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ABSTRACT

Deep neural networks trained using gradient descent with a fixed learning rate η
often operate in the regime of “edge of stability” (EOS), where the largest eigen-
value of the Hessian equilibrates about the stability threshold 2/η. In this work,
we present a fine-grained analysis of the learning dynamics of (deep) linear net-
works (DLNs) within the deep matrix factorization loss beyond EOS. For DLNs,
loss oscillations beyond EOS follow a period-doubling route to chaos. We theoret-
ically analyze the regime of the 2-period orbit and show that the loss oscillations
occur within a small subspace, with the dimension of the subspace precisely char-
acterized by the learning rate. The crux of our analysis lies in showing that the
symmetry-induced conservation law for gradient flow, defined as the balancing
gap among the singular values across layers, breaks at EOS and decays mono-
tonically to zero. Overall, our results contribute to explaining two key phenom-
ena in deep networks: (i) shallow models and simple tasks do not always exhibit
EOS (Cohen et al., 2021); and (ii) oscillations occur within top features (Zhu
et al., 2023a). We present experiments to support our theory, along with examples
demonstrating how these phenomena occur in nonlinear networks and how they
differ from those which have benign landscape such as in DLNs.

1 INTRODUCTION

Understanding generalization in deep neural networks requires an understanding of the optimiza-
tion process in gradient descent (GD). In the literature, it has been empirically observed that the
learning rate η plays a key role in driving generalization (Hayou et al., 2024; Lewkowycz et al.,
2020). The “descent lemma” from classical optimization theory says that for a β-smooth loss L(Θ)
parameterized by Θ, GD iterates satisfy

L(Θ(t+ 1)) ≤ L(Θ(t))− η(2− ηβ)

2
∥∇L(Θ(t))∥22,

and so if the learning rate is such that η < 2/β, then the loss monotonically decreases. How-
ever, many recent works have shown that the training loss decreases even for η > 2/β, albeit
non-monotonically. Surprisingly, it has been observed that learning rate beyond the stability thresh-
old often provides better generalization over smaller ones that lie within the stability threshold. This
observation has led to a series of works analyzing the behavior of GD within a regime dubbed “the
edge of stability” (EOS). By letting Θ parameterize a deep network, we formally define EOS as
follows:
Phenomenon 1 (Edge of Stability (Cohen et al., 2021)). During training, the sharpness of the
loss, defined as S(Θ) := ∥∇2L(Θ)∥2, continues to grow until it reaches 2/η (progressive sharp-
ening), after which it stabilizes around 2/η. During this process, the training loss behaves non-
monotonically over short timescales but consistently decreases over long timescales.

Using a large learning rate to operate at the EOS is hypothesized to give better generalization per-
formance by inducing “catapults” in the training loss (Zhu et al., 2023a). Intuitively, whenever the
sharpness S(Θ) exceeds the local stability limit 2/η, the GD iterates momentarily diverge (or cat-
apults) out of a sharp region and self-stabilizes (Damian et al., 2023) to settle for a flatter region
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Figure 1: Bifurcation plot of the oscillations in the singular values (left) and the eigenvalues of
the Hessian (right) of a 3-layer end-to-end DLN. The bifurcation plots indicate the existence of a
period-doubling route to chaos in DLNs, which we analyze by examining the two-period orbit. Here,
η > 2/β corresponds to the EOS regime, where β = Lσ

2−2/L
⋆,1 is the sharpness at the minima, L is

the depth of the network and σ⋆,1 is the first singular value of the target matrix M⋆.

where the sharpness is below 2/η. This self-stabilization mechanism enables GD to auto-regularize
and find flatter solution which has shown to correlate with better generalization (Keskar et al., 2017;
Izmailov et al., 2019; Petzka et al., 2021; Foret et al., 2021; Gatmiry et al., 2023). Of course, the
dynamics within EOS differ based on the loss landscape. When the loss landscape is highly non-
convex with many local valleys, catapults may occur, whereas sustained oscillations may exist for
benign landscapes. When sustained oscillations occur, the sharpness hovers about the local stability
limit 2/η rather than settling to a sharpness below 2/η. We refer to this region as “beyond the EOS”
following existing work (Wang et al., 2023; Zhu et al., 2023b). It is of great interest to understand
these behaviors within different architectures to further our understanding of EOS.

From a theoretical perspective, there have been many recent efforts to understand EOS. These works
generally focus on analyzing “simple” functions, examples including scalar losses (Zhu et al., 2023b;
Wang et al., 2023; Kreisler et al., 2023), quadratic regression models (Agarwala et al., 2023), diag-
onal linear networks (Even et al., 2024) and two-layer matrix factorization (Chen & Bruna, 2023).
However, the simplicity of these functions cannot fully capture the behaviors of deep neural net-
works within the EOS regime. Specifically, the following observations remain unexplained by ex-
isting analyses: (i) mild (or no) sharpening occurs when either networks are shallow or “simple”
datasets are used for training (Caveat 2 from (Cohen et al., 2021)); and (ii) the oscillations and cat-
apults in the training loss occur in the span of the top eigenvectors of the NTK (Zhu et al., 2023a).

In this work, we present a fine-grained analysis of the learning dynamics of deep linear networks
(DLNs) beyond the EOS regime, demonstrating that these phenomena can be partially replicated
and effectively explained using DLNs. Generally, there are two lines of work for DLNs: (i) those
that analyze the effects of depth and initialization scale, and how they implicitly bias the trajectory
of gradient flow towards low-rank solutions when the learning rate is chosen to be stable (Saxe et al.,
2014; Arora et al., 2018; 2019; Pesme & Flammarion, 2023; Jacot et al., 2022), and (ii) those that
analyze the similarities in behavior between linear and nonlinear networks (Wang et al., 2024; Zhang
et al., 2024; Yaras et al., 2023). Our analysis builds upon these works to show that DLNs exhibit
interesting behaviors outside the stability regime and to demonstrate how factors such as depth and
initialization scale contribute to the EOS regime. Our main results can be summarized as follows:

• Walk Towards the Flattest Global Minima Beyond EOS. Similar to the observations made
by Chen & Bruna (2023), we adopt the proof techniques of Kreisler et al. (2023) to show that
the layers (or weights) of the DLN become increasingly balanced under mild assumptions at
EOS. Specifically, we characterize how small the balancing gap at initialization must be for GD
to reduce the imbalance over iterations. We further show that balanced minima correspond to
the flattest minima in DLNs and our result captures an implicit regularization effect that drives
the network toward the flattest minima at learning rates beyond the EOS regime.
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• Sharpness Scales with the Network Depth. We identify all eigenvalues of the Hessian at
the balanced minimum, demonstrating that the sharpness (i.e., the largest eigenvalue) scales
with network depth. This rigorously validates the observations made by Cohen et al. (2021)
and shows that the learning rate required to enter the EOS regime is depth-dependent, further
highlighting its significance in deep networks.

• Oscillations in Low-Dimensional Subspaces. Once the network goes beyond the EOS regime,
we prove that the network undergoes periodic oscillations within r-dimensional subspaces in
DLNs, where r is precisely characterized by the learning rate. For DLNs, a period-doubling
route to chaos (Ott, 2002) exists in both the singular values of the DLN and the eigenvalues of
the Hessian, as shown in Figure 1. We characterize the case of the two-period orbit, aiming to
contribute to explaining the observations made by Zhu et al. (2023a) and Cohen et al. (2021).

2 NOTATION AND PROBLEM SETUP

Notation. We denote vectors with bold lower-case letters (e.g., x) and matrices with bold upper-
case letters (e.g., X). We use In to denote an identity matrix of size n ∈ N. We use [L] to denote
the set {1, 2, . . . , L}. We use the notation σi(A) to denote the i-th singular value of the matrix A.
We also use the notation σℓ,i to denote the i-th singular value of the matrix Wℓ.

Deep Matrix Factorization Loss. The objective in deep matrix factorization is to model a low-
rank matrix M⋆ ∈ Rd×d with rank(M⋆) = r via a DLN parameterized by a set of parameters
Θ = (W1,W2, . . . ,WL), which can be estimated by solving

argmin
Θ

f(Θ) :=
1

2
∥WL · . . . ·W1︸ ︷︷ ︸

=:WL:1

−M⋆∥2F, (1)

where we adopt the abbreviation Wj:i = Wj · . . . ·Wi to denote the end-to-end DLN and is identity
when j < i. We assume that each weight matrix has dimensions Wℓ ∈ Rd×d to observe the effects
of overparameterization. We also assume that the singular values of M⋆ are distinct.

Optimization. Each weight matrix Wℓ ∈ Rd×d is updated using GD with iterations given by

Wℓ(t) = Wℓ(t− 1)− η · ∇Wℓ
f(Θ(t− 1)), ∀ℓ ∈ [L], (2)

where η > 0 is the learning rate and ∇Wℓ
f(Θ(t)) is the gradient of f(Θ) with respect to the ℓ-th

weight matrix at the t-th GD iterate.

Initialization. In this work, we consider both balanced and unbalanced initializations, respec-
tively:

Wℓ(0) = αId, ∀ℓ ∈ [L], (3)
WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (4)

where α > 0 is a small constant. We assume α is chosen small enough such that α ∈ (0, σ⋆,r),
where σ⋆,r is the r-th singular value of M⋆. Generally, many existing works on both shallow and
deep linear networks assume a zero-balanced initialization (i.e., W⊤

i (0)Wi(0) = Wj(0)W
⊤
j (0)

for i ̸= j). This introduces the invariant W⊤
i (t)Wi(t) = Wj(t)W

⊤
j (t) for all t > 0, ensuring

two (degenerate) conditions throughout the training trajectory: (i) the intermediate singular vectors
of each of the layers remain aligned and (ii) the singular values stay balanced. For the unbalanced
initialization, the zero weight layer can be viewed as the limiting case of initializing the weights with
a (very) small constant α′ ≪ α, and has been similarly explored by Varre et al. (2023) and Xu et al.
(2024), albeit for two-layer networks. The zero weight layer relieves the balancing condition of the
singular values. Rather than staying balanced, we show that the singular values become increasingly
balanced (see Proposition 2). This allows us to jointly analyze the singular values of the weights.

Nevertheless, we also show that our analysis is not limited to either initialization but applies to any
initialization that converges to a set we call the singular vector stationary set (see Proposition 1).
To the best of our knowledge, it is common to assume that the singular vectors remain aligned, as
many existing works make the same assumption (Varre et al., 2023; Arora et al., 2019; Saxe et al.,
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Figure 2: Depiction of the two phases of learning in the deep matrix factorization problem for a
network of depth 3. Left: Plot of the training loss undergoing saddle jumps, followed by periodic
oscillations. Right: Plot of the corresponding sharpness of the DLN. Upon escaping the first saddle
point, the GD iterates enter the edge of the stability regime, where the sharpness hovers just about
2/η.

2014; Gidel et al., 2019; Chou et al., 2024b; Min Kwon et al., 2024). Hence, throughout the rest of
this paper, we refer to the balancing gap as the difference in singular values across layers and clarify
where necessary.

3 DEEP MATRIX FACTORIZATION BEYOND THE EDGE OF STABILITY

When using a large learning rate, the learning dynamics can typically be separated into two distinct
stages: (i) progressive sharpening and (ii) the edge of stability. Within the progressive sharpen-
ing stage, the sharpness lies below 2/η and tends to continually rise. Our goal is to analyze the
EOS stage under the deep matrix factorization formulation. Here, we observe that the training loss
fluctuates due to layerwise singular value oscillations, as illustrated in Figure 2.

3.1 ASSUMPTIONS AND ANALYTICAL TOOLS

Before we present our main result, we introduce two key analytical tools used in our analyses: the
singular vector stationary set and singular value balancedness. First, we introduce the singular vector
stationary set, which allows us to consider a wider range of initialization schemes. This set defines
a broad class of weights for which singular vector alignment occurs, simplifying the dynamics of
weights to those that only involve singular values.
Proposition 1 (Singular Vector Stationary Set). Consider the deep matrix factorization loss in Equa-
tion (1). Let M⋆ = U⋆Σ⋆V

⊤
⋆ and Wℓ(t) = Uℓ(t)Σℓ(t)V

⊤
ℓ (t) denote the compact SVD for

the target matrix and the ℓ-th layer weight matrix at time t, respectively. For any time t ≥ 0, if
U̇ℓ(t) = V̇ℓ(t) = 0 for all ℓ ∈ [L], then the singular vector stationary (SVS) points for each weight
matrix are given by

SVS(f(Θ)) =


(UL,VL) = (U⋆,QL),

(Uℓ,Vℓ) = (Qℓ+1,Qℓ), ∀ℓ ∈ [2, L− 1],

(U1,V1) = (Q2,V⋆),

where {Qℓ}Lℓ=2 can be any orthogonal matrices.

The singular vector stationary set states that for any set of weights where the gradients with respect
to the singular vectors become zero, the singular vectors become fixed points for subsequent itera-
tions. Once the singular vectors become stationary, running GD further isolates the dynamics on the
singular values. Hence, throughout our analysis, we re-write and consider the loss

1

2
∥WL:1(t)−M⋆∥2F =

1

2
∥ΣL:1 −Σ⋆∥2F =

1

2

r∑
i=1

(σi(ΣL:1(t))− σ⋆,i)
2
, (5)

where ΣL:1 are the singular values of WL:1. This allows us to decouple the dynamics of the singular
vectors and singular values, focusing on the periodicity that occurs in the singular values within the

4



Published as a conference paper at ICLR 2025

Figure 3: Illustrations of the singular vector and value evolution of the end-to-end DLN starting
from the unbalanced initialization. The singular vectors of the network remain static across all
iterations, as suggested by the singular vector stationary set, regardless of the learning rate. The
angle between the true singular vectors and those of the network remains aligned throughout. The
first singular values undergo oscillations in the large η regime, whereas they remain constant in the
small η regime.

EOS regime. In Propositions 3 and 4, we prove that both the unbalanced and balanced initializations
considered here belong to this set respectively, with an illustration in Figure 3. Specifically, we show
that the balanced initialization in (3) belongs to the singular vector stationary set for all t ≥ 0, while
the unbalanced initialization in (4) belongs to the set for all t ≥ 1 (far before entering the EOS
regime) with Qℓ = V⋆, allowing us to consider the loss in Equation (5).

Equipped with the loss in (5), notice that the balanced initialization in Equation (3) makes the learn-
ing dynamics such that for all t ≥ 0,

σi(Wℓ(t)) = σi(Wk(t)), ∀i ∈ [d], ∀ℓ, k ∈ [L],

where σi(Wℓ) denotes the i-th singular value of the ℓ-th layer. This allows us to couple the dynamics
and analyze the behavior of a single variable: σi(ΣL:1(t)) = σL

i (t). However, this is certainly not
the case for the unbalanced initialization in Equation (4). Since the singular values of the WL(0)
are initialized to zero, there is a non-negligible gap of α > 0 between the singular values of the L-th
layer and the other layers. However, in the following result, we prove that as long as α is small, GD
will monotonically decrease the gap to balance the singular values across layers at the EOS. This
will allow us to couple the dynamics in the limiting case for the unbalanced initialization as well.

Proposition 2 (Balancing of Singular Values). Let σ⋆,i and σℓ,i(t) denote the i-th singular value

of M⋆ ∈ Rd×d and Wℓ(t), respectively and define Si := Lσ
2− 2

L
⋆,i . Consider GD on the i-th index

of the simplified loss in (5) with the unbalanced initialization and learning rate 2
Si
< η < 2

√
2

Si
. If

the initialization scale α satisfies 0 < α <

(
ln
(

2
√
2

ηSi

)
· σ

4/L
⋆,i

L2·2
2L−3

L

)1/4

, then there exists a constant

c ∈ (0, 1] such that for all ℓ ∈ [L− 1], we have
∣∣∣σ2

L,i(t+ 1)− σ2
ℓ,i(t+ 1)

∣∣∣ < c ·
∣∣∣σ2

L,i(t)− σ2
ℓ,i(t)

∣∣∣.
The proof is available in Appendix C.2.2. This result has been shown to hold similarly for two-layer
matrix factorization (Wang et al., 2022a; Ye & Du, 2021; Chen & Bruna, 2023), and our analysis
extends it to the deeper case. Precisely, it considers the scalar loss for a singular value index and
states that, as long as α is chosen below a threshold dependent on σ⋆,i, the i-th singular value across
layers will become increasingly balanced. At the steady state limit of EOS, this balancing gap will
decrease to zero. While this result is presented as a tool for the main result, it also has interesting
implications for the dynamics of GD at EOS.

Firstly, it is well known that for gradient flow (GF), the balancing gap is conserved throughout
its trajectory (see Lemma 2 and Figure 4a). While GD with small learning rates approximately
conserves the gap, GD at the EOS (i.e., a learning rate close but below the stability limit) breaks
this conservation. However, for a learning rate below the stability limit 2/∥∇2f(Θ)∥2, the GD
iterates may converge to an unbalanced global minimum (e.g., Figure 4b, and the balancing gap will
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Figure 4: Illustration of the GD trajectories for three different learning rates regimes for minimizing
the function f(σ1, σ2) = 1

2 (σ2 · σ1 − σ∗)
2, starting from an unbalanced initial point. Gradient

flow conserves the balancing gap |σ2
1(t) − σ2

2(t)| throughout its trajectory. GD at EOS decreases
the gap, but stagnates once the oscillations no longer occur. GD beyond EOS decreases the gap
monotonically to zero by oscillating towards and about the balanced minimum.

cease to decrease any further. In contrast, for GD beyond the stability limit (i.e., beyond the EOS),
Proposition 2 states that the balancing gap decreases monotonically to zero. This highlights a key
distinction between the learning dynamics of GF, GD, and GD at EOS. To illustrate these differences,
we consider a toy example of minimizing a two-layer scalar function f(σ1, σ2) = 1

2 (σ2 · σ1 − σ∗)
2,

where σ∗ = 5 in Figure 4. Once stable GD arrives at an unbalanced global minimum, it settles there
and the balancing gap do not decrease further. For GD just below the stability limit (Figure 4b), the
iterates oscillate, but once they cease oscillating and settle at an unbalanced global minimum, the
gap also stagnates. On the other hand, GD beyond EOS (Figure 4c) drives the balancing gap strictly
to zero, as the GD iterates oscillate toward and around the balanced minimum.
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Figure 5: Plot of |σ2
1(t) − σ2

2(t)| on a
toy example, showing a decaying bal-
ancing gap beyond EOS.

Secondly, for deep matrix factorization, we prove that the
balanced minimum (i.e., the minimum where all of the sin-
gular values across layers are the same) corresponds to the
flattest minimum (see Lemma 4). Since GD at EOS mono-
tonically decreases the balancing gap, this also implies that
GD implicitly walks from a sharper minima to the flattest
minima. This also suggests an algorithmic trick: one can
initially use a large learning rate to oscillate toward a flatter
region and subsequently decrease the learning rate to settle
at a flat minimum, as also highlighted by Chen & Bruna
(2023).

Next, note that if the constant in Proposition 2 were to be
strictly c < 1, by Lemma 10, the gap would approach zero
infinitesimally. Our analysis shows the existence of c in
two cases: (i) σi(ΣL:1) < σ⋆,i and (ii) σi(ΣL:1) > σ⋆,i. While we provably show that c < 1 for the
first case, we have that c = 1 for the second case. This implies that when the GD iterates are below
(σi(ΣL:1) < σ⋆,i) and approaching the minima, the balancing gap will monotonically decrease,
but is not guaranteed to decrease to zero when we overshoot above the minima (σi(ΣL:1) > σ⋆,i).
However, note that in the EOS regime, we oscillate below and above the minima as shown in Figure 4
(since for the case σi(ΣL:1) < σ⋆,i, we have c < 1). This indicates that we alternate between the
two cases, and hence, the balancing gap will overall decrease to zero as depicted in Figure 5. Since
oscillations do not occur or are not sustained in GF and stable GD, the gap does not go to zero in
most cases, making this a distinct characteristic of GD beyond EOS.

Finally, we remark that Proposition 2 considers only the loss of a single singular value index,
whereas Equation (5) is the sum over multiple indices. For Proposition 2 to hold for all indices,
we can simply choose α with σ⋆,1 such that it is the smallest α satisfying the condition for all singu-
lar values σ⋆,i. To this end, in the following sections, we rigorously analyze the behavior of singular
value oscillations around the balanced minimum. This can be viewed as the behavior of GD in the
steady-state limit, as Proposition 2 implies that the singular values become balanced as t→ ∞.
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Figure 6: Evolution of the singular values of the end-to-end 3-layer network for fitting a rank-3 target
matrix with singular values 10, 9.5, and 9. We use a learning rate of η = 2/Si with Si := Lσ

2−2/L
⋆,i .

The oscillations occur as a two-period orbit about the balanced minimum exactly with learning rate
ranges specified in Theorem 1 for rank-p oscillations (p = 1, 2, 3).

3.2 MAIN RESULTS

Using our analytical tools, we present our main results describing the learning dynamics of DLNs
about the balanced solution beyond the EOS. First, we present a result characterizing the set of all
eigenvalues λΘ of the DLN with respect to the flattened Hessian of the training loss.
Lemma 1 (Eigenvalues of Hessian at the Balanced Minimum). The set of all non-zero eigenvalues
of the training loss Hessian of the deep matrix factorization loss f(Θ) defined in Equation (1) at the
balanced minimum is given by

λΘ =
{
Lσ

2− 2
L

⋆,i , σ
2− 2

L
⋆,i

}r

i=1

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,i · σ
1
L ℓ
⋆,j

)2}r

i ̸=j

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,k · αℓ
)2}r

k=1

where σ⋆,i is the i-th singular value of the target matrix M⋆ ∈ Rd×d, α ∈ R is the initialization
scale, L is the depth of the network, and the second element of the set has a multiplicity of d− r.

The proof is deferred to Appendix C.3.2. Let λi denote the i-th largest eigenvalue of the Hessian.
By Lemma 1, we observe that the sharpness is equal to λ1 = ∥∇2f(Θ)∥2 = Lσ

2− 2
L

⋆,1 at the balanced
minimum. In Lemma 4, we show that among all the points on the global minima, the sharpness at
the balanced minimum is the smallest. Thus, if η is set such that η > 2/λ1, oscillations in the loss
will occur, as the step size is large enough to induce oscillations even in the flattest region. Notice
that this was alluded to in Figure 4—for GD beyond EOS (i.e., when η > 2/λ1), there is stable
oscillation around the minima, whereas for GD at EOS, the iterates eventually settle down after
transient oscillations. Furthermore, notice that all non-zero eigenvalues are a function of network
depth. For a deeper network, the sharpness will be larger, implying that a smaller learning rate can be
used to drive the DLN into EOS. This provides a unique perspective on how the learning rate should
be chosen as networks become deeper and explains the observation made by Cohen et al. (2021),
who observed that sharpness scales with the depth of the network. With the eigenvalues, we show in
the following result that oscillations occur in a two-period orbit about the balanced minimum within
a rank-p subspace, where the rank is dependent on the learning rate.
Theorem 1 (Rank-p Periodic Subspace Oscillations). Let M⋆ = U⋆Σ⋆V

⊤
⋆ denote the SVD of

the target matrix and define Sp := Lσ
2− 2

L
⋆,p and K ′

p := max
{
Sp+1,

Sp

2
√
2

}
. If we run GD on

the deep matrix factorization loss with learning rate η = 2
K , where K ′

p < K < Sp, then the top-p
singular values of the end-to-end DLN oscillate in a 2-period orbit (j ∈ {1, 2}) around the balanced
minimum and admit the following decomposition:

WL:1 =

p∑
i=1

ρLi,j · u⋆,iv
⊤
⋆,i︸ ︷︷ ︸

oscillation subspace

+

d∑
k=p+1

σ⋆,k · u⋆,kv
⊤
⋆,k︸ ︷︷ ︸

stationary subspace

, j ∈ {1, 2} (6)
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Figure 7: Experimental results on a depth-3 DLN with target singular values 10, 9.5, 9. Left: Plot of
the balancing gap decaying monotonically to zero as the learning rate is chosen η > 2/S3. Right:
Plot of the oscillation range as a function of the learning rate. As the learning rate increases, the
oscillation ranges also increase.

where ρi,1 ∈
(
0, σ

1/L
⋆,i

)
and ρi,2 ∈

(
σ
1/L
⋆,i , (2σ⋆,i)

1/L
)

are the two real roots of the polynomial

g(ρi) = 0 and

g(ρi) = ρLi ·
1 +

(
1 + ηL(σ⋆,i − ρLi ) · ρ

L−2
i

)2L−1

1 +
(
1 + ηL(σ⋆,i − ρLi ) · ρ

L−2
i

)L−1
− σ⋆,i.

The proof is available in Appendix C.3.3. Theorem 1 explicitly identifies the subspaces that exhibit
a two-period orbit based on the range of the learning rate. It also provides a rough characterization
of the oscillation amplitude, which is determined by ρi,1 and ρi,2—values below and above the
balanced minimum, respectively. Since there is no closed-form solution for an arbitrary higher-
order polynomial, ρi,1 and ρi,2 are defined as solutions to the polynomial g(ρi). Overall, this aims
to theoretically explain why (i) oscillations occur primarily within the top subspaces of the network,
as observed by Zhu et al. (2023a), and (ii) oscillations are more pronounced in the directions of
stronger features, as measured by the magnitudes of their singular values.

Notice that the range of the learning rate depends on the eigenvalues of the form Sp = Lσ
2−2/L
⋆,p

rather than on all eigenvalues in Lemma 1. This is because the eigenvectors associated with the other
eigenvalues are orthogonal to the weights of the DLN at the balanced minimum, so oscillations will
never occur in those particular eigendirections. They are only non-orthogonal in the directions of
the eigenvalues of Sp and, hence, oscillations occur only in those specific directions.

We also remark that our result generalizes the recent theoretical findings of Chen & Bruna (2023),
where they proved the existence of a certain class of scalar functions f(x) for which GD does not
diverge even when operating beyond the stability threshold. They demonstrated that there exists a
range in which the loss oscillates around the local minima with a certain periodicity. These oscil-
lations gradually progress into higher periodic orbits (e.g., 2, 4, 8 periods), transition into chaotic
behavior, and ultimately result in divergence. In our work, we prove that this oscillatory behavior
beyond the stability threshold also occurs in DLNs.

4 EXPERIMENTAL RESULTS

4.1 SUBSPACE OSCILLATIONS IN DEEP NETWORKS

Firstly, we provide experimental results corroborating Theorem 1. We let the target matrix be
M⋆ ∈ R50×50 with rank 3, with dominant singular values σ⋆ = 10, 9.5, 9. For the DLN, we
consider a 3-layer network, with each layer as Wℓ ∈ R50×50 and use an initialization scale of
α = 0.01. In Figure 6, we present the behaviors of the singular values of the end-to-end network
under different learning rate regimes. Recall that by Theorem 1, the i-th singular value undergoes
periodic oscillations when K is set to be Si < K < Si+1, where Si = Lσ

2−2/L
⋆,i . Figure 6 illus-

trates this clearly – we only observe oscillations in the i-th coordinate depending on the learning rate.
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Interestingly, notice that σ2 also begins to oscillate in the rank-1 oscillation region before settling
at a minimum. This occurs because, while the learning rate is large enough to catapult around an
unbalanced minimum, it is not sufficiently large to induce periodic oscillations at balanced minima.

Secondly, in Figure 7, we present an experiment demonstrating the relationship between the os-
cillation range and the learning rate by plotting the amplitude of singular value oscillations in the
end-to-end network, as well as the balancing gap, to corroborate Proposition 2 in DLNs. Clearly,
in Figure 7 (left), we observe that the balancing gap decays monotonically to zero as long as the
learning rate is chosen such that periodic oscillations occur in the top-3 subspaces. In Figure 7
(right), the oscillations begin to occur starting from each region η = 2/Si, and the oscillation range
(or amplitude) increases as the learning rate increases. This can also be observed in Figure 6; the
amplitude of σ1 increases as we move from the rank-1 to the rank-3 oscillation region.

4.2 SIMILARITIES AND DIFFERENCES BETWEEN LINEAR AND NONLINEAR NETS AT EOS

Mild Sharpening. “Mild” sharpening refers to the sharpness not rising to 2/η throughout learning,
and generally occurs in tasks with low complexity as discussed in Caveat 2 of (Cohen et al., 2021).
We illustrate mild sharpening in Figure 10, where we plot sharpness in two settings: (i) regression
with simple images and (ii) classification with an MLP using a subset of the CIFAR-10 dataset.
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Figure 8: DLNs do not enter EOS
regime if Lσ2− 2

L
1 < 2/η.

For the regression task, we minimize the loss L(Θ) =
∥G(Θ) − yimage∥22, where G(Θ) is a UNet parameterized by
Θ, and yimage denotes one of the images in Figure 10b. We
observe that when yimage is a smooth, low-frequency image,
the sharpness of the loss generally remains low. However,
when yimage has higher frequency content, the sharpness in-
creases and enters the EOS regime (Figure 10a). Similarly, for
the classification task, we train a 2-layer fully connected neu-
ral network on N labeled training images from the CIFAR-10
dataset using MSE loss and plot the sharpness in Figure 10c.
The sharpness links to N , the number of data points used for
training. For small N values, such as 100 or 200, the network
learns only a limited set of latent features, resulting in mild
sharpening, and it does not reach the EOS threshold. However,
whenN exceeds 1000, the sharpness increases and reaches the

EOS threshold. Similar observations can also be seen in DLNs. In Figure 8, we show that the sharp-
ness reachesLσ2− 2

L
⋆,1 , where σ⋆,1 is the singular value of the target matrix. WheneverLσ2− 2

L
⋆,1 < 2/η,

the network will not enter the EOS regime. This can be viewed as low-complexity learning, as σ⋆,1
corresponds to the magnitude of the strongest feature of the target matrix. Hence, when σ⋆,1 is not
large enough, the sharpness will not rise to 2/η. While this cannot fully explain mild sharpening,
our experiments demonstrate that interpreting sharpness as a measure of complexity, combined with
our findings from DLNs, marks an important first step toward fully understanding this phenomenon.

Figure 9: Loss landscape of the Holder table function and
DLNs, respectively (left–right). The Holder table func-
tion is non-convex which allows catapulting to other min-
ima, whereas DLNs do not have spurious local minima.

Difference in Oscillation Behaviors.
Here, we discuss the differences in os-
cillations that arise in DLNs compared
to catapults that occur in practical deep
nonlinear networks. The main differ-
ence lies in the loss landscape—at con-
vergence, the Hessian for DLNs is posi-
tive semi-definite, as shown in Lemma 1,
meaning there are only directions of pos-
itive curvature and flat directions (in the
null space of the Hessian). Moreover,
the loss landscape of DLNs are known to
be benign since they do not contain any
spurious local minima, but only saddle
points and global minima (Kawaguchi
(2016)). In this landscape, oscillations occur because the basin walls bounce off, without the di-
rection of escape. However, in deep nonlinear networks, it has been frequently observed that the
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(a) Sharpness plots for training im-
age generator networks using SGD
with learning rate η = 2× 10−4.

(b) Target images (denoted as
yimage) with different frequencies
used for training.

(c) 2-layer FC network trained
with small number N of CIFAR-10
dataset with η = 10−2

Figure 10: Illustration of Caveat 2 by Cohen et al. (2021) on how mild sharpening occurs on simple
datasets and network. (a) Regression task showing the evolution of the sharpness when an UNet
(with fixed initialization) is trained to fit a single image shown in (b). (c) Evolution of the minimal
progressive sharpening on a classification task of a 2-layer MLP trained on a subset of CIFAR-10.

Hessian at the minima has negative eigenvalues (Ghorbani et al., 2019; Sagun et al., 2016). This
enables an escape direction along the negative curvature, preventing sustained oscillations.

In Figure 9, we demonstrate these two differences by visualizing the loss landscapes and the iterates
throughout GD marked in red. The Holder table function Figure 9 (left) exhibits numerous local
minima, causing the loss to exhibit a sharp “catapult” when a large learning rate is used. In contrast,
for DLNs (shown in the right) the loss oscillates in a periodic orbit around the global minima since
there are no spurious local minima (Ge et al., 2016; Kawaguchi, 2016; Lu & Kawaguchi, 2017;
Zhang, 2019; Yun et al., 2019).

Lastly, Damian et al. (2023) study self-stabilization, where sharpness decreases below 2/η after ini-
tially exceeding 2/η. Their analysis requires assumptions such as ∇L(θ) · u(θ) = 0 and ∇S(θ)
lies in the null space of the Hessian, where S(θ) and u(θ) denotes the sharpness and its corre-
sponding eigenvector, respectively. These assumptions do not hold exactly in DLNs. Rather, the
sharpness oscillates about 2/η as shown in Figure 2 as the condition for stable oscillation holds
along each eigenvector of the Hessian. The alignment of ∇L(θ), u(θ) and ∇S(θ) determines the
nature of oscillations in deep networks or its absence thereof. This alignment usually depends on
the symmetry of the parameter space and can usually vary across different architectural compo-
nents. This work deals with deep linear networks which has rescaling symmetry, however several
other symmetries (Kunin et al. (2021)) can be induced by softmax operator (translation symmetry)
or batch-normalization (scaling symmetry), which may further affect these alignments. We leave
this study for future work.

5 CONCLUSION AND LIMITATIONS

In this paper, we presented a fine-grained analysis of the learning dynamics of deep matrix factor-
ization beyond the EOS, where our analysis revealed a two-period orbit within a small subspace
around the balanced minimum. We showed that as long as oscillations were sustained, the balanc-
ing gap, defined as the difference in singular values across layers, decreases monotonically to zero.
For DLNs, since the flattest minima correspond to the minima where all weights are balanced, this
suggests an implicit walk toward flat minima without any explicit regularization, which is a distinct
characteristic of GD beyond the EOS. Our results also contributed to understanding unexplained
phenomena in nonlinear networks within EOS, such as mild sharpening or oscillations in a small
subspace.

Since our analysis focuses on the behavior of DLNs around the balanced minima starting from an
unbalanced initialization, it technically describes a steady-state limiting behavior of GD once the
singular values become balanced. To fully capture the learning dynamics of DLNs, it is of great
interest to derive the complete dynamics at EOS, where oscillations occur but are not sustained.
Furthermore, we focused on cases where the weights belonged to the singular vector stationary set,
allowing us to isolate the behavior of singular vectors from singular values. It is also of great interest
to account for how singular vectors align beyond the EOS regime, as this is currently beyond the
scope of our paper.
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A DISCUSSION ON RELATED WORK

Implicit Bias of Edge of Stability. Edge of stability was first coined by Cohen et al. (2021), where
they showed that the Hessian of the training loss plateaus around 2/η when deep models were trained
using GD. However, Jastrzebski et al. (2020); Jastrzebski et al. (2019) previously demonstrated
that the step size influences the sharpness along the optimization trajectory. Due to the important
practical implications of the edge of stability, there has been an explosion of research dedicated to
understanding this phenomenon and its implicit regularization properties. Here, we survey a few
of these works. Damian et al. (2023) explained edge of stability through a mechanism called “self-
stabilization”, where they showed that during the momentary divergence of the iterates along the
sharpest eigenvector direction of the Hessian, the iterates also move along the negative direction of
the gradient of the curvature, which leads to stabilizing the sharpness to 2/η. Agarwala et al. (2023)
proved that second-order regression models (the simplest class of models after the linearized NTK
model) demonstrate progressive sharpening of the NTK eigenvalue towards a slightly different value
than 2/η. Arora et al. (2022) mathematically analyzed the edge of stability, where they showed that
the GD updates evolve along some deterministic flow on the manifold of the minima. Lyu et al.
(2022) showed that the normalization layers had an important role in the edge of stability – they
showed that these layers encouraged GD to reduce the sharpness of the loss surface and enter the
EOS regime. Ahn et al. (2024) established the phenomenon in two-layer networks and find phase
transitions for step-sizes in which networks fail to learn “threshold” neurons. Wang et al. (2022b)
also analyze a two-layer network, but provide a theoretical proof for the change in sharpness across
four different phases. Even et al. (2024) analyzed the edge of stability in diagonal linear networks
and found that oscillations occur on the sparse support of the vectors. Lastly, Wu et al. (2024)
analyzed the convergence at the edge of stability for constant step size GD for logistic regression on
linearly separable data.

Edge of Stability in Toy Functions. To analyze the edge of stability in slightly simpler settings,
many works have constructed scalar functions to analyze the prevalence of this phenomenon. For
example, Chen & Bruna (2023) studied a certain class of scalar functions and identified conditions in
which the function enters the edge of stability through a two-step convergence analysis. Wang et al.
(2023) showed that the edge of stability occurs in specific scalar functions, which satisfies certain
regularity conditions and developed a global convergence theory for a family of non-convex func-
tions without globally Lipschitz continuous gradients. Zhu et al. (2023b) analyzed local oscillatory
behaviors for 4-layer scalar networks with balanced initialization. Song & Yun (2023); Kalra et al.
(2023) provide analyses of learning dynamics at the EOS in simplified settings such as two-layer
networks. Zhu et al. (2022); Chen et al. (2023) study GD dynamics for quadratic models in large
learning rate regimes. Overall, all of these works showed that the necessary condition for the edge
of stability to occur is that the second derivative of the loss function is non-zero, even though they
assumed simple scalar functions. Our work takes one step further to analyze the prevalence of the
edge of stability in DLNs. Although our loss simplifies to a loss in terms of the singular values, they
precisely characterize the dynamics of the DLNs for the deep matrix factorization problem.

Deep Linear Networks. Over the past decade, many existing works have analyzed the learning
dynamics of DLNs as a surrogate for deep nonlinear networks to study the effects of depth and
implicit regularization (Saxe et al., 2014; Arora et al., 2018; 2019; Alkhouri et al., 2024). Generally,
these works focus on unveiling the dynamics of a phenomenon called “incremental learning”, where
small initialization scales induce a greedy singular value learning approach (Min Kwon et al., 2024;
Gissin et al., 2020; Saxe et al., 2014), analyzing the learning dynamics via gradient flow (Saxe
et al., 2014; Chou et al., 2024a; Arora et al., 2019), or showing that the DLN is biased towards
low-rank solution (Yaras et al., 2024; Arora et al., 2019; Min Kwon et al., 2024), amongst others.
However, these works do not consider the occurence of the edge of stability in such networks. On
the other hand, while works such as those by Yaras et al. (2024) and Min Kwon et al. (2024) have
similar observations in that the weight updates occur within an invariant subspace as shown by
Proposition 3, they do not analyze the edge of stability regime.
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B ADDITIONAL RESULTS

B.1 EXPERIMENTAL DETAILS

Bifurcation Plot. In this section, we provide additional details regarding the experiments used to
generate the figures in the main text. For Figure 1, we consider a rank-3 target matrix M⋆ ∈ R5×5

with ordered singular values 10, 6, 3. We use a 3-layer DLN to fit the target matrix. Since σ⋆,1 = 10,
the network enters the EOS regime at

η =
2

Lσ
2−2/L
⋆,1

= 0.0309.

We show that there exists a two-period orbit after 0.0309/2 = 0.0154, as we do not have a scaling
of 1/2 in the objective function for the code used to generate the figures.

Contour Plots. In Figure 4, we considered the toy example

f(σ1, σ2) =
1

2
(σ2 · σ1 − σ∗)

2,

which corresponds to a scalar two-layer network. By Lemma 1, the stability limit is computed as
η = 0.2, as L = 2 and σ⋆ = 5. To this end, for GD beyond EOS, we use a learning rate of
η = 0.2010, where as we use a learning rate of η = 0.1997 for GD at EOS. For GF, we plot the
conservation flow, and use a learning rate of η = 0.1800 for stable GD.

DLN and Holder Table Function Plots. In Figure 9 and 11, we compared the landscape of DLNs
with that of a more complicated non-convex function such as the Holder table function. To mimic
the DLN, we considered the loss function

z = L(x, y) = (x4 − 0.8)2 + (y4 − 1)2, (7)

which corresponds to a 4-layer network. Here the eigenvector of the Hessian at the global minima
coincides with the x, y-axis. We calculate the eigenvalues λ1 and λ2 at the minimum (0.80.25, 1)
and plot the dynamics of the iterates for step size range 2

λ2
> η > 2

λ1
and η > 2

λ2
. When 2

λ2
>

η > 2
λ1

the x-coordinate stays fixed at the minima 0.80.25 and the y-coordinate oscillates around its
minimum at y = 1. This is evident in the landscape figure. Similarly, when η > 2

λ2
, oscillations

occur in both the x and y direction. The loss landscape z = L(x, y) does not have spurious local
minima, so sustained oscillations take place in the loss basin.

For the non-convex landscape as shown in Figure 9 and 12, we consider the Holder table function:

f(x, y) = −

∣∣∣∣∣sin(x) cos(y) exp
(
1−

√
x2 + y2

π

)∣∣∣∣∣ .
By observation, we initialize near a sharp minima and run GD with an increasing learning rate step
size as shown in the lefthand side of Figure 12. When the learning rate is fixed, we observe that
oscillations take place inside the local valley, but when learning rate is increased, it jumps out of the
local valley to find a flatter basin. Similar to the observations by Cohen et al. (2021), the sharpness
of the GD iterates are “regulated” by the threshold 2/η, as it seems to closely follow this value as
shown in Figure 12.

Overall, these examples aim to highlight the difference in linear and complex loss landscapes. The
former consists of only saddles and global minima, and hence (stably) oscillate about the global
minimum. However, in more complicated non-convex landscapes, sharpness regularization due to
large learning rates enable catapulting to flatter loss basins, where sharpness is smaller than 2/η.

B.2 INITIALIZATION OUTSIDE SINGULAR VECTOR INVARIANT SET

In this section, we present an initialization example that is outside the singular vector stationary set.
We consider the following initialization:

WL(0) = 0, Wℓ(0) = αPℓ, ∀ℓ ∈ [L− 1], (8)
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Oscillation along Y-axis: 2/λ2 > η > 2/λ1

Oscillation along both X and Y-axis: η > 2/λ2

Loss Landscape Sharpness Oscillatory Components

Figure 11: Demonstration of the EOS dynamics of a 2-dimensional depth-4 scalar network as shown
in Equation (7). X,Y axes are the eigenvectors of the Hessian with eigenvalues λ1 and λ2 respec-
tively. Top: when η > 2/λ1, the X component remains fixed, while the Y component oscillates
with a periodicity of 2. Bottom: for η > 2/λ2, the iterates oscillation in both directions.

Figure 12: EOS dynamics at various step learning rates from the Holder table function. Left: plot of
the learning rate steps and sharpness, showing that sharpness follows the EOS limit 2/η. Right: Plot
showing that the iterates catapult out of a local basin when the learning rate is increased and jumps
out to a surface where the sharpness is about 2/η.

where Pℓ ∈ Rd×d is an orthogonal matrix. Note that here for ℓ > 1, the singular vectors do not align
and lies outside the SVS set we defined in Proposition 3. We consider the deep matrix factorization
problem with a target matrix M⋆ ∈ Rd×d, where d = 100, r = 5, and α = 0.01. We empirically
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obtain that the decomposition after convergence admits the form:

WL(t) = U⋆

[
ΣL(t) 0
0 0

] [( 1∏
i=L−1

Pi

)
V⋆

]⊤
, (9)

Wℓ(t) =

[(
1∏

i=ℓ

Pi

)
V⋆

] [
Σℓ(t) 0
0 αId−r

] [( 1∏
i=ℓ−1

Pi

)
V⋆

]⊤
, ∀ℓ ∈ [2, L− 1], (10)

W1(t) = P1V
⋆

[
Σ1(t) 0
0 αId−r

]
V⋆⊤, (11)

where WL(0) = 0 and Wℓ(0) = αPl, ∀ℓ ∈ [L− 1]. The decomposition after convergence lies in
the SVS set as the singular vectors now align with each other. This demonstrates an example where
even when the initialization is made outside the SVS set, GD aligns the singular vectors such that
after certain iterations it lies in the SVS set.

Left Singular Vectors Right Singular Vectors

Figure 13: Empirical verification of the decomposition for initialization with orthogonal matrices
(lying outside SVS set) in that after some GD iterations, the singular vectors of the intermediate
matrices align to lie within SVS set, displaying singular vector invariance.

α = 0.01 α = 0.10 α = 0.30

Figure 14: Observing the balancedness between the singular value initialized to 0 and a singular
value initialized to α. The scattered points are successive GD iterations (going left to right). The
initial gap between the two values is larger for a larger α, but quickly gets closer over more GD
iterations.

B.3 ADDITIONAL EXPERIMENTS FOR BALANCING, SINGULAR VECTOR INVARIANCE, AND
THEORY

Our theory relied on two tools and assumptions: balancing of singular values and stationarity of the
singular vectors. In this section, we investigate how the dynamics at EOS are affected if these two
assumptions do not hold.

Balancing. First, we present additional experimental results on Proposition 2 and how close the
iterates become for different initialization scales. To this end, we consider the same setup from the
previous section, where we have a target matrix M⋆ ∈ Rd×d, where d = 100, r = 5, and varying
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Figure 15: Plots of the training loss, singular value magnitude, and the balancing gap over iterations
for different learning rates: η = 0.030, 0.032, 0.034 (top to bottom). When the learning rate is
stable (η < 0.031 since the top singular value is σ⋆,1 = 10), the balancing gap plateaus, whereas the
balancing gap goes strictly to zero when the oscillations occur.

initialization α. In Figure 14, we observe that for larger values of α, the balancing quickly occurs,
whereas for smaller values of α, the balancing is almost immediate. This is to also highlight that our
bound on α in Proposition 2 may be an artifact of our analysis, and can choose larger values of α in
practice.

To this end, we also investigate how large α can be until Proposition 2 no longer holds. We consider
the dynamics of a 3-layer DLN to fit a target matrix M⋆ ∈ R10×10 of rank-3 with ordered singular
values 10, 8, 6. We use a learning rate of η = 0.0166, which corresponds to oscillations in the top-2
singular values. In Figure 16, we show the dynamics of when the initialization scale is α = 0.01
and α = 0.5, where balancing holds theoretically for the former but not for the latter. Clearly, we
observe that balancing does not hold for α = 0.5. However, examining the middle plots reveals
that the oscillations in the singular values still have the same amplitude in both cases and for both
singular values.

Singular Vector Stationarity. Throughout this paper, we considered two initializations in Equa-
tions (3) and (4), where balancing holds immediately and one where balancing holds for a suffi-
ciently small initialization scale. In this section, we investigate different initializations with aim to
observe (i) if they do not converge to the SVS set and (ii) how they affect the oscillations if they do
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Figure 16: Top: EOS dynamics of a 3-layer DLN with initialization scale α = 0.01, where balancing
theoretically holds. Bottom: EOS dynamics of the DLN with initialization scale α = 0.5. While the
balancing does not hold for α = 0.5, the oscillations in the singular values are still prevalent, with
the same amplitude.

not belong to the SVS set. To this end, we consider the following:

WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (Original)
WL(0) = 0, Wℓ(0) = αPℓ, ∀ℓ ∈ [L− 1], (Orthogonal)
WL(0) = 0, Wℓ(0) = αHℓ, ∀ℓ ∈ [L− 1], (Random)

where Pℓ is an orthogonal matrix and Hℓ is a random matrix with Gaussian entries. For all of these
initialization schemes, we consider the same setup as in the balancing case, with an initialization
scale of α = 0.01. To observe if singular vector stationarity holds, we consider the subspace distance
as follows:

Subspace Distance = ∥U⊤
ℓ−1,rVℓ,r − Ir∥F, (12)

where Uℓ,r and Vℓ,r are the top-r left and right singular vectors of layer Wℓ, respectively. Since
Proposition 1 implies that the intermediate singular vectors cancel, the initialization converges to
the SVS set if the subspace distance goes to zero. In Figure 17, we plot the dynamics for all of the
initializations. Generally, we observe that the subspace distance for all cases go to zero, validating
the use of the SVS set for analysis purposes.

Additional Results. In this section, we provide more experimental results to corroborate our the-
ory. Recall that in Lemma 1, we proved that the learning rate needed to enter the EOS is a function
of the depth, and that deeper networks can enter EOS using a smaller learning rate. To verify this
claim, we provide an additional experiment where the target matrix is M⋆ ∈ R5×5 with the top
singular value set to σ⋆,1 = 0.5. We use an initialization scale of α = 0.01. In Figure 18, we can
clearly see that shallower networks need a larger learning rate, and vice versa to enter EOS. Here,
black refers to stable learning and white refers to regions in which oscillations occur (EOS regime).

B.4 PERIODIC AND FREE OSCILLATIONS

In this section, we present additional experiments on oscillation and catapults in both deep linear and
nonlinear networks to supplement the results in the main paper. First, we consider a 3-layer MLP
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Figure 17: EOS dynamics of a 3-layer DLN for different initializations where it all converges to
the SVS set. The subspace distance is defined in Equation (12). Top: Dynamics with the original
identity initialization. Middle: Dynamics with orthogonal initialization. Bottom: Dynamics with
random initialization.

0.6 0.691 0.782 0.873 0.964 1.055
Learning Rate

2

3

4
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De
pt

h

Figure 18: Demonstrating that deeper networks requires a smaller learning rate to enter the EOS
regime for DLNs, as implied by Proposition 2, for a target matrix with top singular value σ⋆,1 = 0.5
and initialization α = 0.01. Black refers to stable learning and white refers to regions in which
oscillations in the loss and singular values occur. The EOS limit exactly matches η = 2/Lσ

2− 2
L

⋆,i .

without bias terms for the weights, with each hidden layer consisting of 1000 units. The network
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is trained using MSE loss with a learning rate of η = 4, along with random weights scaled by
α = 0.01 and full-batch gradient descent on a 5K subset of the MNIST dataset, following Cohen
et al. (2021). The motivation for omitting bias terms comes from the findings of Zhang et al. (2024),
where they provably show that a ReLU network without bias terms behaves similarly to a linear
network. With this in mind, we aimed to investigate how oscillations manifest in comparison to deep
linear networks (DLNs). In Figure 19, we plot the training loss, top-5 singular values, and sharpness
throughout training. Interestingly, despite the non-convexity of the loss landscape, the oscillations
appear to be almost periodic across all three plots. It would be of great interest to theoretically study
the behavior of EOS for this network architecture and determine whether our analyses extend to this
case as well.

Figure 19: Plot of the training loss, singular values, and sharpness for an MLP network with no bias.
Similar to the DLN case, there are oscillations in each of the plots throughout iterations.

Next, we consider the DLN setting to corroborate our result from Theorem 1. We consider modeling
rank-3 target matrix with singular values σ⋆,i = {10, 9, 8} with a 3-layer DLN with initialization

scale α = 0.1. By computing the sharpness under these settings, notice that 2/λ1 = Lσ
2− 2

L
⋆,1 ≈

0.01547 and 2/λ2 ≈ 0.01657. In Figure 21, we use learning rates near these values, and plot the
oscillations in the singular values. Here, we can see that the oscillations follow exactly our theory.

Lastly, we provide additional experiments demonstrating stronger oscillation in feature directions
as measured by the singular values. To this end, we consider a 4-layer MLP with ReLU activations
with hidden layer size in each unit of 200 for classification on a subsampled 20K set on MNIST and
CIFAR-10. In Figure 20, we show that the oscillations in the training loss are artifacts of jumps only
in the top singular values, which is also what we observe in the DLN setting.

MNIST Dataset with 4-Layer MLP CIFAR-10 Dataset with 4-Layer MLP

Figure 20: Prevalence of oscillatory behaviors in top subspaces in 4-layer networks with ReLU
activations on two different datasets.
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Figure 21: Depiction of the training loss and the singular values of each weight matrix for fitting
a rank-3 matrix with singular values 10, 9.5, 9. The weights enter the EOS regime based on the
learning rate η > 2/K, where K = Lσ

2−2/L
⋆,i and L = 3. For a sufficiently large learning rate (e.g.,

η = 0.04), the singular values start to enter a period-4 orbit.
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C DEFERRED PROOFS

In this section, we present the deferred proofs from the main manuscript.

C.1 PROOFS FOR SINGULAR VECTOR STATIONARITY

C.1.1 PROOF OF PROPOSITION 1

Proof. Let us consider the dynamics of Wℓ(t) in terms of its SVD with respect to time:

Ẇℓ(t) = U̇ℓ(t)Σℓ(t)V
⊤
ℓ (t) +Uℓ(t)Σ̇ℓ(t)V

⊤
ℓ (t) +Uℓ(t)Σℓ(t)V̇

⊤
ℓ (t). (13)

By left multiplying by U⊤
ℓ (t) and right multiplying by Vℓ(t), we have

U⊤
ℓ (t)Ẇℓ(t)Vℓ(t) = U⊤

ℓ (t)U̇ℓ(t)Σℓ(t) + Σ̇ℓ(t) +Σℓ(t)V̇
⊤
ℓ (t)Vℓ(t), (14)

where we used the fact that Uℓ(t) and Vℓ(t) have orthonormal columns. Now, note that we also
have

U⊤
ℓ (t)Uℓ(t) = Ir =⇒ U̇⊤

ℓ (t)Uℓ(t) +U⊤
ℓ (t)U̇ℓ(t) = 0,

which also holds for Vℓ(t). This implies that U̇⊤
ℓ (t)Uℓ(t) is a skew-symmetric matrix, and hence

have zero diagonals. Since Σℓ(t) is diagonal, U⊤
ℓ (t)U̇ℓ(t)Σℓ(t) and Σℓ(t)V̇

⊤
ℓ (t)Vℓ(t) have zero

diagonals as well. On the other hand, since Σ̇ℓ(t) is a diagonal matrix, we can write

Îr ⊙
(
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)
)
= U⊤

ℓ (t)U̇ℓ(t)Σℓ(t) +Σℓ(t)V̇
⊤
ℓ (t)Vℓ(t), (15)

where ⊙ stands for the Hadamard product and Îr is a square matrix holding zeros on its diago-
nal and ones elsewhere. Taking transpose of Equation (15), while recalling that U⊤

ℓ (t)U̇ℓ(t) and
V⊤

ℓ (t)V̇ℓ(t) are skew-symmetric, we have

Îr ⊙
(
V⊤

ℓ (t)Ẇ
⊤
ℓ (t)Uℓ(t)

)
= −Σℓ(t)U

⊤
ℓ (t)U̇ℓ(t)− V̇⊤

ℓ (t)Vℓ(t)Σℓ(t). (16)

Then, by right multiplying Equation (15) by Σℓ(t), left-multiply Equation (16) by Σℓ(t), and by
adding the two terms, we get

Îr ⊙
(
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V
⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

)
= U⊤

ℓ (t)U̇ℓ(t)Σ
2
ℓ(t)−Σ2

ℓ(t)V̇
⊤
ℓ (t)Vℓ(t).

Since we assume that the singular values of M⋆ are distinct, the top-r diagonal elements of Σ2
ℓ(t)

are also distinct (i.e., Σ2
r(t) ̸= Σ2

r′(t) for r ̸= r′). This implies that

U⊤
ℓ (t)U̇ℓ(t) = H(t)⊙

[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V
⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

]
,

where the matrix H(t) ∈ Rd×d is defined by:

Hr,r′(t) :=

{(
Σ2

r′(t)− Σ2
r(t)

)−1
, r ̸= r′,

0, r = r′.
(17)

Then, multiplying from the left by Uℓ(t) yields

PUℓ(t)U̇ℓ(t) = Uℓ(t)
(
H(t)⊙

[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V
⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

])
, (18)

with PUℓ(t) := Uℓ(t)U
⊤
ℓ (t) being the projection onto the subspace spanned by the (orthonor-

mal) columns of Uℓ(t). Denote by PUℓ⊥(t) the projection onto the orthogonal complement ( i.e.,
PUℓ⊥(t) := Ir −Uℓ(t)U

⊤
ℓ (t)). Apply PUℓ⊥(t) to both sides of Equation (13):

PUℓ⊥(t)U̇ℓ(t) = PUℓ⊥(t)U̇ℓ(t)Σℓ(t)V
⊤
ℓ (t) +PUℓ⊥(t)Uℓ(t)Σ̇ℓ(t)V

⊤
ℓ (t) (19)

+PUℓ⊥(t)Uℓ(t)Σℓ(t)V̇
⊤
ℓ (t). (20)
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Note that PUℓ⊥(t)Uℓ(t) = 0, and multiply from the right by Vℓ(t)Σ
−1
ℓ (t) (the latter is well-defined

since we have the compact SVD and the top-r elements are non-zero):

PUℓ⊥(t)U̇ℓ(t) = PUℓ⊥(t)Ẇℓ(t)Vℓ(t)Σ
−1
ℓ (t) = (Ir −Uℓ(t)U

⊤(t))Ẇ(t)Vℓ(t)Σ
−1
ℓ (t). (21)

Then by adding the two equations above, we obtain an expression for U̇(t):

U̇ℓ(t) = PUℓ(t)U̇ℓ(t) +PUℓ⊥(t)U̇ℓ(t)

= Uℓ(t)
(
H(t)⊙

[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V
⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

])
+ (Ir −Uℓ(t)U

⊤
ℓ (t))Ẇ(t)Vℓ(t)Σ

−1
ℓ (t). (22)

We can similarly derive the dynamics for V̇ℓ(t) and Σ̇ℓ(t):

V̇ℓ(t) = Vℓ(t)
(
H(t)⊙

[
Σℓ(t)U

⊤
ℓ (t)Ẇℓ(t)Vℓ(t) +V⊤

ℓ (t)Ẇℓ
⊤
(t)Uℓ(t)Σℓ(t)

])
(23)

+
(
Ir −Vℓ(t)V

⊤
ℓ (t)

)
Ẇℓ

⊤
(t)Uℓ(t)Σ

−1
ℓ (t), (24)

Σ̇ℓ(t) = Ir ⊙
[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)
]
.

Now, we will left multiply U̇ℓ(t) and V̇ℓ(t) with U⊤
ℓ (t) and V⊤

ℓ (t), respectively, to obtain

U⊤
ℓ (t)U̇ℓ(t) = −H(t)⊙

[
U⊤

ℓ (t)∇Wℓ
f(Θ)Vℓ(t)Σℓ(t) +Σℓ(t)V

⊤
ℓ (t)∇Wℓ

f(Θ)Uℓ(t)
]
,

V⊤
ℓ (t)V̇ℓ(t) = −H(t)⊙

[
Σℓ(t)U

⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t) +V⊤
ℓ (t)∇Wℓ

f(Θ)Uℓ(t)Σℓ(t)
]
,

where we replaced Ẇℓ(t) := −∇Wℓ
f(Θ), as Ẇℓ(t) is the gradient of f(Θ) with respect to Wℓ

by definition. By rearranging and multiplying by Σℓ(t), we have

U⊤
ℓ (t)U̇ℓ(t)Σℓ(t)−Σℓ(t)V

T (t)V̇ℓ(t) = −Îr ⊙ [U⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t)]. (25)

Hence, when U̇ℓ(t) = 0 and V̇ℓ(t) = 0, it must be that the left-hand side is zero and so
U⊤

ℓ (t)∇Wℓ
f(Θ)Vℓ(t) is a diagonal matrix.

Now, notice that for the given loss function f(Θ), we have

−Ẇℓ(t) = ∇Wℓ
f(Θ(t)) = W⊤

L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤
ℓ−1:1(t).

Then, from Equation (25), when the singular vectors are stationary, we have

U⊤
ℓ (t)W

⊤
L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤

ℓ−1:1(t)Vℓ(t)

must be a diagonal matrix for all ℓ ∈ [L]. The only solution to the above should be (since the
intermediate singular vectors need to cancel to satisfy the diagonal condition), is the set

SVS(f(Θ)) =


(UL,VL) = (U⋆,QL),

(Uℓ,Vℓ) = (Qℓ+1,Qℓ), ∀ℓ ∈ [2, L− 1],

(U1,V1) = (Q2,V⋆),

where {Qℓ}Lℓ=2 are any set of orthogonal matrices. Then, notice that when the singular vectors are
stationary, the dynamics become isolated on the singular values:

Σ̇ℓ(t) = Ir ⊙
[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)
]
,

since
[
U⊤

ℓ (t)Ẇℓ(t)Vℓ(t)
]

is diagonal. This completes the proof.
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C.1.2 SUPPORTING RESULTS

Proposition 3. Let M⋆ = U⋆Σ⋆V
⊤
⋆ denote the SVD of the target matrix. The initialization in

Equation (4) is a member of the singular vector stationary set in Proposition 1, where QL = . . . =
Q2 = V⋆.

Proof. Recall that the initialization is given by

WL(0) = 0 and Wℓ(0) = αId ∀ℓ ∈ [L− 1].

We will show that under this initialization, each weight matrix admits the following decomposition
for all t ≥ 1:

WL(t) = U⋆

[
Σ̃L(t) 0
0 0

]
V⊤

⋆ , Wℓ(t) = V⋆

[
Σ̃(t) 0
0 αId−r

]
V⊤

⋆ , ∀ℓ ∈ [L− 1], (26)

where

Σ̃L(t) = Σ̃L(t− 1)− η ·
(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆,r

)
· Σ̃L−1(t− 1)

Σ̃(t) = Σ̃(t− 1) ·
(
Ir − η · Σ̃L(t− 1) ·

(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆,r

)
· Σ̃L−3(t− 1)

)
,

where Σ̃L(t), Σ̃(t) ∈ Rr×r is a diagonal matrix with Σ̃L(1) = ηαL−1 ·Σr,⋆ and Σ̃(1) = αIr.

This will prove that the singular vectors are stationary with ΣL = . . . = Σ2 = V⋆. We proceed
with mathematical induction.

Base Case. For the base case, we will show that the decomposition holds for each weight matrix
at t = 1. The gradient of f(Θ) with respect to Wℓ is

∇Wℓ
f(Θ) = W⊤

L:ℓ+1 · (WL:1 −M⋆) ·W⊤
ℓ−1:1.

For WL(1), we have

WL(1) = WL(0)− η · ∇WL
f(Θ(0))

= WL(0)− η · (WL:1(0)−M⋆) ·W⊤
L−1:1(0)

= ηαL−1Σ⋆

= U⋆ ·
(
ηαL−1 ·Σ⋆

)
·V⊤

⋆

= U⋆

[
Σ̃L(1) 0

0 0

]
V⊤

⋆ .

Then, for each Wℓ(1) in ℓ ∈ [L− 1], we have

Wℓ(1) = Wℓ(0)− η · ∇Wℓ
f(Θ(0))

= αId,

where the last equality follows from the fact that WL(0) = 0. Finally, we have

Wℓ(1) = αV⋆V
⊤
⋆ = V⋆

[
Σ̃(1) 0
0 αId−r

]
V⊤

⋆ , ∀ℓ ∈ [L− 1].

Inductive Step. By the inductive hypothesis, suppose that the decomposition holds. Then, notice
that we can simplify the end-to-end weight matrix to

WL:1(t) = U⋆

[
Σ̃L(t) · Σ̃L−1(t) 0

0 0

]
V⊤

⋆ ,

for which we can simplify the gradients to

∇WL
f(Θ(t)) =

(
U⋆

[
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r 0

0 0

]
V⊤

⋆

)
·V⋆

[
Σ̃L−1(t) 0

0 0

]
V⊤

⋆

= U⋆

[(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−1(t) 0

0 0

]
V⊤

⋆ ,
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for the last layer matrix, and similarly,

∇Wℓ
f(Θ(t)) = V⋆

[
Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−2(t) 0

0 0

]
V⊤

⋆ , ℓ ∈ [L− 1],

for all other layer matrices. Thus, for the next GD iteration, we have

WL(t+ 1) = WL(t)− η · ∇WL
(Θ(t))

= U⋆

[
Σ̃L(t)− η ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−1(t) 0

0 0

]
V⊤

⋆

= U⋆

[
Σ̃L(t+ 1) 0

0 0

]
V⊤

⋆ .

Similarly, we have

Wℓ(t+ 1) = Wℓ(t)− η · ∇Wℓ
(Θ(t))

= V⋆

[
Σ̃(t)− η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−2(t) 0

0 αId−r

]
V⊤

⋆

= V⋆

[
Σ̃(t) ·

(
Ir − η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−3(t)

)
0

0 αId−r

]
V⊤

⋆

= V⋆

[
Σ̃(t+ 1) 0

0 αId−r

]
V⊤

⋆ ,

for all ℓ ∈ [L− 1]. This completes the proof.

Proposition 4. Let M⋆ = V⋆Σ⋆V
⊤
⋆ ∈ Rd×d denote the SVD of the target matrix. The balanced

initialization in Equation (3) is a member of the singular vector stationary set in Proposition 1,
where UL = QL = . . . = Q2 = V1 = V⋆.

Proof. Using mathematical induction, we will show that with the balanced initialization in Equa-
tion (3), each weight matrix admits a decomposition of the form

Wℓ(t) = V⋆Σℓ(t)V
⊤
⋆ , (27)

which implies that the singular vectors are stationary for all t such that UL = QL = . . . = Q2 =
V1 = V⋆.

Base Case. Consider the weights at iteration t = 0. By the initialization scheme, we can write
each weight matrix as

Wℓ(0) = αId =⇒ Wℓ(0) = αV⋆V
⊤
⋆ ,

which implies that Wℓ(0) = V⋆Σℓ(0)V
⊤
⋆ with Σℓ(0) = αId.

Inductive Step. By the inductive hypothesis, assume that the decomposition holds for all t ≥ 0.
We will show that it holds for all iterations t + 1. Recall that the gradient of f(Θ) with respect to
Wℓ is

∇Wℓ
f(Θ) = W⊤

L:ℓ+1 · (WL:1 −M⋆) ·W⊤
ℓ−1:1.

Then, for Wℓ(t+ 1), we have

Wℓ(t+ 1) = Wℓ(t)− η · ∇WL
f(Θ(t))

= V⋆Σℓ(t)V
⊤
⋆ − ηW⊤

L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤
ℓ−1:1(t)

= V⋆Σℓ(t)V
⊤
⋆ − ηV⋆ ·

(
ΣL−ℓ

ℓ (t) ·
(
ΣL

ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t)
)
·V⊤

⋆

= V⋆ ·
(
Σℓ(t)− η ·ΣL−ℓ

ℓ (t) ·
(
ΣL

ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t)
)
·V⊤

⋆

= V⋆Σ(t)V⊤
⋆ ,

where Σ(t) = Σℓ(t)− η ·ΣL−ℓ
ℓ (t) ·

(
ΣL

ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t). This completes the proof.
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C.2 PROOFS FOR BALANCING

In this section, we present our proof of Proposition 2 along with supporting results. Throughout
these results, we use the notion of the gradient flow solution (GFS) and the GFS sharpness as
presented by Kreisler et al. (2023), which we briefly recap.

Consider minimizing a smooth loss function L : Rd → R using gradient flow (GF):

ẇ(t) = −∇L(w(t)).

The GFS denoted by SGF(w) is the limit of the gradient flow trajectory when initialized at w.
Furthermore, the GFS sharpness denoted by ψ(w) is defined to be the sharpness of SGF(w), i.e.,
the largest eigenvalue of ∇2L (SGF(w)).

C.2.1 SUPPORTING LEMMAS

Lemma 2 (Conservation of Balancedness in GF). Consider the singular value scalar loss

L
(
{σℓ}Lℓ=1

)
=

1

2

(
L∏

ℓ=1

σℓ − σ⋆

)2

.

Under gradient flow, the balancedness between two singular values defined by σ2
ℓ (t)−σ2

m(t) for all
m, ℓ ∈ [L] is constant for all t ≥ 0.

Proof. Notice that the result holds specifically for gradient flow and not descent. The dynamics of
each scalar factor for gradient flow can be written as

σ̇ℓ(t) = −

(
L∏

ℓ=1

σℓ(t)− σ⋆

)
·

L∏
i ̸=ℓ

σi(t)

Then, the time derivative of balancing is given as

∂

∂t
(σ2

ℓ (t)− σ2
m(t)) = σℓ(t)σ̇ℓ(t)− σm(t)σ̇m(t)

= −σℓ(t)

(
L∏

ℓ=1

σℓ(t)− σ⋆

)
·

L∏
i ̸=ℓ

σi(t) + σm(t)

(
L∏

m=1

σℓ(t)− σ⋆

)
·

L∏
j ̸=m

σj(t).

= 0.

Hence, the quantity σ2
ℓ (t)− σ2

m(t) remains constant for all time t ≥ 0, hence preserving balanced-
ness.

Lemma 3 (Sharpness at Minima). Consider the singular value scalar loss

L({σi}di=1) =
1

2

(
L∏

i=1

σi − σ⋆

)2

,

The sharpness at the global minima is given as ∥∇2L∥2 =
∑L

i=1
σ2
⋆

σ2
i

.

Proof. The gradient is given by

∇σiL =

(
L∏

ℓ=1

σℓ(t)− σ⋆

)
L∏

j ̸=i

σj(t).

Then,

∇σj∇σiL =

L∏
ℓ̸=i

σℓ(t)

L∏
ℓ ̸=j

σℓ(t) +

(
L∏

ℓ=1

σℓ(t)− σ⋆

)
L∏

ℓ ̸=j,ℓ ̸=i

σℓ(t)
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Let π(t) =
∏L

i=1 σi(t). Then, at the global minima, we have

∇σj∇σiL =
π2

σiσj
=

σ2
⋆

σiσj

Thus, the sharpness of the largest eigenvalue is given as ∥∇2L∥2 =
∑L

i=1
σ2
⋆

σ2
i

.

Lemma 4 (Balanced Minima is the Flattest). Consider the singular value scalar loss

L
(
{σi}Li=1

)
=

1

2

(
L∏

i=1

σi − σ⋆

)2

.

The balanced minimum (i.e., σi = σ
1/L
⋆ for all i ∈ [L]) has the smallest sharpness amongst all

global minima with a value of ∥∇2L∥2 = Lσ
2−2/L
⋆ .

Proof. By Lemma 3, recall that the sharpness at the global minima is given in the form

∥∇2L∥2 =

L∑
i=1

σ2
⋆

σ2
i

.

To show that the balanced minimum is the flattest (i.e., it has the smallest sharpness amongst all
global minima), we will show that KKT stationarity condition of the constrained objective

min
{σi}L

i=1

L∑
i=1

σ2
⋆

σ2
i

s.t.

L∏
i=1

σi = σ⋆,

are only met at the balanced minimum, which gives us the sharpness value ∥∇2L∥2 = Lσ
2−2/L
⋆ .

The Lagrangian is given by

L(σ1, . . . , σL, µ) =

L∑
i=1

σ2
⋆

σ2
i

+ µ

(
L∏

i=1

σi − σ⋆

)
.

Then, the stationary point conditions of the Langrangian is given by

∂L

∂σi
= −2σ2

⋆

σ3
i

+ µ
∏
j ̸=i

σj = 0, (28)

∂L

∂µ
=

L∏
i=1

σi − σ⋆ = 0. (29)

From Equation (28), the solution of the stationary point gives

2σ2
⋆

σ3
i

= µ
∏
j ̸=i

σj =⇒ µ =
2σ2

⋆

σ3
i

∏
j ̸=i σj

=
2σ2

⋆

σ2
i σ⋆

=
2σ⋆
σ2
i

.

This also indicates that at the stationary point, σi =
√

2σ⋆

µ for all i ∈ [L], which means that the

condition is only satisfied at the balanced minimum, i.e, σi = σ
1/L
⋆ . Furthermore, notice that

∇2f(σi) = 6σ2
⋆ · Diag

(
1

σ4
i

)
≻ 0,

where f(σi) =
∑L

i=1
σ2
⋆

σ2
i

, indicating that f only has a minimum. Notice that Equation (29) holds
immediately. Thus, the balanced minimum has the smallest shaprness (flattest), which plugging into
f gives a sharpness of ∥∇2L∥2 = Lσ

2−2/L
⋆ .
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Lemma 5. Let s := [σ1 σ2 . . . σL] ∈ RL and define the singular value scalar loss as

L(s) = 1

2

(
L∏

i=1

σi − σ⋆

)2

,

for some σ⋆ > 0. If σ ∈ RL are initialized such that

σL(0) = 0 and σℓ(0) = α, ∀ℓ ∈ [L− 1],

where 0 < α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4
L
⋆

L2·2
2L−3

L

) 1
4

and η > 0, then the GFS sharpness satisfies ψ(s) ≤
2
√
1+c
η for some 0 < c < 1.

Proof. We will show that the necessary condition for the GFS sharpness to satisfy ψ(s) ≤ 2
√
1+c
η

for some η > 0 and 0 < c < 1 to hold is that the initialization scale α must satisfy

0 < α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4
L
⋆

L2·2
2L−3

L

) 1
4

.

Since the singular values σℓ for all ℓ ∈ [L− 1] are initialized to α, note that they all follow the same
dynamics. Then, let us define the following for simplicity in exposition:

y := σ1 = . . . = σL−1 and x := σL,

and so
∏L

ℓ=1 σℓ = xyL−1. Then, note that the gradient flow (GF) solution is the intersection between

xyL−1 = σ⋆ and x2 − y2 = −α2,

where the first condition comes from convergence and the second comes from the conservation flow
law of GF from in Lemma 2. Then, if we can find a solution at the intersection such that

(x̂(α), ŷ(α)) =

{
xyL−1 = σ⋆
x2 − y2 = −α2,

(30)

solely in terms of α, we can plug in (x̂(α), ŷ(α)) into the GFS1:

ψ(x̂(α), ŷ(α)) = ψ(s)
(i)
=

L∑
i=1

σ2
⋆

σ2
i

= σ2
⋆

(
1

x̂(α)2
+
L− 1

ŷ(α)2

)
<

2
√
2

η
, (31)

and solve to find an upper bound in terms of α, where (i) comes from Lemma 3. The strict inequality
ensures that we can find a c in c ∈ [0, 1) such that ψ(s) ≤ 2

√
1+c
η . However, the intersection

(x̂(α), ŷ(α)) is a 2L-th order polynomial in ŷ(α) which does not have a straightforward closed-
form solution solely in terms of α. To this end, we aim to find a more tractable upper bound on
ψ(x̂(α), ŷ(α)) by using variational calculus, and use that to find a bound on α instead. Specifically,
we will compute the differential dψ, upper bound dψ with a tractable function, and then integrate to
obtain our new function ψ′ for which we use to set ψ′ < 2

√
2

η .

Computing the Differentials dx̂ and dŷ. Before computing the differential dψ, we need to derive
the differentials of x̂(α) and ŷ(α). We drop the α notation and use x̂ and ŷ where applicable. By
plugging in x̂ into Equation (30), the solution ŷ satisfies

ŷ2L − α2ŷ2L−2 = σ2
⋆.

Then, by differentiating the relation with respect to α, we obtain the following variational relation:

2Lŷ2L−1dŷ − α22(L− 1)ŷ2L−3dŷ − 2αŷ2L−2dα = 0

=⇒ ŷ2L−3(ŷ2L− α2(L− 1))dŷ = αŷ2(L−1)dα

=⇒ dŷ =
ŷα

(ŷ2L− α2(L− 1))
dα, (32)

1Note that throughout the proof (x̂(α), ŷ(α)) denotes the gradient flow solution as function of α. It does
not refer to the GF trajectory.
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where we used Lemma 3.10 of Kreisler et al. (2023) to deduce that ŷ > 0 and so ŷ2L−2 > 0. Then,

notice that we have ŷ >
√

L−1
L α from initialization, and so we dŷ

dα > 0, (i.e., ŷ(α) is an increasing
function of α). Then, we also have

lim
α→0

ŷ(α) = σ
1/L
⋆ and lim

α→0
x̂(α) = σ

1/L
⋆ ,

as it corresponds to exact balancing. Hence, as α increases from 0, ŷ(α) increases from σ
1/L
⋆ .

Similarly, the intersection at the global minima satisfies the following relation for x̂:

x̂(2+
2

L−1 ) + x̂
2

L−1α2 = σ
2

L−1
⋆

=⇒
(
2 +

2

L− 1

)
x̂(

2
L−1+1)dx̂+

(
2

L− 1

)
α2x̂(

2
L−1−1)dx̂+ 2αx̂

2
L−1 dα = 0

=⇒ dx̂ =
−α(

Lx̂
L−1 + α2

(L−1)x̂

)dα. (33)

Note that since x̂ > 0, we have dx
dα < 0. This implies that as α increases from 0, x̂(α) decreases

from σ
1/L
⋆ .

Computing the Differential dψ. Now we are position to derive the differential dψ. Let us define
Ψ(α) := ψ(x̂(α), ŷ(α)) as we ultimately want the behavior in terms of α. Let us simplify Ψ(α)
first:

Ψ(α) := ψ(x̂(α), ŷ(α)) = σ2
⋆

(
1

x̂(α)2
+
L− 1

ŷ(α)2

)
(From Equation (31))

= σ2
⋆

(
ŷ(α)2 + (L− 1)x̂(α)2

x̂(α)2ŷ(α)2

)
(34)

=⇒ ŷ2

L
+

(
1− 1

L

)
x̂2 =

Ψ(α)x̂2ŷ2

Lσ2
⋆

. (35)

Then, computing the differential, we have the following:

dΨ = σ2
⋆

(
− 2

x̂3
dx̂− 2(L− 1)

ŷ3
dŷ

)
(36)

=
1

x̂3

[
2ασ2

⋆
Lx̂
L−1 + α2

(L−1)x̂

]
dα−

[
(L− 1)

ŷ3
2αŷσ2

⋆

(ŷ2L− α2(L− 1))

]
dα (Substitute dx̂, dŷ)

=

[
1

x̂4 +
(
α2

L

)
x̂2

− 1

ŷ4 − α2ŷ2
(
L−1
L

)] · 2α(L− 1)σ2
⋆

L
dα (37)

=

 ŷ4 − x̂4 − α2
(

x̂2

L +
(
1− 1

L

)
ŷ2
)

(
x̂4 + α2

L x̂
2
)
·
(
ŷ4 − α2ŷ

(
L−1
L

))
 · 2α(L− 1)σ2

⋆

L
dα. (38)

Then, recall the intersection constraint:

ŷ2 − x̂2 = α2 =⇒ (ŷ2 − x̂2)(ŷ2 + x̂2) = α2(ŷ2 + x̂2) (39)

=⇒ x̂4 − ŷ4 = α2 · (x̂2 + ŷ2). (40)

By substituting in Equation (40), we can simplify further:

dΨ =

 α2
(

ŷ2

L +
(
1− 1

L

)
x̂2
)

(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2

(
L−1
L

)
)

 · 2α(L− 1)σ2
⋆

L
dα.
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Now, we can plug in Equation (35) into the numerator:

dΨ =

 α2
(

ŷ2

L +
(
1− 1

L

)
x̂2
)

(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2

(
L−1
L

)
)

 · 2α(L− 1)σ2
⋆

L
dα

=

 α2
(

Ψ(α)x̂2ŷ2

Lσ2
⋆

)
(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2

(
L−1
L

)
)

 · 2α(L− 1)σ2
⋆

L
dα

=

[
α2Ψ(α)x̂2ŷ2

Lσ2
⋆(x̂

4 + α2

L x̂
2)(ŷ4 − α2ŷ2

(
L−1
L

)
)

]
· 2α(L− 1)σ2

⋆

L
dα

=

[
2Ψ(α)

(x̂2 + α2

L )(ŷ2 − α2
(
L−1
L

)
)

]
·
(
1

L
− 1

L2

)
α3 dα.

Finally, notice that from the conservation flow, we also have

ŷ2 − x̂2 = α2 =⇒ x̂2 +
α2

L
= ŷ2 − α2

(
L− 1

L

)
,

and so

dΨ =

[
2Ψ(α)

(x̂2 + α2

L )2

]
·
(
1

L
− 1

L2

)
α3 dα =⇒ dΨ

Ψ(α)
=

[
2

(x̂2 + α2

L )2

]
·
(
1

L
− 1

L2

)
︸ ︷︷ ︸

=:P (α)

α3 dα

= P (α)α3 dα.

Upper Bounding the Differential. Note that it is difficult to directly solve for α from P (α), as x̂ is
also a function of α. Hence, we can upper bound P (α) by a function F (α) such that F (α) ≥ P (α)
for all α > 0, and use this to solve for α. We proceed by looking at the derivative of P (α):

P ′(α) =

[
−4

(x̂2 + α2

L )3

](
1

L
− 1

L2

)(
2x̂
dx̂

dα
+

2α

L

)

=

[
−4

(x̂2 + α2

L )3

](
1

L
− 1

L2

)(
2α

L
− 2x̂α

Lx̂
L−1 + α2

(L−1)x̂

)

=
8α

(x̂2 + α2

L )3

(
1

L
− 1

L2

)(
L− 1

L+ α2

x̂2

− 1

L

)

Case 1: L = 2. Consider the case when L = 2. Then, notice that for all α > 0, P ′(α) < 0. Thus,
we can choose F (α) as such:

F = lim
α→0

P (α) =
2

σ
4/L
⋆

(
1

L
− 1

L2

)
,

which is constant in α that upper bounds P (α).

Case 2: L > 2. Now consider the general case. Notice that

x̂(α) =
α√

L(L− 2)

is the only critical point of P (α) (since x̂ > 0). Furthermore, we have

x̂(α) <
α√

L(L− 2)
=⇒ P ′(α) < 0,
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implying that P (α) is decreasing. Then, since x̂(α) is also a decreasing function in α, this means
that there exists an αcrit such that for all α > αcrit, P (α) is always decreasing. We can find αcrit as
such:

x̂(αcrit) =
αcrit√
L(L− 2)

=⇒ ŷ(αcrit) = αcrit

√
1 +

1

L(L− 2)
.

By plugging these into our constraint set, we obtain(
αcrit√
L(L− 2)

)(
αcrit

√
1 +

1

L(L− 2)

)L−1

= σ⋆

=⇒ αL
crit

(√
1 +

1

L(L− 2)

)L−1

= σ⋆
√
L(L− 2)

=⇒ αL
crit =

σ⋆
√
L(L− 2)(√

1 + 1
L(L−2)

)L−1

=⇒ αcrit =
σ
1/L
∗(

1√
L(L−2)

(
1 + 1

L(L−2)

)L−1
2

)1/L
.

Next, also note that for any α < αcrit, P ′(α) > 0, and so P (α) is increasing. Hence, P (αcrit)
corresponds to the maximum value of P . Therefore, we can choose F = P (αcrit) as a constant
function that upper bounds P (α). This leads to

F = P (αcrit) =

[
2

(x̂(αcrit)2 +
α2

crit
L )2

]
·
(
1

L
− 1

L2

)

=

 2(
α2

crit
L(L−2) +

α2
crit
L

)2
 ·
(
1

L
− 1

L2

)

=

 2(
(L−1)α2

crit
L(L−2)

)2
 ·
(
1

L
− 1

L2

)

=
2

σ
4/L
⋆

·
(
1

L
− 1

L2

)(
L(L− 2)

L− 1

)2
(

1√
L(L− 2)

(
1 +

1

L(L− 2)

)L−1
2

)4/L

︸ ︷︷ ︸
=:h(L)

=
2h(L)

σ
4/L
⋆

.

Combining Both Cases. To avoid using two separate functions F for different values of L, we
can upper bound the function h(L) to encompass both cases. This yields the following upper bound:

h(L) ≤ L2 ·

((
1 +

1

L(L− 2)

)L−1
2

) 4
L

≤ L2 · 2
2(L−1)

L =: g(L).

Finally, we are left with the new differential

dΨ

Ψ(α)
=

2g(L)

σ
4/L
⋆

α3 dα.
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Figure 22: Plot of P (α) along with its upper bound evaluated at F = P (αcrit) for different depths.
The critical point occurs exactly at the computed value of αcrit and the function F ≥ P (α) for all
α > 0.

Finding Upper Bound on α. Firstly, we integrate the new differential:∫
dΨ

Ψ(α)
=

2g(L)

σ
4/L
⋆

∫
α3 dα =⇒ ln

(
Ψ

Ψ0

)
=
g(L)α4

2σ
4/L
⋆

=⇒ Ψ = Ψ0 exp

(
g(L)α4

2σ
4/L
⋆

)
,

where Ψ0 = lim
α→0

Ψ(α) = Lσ
2− 2

L
⋆ . Now, we can solve for α:

Lσ
2− 2

L
⋆ exp

(
g(L)α4

2σ
4/L
⋆

)
<

2
√
2

η
=⇒ exp

(
g(L)α4

2σ
4/L
⋆

)
<

2
√
2

ηLσ
2− 2

L
⋆

=⇒ α <

(
ln

(
2
√
2

η

Lσ
2− 2

L
⋆

)
· 2σ

4/L
⋆

g(L)

)1/4

=⇒ α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· 2σ

4/L
⋆

L2 · 2
2(L−1)

L

)1/4

Simplifying further, we obtain

α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4/L
⋆

L2 · 2 2L−3
L

)1/4

,

which gives us the desired bound. This completes the proof.

Lemma 6. Let π(s) :=
∏L

ℓ=1 σℓ denote the end-to-end product of s ∈ RL and suppose that each
σℓ > 0. If the GFS sharpness ψ(s) ≤ 2

√
1+c
η for some c ∈ (0, 1], then

min{2,L−1}∑
i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
[L−i]σ

2
[D]

≤ 1 + c.

Proof. We consider two cases: (i) π(s) ∈ [0, σ⋆) and (ii) π(s) > σ⋆. Note that we ignore the case
of π(s) = σ⋆ as this occurs with probability zero at EoS.

Case 1 (π(s) ∈ [0, σ⋆)). For this case, notice that we have

min{2,L−1}∑
i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
L−iσ

2
L

≤ η2π2(s)

σ2
L−iσ

2
L

. (π(s) < σ⋆)
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Then, note that the GFS sharpness is constant for all weights on the GF trajectory, as it is defined to
be the sharpness at the limit of the GF trajectory (i.e., the GFS). Hence, we can focus on the weights
at the solution, or global minima.

Define the GFS as z := SGF(s). By Lemma 2, each coordinate in z ∈ RL (and hence s ∈ RL) is
balanced across layers under GF, and so we have that

σ2
ℓ − σ2

m = z2ℓ − z2m ∀ℓ,m ∈ [L].

Hence, it is suffices to show that
min{2,L−1}∑

i=1

η2π(z)2

z2L−iz
2
L

≤ 1 + c =⇒
min{2,L−1}∑

i=1

η2π2(s)

σ2
L−iσ

2
L

≤ 1 + c.

Then, note that π(z) = σ⋆, since it lies on the global minima, and so we have
min{2,L−1}∑

i=1

η2π2(z)

z2L−iz
2
L

=

min{2,L−1}∑
i=1

η2σ2
⋆

z2L−iz
2
L

. (41)

From Lemma 3, the sharpness at the global minima is given as

ψ(s) =
∥∥∇2L(z)

∥∥ =
L∑

i=1

σ2
⋆

z2i
. (42)

This immediately implies that σ2
⋆

z2
L

≤ ψ(s) and equivalently, ∃β ∈ [0, 1] such that σ2
⋆

z2
L

= βψ(s).
Therefore, we have

min{2,L−1}∑
i=1

σ2
⋆

z2L−i

≤ (1− β)ψ(s). (43)

Substituting Equations (42) and (43) into the expression we aim to bound, we obtain

min{2,L−1}∑
i=1

η2(π(s)− σ2
⋆)

2π2(s)

σ2
L−iσ

2
L

=

min{2,L−1}∑
i=1

η2σ2
⋆

z2L−iz
2
L

≤ η2β(1− β)ψ2(s) ≤ η2

4
ψ2(s) ≤ 1 + c,

where we used the fact that the maximum of β(1− β) is 1
4 when β = 1

2 and ψ(s) ≤ 2
√
1+c
η . Thus,

if ψ(s) ≤ 2
√
1+c
η , then for every weight s ∈ RL lying on its GF trajectory, we have

min{2,L−1}∑
i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
L−iσ

2
L

≤ 1 + c.

Case 2 (π(s) > σ⋆). Consider the case in which π(s) > σ⋆. By assumption, note that we have
σi > 0, which implies that each GD update will also remain positive:

σi − η(π(s)− σ⋆)π(s)
1

σi
> 0.

From this, we get

2 >
η(π(s)− σ⋆)π(s)

σ2
i

> 0,

This implies that
min{2,L−1}∑

i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
L−iσ

2
L

≤ (1 + c),

with c = 1.

Putting both cases together, we have that
min{2,L−1}∑

i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
L−iσ

2
L

≤ (1 + c),

for c ∈ (0, 1], which completes the proof.
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C.2.2 PROOF OF PROPOSITION 2

Proof. Consider the i-th index of the simplified loss in (5):

1

2

(
L∏

ℓ=1

σℓ,i − σ⋆,i

)2

=:
1

2

(
L∏

ℓ=1

σℓ − σ⋆

)2

,

and omit the dependency on i for ease of exposition. Our goal is to show that the L-th singular value
σL initialized to zero become increasingly balanced to σℓ which are initialized to α > 0. To that end,

let us define the balancing dynamics between σi and σj as bi,j(t + 1) :=
(
σ
(t+1)
i

)2
−
(
σ
(t+1)
j

)2
and π(s(t)) :=

∏L
ℓ=1 σℓ(t) for the product of singular values at iteration t. Then, we can simplify

the balancing dynamics as such:

bi,j(t+ 1) = (σi(t+ 1))
2 − (σj(t+ 1))

2 (44)

=

(
σi(t)− η (π(s(t))− σ⋆)

π(s(t))

σi(t)

)2

−
(
σj(t)− η (π(s(t))− σ⋆)

π(s(t))

σj(t)

)2

(45)

= (σi(t))
2 − (σj(t))

2
+ η2 (π(s(t))− σ⋆)

2

(
π2(s(t))

(σi(t))
2 − π2(s(t))

(σj(t))
2

)
(46)

=
(
(σi(t))

2 − (σj(t))
2
)(

1− η2(π(s(t))− σ⋆)
2 π2(s(t))

(σi(t))
2
(σj(t))

2

)
(47)

= bi,j(t)

(
1− η2(π(s(t))− σ⋆)

2 π2(s(t))

(σi(t))
2
(σj(t))

2

)
. (48)

Then, in order to show that |bi,j(t+ 1)| < c |bi,j(t)| for some 0 < c ≤ 1, we need to prove that∣∣∣∣∣1− η2(π(s(t))− σ⋆)
2 π2(s(t))

(σi(t))
2
(σj(t))

2

∣∣∣∣∣ < c,

for all iterations t. Note that for our case, it is sufficient to show the result for i = L and j = ℓ for
any ℓ ̸= L. WLOG, suppose that the σ are sorted such that σ1 ≥ σ2 ≥ . . . ≥ σL. By assumption,
since our initialization scale satisfies

0 < α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4/L
⋆

L2 · 2 2L−3
L

)1/4

,

by Lemma 5, we have that the GFS sharpness ψ(·) for positive s = [σ1 . . . σL] ∈ RL (i.e., each
element σℓ > 0) satisfies ψ(s) < 2

√
2

η . Then, by Lemma 6, we have

min{2,L−1}∑
i=1

η2(π(s)− σ⋆)
2π2(s)

σ2
[L−i]σ

2
[D]

≤ 1 + c, (49)

for some c ∈ [0, 1). Then, notice that Equation (49) implies that

η2(π(s)− σ⋆)
2π2(s)

σ2
L−1σ

2
L

< 1 + c and
η2(π(s)− σ⋆)

2π2(s)

σ2
i σ

2
j

<
1 + c

2
, (50)

for all i ∈ [L], j ∈ [L− 2] and i < j. Notice that the latter inequality comes from the fact that

η2(π(s)− σ⋆)
2π2(s)

σ2
L−2σ

2
L

+
η2(π(s)− σ⋆)

2π2(s)

σ2
L−2σ

2
L

<
η2(π(s)− σ⋆)

2π2(s)

σ2
L−1σ

2
L

+
η2(π(s)− σ⋆)

2π2(s)

σ2
L−2σ

2
L

< 1 + c,
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which implies that

2
η2(π(s)− σ⋆)

2π2(s)

σ2
L−2σ

2
L

< 1 + c =⇒ η2(π(s)− σ⋆)
2π2(s)

σ2
L−2σ

2
L

<
1 + c

2
,

and since σ are sorted, it holds for all other σ. Therefore from Equation (48), we have for all
i ∈ [L− 2],

bi,i+1(t+ 1) < c · bi,i+1(t) and b(t+ 1)L−2,L < c · bL−2,L(t),

as well as

−c · bL−1,L(t) < bL−1,L(t+ 1) < c · bL−1,L(t).

Then, notice that since we initialized all of the singular values σℓ for ℓ ∈ [L − 1] to be the same,
they follow the same dynamics. Since we already showed that |bL−1,L(t + 1)| < c · |bL−1,L(t)|, it
must follow that

|bi,j(t+ 1)| < c · |bi,j(t)| , ∀ i, j ∈ [L].

This completes the proof.

C.3 PROOFS FOR PERIODIC ORBITS

Before presenting our proof for Theorem 1, we first show that the required condition from Chen &
Bruna (2023) for stable oscillations to occur (see Lemma 11) is also satisfied for DLNs beyond the
EOS, as shown in Appendix C.3.1.

C.3.1 SUPPORTING LEMMAS

Lemma 7 (Stable Subspace Oscillations). Define Sp := Lσ
2− 2

L
⋆,p and K ′

p := max
{
Sp+1,

Sp

2
√
2

}
.

If we run GD on the deep matrix factorization loss in (1) with learning rate η = 2
K , where K ′

p <
K < Sp, then 2-period orbit oscillation occurs in the direction of ∆Sp

, where ∆Sp
denotes the

eigenvector associated with the eigenvalue Sp of the Hessian at the balanced minimum.

Proof. Define f∆i
as the 1-D function at the cross section of the loss landscape and the line fol-

lowing the direction of ∆i passing the (balanced) minima, where ∆i is the i-th eigenvector of the
training loss Hessian at the balanced minimum. To prove the result, we will invoke Lemma 11,
which states that two-period orbit oscillation occurs in the direction of ∆i if the minima of f∆i

satisfies f (3)∆i
> 0 and 3[f

(3)
∆i

]2 − f
(2)
∆i
f
(4)
∆i

> 0, for η > 2
λi

. We show that while the condition holds
for all of the eigenvector directions, the oscillations can only occur specifically in the directions of
∆Si .

First, we will derive the eigenvectors of the Hessian of the training loss at convergence (i.e., M⋆ =
WL:1). To obtain the eigenvectors of the Hessian of parameters (WL, . . . ,W2,W1), consider a
small perturbation of the parameters:

Θ := (∆Wℓ +Wℓ)
L
ℓ=1 = (WL +∆WL, . . . ,W2 +∆W2,W1 +∆W1).

Given that WL:1 = M⋆, consider and evaluate the loss function at this minima:

L(Θ) =
1

2

∥∥∥∥∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1 (51)

+
∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1 + . . .+∆WL:1

∥∥∥∥2
F

. (52)
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By expanding each of the terms and splitting by the orders of ∆Wℓ (perturbation), we get that the
second-order term is equivalent to

Θ

(
L∑

ℓ=1

∥∆Wℓ∥2
)

:
1

2

∥∥∥∥∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1

∥∥∥∥2
F

Θ

(
L∑

ℓ=1

∥∆Wℓ∥3
)

: tr

(∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1

)⊤(∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)
Θ

(
L∑

ℓ=1

∥∆Wℓ∥4
)

:
1

2
∥
∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1∥2F

+ tr

∑
l

(WL:ℓ+1∆WℓWℓ−1:1)
⊤

 ∑
l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1


The direction of the steepest change in the loss at the minima correspond to the largest eigenvector
direction of the Hessian. Since higher order terms such as Θ

(∑L
ℓ=1 ∥∆Wℓ∥3

)
are insignifcant

compared to the second order terms Θ
(∑L

ℓ=1 ∥∆Wℓ∥2
)

, finding the direction that maximizes the
second order term leads to finding the eigenvector of the Hessian. Then, the eigenvector correspond-
ing to the maximum eigenvalue of ∇2L is the solution of

∆1 := vec(∆WL, . . .∆W1) = argmax
∥∆WL∥2

F+...+∥∆W1∥2
F=1

f (∆WL, . . . ,∆W1) , (53)

where

f(∆WL, . . . ,∆W1) :=
1

2
∥∆WLWL−1:1 + . . .+WL:3∆W2W1 +WL:2∆W1∥2F. (54)

While the solution of Equation (53) gives the maximum eigenvector direction of the Hessian, ∆1,
the other eigenvectors can be found by solving

∆r := argmax
∥∆WL∥2

F+...+∥∆W1∥2
F=1,

∆r⊥∆r−1,..,∆r⊥∆1

f (∆WL, . . . ,∆W1) . (55)

By expanding f(·), we have that

f(∆WL, . . . ,∆W1) = ∥∆WLWL−1:1∥2F + . . .+ ∥WL:3∆W2W1∥2F + ∥WL:2∆W1∥2F
+ tr

[
(∆WLWL−1:1)

⊤
(WL:3∆W2W1 + . . .+WL:2∆W1)

]
+ . . .+

tr
[
(WL:2∆W1)

⊤
(WL:3∆W2W1 + . . .+WL:3∆W2W1)

]
. (56)

We can solve Equation (53) by maximizing each of the terms, which can be done in two steps:

(i) Each Frobenius term in the expansion is maximized when the left singular vector of ∆Wℓ

aligns with WL:ℓ+1 and the right singular vector aligns with Wℓ−1:1. This is a result of Von
Neumann’s trace inequality (Mirsky, 1975). Similarly, each term in the trace is maximized when
the singular vector of the perturbations align with the products.

(ii) Due to the alignment, Equation (53) can be written in just the singular values. Let ∆sℓ,i denote
the i-th singular value of the perturbation matrix ∆Wℓ. Recall that all of the singular values
of M⋆ are distinct (i.e., σ⋆,1 > . . . > σ⋆,r). Hence, it is easy to see that Equation (53) is
maximized when ∆sℓ,i = 0 (i.e, all the weight goes to ∆sℓ,1). Thus, each perturbation matrix
must be rank-1.
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Now since each perturbation is rank-1, we can write each perturbation as

∆Wℓ = ∆sℓ∆uℓ∆v⊤
ℓ , ∀ℓ ∈ [L], (57)

for ∆sℓ > 0 and orthonormal vectors ∆uℓ ∈ Rd and ∆vℓ ∈ Rd with
∑L

ℓ=1 ∆s
2
ℓ = 1. Plugging

this in each term, we obtain:

∥WL:ℓ+1∆1WℓWℓ−1:1∥22 = ∆1s
2
ℓ ·
∥∥∥∥V⋆σ

L−ℓ
L

⋆ V⊤
⋆ ∆uℓ︸ ︷︷ ︸

=:a

∆v⊤
ℓ V⋆σ

ℓ−1
L

⋆ V⊤
⋆︸ ︷︷ ︸

=:b⊤

∥∥∥∥2
2

.

Since alignment maximizes this expression as discussed in first point, we have:

uℓ = vℓ = v⋆,1 for all ℓ ∈ [2, L− 1], then

a = σ
L−ℓ
L

⋆,1 v⋆,1 and b⊤ = σ
ℓ−1
L

⋆,1 v⊤
⋆,1 =⇒ ab⊤ = σ

1− 1
L

⋆,1 · v⋆,1v
⊤
⋆,1.

The very same argument can be made for the trace terms. Hence, in order to maximize f(·), we
must have

vL = v⋆,1, and u1 = v⋆,1,

uℓ = vℓ = v⋆,1, ∀ℓ ∈ [2, L− 1].

To determine uL and v1, we can look at one of the trace terms:

tr
[
(∆1WLWL−1:1)

⊤
(WL:3∆1W2W1 + . . .+WL:2∆1W1)

]
≤
(
L− 1

L

)
· σ2− 2

L
⋆,1 .

To reach the upper bound, we require uL = u⋆,1 and v1 = v⋆,1. Finally, as the for each index,
the singular values are balanced, we will have ∆1sℓ = 1√

L
for all ℓ ∈ [L] to satisfy the constraint.

Finally, we get that the leading eigenvector is

∆1 := vec

(
1√
L
u1v

⊤
1 ,

1√
L
v1v

⊤
1 , . . . ,

1√
L
v1v

⊤
1

)
.

Notice that we can also verify that f(∆1) = Lσ
2− 2

L
⋆,1 , which is the leading eigenvalue (or sharpness)

derived in Lemma 1.

To derive the remaining eigenvectors, we need to find all of the vectors in which ∆⊤
i ∆j = 0 for

i ̸= j, where

∆i = vec(∆iWL, . . .∆iW1),

and f(∆i) = λi, where λi is the i-th largest eigenvalue. By repeating the same process as above,
we find that the eigenvector-eigenvalue pair as follows:

∆1 = vec

(
1√
L
u1v

⊤
1 ,

1√
L
v1v

⊤
1 , . . . ,

1√
L
v1v

⊤
1

)
, λ1 = Lσ

2− 2
L

⋆,1

∆2 = vec

(
1√
L
u1v

⊤
2 ,

1√
L
v1v

⊤
2 , . . . ,

1√
L
v1v

⊤
2

)
, λ2 =

(
L−1∑
i=0

σ
1− 1

L− 1
L i

⋆,1 · σ
1
L i
⋆,2

)

∆3 = vec

(
1√
L
u2v

⊤
1 ,

1√
L
v2v

⊤
1 , . . . ,

1√
L
v2v

⊤
1

)
, λ3 =

(
L−1∑
i=0

σ
1− 1

L− 1
L i

⋆,1 · σ
1
L i
⋆,2

)
...

∆d = vec

(
1√
L
u2v

⊤
2 ,

1√
L
v2v

⊤
2 , . . . ,

1√
L
v2v

⊤
2

)
, λd = Lσ

2− 2
L

⋆,2

...

∆dr+r = vec

(
1√
L
udv

⊤
r ,

1√
L
vdv

⊤
r , . . . ,

1√
L
vdv

⊤
r

)
,
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which gives a total of dr + r eigenvectors.

Second, equipped with the eigenvectors, let us consider the 1-D function f∆i
generated by the cross-

section of the loss landscape and each eigenvector ∆i passing the minima:

f∆i(µ) = L(WL + µ∆WL, . . . ,W2 + µ∆W2,W1 + µ∆W1),

= µ2 · 1
2
∥∆WLWL−1:1 + . . .+WL:3∆W2W1 +WL:2∆W1∥2F

+ µ3 ·
L∑

ℓ=1,ℓ<m

tr
[
(WL:ℓ+1∆WℓWℓ−1:1)

⊤
(WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1)

]

+ µ4 · 1
2

∥∥∥∥∥
(∑

ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥∥
2

F

+ µ4 ·
L∑

ℓ<m<p

tr
[
(WL:ℓ+1∆WℓWℓ−1:1)

⊤
(WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1)

]
.

Then, the several order derivatives of f∆i
(µ) at µ = 0 can be obtained from Taylor expansion as

f
(2)
∆i

(0) = ∥∆iWLWL−1:1 + . . .+WL:3∆iW2W1 +WL:2∆iW1∥2F = λ2i

f
(3)
∆i

(0) = 6

L∑
ℓ=1

tr
[
(WL:ℓ+1∆iWℓWℓ−1:1)

⊤
(WL:ℓ+2∆iWℓ+1Wℓ∆iWℓ−1Wℓ−2:1)

]
= 6

∥∥∥∥∑
ℓ

WL:ℓ+1∆iWℓWℓ−1:1

∥∥∥∥
F

·
∥∥∥∥
(∑

ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥
F

:= 6λi · βi
f
(4)
∆i

(0) = 12∥∆iWL∆iWL−1WL−2:1 + . . .+WL:4∆iW3W2∆iW1 +WL:3∆iW2∆iW1∥2F

+ 24

L∑
ℓ=1

tr

(WL:ℓ+1∆iWℓWℓ−1:1)
⊤

 ∑
l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1


:= 12β2

i + 24λi · δi,

where we defined

λi =

∥∥∥∥∑
ℓ

WL:ℓ+1∆iWℓWℓ−1:1

∥∥∥∥
F

(Total
(
L
1

)
terms)

βi =

∥∥∥∥
(∑

ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥
F

(Total
(
L
2

)
terms)

δi =

∥∥∥∥
 ∑

l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1

∥∥∥∥
F

,

(Total
(
L
3

)
terms)

and used the fact that tr(A⊤B) = ∥A∥F · ∥B∥F under singular vector alignment.

Then, since βi has
(
L
2

)
terms inside the sum, when the Frobenium term is expanded, it will have

(L2)((
L
2)+1)
2 number of terms. Under alignment and balancedness, β2

i = ∆s2ℓσ
2− 4

L
i × (L2)((

L
2)+1)
2
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and λiδi = ∆s2ℓσ
2− 4

L
i ×

(
L
3

)
L. Thus, we have the expression

2β2
i − λiδi = ∆s2ℓσ

2− 4
L

i

2

(
L
2

) ((
L
2

)
+ 1
)

2
−
(
L

3

)
L


= ∆s2ℓσ

2− 4
L

i

(
L

3

)
L×

3
(

L(L−1)
2 + 1

)
L(L− 2)

− 1


= ∆s2ℓσ

2− 4
L

i

2
(
L
3

)
L

L(L− 2)
×
(
(L− 1)2 + 5

)
> 0,

for any depth L > 2. Finally, the condition of stable oscillation of 1-D function is

3[f
(3)
∆i

]2 − f
(2)
∆i
f
(4)
∆i

= 108λ2iβ
2
i − (λ2i )(12β

2
i + 24(2λi)(δi)) = 48λ2i (2β

2
i − λiδi) > 0,

which we have proven to be positive for any depth L > 2, for all the eigenvector directions cor-
responding to the non-zero eigenvalues. Lastly, by Proposition 3, notice that we can write the
vectorized weights in the form

∆̃ := vec (WL,WL−1, . . . ,W1)

= vec
(
U⋆ΣLV

⊤
⋆ ,V⋆ΣL−1V

⊤
⋆ , . . . ,V⋆Σ1V

⊤
⋆

)
=

d∑
i=1

vec
(
σL,i · u⋆,iv

⊤
⋆,i, σL−1,i · v⋆,iv

⊤
⋆,i, . . . , σ1,i · v⋆,iv

⊤
⋆,i

)
.

Then, ∆⊤
i ∆̃ ̸= 0 only in the eigenvector directions that correspond to the eigenvalues of the form

Si = Lσ
2−2/L
⋆,i . Hence, the oscillations can only occur in the direction of ∆Si

, where ∆Si
are the

eigenvectors corresponding to the eigenvalues Si. This completes the proof.

C.3.2 PROOF OF LEMMA 1

Proof. By Proposition 3, notice that we can re-write the loss in Equation (1) as

1

2
∥WL:1 −M⋆∥2F =

1

2
∥ΣL:1 −Σ⋆∥2F,

where ΣL:1 are the singular values of WL:1. We will first show that the eigenvalues of the Hessian
with respect to the weight matrices Wℓ are equivalent to those of the Hessian taken with respect to
its singular values Σℓ. To this end, consider the vectorized form of the loss:

f(Θ) :=
1

2
∥WL:1 −M⋆∥2F =

1

2
∥vec(WL:1)− vec(M⋆)∥22.

Then, each block of the Hessian ∇2
Θf(Θ) ∈ Rd2L×d2L with respect to the vectorized parameters is

given as [
∇2

Θf(Θ)
]
m,ℓ

= ∇vec(Wm)∇⊤
vec(Wℓ)

f(Θ) ∈ Rd2×d2

.

By the vectorization trick, each vectorized layer matrix has an SVD of the form vec(Wℓ) =
vec(UℓΣℓV

⊤
ℓ ) = (Vℓ ⊗Uℓ) · vec(Σℓ). Then, notice that we have

∇vec(Wℓ)f(Θ(t)) = (Vℓ ⊗Uℓ) · ∇vec(Σℓ)f(Θ(t)),

which gives us that each block of the Hessian is given by[
∇2

Θf(Θ)
]
m,ℓ

= ∇vec(Wm)∇⊤
vec(Wℓ)

f(Θ)

= (Vm ⊗Um) · ∇vec(Σm)∇⊤
vec(Σℓ)

f(Θ)︸ ︷︷ ︸
=:Hm,ℓ

·(Vℓ ⊗Uℓ)
⊤.
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Then, since the Kronecker product of two orthogonal matrices is also an orthogonal matrix by
Lemma 9, we can write the overall Hessian matrix as

H̃ =


R1H1,1R1 R1H1,2R2 . . . R1H1,LRL

R2H2,1R1 R2H2,2R2 . . . R2H2,LRL

...
...

. . .
...

RLHL,1R1 RLHL,2R2 . . . RLHL,LRL

 ,
for orthogonal matrices {Rℓ}Lℓ=1. Then, by Lemma 8, the eigenvalues of H̃ are the same as those
of H, where H ∈ Rd2L×d2L is the Hessian matrix with respect to the vectorized Σℓ:

H =


H1,1 H1,2 . . . HL,1

H2,1 H2,2 . . . HL,2

...
...

. . .
...

H1,L H2,L . . . HL,L

 .
Now, we can consider the following vectorized loss:

f(Θ) =
1

2
∥ΣL:1 −Σ⋆∥2F =

1

2
∥vec (ΣL:1 −Σ⋆)∥22

=
1

2
∥
(
Σ⊤

ℓ−1:1 ⊗ΣL:ℓ+1

)︸ ︷︷ ︸
=:Aℓ

·vec(Σℓ)− vec(Σ⋆)∥22.

Then, the gradient with respect to vec(Σℓ) is given by

∇vec(Σℓ)f(Θ) = A⊤
ℓ (Aℓ · vec(Σℓ)− vec(Σ⋆)) .

Then, for m = ℓ, we have

Hℓ,ℓ = ∇2
vec(Σℓ)

f(Θ) = A⊤
ℓ Aℓ.

For m ̸= ℓ, we have

Hm,ℓ = ∇vec(Σm)∇vec(Σℓ)f(Θ) = ∇vec(Σm)

[
A⊤

ℓ (Aℓvec(Σℓ)− vec(M⋆))
]

= ∇vec(Σm)A
⊤
ℓ · (Aℓvec(Σℓ)− vec(M⋆))︸ ︷︷ ︸

=0 at convergence

+A⊤
ℓ · ∇vec(Σm)(Aℓvec(Σℓ)− vec(M⋆))

= A⊤
ℓ Am,

where we have used the product rule along with the fact that Aℓvec(Σℓ) = Amvec(Σm).

Overall, the Hessian at convergence for GD is given by

H =


A⊤

1 A1 A⊤
1 A2 . . . A⊤

1 AL

A⊤
2 A1 A⊤

2 A2 . . . A⊤
2 AL

...
...

. . .
...

A⊤
LA1 A⊤

LA2 . . . A⊤
LAL


Now, we can derive an explicit expression for each Am,ℓ by considering the implicit balancing effect
of GD in Proposition 2. Under balancing and Proposition 3, we have that at convergence,

ΣL:1 = Σ⋆ =⇒ Σℓ =

[
Σ

1/L
⋆,r 0
0 α · Id−r

]
, ∀ℓ ∈ [L− 1], and ΣL = Σ

1/L
⋆ .

Thus, we have

Hm,ℓ =

{
Σ

2(ℓ−1)
ℓ ⊗Σ

2(L−ℓ)
L

⋆ for m = ℓ,

Σm+ℓ−2
ℓ ⊗Σ2L−m−ℓ

⋆ for m ̸= ℓ.
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Now, we are left with computing the eigenvalues of H ∈ Rd2L×d2L. To do this, let us block
diagonalize H into H = PCP⊤, where P is a permutation matrix and

C =

C1

. . .
Cd2

 ∈ Rd2L×d2L,

where each (i, j)-th entry of Ck ∈ RL×L is the k-th diagonal element of Hi,j . Since C and H
are similar matrices, they have the same eigenvalues. Then, since C is a block diagonal matrix, its
eigenvalues (and hence the eigenvalues of H) are the union of each of the eigenvalues of its blocks.

By observing the structure of Hm,ℓ, notice that each Ck is a rank-1 matrix. Hence, when considering
the top-r diagonal elements of Hm,ℓ corresponding to each Kronecker product to construct Ck, each
Ck can be written as an outer product uu⊤, where u ∈ RL is

u⊤ =
[
σ
1− 1

L
⋆,i σ0

⋆,j σ
1− 2

L
⋆,i σ

1
L
⋆,j σ

1− 3
L

⋆,i σ
2
L
⋆,j . . . σ0

⋆,iσ
1− 1

L
⋆,j

]⊤
. (58)

Then, the non-zero eigenvalue of this rank-1 matrix is simply ∥u∥22, which simplifies to

∥u∥22 =

L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,i · σ
1
L ℓ
⋆,j

)2
.

Next, we can consider the remaining d− r components of each Kronecker product of Hm,ℓ. Notice
that for m = ℓ = L, we have

HL,L =


σ

2(L−1)
L

⋆,1 · Id
. . .

σ
2(L−1)

L
⋆,r · Id

α2(L−1)Id−r ⊗ Id

 .

This amounts to a matrix Ck with a single element σ
2(L−1)

L
⋆,i and 0 elsewhere. This gives an eigen-

value σ
2(L−1)

L
⋆,i for all i ∈ [r], with multiplicity d− r.

Lastly, we can consider the diagonal components of Hm,ℓ that is a function of the initialization scale
α. For this case, each Ck can be written as an outer product vv⊤, where

v⊤ =
[
σ
1− 1

L
⋆,i α0 σ

1− 2
L

⋆,i α σ
1− 3

L
⋆,i α2 . . . σ0

⋆,iα
L−1

]⊤
. (59)

Similarly, the non-zero eigenvalue is simply ∥v∥22, which corresponds to

∥v∥22 =

L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,k · αℓ
)2
.

This completes the proof.

C.3.3 PROOF OF THEOREM 1

Proof. To prove the result, we will consider the GD step on the i-th singular value and show that the
2-period orbit condition holds given the learning rate η = 2

K . For ease of exposition, let us denote
the i-th singular value of each Wℓ as σi := σℓ,i. Under balancing, consider the two-step GD update
on the first singular value:

σi(t+ 1) = σi(t) + ηL ·
(
σ⋆,i − σL

i (t)
)
· σL−1

i (t)

σi(t) = σi(t+ 2) = σi(t+ 1) + ηL ·
(
σ⋆,i − σL

i (t+ 1)
)
· σL−1

i (t+ 1). (By 2-period orbit)
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Define z :=
(
1 + ηL ·

(
σ⋆,i − σL

i (t)
)
· σL−2

i (t)
)

and by plugging in σi(t+ 1) for σi(t), we have

σi(t) = σi(t)z + ηL ·
(
σ⋆,i − σL

i (t)z
L
)
· σL−1

i (t)zL−1

=⇒ 1 = z + ηL ·
(
σ⋆,i − σL

i (t)z
L
)
· σL−2

i (t)zL−1

=⇒ 1 =
(
1 + ηL ·

(
σ⋆,i − σL

i (t)
)
· σL−2

i (t)
)
+ ηL ·

(
σ⋆,i − σL

i (t)z
L
)
· σL−2

i (t)zL−1

=⇒ 0 =
(
σ⋆,i − σL

i (t)
)
+
(
σ⋆,i − σL

i (t)z
L
)
· zL−1

Simplifying this expression further, we have
0 = σ⋆,i − σL

i (t) + σ⋆,iz
L−1 − σL

i (t)z
2L−1

=⇒ σL
i (t) + σL

i (t)z
2L−1 = σ⋆,i + σ⋆,iz

L−1

=⇒ σL
i (t) ·

(
1 + z2L−1

)
= σ⋆,i ·

(
1 + zL−1

)
=⇒ σL

i (t)

(
1 + z2L−1

)
(1 + zL−1)

= σ⋆,i,

and by defining ρi := σi(t), we obtain the polynomial

σ⋆,i = ρLi
1 + z2L−1

1 + zL−1
, where z :=

(
1 + ηL(σ⋆,i − ρLi ) · ρL−2

i

)
.

Next, we show the existence of (real) roots within the ranges for ρi,1 and ρi,2. We note that these

roots only exist within the EOS regime. First, consider ρi,1 ∈
(
0, σ

1/L
⋆,i

)
. We will show that for two

values within this range, there is a sign change for all L ≥ 2. More specifically, we show that there
exists ρi ∈

(
0, σ

1/L
⋆,i

)
such that

ρLi
1 + z2L−1

1 + zL−1
− σ⋆,i > 0 and ρLi

1 + z2L−1

1 + zL−1
− σ⋆,i < 0.

For the positive case, consider ρi = ( 12σ⋆,i)
1/L. We need to show that

1 + z2L−1

1 + zL−1
=

1 +

(
1 + ηL ·

(σ⋆,i

2

) σ
1− 2

L
⋆,i

21−
2
L

)2L−1

1 +

(
1 + ηL ·

(σ⋆,i

2

) σ
1− 2

L
⋆,i

21−
2
L

)L−1
> 2.

To do this, we will plug in the smallest possible value of η = 2

Lσ
2− 2

L
⋆,i

to show that the fraction is still

greater than 2, which gives us

u(L) :=
1 +

(
1 + 1

21−
2
L

)2L−1

1 +
(
1 + 1

21−
2
L

)L−1
, (60)

which is an increasing function of L for all L ≥ 2. Since u(2) > 2, Equation (60) must always be
greater than 2. For the negative case, we can simply consider ρi = 0. Hence, since the polynomial
is continuous, by the Intermediate Value Theorem (IVT), there must exist a root within the range
ρi ∈

(
0, σ

1/L
⋆,i

)
.

Next, consider the range ρi,2 ∈
(
σ
1/L
⋆,i , (2σ⋆,i)

1/L
)

. Similarly, we will show sign changes for two

values in ρi,2. For the positive case, consider ρi =
(
3
2σ⋆,i

)1/L
. For η, we can plug in the smallest

possible value within the range to show that this value of ρi provides a positive quantity. Specifically,
we need to show that

1 + z2L−1

1 + zL−1
>

2

3
=⇒

1 +

(
1 + 2

σ
2− 2

L
⋆,i

· (σ⋆,i − 3
2σ⋆,i) ·

(
3
2σ⋆,i

)1− 2
L

)2L−1

1 +

(
1 + 2

σ
2− 2

L
⋆,i

· (σ⋆,i − 3
2σ⋆,i) ·

(
3
2σ⋆,i

)1− 2
L

)L−1
>

2

3
.
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We can simplify the fraction as follows:

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)2L−1

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)L−1
=

1 +
(
1− ( 32 )

1− 2
L

)2L−1

1 +
(
1− ( 32 )

1− 2
L

)L−1
.

Then, since we are subtracting by ( 32 )
1− 2

L , we can plug in its largest value for L ≥ 2, which is 3/2.
This gives us

1 + (−0.5)
2L−1

1 + (−0.5)
L−1

>
2

3
,

as for odd values of L, the function increases to 1 starting from L = 2, and decreases to 1 for even
L. To check negativity, let us define

h(ρ) :=
f(ρ)

g(ρ)
:=

ρL
(
1 + z2L−1

)
1 + zL−1

.

We will show that h′
(
σ
1/L
⋆,i

)
< 0:

h′
(
σ
1/L
⋆,i

)
=
f ′
(
σ
1/L
⋆,i

)
g
(
σ
1/L
⋆,i

)
− f

(
σ
1/L
⋆,i

)
g′
(
σ
1/L
⋆,i

)
g2
(
σ
1/L
⋆,i

)
=
f ′
(
σ
1/L
⋆,i

)
− σ⋆,i · g′

(
σ
1/L
⋆,i

)
2

=
Lσ

1− 1
L

⋆,i − σ⋆,i(2L− 1)
(
ηL2σ

2− 3
L

⋆,i

)
− σ⋆,i(L− 1)

(
ηL2σ

2− 3
L

⋆,i

)
2

=
Lσ

1− 1
L

⋆,i − (3L− 2)
(
ηL2σ

3− 3
L

⋆,i

)
2

< 0,

as otherwise we need η ≤ σ
2/L−2
⋆,i

3L2−2L , which is out of the range of interest. Since h′(ρ) < 0, it follows
that there exists a δ > 0 such that h(ρ) > h(x) for all x such that ρ < x < ρ + δ. Lastly, since
h(ρ) − σ⋆,i = 0 for ρ = σ

1/L
⋆,i , it follows that h(ρ) − σ⋆,i must be negative at ρ + δ. Similarly,

by IVT, there must exist a root within the range ρi,2 ∈
(
σ
1/L
⋆,i , (2σ⋆,i)

1/L
)

. This proves that the
i-th singular value undergoes a two-period orbit with the roots ρi,1 and ρi,2. Then, notice that if
the learning rate is large enough to induce oscillations in the i-th singular value, then it is also large
enough to have oscillations in all singular values from 1 to the (i − 1)-th singular value (assuming
that it is not large enough for divergence). Finally, at the (balanced) minimum, we can express the
dynamics as

WL:1 =

p∑
i=1

ρLi,j · u⋆,iv
⊤
⋆,i︸ ︷︷ ︸

oscillation subspace

+

d∑
k=p+1

σ⋆,k · u⋆,kv
⊤
⋆,k︸ ︷︷ ︸

stationary subspace

, j ∈ {1, 2}, ∀ℓ ∈ [L− 1]. (61)

This completes the proof.
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C.4 AUXILIARY RESULTS

Lemma 8. Let {Rℓ}Lℓ=1 ∈ Rn×n be orthogonal matrices and Hi,j ∈ Rn2×n2

be diagonal matrices.
Consider the two following block matrices:

H =


H1,1 H1,2 . . . HL,1

H2,1 H2,2 . . . HL,2

...
...

. . .
...

H1,L H2,L . . . HL,L



H̃ =


RLH1,1R

⊤
L RLH1,2R

⊤
L−1 . . . RLH1,LR

⊤
1

RL−1H2,1R
⊤
L RL−1H2,2R

⊤
L−1 . . . RL−1H2,LR

⊤
1

...
...

. . .
...

R1HL,1R
⊤
L R1HL,2R

⊤
L−1 . . . R1HL,LR

⊤
1

 .
Then, the two matrices H and H̃ are similar, in the sense that they have the same eigenvalues.

Proof. It suffices to show that H and H̃ have the same characteristic polynomials. Let us define

H̃ :=

[
A B
C D

]
,

where

A := RLH1,1R
⊤
L B :=

[
RLH1,2R

⊤
L−1 . . . RLH1,LR

⊤
1

]
(62)

C :=

RL−1H2,1R
⊤
L

...
R1HL,1R

⊤
L

 D :=


RL−1H2,2R

⊤
L−1 . . . RL−1H2,LR

⊤
1

...
. . .

...
R1HL,2R

⊤
L−1 . . . R1HL,LR

⊤
1

 . (63)

Then, we have

det(H̃− λI) = det

([
A− λI B

C D− λI

])
= det(A− λI) · det((D− λI)−C(A− λI)−1B),

where the second equality is by the Schur complement. Notice that

(A− λI)−1 = (RLH1,1R
⊤
L − λI)−1 = (RLH1,1R

⊤
L − λRLRL

⊤)−1

= RL · (H1,1 − λI)−1 ·R⊤
L .

Then, we also see that,

C(A− λI)−1B =

RL−1

. . .
R1


︸ ︷︷ ︸

=:V̂

·E ·

R
⊤
L−1

. . .
R⊤

1


︸ ︷︷ ︸

=:V̂⊤

.

where

E :=

H2,1 · (H1,1 − λI)−1 ·H1,2 . . . H2,1 · (H1,1 − λI)−1 ·H1,L

...
. . .

...
HL,1 · (H1,1 − λI)−1 ·H1,2 . . . HL,1 · (H1,1 − λI)−1 ·H1,L

 .
Similarly, we can write D as

D = V̂

H2,2 . . . H2,L

...
. . .

...
HL,2 . . . HL,L


︸ ︷︷ ︸

=:F

V̂⊤.
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Then, we have

det(H̃− λI) = det(RL · (H1,1 − λI) ·R⊤
L ) · det

(
V̂ · (E− F) · V̂⊤

)
= det(H1,1 − λI) · det(E− F),

which is not a function of U,V, {Rℓ}Lℓ=1. By doing the same for H, we can show that both H̃ and
H have the same characteristic polynomials, and hence the same eigenvalues. This completes the
proof.

Lemma 9. Let A,B ∈ Rd×d be two orthogonal matrices. Then, the Kronecker product of A and
B is also an orthogonal matrix:

(A⊗B)⊤(A⊗B) = (A⊗B)(A⊗B)⊤ = Id2 .

Proof. We prove this directly by using properties of Kronecker products:

(A⊗B)⊤(A⊗B) = A⊤A⊗B⊤B

= Id ⊗ Id = Id2 .

Similarly, we have

(A⊗B)(A⊗B)⊤ = AA⊤ ⊗BB⊤

= Id ⊗ Id = Id2 .

This completes the proof.

Lemma 10. Let {a(t)}Nt=1 be a sequence such that a(t) ≥ 0 for all t. If there exists a constant
c ∈ (0, 1) such that a(t+ 1) < c · a(t) for all t, then limt→∞ a(t) = 0.

Proof. We prove this by direct reasoning. From the assumption a(t + 1) < c · a(t) for some
c ∈ (0, 1), we can iteratively expand this inequality:

a(t+ 1) < c · a(t), a(t+ 2) < c · a(t+ 1) < c2 · a(t),

and, more generally, by induction:

a(t+ k) < ck · a(t), for all k ≥ 0.

Since c ∈ (0, 1), the sequence {ck}∞k=0 converges to 0 as k → ∞. Hence:

0 ≤ lim
k→∞

a(t+ k) ≤ lim
k→∞

ck · a(t) = 0.

Therefore, by the squeeze theorem, the sequence {a(t)} converges to 0 as t→ ∞.

Lemma 11 (Chen & Bruna (2023)). Consider any 1-D differentiable function f(x) around a local
minima x̄, satisfying (i) f (3)(x̄) ̸= 0, and (ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists ϵ with
sufficiently small |ϵ| and ϵ · f (3) > 0 such that: for any point x0 between x̄ and x̄− ϵ, there exists a
learning rate η such that F 2

η (x0) = x0, and

2

f ′′(x̄)
< η <

2

f ′′(x̄)− ϵ · f (3)(x̄)
.
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