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ABSTRACT

We present ViTaM-D, a novel visual-tactile framework for dynamic hand-object
interaction reconstruction, integrating distributed tactile sensing for more accurate
contact modeling. While existing methods focus primarily on visual inputs, they
struggle with capturing detailed contact interactions such as object deformation.
Our approach leverages distributed tactile sensors to address this limitation by in-
troducing DF-Field. This distributed force-aware contact representation models
both kinetic and potential energy in hand-object interaction. ViTaM-D first recon-
structs hand-object interactions using a visual-only network, VDT-Net, and then
refines contact details through a force-aware optimization (FO) process, enhanc-
ing object deformation modeling. To benchmark our approach, we introduce the
HOT dataset, which features 600 sequences of hand-object interactions, including
deformable objects, built in a high-precision simulation environment. Extensive
experiments on both the DexYCB and HOT datasets demonstrate significant im-
provements in accuracy over previous state-of-the-art methods such as gSDF and
HOTrack. Our results highlight the superior performance of ViTaM-D in both
rigid and deformable object reconstruction, as well as the effectiveness of DF-
Field in refining hand poses. This work offers a comprehensive solution to dy-
namic hand-object interaction reconstruction by seamlessly integrating visual and
tactile data. Codes, models, and datasets will be available.

1 INTRODUCTION

Human manipulates objects with tactile feedback. Reconstructing the manipulation process of hand-
object interaction is an important task that can benefit many downstream tasks, such as VR/AR, robot
imitation learning, and human behavior understanding. Previous works (Yang et al., 2021; 2024;
Chen et al., 2023a; Tsoli & Argyros, 2018; Hasson et al., 2019b) on dynamic hand-object interaction
reconstruction are primarily visual-only. Visual-only methods can recover the global geometry and
poses of hand and object, but they struggle with contact details such as object deformation due to a
lack of information near contact areas.

Recently, visual-tactile methods (Xu et al., 2023; Smith et al., 2020; Wang et al., 2018) have increas-
ingly drawn attention in hand-object reconstruction tasks, with the development of tactile sensing
techniques (Sundaram et al., 2019; Liu et al., 2017; Yuan et al., 2017; Ren et al., 2023), which can
supplement the perceptual ability near contact areas (Fig. 1.a). Among the fast-developing tactile
sensors, distributed tactile sensors (Fig. 1.b) (Liu et al., 2017; Yin et al., 2023; Sundaram et al.,
2019), which are wearable or attachable to a hand and allow collecting tactile information in a nat-
ural human-like hand-object interaction process, are more promising in human manipulation data
collection than other types of tactile sensors (Taylor et al., 2022; Yuan et al., 2017; Lambeta et al.,
2020; Ren et al., 2023). However, how to integrate such sensors with visual perception to reconstruct
the states of hand-object interaction is seldom explored.

Due to the conformality between the distributed tactile sensor and the hand, the hand geometry will
not be significantly influenced during manipulation. Therefore, we can use the same visual-only
approach to reconstruct the hand-object state and integrate the tactile information to refine the result.
Based on this observation, we propose a novel Distributed Force-aware contact representation, DF-
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Figure 1: (a): The relationship between tactile information and contact geometry. Grasping differ-
ent bowls with the same hand poses shows that the distributed tactile arrays can capture occlusion
contacts and object states. (b): Different types of distributed tactile sensors proposed in previous
works (1). Liu et al. (2017), (2). Yin et al. (2023), (3). Sundaram et al. (2019).

Field, and a Visual-Tactile Manipulation reconstruction framework with Distributed tactile sensing,
ViTaM-D. DF-Field models the contact by considering both kinetic and potential energy in hand-
object interaction, which allows modeling object deformation. With this representation, ViTaM-D
first reconstructs the hand-object interaction with visual-only observations by the proposed Visual
Dynamic Tracking network, VDT-Net, and refines the contact details with DF-Field via a Force-
aware hand-pose Optimization process, FO. Such design allows us to inherit the wisdom of fast-
growing visual-only hand-object reconstruction methods (Yang et al., 2024; Chen et al., 2023a;
Tsoli & Argyros, 2018; Hasson et al., 2019b) and easily integrate the tactile information into an
existing motion capture or estimation system.

To train the VDT-Net, we need large-scale hand-object interaction datasets since previous datasets
(Chao et al., 2021; Yang et al., 2022b; Fan et al., 2023) of hand-object interactions mostly cover
rigid or articulated object manipulation, failing to contain deformable objects. And they generally
do not provide accurate tactile readings. Therefore, aside from the public dataset, DexYCB (Chao
et al., 2021), which we adopt to benchmark on rigid objects with common baselines, we also create
a new dataset, HOT dataset, to fully benchmark our method on deformable object reconstruction.
The dataset is built with ZeMa (Du et al., 2024), a high-precision physics-based simulation environ-
ment that supports penetration-free frictional contact modeling with finite element method (FEM) to
model the object deformation. The HOT dataset contains 600 sequences of hand-object interaction,
with 30 deformable objects from 5 different categories and 8 camera views for each sequence.

To evaluate the method, we compare our proposed ViTaM-D with previous state-of-the-art methods
gSDF (Chen et al., 2023b) and HOTrack (Chen et al., 2023a) on DexYCB. Extensive experiments
proved that our method realizes great improvements in the previous works both quantitatively and
qualitatively. Besides, we also prove the great capability of our method in tracking deformable
objects on the HOT Dataset and the effectiveness of the FO optimization in refining hand poses
from penetrations and bad contact states.

Our contributions are summarized as follows:

(1) A visual-tactile learning framework, ViTaM-D. It contains a visual-only dynamic tracking net-
work, VDT-Net, for reconstructing hand-object interactions and a force-aware optimization process,
FO, to integrate the tactile information into reconstruction refinement based on a novel distributed
force-aware contact representation, DF-Field.

(2) A new dataset, HOT. It contains 600 RGB-D manipulation sequences on 30 deformable objects
from 5 categories with penetration-free hand-object poses and accurate tactile information.

2 RELATED WORK

Hand-object reconstruction has been richly studied because it tries to recover the full details of
hand-object interaction, showing potential applicability for downstream tasks.

Research in this direction starts with static reconstruction. Earlier works have predominantly relied
on RGB inputs to estimate hand pose and object geometry. Hasson et al. (Hasson et al., 2019a)
presented a method that learns hand-object interaction using synthetic RGB images with the grasp
poses planned by GraspIt! (Miller & Allen, 2004). Doosti et al. (Doosti et al., 2020) proposed a
graph-based network for hand-object pose estimation. Cao et al. (Cao et al., 2021) introduced a
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method that operates in-the-wild, estimating the hand pose first and optimizing the solution using a
contact representation. The optimization involves push and pull terms to handle the contact, which is
purely empirical. Similarly, CPF (Yang et al., 2021; 2024) employs a contact representation using a
spring-mass system, adopting an empirical approach to refine the hand-object interaction. ArtiBoost
(Yang et al., 2022a) further enhanced the performance of static hand-object reconstruction through
data augmentation techniques. AlignSDF (Chen et al., 2022) leveraged RGB inputs to estimate hand
pose and combined point cloud data for object geometry, using SDF-based decoders for both hand
and object reconstruction.

Later, hand-object reconstruction in the dynamic setting draws increasing attention since manipu-
lation is naturally dynamic. Approaches have advanced by incorporating temporal information and
using more complex representations. Tekin et al. (Tekin et al., 2019) adopted RNN for tempo-
ral feature fusion, utilizing egocentric RGB video to capture dynamic hand-object interaction and
pose estimation. Hasson et al. (Hasson et al., 2020) improved dynamic reconstruction by enforcing
photometric consistency constraints. Ye et al. (Ye et al., 2023) introduced a diffusion model that
guides dynamic hand-object reconstruction via score distillation sampling and differentiable render-
ing techniques. Recent advances by Fan et al. (Fan et al., 2024) focused on refining pose estimation
using SDF-based representations and volumetric rendering, improving the overall dynamic recon-
struction accuracy. Furthermore, gSDF (Chen et al., 2023b) employed transformer architectures and
SDF representations to model complex hand-object interactions dynamically.

These works focus more on visual-only inputs. However, due to occlusion between the hand and
object during the interaction, visual perception usually lacks information near the contact areas, and
such information cannot necessarily be mitigated by cross-frame feature fusion. Therefore, tactile
perception comes to supplement the near-contact information. Zhang et al. (Zhang et al., 2021)
utilized a tactile glove (Sundaram et al., 2019) to track object movements. However, it focuses
more on the dynamic object trajectory rather than contact geometry. Works such as (Smith et al.,
2020; Wang et al., 2018) employed optical tactile sensors, trained the model by synthetic data,
and applied to rigid object geometry reconstruction. Later, VTacO (Xu et al., 2023) extended this
line of research by using optical tactile sensors to capture object geometry, including deformation,
providing a more comprehensive representation of hand-object interactions. Unlike these works,
the proposed ViTaM-D inherits the merits from both worlds; it leverages the advanced techniques
of visual-only reconstruction and incorporates the distributed tactile readings to enhance the local
contact details.

3 FORCE-AWARE CONTACT REPRESENTATION

During manipulation, forces from the hand change both hand and object states. To fully capture
dynamic contact behaviors, the representation must encode both contact locations and forces. We
introduce a distributed force-aware contact representation, DF-Field (Sec. 3.1), and apply it using
distributed tactile sensors (Sec. 3.2).

3.1 DF-FIELD REPRESENTATION

Without loss of generality, we take the object-centric perspective to describe a hand-object interac-
tion process, where the object is assumed to be fixed in the origin point, and the hand moves around
the object. In this way, by ignoring the gravitational potential energy, the contact dynamics in a ma-
nipulation process are driven by the Relative Potential Energy, which is the resulting energy of the
kinetic energy and deformation potential energy of the hand and object. Besides, we assume a vir-
tual Barrier Energy lies between the hand and object contact surface to prevent penetration. With
an established point pair i, j of object vertex Vo

i and hand vertex Vh
j , and the Euclidean distance of

the point pair lij =
∥∥Vo

i − Vh
j

∥∥
2
, we define the two energy terms as follows.

Relative Potential Energy. A relative potential energy that describes both the object deformation
and the hand movements:

Eij = κl2ij , (1)
where κ is a parameter representing the hand interacting with the object vertices. If κ > 0, the hand
and object are in contact. Thus, the distance lij and the relative energy will be close to 0, indicating
that the contact’s relative potential energy is satisfied.
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Barrier Energy. Given a certain threshold distance l̂, the barrier energy is:

Bij =

{
−e−κ(lij − l̂)2 log

(
lij

l̂

)
, 0 < lij < l̂

0 lij ≥ l̂
(2)

This barrier energy aims to push away the point pair when κ is low, thus avoiding penetration issues
between the hand and object. The function is defined in this way not only to ensure repulsion
becomes smaller when the distance is larger but also to remain smooth for optimization.

Overall Energy. A proper contact is met when both energy terms approach 0:

E =
∑
i

∑
j

(Eij +Bij). (3)

To note, though κ is strongly correlated to the tactile readings, DF-Field can also be tactile-
independent, as long as we empirically set the exerted force instead of physics-based. In this way,
DF-Field can work with visual-only methods. Different setups of force are discussed in Sec. 6.5.

3.2 DF-FIELD WITH DISTRIBUTED TACTILE SENSORS

As aforementioned, the distributed tactile sensors generally conform to the hand, and different tactile
sensors may have different layout configurations. Thus, to adapt to different tactile sensors, we take
the hand-centric perspective by first dividing the hand into 22 regions (as shown in the left of Fig.
3.a, 2 areas for the thumb, 3 for other fingers, and 8 for the palm), and assign the tactile sensors
to the corresponding region. In each region, we define the center as the hand keypoint, resulting in
Kh ∈ R22×3.

For optimization, we connect only the hand keypoints to object vertices, reducing computational
load while enhancing regional interaction information. The force in each region is calculated by
averaging the tactile readings Mj , and by the definition of the energy, we can obtain that κ is the
difference of the exerted force over the distance lij . In practice, we approximate it by dividing the
force by the distance:

κij ∼
Mj

lij
. (4)

We will discuss the difference between choosing keypoints or all-hand vertices for optimization in
Sec. Appendix B.2.

4 VITAM-D METHOD

4.1 OVERVIEW

We address the problem of 4D tracking and dynamic reconstruction of hand-object interactions from
a visual-tactile perspective and propose a novel method named ViTaM-D. We assume that the visual
input consists of a live stream of 3D point clouds, denoted as {Pt ∈ RN×3}nt=1, representing hand-
object interactions derived from single-view depth images, where N is the number of input point.
The tactile input {Mt}nt=1 contains distributed tactile sensor readings for each frame.

ViTaM-D tracks hand-object states in two stages: Visual Dynamic Tracking (VDT-Net) and Force-
aware Optimization (FO). VDT-Net uses visual-only inputs to establish flow features and dynam-
ically reconstruct the hand and object, capturing global hand-object geometry but struggling with
sparse contact region details. To address this, the second stage, FO, incorporates tactile information
to improve contact accuracy and reduce penetration issues. The overall pipeline is given in Fig. 2.

4.2 VISUAL DYNAMIC TRACKING OF HAND AND OBJECT, VDT-NET

In the first stage, the VDT-Net first predicts the flow from the last to the current frame with a flow
prediction module and extracts a fused visual feature from the current frame’s flow and point cloud.
This feature will then be forwarded into Object Decoder and Hand Decoder to reconstruct the
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Figure 2: ViTaM-D pipeline. (a): The overview of our pipeline, including the flow prediction
module for visual feature extraction and flow estimation, the Hand and Object Decoders, and Force-
aware hand-pose Optimization, FO. (b): The Object Decoder to reconstruct the object mesh. (c):
The Hand Decoder for estimating hand parameters and reconstructing based on the MANO model.

object and hand geometry, respectively. We use the Signed Distance Field (SDF) to model the
objects and the MANO model (Romero et al., 2017) for the hand.

Flow Prediction Module. At frame t, we first extract the per-point features Ft, Ft−1 ∈ RN×d from
Pt and Pt−1 using a backbone network I(·). In practice, we adopt a simple PointNet++ (Qi et al.,
2017) for feature extraction, with 3 layers of set abstraction and 3 layers of feature propagation.
Then, we design a flow prediction network Ff (·) to predict the point cloud flow ft−1→t ∈ RN×3

from frame t − 1 to t, which contains the correspondence information between the two frames and
represents the hand movement and object deformation:

ft−1→t = Ff (Ft, Ft−1,Pt,Pt−1). (5)
In Ff , we first perform a Cartesian product of the two extracted features, yielding a tensor of size
N×N×2d. This tensor is fed into a 3-layer MLP to obtain Cv , which is then used in two ways. First,
it passes through a 2D convolutional layer for downsampling to obtain pc ∈ RN×N , representing
the matching probability of each point between two frames. Second, Cv is sent through a softmax
function and a one-layer MLP to downsample, resulting in Cc ∈ RN , indicating whether the points
in the first frame are matched in the second frame. Thus, the final matching probability matrix
pm ∈ RN×N , which describes the correspondence likelihood between the two point sets, can be
computed as:

pm = pc × Cc (6)

After estimating the matching probability, we compute the disparity of two point cloud sets D ∈
RN×N×3, with Dij = Pi

t − Pj
t−1, and concatenate the disparity with pm. The concatenated tensor

is then fed into four 2D convolutional layers with batch normalization and a softmax function to
obtain the disparity feature Fd ∈ RN×d′

. Finally, we use PointNet++ (Qi et al., 2017) to regress the
flow ft−1→t ∈ RN×3. The flow prediction results will be discussed in Appendix B.1.

Additionally, we use another PointNet++ I ′(·) to extract the visual correspondence feature F f
t from

Pt−1 with ft−1→t added. F f
t and Ft are then forwarded to a transformer fusion module to obtain

the final visual feature Fv , corresponding to the current frame’s point cloud Pt. Specifically, the
transformer fusion module first uses a self-attention module to encode the point cloud features from
both frames. After applying positional embedding between the feature and its point cloud, a cross-
attention module fuses the two features and outputs the final visual feature. This fusion strategy
considers both the 3D static information of the current frame and the corresponding feature extracted
from the flow.

Object Decoder. Based on the final visual feature Fv , the Object Decoder follows two steps: Fea-
ture Scattering & Sampling, and SDF Decoding, to obtain the SDF predictions and the object
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mesh using Marching Cubes algorithm (Lorensen & Cline, 1987). We follow the design in ConvOc-
cNet (Peng et al., 2020), which scatters the feature into volume with the resolution D, feeds it into
a 3D-UNet, and finally uses a 5-layer MLP to predict the signed distance for every point.

Hand Decoder. For hand tracking and reconstruction, we adopt the parametric MANO hand model
(Romero et al., 2017), which uses β ∈ R10 for hand shape, and θ ∈ R51 for hand poses.

Based on the extracted final visual feature Fv , and the point cloud Pt−1 of the last frame as input,
we inherit a voting mechanism in PVN3D (He et al., 2020) to predict the hand joint positions Jh ∈
R21×3 of the current frame. Besides predicting the translation offset Ot ∈ R21×3, we also predict
the initial position of the keypoint by estimating a probability matrix Tt−1 ∈ RN×21 and multiply it
with the former frame point cloud Pt−1. The final prediction of the hand joint locations Jh is:

Jh = Ot + Pt−1 × Tt−1 (7)

After obtaining hand joint locations Jh, we use the inverse kinematics method (Zhou et al., 2020)
to find the joint poses θ with a template hand shape β, and we can easily reconstruct the hand mesh
through a differentiable MANO layer.

Loss Function. We train the network in an end-to-end way, and optimize the framework parameters
with three loss terms:

L = λfLflow + λSLSDF + λHLHand, (8)

where flow loss is defined by two Chamfer distance terms Lflow = CD(P ′

t−1,Pt) +

CD(P ′′

t ,Pt−1), P
′

t−1 = Pt−1 + ft−1→t is the forward-shifted point cloud and P ′′

t = Pt + ft→t−1

is the backward-shifted point cloud. SDF loss is LSDF = |s− s∗|, where s∗ represents the ground
truth of SDF. Hand joint loss is LHand = ∥Jh − J ∗

h ∥
2
2, with J ∗

h the ground truth of hand keypoints.

4.3 FORCE-AWARE HAND-POSE OPTIMIZATION, FO

After proper training, the VDT-Net, as well as other visual-only approaches, can give decent outputs
of hand-object reconstruction. However, information near the contact areas is lacking due to self-
occlusion, and the contact details should be further improved. Here, we describe an optimization
method with force readings.

Given the contact energy defined in Sec. 3, we optimize the predicted pose θ from the hand decoder,
with respect to the reconstructed object mesh, to obtain a better hand mesh and contact state. Based
on Equ. 3, we use the ball-query method to find the corresponding object vertices for each hand
region with a radius R, and the point pair will be set up between them and the hand keypoints Jh.

Besides, For a given joint j, we ensure it remains in reasonable poses by penalizing rotations Rj

that are near twisted directions Rt or if any angle exceeds π/2, using the L2 loss. Additionally, we
constrain the optimized hand pose ∗θ to stay close to the original prediction:

Lr = ∥Rj · Rt∥22 +
∥∥∥max(|Rj | −

π

2
, 0)

∥∥∥2
2
,

Lo = ∥∗θ − θ∥22 .
(9)

Finally, the optimization target can be demonstrated as:
∗θ = argmin

θ
(E + Lr + Lo) (10)

We use the gradient descent method and the Adam solver for optimization. By minimizing energy
and loss, we can obtain a better interaction state between the hand and object, avoid severe penetra-
tion problems, and forbid the hand from abnormal poses.

5 HAND-OBJECT TACTILE DATASET, HOT DATASET

Since obtaining the ground truth in the real world, such as object deformation, is relatively hard,
previous works (Chao et al., 2021; Yang et al., 2022b) on hand-object interaction recording mainly
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focus on rigid or articulated objects. To fully benchmark our method’s ability on deformable ob-
jects, we also create Hand-Object-Tactile dataset, HOT dataset, which contains depth images, force
sensor readings, and SDF ground truths generated by the simulation environment ZeMa (Du et al.,
2024) which realizes intersection-free and high accuracy of contact modeling and deformation based
on FEM.

5.1 DATA ACQUISITION

An example of collecting a training data sequence in the simulation environment is shown in Fig.
3.b. To ensure valid data points and stable grasps with multiple contacts between the objects and
various regions of the hand, we use DiPGrasp (Xu et al., 2024), a fast and effective grasp planner.
After obtaining a feasible grasp pose, we fix the selected object model, position the hand a certain
distance from the final grasp translation, and add a slight perturbation to the final rotation. The
hand is set fully open with joint states their lower limits. In the first stage, the hand moves slowly
towards the final grasp transformation target. Next, we perform the grasp by gradually increasing
the joint state values until they reach the grasp joint target. This process yields a complete training
data sequence, including depth images, point clouds, and tactile arrays {Pt,Mt}nt=1 for each frame.

Hand

Closing

20N

0

(a) (b)

Hand

Closing

Tactile Sensor

A-1

A-2

B-1

B-3

B-2

C-1
D-1

E-1

F-1

F-5

F-4

Region Distribution

Figure 3: (a): The 22 regions and a typical distributed tactile sensor layout (Sundaram et al., 2019).
(b): An example of collecting data in the simulation environment. For every frame, it generates depth
images collected by different views of cameras and tactile sensor readings computed by ZeMa.

5.2 DATASET STATISTICS

In the HOT Dataset, we adopt objects from YCB (Calli et al., 2015) model repositories, which con-
tain various object categories. We selected 5 to 10 different objects in the category Bottle and Box
from the YCB dataset, and we manually added 5 Sponges, 5 Plasticines, and 5 Stuffed Animals to
demonstrate the ability of our model to track objects with large deformations.

The simulator ZeMa mainly uses density ρ, Young’s modulus E, and Poisson’s ratio ν to describe
the properties of different deformable objects. We will therefore use the parameters of objects
that correspond to reality. For the object in category Bottle and Box, we set ρ = 103kg/m3,
E = 1.271GPa, ν = 0.28, and for the Sponges, Plasticines and Stuffed Animals, ρ = 30kg/m3,
E = 0.1MPa, ν = 0.38. And as we consider Plasticine as plastic objects, we set its yield stress
sy = 200pa.

For each object, we randomly generate 20 different trajectories, with 15 for training, 2 for testing,
and 3 for validation and visualization. The whole dataset consists of 600 sequences which contains
50-100 frames, and each sequence involves 8 different views of camera for capturing point clouds.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We set the input point cloud size to N = 1024. We randomly sample 1 × 106 positions in the
space, including 2× 105 points on the object surface. By subsampling to M = 2048, we obtain the
sample positions for SDF prediction during training. The point cloud feature size is set to d = 128,
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the disparity feature size to d′ = 64, and the resolution of the volume feature for SDF decoding to
D = 64. We empirically set the loss weights to λf = 0.01, λS = 0.5, and λH = 1.

We first train our VDT-Net on the entire dataset with a batch size of 6 and a learning rate of 1e− 4
using the Adam optimizer for 100 epochs. We then fine-tune each object category with a batch size
of 4 and a learning rate of 5e − 5 for 50-100 epochs, depending on the number of objects. The
training process takes 15 hours on an Nvidia A40 GPU.

For the FO process, we set the threshold distance in the barrier function to l̂ = 2mm and the ball-
query radius for finding object vertices to R = 5mm. We minimize the energy function for 100
iterations per frame with a learning rate of 2e − 3 using the Adam solver. It takes approximately
3.5± 0.5 seconds per frame to complete refinement.

6.2 DATASETS

To train and evaluate our method, we first use the dataset DexYCB, which captures hand grasping
of rigid objects, with RGB-D cameras recorded. It can directly validate our method’s capability
against the baselines. In addition, we use the HOT dataset, which contains interactions of hand
and deformable objects with rich and accurate tactile information. It can evaluate the ability of
our method to track object deformation and the effectiveness of our designed force-aware contact
representation.

6.3 METRICS

Intersection over Union (IoU) evaluates the intersection percentage between the predicted object
mesh and the ground truth.

Chamfer Distance (CD) assesses the reconstruction accuracy of object vertices.

Mean Per Joint Position Error (MPJPE) evaluates the accuracy of hand joint location tracking.

Penetration Depth (PD) measures the physical plausibility of hand-object interaction by reporting
the maximum distance of hand penetration into the object.

Hand-Object Contact Mask IoU (CIoU) validates the contact recovery of hand-pose optimization
by measuring the IoU of the contact mask between the optimized hand-object state and the ground
truth. Contacts are defined as distances less than 3mm between hand and object vertices.

6.4 RESULTS

For hand-object tracking evaluation, we compare our results with the state-of-the-art methods gSDF
(Chen et al., 2023b) and HOTrack (Chen et al., 2023a). gSDF uses RGB images to reconstruct
objects with SDF representation, while HOTrack uses segmented point clouds to predict object
poses. Our method uses unsegmented point clouds as input and output object meshes, making it
more challenging to achieve better results. Additionally, since these baselines only work with rigid
objects, we compare them only with the DexYCB object categories. DexYCB does not provide
tactile information, so we only use VDT-Net to compare with the baseline methods here. Later, we
provide an empirical way to use FO with a fixed force setting, which will be discussed in Sec. 6.5.

The quantitative results are shown in Tab. 1. In the DexYCB dataset, our leading scores in IoU and
Chamfer distance demonstrate superior object tracking and reconstruction capabilities. Additionally,
our higher MPJPE score indicates better hand-tracking performance. gSDF’s better performance on
penetration depth is due to occasional incomplete object reconstruction, as illustrated in Fig. 4,
where the pitcher is missing its handle. For the HOT dataset, VDT-Net achieves excellent scores.
Significant improvements in MPJPE, PD, and CIoU after applying our force-based optimization
confirm the effectiveness of our design.

Fig. 4 shows the qualitative results of our method. Our tracking and reconstruction outperform state-
of-the-art methods in the DexYCB dataset and show excellent performance on deformable objects in
the HOT dataset. Our method accurately tracks hand movements and object deformations, thanks to
the fusion of flow features and original point cloud features using a transformer, which incorporates
both the 3D information of the current frame and correspondence features from the previous frame.
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Metrics IoU(%)↑ CD(mm)↓ MPJPE(mm)↓ PD(mm)↓ CIoU(%)↑
DexYCB

gSDF 86.8 13.4 14.4 8.9 31.3
HOTrack 88.2 10.2 25.7 12.3 28.5

Ours (VDT) 90.1 9.6 13.2 9.9 35.4
HOT

Ours (VDT) 80.5 10.9 13.6 10.7 29.8
Ours (VDT + FO) * * 11.3 7.3 40.3

Table 1: Quantitative results on DexYCB and HOT datasets for previous SOTA and our method.
We only compare our results on rigid objects with the baselines. * indicates that adding FO doesn’t
impact the metrics on reconstructed objects. ↑ / ↓ indicates higher scores/lower scores are better.

Ours

(Object only)
Ours

gSDF

(RGB Input)
GT

DexYCB

(Rigid)

Ours

(Object only)
Ours GT

HOT

(Non-rigid)

Ours (Initial) GT (Initial) Ours (Final) GT (Final)

Grasp

Grasp

Grasp

gSDF

(RGB Input)

Ours

(Object only)
Ours

HOTrack

(PC Input)
GT Ours

(Object only)
Ours GTHOTrack

(PC Input)

Ours (Initial) GT (Initial) Ours (Final) GT (Final)

Grasp

Figure 4: Qualitative results on both DexYCB and HOT datasets. The upper shows our better per-
formances on rigid objects compared to the baselines, and the lower demonstrates the effectiveness
of VDT-Net in dynamic reconstruction for deformable objects and hands.

Fig. 5 demonstrates the performances of force-aware hand-pose optimization. Due to the design of
force-aware contact representation, the optimization can solve most of the penetration problems and
refine the contact map based on collected tactile information.

6.5 ABLATION STUDY

We will conduct an ablation study on the following aspects: First, we demonstrate the results of
introducing the distributed tactile arrays in the VDT-Net. Second, we discuss different definitions
of force representation based on heuristic annotations or tactile-aware forms. In the appendix, we
will also discuss the different point pair establishment methods in our contact representation and the
importance of the flow prediction module.
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1

0

Figure 5: Qualitative results with FO. As iteration steps rise, the penetration problem decreases, and
the contact map is closer to the ground truth, making the contact more reasonable.

Tactile feature fusion in VDT-Net. To assess the impact of introducing distributed tactile arrays in
VDT-Net, we first use a 3-layer MLP to encode the tactile features of each region. By estimating
hand pose, we fuse these regional features to the sample points, adding the encoded tactile feature
to the point-wise feature of each sample position. We train VDT-Net with fused tactile information
on our HOT dataset, and the results are shown in Tab. 2. Quantitative results show no significant
improvements, likely because the tactile data are much more sparse than the visual inputs, causing
feature misalignment. Therefore, we implement DF-Field to convert force readings into contact
states for hand-pose optimization.

Metrics IoU(%)↑ CD(mm)↓
VDT 80.5 10.9

VDT with Tactile 81.2 11.5

Table 2: Quantitative results for whether or
not fusing tactile information in VDT-Net.

Metrics MPJPE PD CIoU

DexYCB

VDT 13.2 9.9 35.4
VDT+FO(M fix) 12.3 8.5 39.7

HOT

VDT+FO(M fix) 12.9 8.5 36.8
VDT+FO 11.3 7.3 40.3

Table 3: Quantitative results for different
force representations.

Different force representations. We also discuss the effect of different force representations on
our contact representation. For the DexYCB dataset, since no tactile information was provided, we
test our hand-pose optimization process with the force reading Mj = 0.5 for every region j and
compare the result with VDT-Net only. For the HOT dataset, we also conduct FO with Mj = 0.5
for testing the influence of removing tactile information.

The results are shown in Tab. 3. We can see that on the DexYCB dataset, even with M fixed, the
results are also improving in all aspects, which proves the great effectiveness of our force-aware
contact representation. As for the results on the HOT dataset, we can conclude that introducing
tactile information improves both penetration problems and contact recovery, mostly because the
distributed tactile arrays provide accurate hand-object interaction forces, which is more reliable than
setting force parameters empirically.

7 CONCLUSION

In this work, we introduce ViTaM-D, a dynamic hand-object interaction reconstruction framework
that integrates distributed tactile sensing with visual perception. Featuring the DF-Field represen-
tation and force-aware optimization (FO), our approach effectively captures fine contact details and
object deformation, and outperforms visual-only methods. We also present the HOT Dataset for
benchmarking deformable object manipulation. Evaluations show that ViTaM-D outperforms state-
of-the-art methods on both rigid and deformable objects. Future work includes integrating ViTaM-
D with real tactile sensors and applying it to robot imitation learning, dexterous manipulation and
human-robot collaboration.
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A FLOW PREDICTION RESULT

To validate the accuracy of our proposed flow prediction module (FPM), we report the Chamfer
distance error on the DexYCB and HOT datasets in Tab. 4. The relatively low Chamfer distance
demonstrates the efficacy of our network. The slightly better results on the DexYCB dataset are
likely due to the larger hand-object movements and more challenging object deformations in the
HOT dataset.

We also present some qualitative results in Fig. 6. The top section compares our predicted flow
added to the last frame’s point cloud with the ground truth of the current frame’s point cloud. The
near overlap of the two point clouds indicates high prediction accuracy. The bottom section shows
a sequence of our estimation results, illustrating our method’s ability to track hand movements and
object deformations in whole sequences.

Dataset DexYCB HOT
Category Box Bottle Sponge Plasticine

CD(mm)↓ 8.7 9.1 10.3 12.2

Table 4: Quantitative results for flow predictions in VDT-Net.
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Figure 6: Qualitative results on flow prediction using FPM.

B ABLATION STUDY, EXTENDED

B.1 IMPORTANCE OF FLOW PREDICTION MODULE

To demonstrate the importance of our flow prediction module (FPM), we conducted an experiment
by directly fusing the visual features extracted from the input point clouds using the transformer
fusion layer. The quantitative results are shown in Tab. 5. Introducing FPM significantly improves
all scores, validating our feature fusion approach that incorporates the 3D static information of the
current frame and the correspondence feature from the flow.

Metrics IoU(%)↑ CD(mm)↓ MPJPE(mm)↓
Dataset DexYCB

VDT(w/o FPM) 84.3 15.7 17.1
VDT 90.1 9.6 13.2

Dataset HOT

VDT(w/o FPM) 64.7 20.2 16.3
VDT 80.5 10.9 13.6

Table 5: Quantitative results on DexYCB and HOT Dataset for whether using the flow prediction
module (denoted ”FPM” in the table). ”w/o” indicates without.

B.2 DIFFERENT POINT PAIR ESTABLISHMENT STRATEGIES

This section discusses the influence of two point pair establishment strategies: using keypoints
or all-hand vertices. When considering all hand vertices, we establish point pairs between them
and nearby object vertices, treating the force exerted by the hand as the reading from the nearest
sensor. The quantitative results of these two methods are shown in Tab. 6. While penetration depth
improves slightly, both contact IoU and MPJPE decrease. This is likely because considering all

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Metrics MPJPE(mm)↓ PD(mm)↓ CIoU(%)↑ Iter. Time(s)↓
Keypoint 11.3 7.3 40.3 3.5 ± 0.5

All Hand Vert. 14.5 6.9 25.6 37 ± 3

Table 6: Quantitative results on evaluating point pair establishment on key points and on all-hand
vertices.

sensors leads to conflicting optimization directions for the same joint, as sensors within the same
regions may experience different contact situations. Additionally, the iteration time increases about
tenfold compared to our setting.
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