given by

gradF (X) = PX∇F (X) = P(AXC −B) = (AXC −B)−Xsym(Λ). (14)
Where Λ = X⊤(AXC − B). The Riemannian Gradient method computes a sequence of iterates
X0, X1, . . . , Xk where

Xk+1 = RXk
(−αkgradF (Xk)) (15)

Where RXk
(gk) = UV ⊤ for UΣV ⊤ = SV D(Xk − gk).
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3.1 Initialization of Riemannian Gradient

Convergence of first-order methods typically relies on initialization. We justify a computationally
friendly initialization that relies on the approximation of an “ideal” initialization given below.
Proposition 3.1. Let V be an isometric matrix, V ∈ St(l, r), n > l ≥ r. Let S be an induced
subspace, X = {V X̃ : X̃ ∈ St(l, r)}. Consider the subspace-restricted regularized problem,

min
X

{F (X;A,B,C) : X = V X̃ ∈ S, X ∈ St(n, r)}

=min
X̃

{F (X̃;V ⊤AV, V ⊤B,C) : X̃ ∈ St(n, r)}
(16)

Consider V = Vg , i.e., the subspace-restricted problem

min
X∈St(n,r)

{F (X;A, VgV
⊤
g B,C)} (17)

Then the associated multiplier Λ = X⊤(AXC − VgV
⊤
g B) satisfies Λ ≼ drC

Proof. Let X = VgQ, where Q is one orthogonal matrix, which maximizes ⟨Q,V ⊤
g B⟩. Note that

Λ = X⊤(AXC −B) = drC −Q⊤V ⊤
g B (18)

Is symmetric. Hence, Λ can be expressed as the difference between two Hermitian matrices, and by
Weyl’s inequality, the proof is complete.

Since computing Vg is expensive, we instead consider an estimate of VgQ, X0 = PD−1
u WulY .

4 Preliminary Experiments

The experiment in Figures 1 and 2 show the average-percentage of neighborhood overlap between
the knn graphs derived from data in the ambient space and the knn graphs derived in the embedding
spaces. Each line graph is generated from averages over 10 trials, where in each trial different
in-sample sets were chosen uniformly. In Figure 2, we report a measure of global distortion.
These experiments demonstrates ROSE’s ability to preserve local neighborhoods in relative to a full
eigenvector decomposition.

Figure 1: Neighborhood overlap at 10% in-sampled data for the noisy swiss roll dataset, MNIST,
Fashion MNIST, and CIFAR-10.

# in-sample Eigenvectors ROSE1 ROSE2 Nyström

1% 2.24± 19.36 2.06± 3.46 3.69± 5.49 9.86± 19.13
5% 2.18± 16.16 2.47± 9.33 5.47± 12.66 8.37± 26.65
10% 2.28± 18.15 2.66± 13.64 5.01± 12.73 6.76± 25.29
25% 2.29± 15.68 2.90± 15.44 3.94± 9.10 4.45± 12.25

Table 1: Distortion of embedding methods on MNIST. Distortion(Φk,Uk) = ||Φk||Lip ||Φ−1
k ||Lip
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