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ABSTRACT

Deep neural networks trained using gradient descent with a fixed learning rate η
often operate in the regime of “edge of stability” (EOS), where the largest eigen-
value of the Hessian equilibrates about the stability threshold 2/η. Existing the-
oretical analyses of EOS focus on simple prototypes, such as scalar functions
or second-order regression models, which limits our understanding of the phe-
nomenon in deep networks. In this work, we present a fine-grained analysis of
the learning dynamics of (deep) linear networks (DLN) within the deep matrix
factorization loss beyond EOS. For DLNs, loss oscillations within EOS follow
a period-doubling route to chaos. We theoretically analyze the regime of the 2-
period orbit and show that the loss oscillations occur within a small subspace,
with the dimension of the subspace precisely characterized by the learning rate.
Our analysis contributes to explaining two key phenomena in deep networks: (i)
shallow models and simple tasks do not always exhibit EOS (Cohen et al., 2021);
and (ii) oscillations occur within top features (Zhu et al., 2023a). We present ex-
periments to support our theory, along with examples demonstrating how these
phenomena occur in nonlinear networks and how they differ from those in DLNs.

1 INTRODUCTION

Understanding generalization in deep neural networks requires an understanding of the optimiza-
tion process in gradient descent (GD). In the literature, it has been empirically observed that the
learning rate η plays a key role in driving generalization (Hayou et al., 2024; Lewkowycz et al.,
2020). The “descent lemma” from classical optimization theory says that for a β-smooth loss L(Θ)
parameterized by Θ, gradient descent (GD) iterates satisfy

L(Θ(t+ 1)) ≤ L(Θ(t))− η(2− ηβ)

2
∥∇L(Θ(t))∥22,

and so the learning rate should be chosen as η < 2/β to monotonically decrease the loss. How-
ever, many recent works have shown that the training loss decreases even for η > 2/β, albeit non-
monotonically. Surprisingly, it has been observed that choosing such a learning rate often provides
better generalization over smaller ones that lie within the stability threshold. This observation has
led to a series of works analyzing the behavior of GD within a regime dubbed “the edge of stability”
(EOS). By letting Θ be a deep network, we formally define EOS as follows:

Definition 1 (Edge of Stability (Cohen et al., 2021)). During training, the sharpness of the loss, de-
fined as S(Θ) := ∥∇2L(Θ)∥2, continues to grow until it reaches 2/η (progressive sharpening), af-
ter which it stabilizes around 2/η. During this process, the training loss behaves non-monotonically
over short timescales but consistently decreases over long timescales.

Using a large learning rate to operate within the EOS regime is hypothesized to give better gener-
alization performance by inducing “catapults” in the training loss (Zhu et al., 2023a). Intuitively,
whenever the sharpness S(Θ) exceeds the local stability limit 2/η, the GD iterates momentarily
diverge (or catapults) out of a sharp region and self-stabilizes (Damian et al., 2023) to settle for a
flatter region where the sharpness is below 2/η, which has shown to correlate with better general-
ization (Keskar et al., 2017; Izmailov et al., 2019; Petzka et al., 2021; Foret et al., 2021; Gatmiry
et al., 2023). Of course, the dynamics within EOS differ based on the loss landscape. When the loss
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Figure 1: Bifurcation plot of the oscillations in the singular values (left) and the eigenvalues of
the Hessian (right) of a 3-layer end-to-end DLN. The bifurcation plots indicate the existence of a
period-doubling route to chaos in DLNs, which we analyze by examining the two-period orbit. Here,
η > 2/β corresponds to the EOS regime, where β = Lσ

2−2/L
⋆,1 is the sharpness at the minima, L is

the depth of the network and σ⋆,1 is the first singular value of the target matrix M⋆.

landscape is highly non-convex with many local valleys, catapults may occur, whereas sustained os-
cillations may exist for other landscapes. It is of great interest to understand these behaviors within
different network architectures to further our understanding of EOS.

From a theoretical perspective, there have been many recent efforts to understand EOS. These works
generally focus on analyzing “simple” functions, examples including scalar losses (Zhu et al., 2023b;
Wang et al., 2023; Kreisler et al., 2023), quadratic regression models (Agarwala et al., 2022), diag-
onal linear networks (Even et al., 2024) and two-layer matrix factorization (Chen & Bruna, 2023).
However, the simplicity of these functions cannot fully capture the behaviors of deep neural net-
works within the EOS regime. Specifically, the following observations remain unexplained by ex-
isting analyses: (i) mild (or no) sharpening occurs when either networks are shallow or “simple”
datasets are used for training (Caveat 2 from (Cohen et al., 2021)); and (ii) the oscillations and cat-
apults in the weights occur within the top singular values of each weight matrix (Zhu et al., 2023a).

In this work, we present a fine-grained analysis of the learning dynamics of deep linear networks
(DLNs) within the EOS regime, demonstrating that these phenomena can be replicated and effec-
tively explained using DLNs. Generally, there are two lines of work for DLNs: (i) those that analyze
the effects of depth and initialization scale, and how they implicitly bias the trajectory of gradient
flow towards low-rank solutions when the learning rate is chosen to be stable (Saxe et al., 2014;
Arora et al., 2018; 2019; You et al., 2020; Liu et al., 2022; Zhang et al., 2024a; Pesme & Flammar-
ion, 2023; Jacot et al., 2022), and (ii) those that analyze the similarities in behavior between linear
and nonlinear networks (Wang et al., 2024; Zhang et al., 2024b; Yaras et al., 2023). Our analysis
builds upon these works to show that DLNs exhibit intricate and interesting behaviors outside the
stability regime and to demonstrate how factors such as depth and initialization scale contribute to
the EOS regime. Our main contributions can be summarized as follows:

• Oscillations in Top Subspaces. We show that there exist periodic oscillations within r-
dimensional subspaces in DLNs, where r is precisely characterized by the learning rate. For
DLNs, a period-doubling route to chaos (Ott, 2002) exists in both the singular values of the
DLN and the eigenvalues of the Hessian, as shown in Figure 1. We rigorously characterize
the case of the two-period orbit, aiming to contribute to explaining the empirical observations
by Zhu et al. (2023a) and Cohen et al. (2021). We also prove that the learning rate needed to
enter EOS is a function of the network depth, further revealing its role in deep networks.

• Difference in DLNs and Diagonal Linear Networks. While DLNs and diagonal linear net-
works exhibit similar behaviors under a stable learning rate, we demonstrate that their dynamics
differ within the EOS regime (Gidel et al., 2019b). Near the global minima, we show that DLNs
have additional curvature directions that influence behavior within the EOS regime, distinguish-
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ing them from diagonal linear networks. This offers a unique perspective on how changes in the
landscape affect behaviors within the EOS regime, depending on the learning rate and depth.

2 NOTATION AND PROBLEM SETUP

Notation. We denote vectors with bold lower-case letters (e.g., x) and matrices with bold upper-
case letters (e.g., X). We use In to denote an identity matrix of size n ∈ N. We use [L] to denote
the set {1, 2, . . . , L}. We use the notation σi(A) to denote the i-th singular value of the matrix A.
We also use the notation σi,ℓ to denote the i-th singular value of the matrix Wℓ.

Deep Matrix Factorization Loss. The objective in deep matrix factorization is to model a low-
rank matrix M⋆ ∈ Rd×d with rank(M⋆) = r via a DLN parameterized by a set of parameters
Θ = (W1,W2, . . . ,WL), which can be estimated by solving

argmin
Θ

f(Θ) :=
1

2
∥WL · . . . ·W1︸ ︷︷ ︸

=:WL:1

−M⋆∥2F, (1)

where we adopt the abbreviation Wj:i = Wj · . . . · Wi to denote the end-to-end DLN and is
identity when j < i. We assume that each weight matrix has dimensions Wℓ ∈ Rd×d to observe
the effects of overparameterization. We also assume that the singular values of M⋆ are distinct such
that σ⋆,1 > . . . > σ⋆,r.

Optimization. We update each weight matrix Wℓ ∈ Rd×d using GD with iterations given by

Wℓ(t) = Wℓ(t− 1)− η · ∇Wℓ
f(Θ(t− 1)), ∀ℓ ∈ [L], (2)

where η > 0 is the learning rate and ∇Wℓ
f(Θ(t)) is the gradient of f(Θ) with respect to the ℓ-th

weight matrix at the t-th GD iterate.

Initialization. To encompass a wide range of initialization schemes, we consider both a balanced
and unbalanced initialization, respectively:

Wℓ(0) = αId, ∀ℓ ∈ [L], and WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (3)

where α > 0 is a small constant. We assume α is chosen small enough such that α ∈ (0, σ⋆,r),
where σ⋆,r is the r-th singular value of M⋆. Generally, many existing works on both shallow and
deep linear networks assume a zero-balanced initialization (i.e., W⊤

i (0)Wi(0) = Wj(0)W
⊤
j (0)

for i ̸= j). This introduces the invariant W⊤
i (t)Wi(t) = Wj(t)W

⊤
j (t) for all t > 0, ensuring

two (degenerate) conditions throughout the training trajectory: (i) the singular vectors of each of the
layers remain aligned and (ii) the singular values stay balanced. For the unbalanced initialization,
the zero weight layer can be viewed as the limiting case of initializing the weights with a (very) small
constant α′ ≪ α, and has been similarly explored by Varre et al. (2023); Xu et al. (2024), albeit for
two-layer networks. The zero weight layer relieves the balancing condition of the singular values.
Rather than staying balanced, we show that the singular values become increasingly balanced (see
Lemma 2). This allows us to jointly analyze the singular values of the weights for either case.

Nevertheless, we also show that our analysis is not limited to either initialization but applies to any
initialization that converges to a set we call the singular vector stationary set (see Proposition 1).To
the best of our knowledge, it is common to assume that the singular vectors remain aligned, as many
existing works make the same assumption (Varre et al., 2023; Arora et al., 2019; Saxe et al., 2014;
Gidel et al., 2019a; Chou et al., 2024b; Min Kwon et al., 2024).

3 DEEP MATRIX FACTORIZATION BEYOND THE EDGE OF STABILITY

When using a large learning rate, the learning dynamics can typically be separated into two distinct
stages: (i) progressive sharpening and (ii) the edge of stability. Within the progressive sharpen-
ing stage, the sharpness lies below 2/η and tends to continually rise. Our goal is to analyze the
EOS stage under the deep matrix factorization formulation. Here, we observe that the training loss
fluctuates due to layerwise singular value oscillations, as illustrated in Figure 2.
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Figure 2: Depiction of the two phases of learning in the deep matrix factorization problem for a
network of depth 3. It appears that upon escaping the first saddle point, the GD iterates enter the
EOS regime, where the sharpness hovers just above 2/η.

3.1 MAIN RESULTS

Before we present our main results, we provide a definition of what we refer to as a strict balanced
state of the singular values for the weight matrices. If the parameters are said to be in a strict
balanced state, then the singular values of each weight are balanced in the sense that they take the
same values across all weight layers.
Definition 2 (Strict Balanced State). The parameters Θ of the DLN from Equation (1) are said to
be in a strict balanced state if for some t ≥ 0

σi(Wℓ(t)) = σi(Wk(t)), ∀i ∈ [r], ∀ℓ, k ∈ [L],

where σi(Wℓ) denotes the i-th singular value of the ℓ-th layer and r is the rank of the matrix M⋆.

It is straightforward to show that the parameters are in a strictly balanced state for all t ≥ 0 if we
initialize the singular values to be the same across all weight matrices Wℓ. Hence, it immediately
holds that the balanced initialization is in a strict balanced state. However, the one-zero initialization
in Equation (3) sets the singular values of WL to zero, meaning the parameters are not initially in
a strictly balanced state. Since we prove in Lemma 2 that the singular values across layers become
increasingly balanced, we assume a strict balanced state throughout the rest of this paper. Next, we
derive the eigenvalues of the Hessian at convergence, such that we can identify the learning rate
needed to enter the EOS regime for DLNs.
Lemma 1 (Eigenvalues of Hessian at Convergence). Consider running GD on the deep matrix
factorization loss f(Θ) defined in Equation (1). Under strict balancing with any stationary point Θ
with ∇Θf(Θ) = 0, the set of all non-zero eigenvalues of the training loss Hessian are given by

λΘ =
{
Lσ

2− 2
L

⋆,i , σ
2− 2

L
⋆,i

}r
i=1︸ ︷︷ ︸

self-interaction

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,i · σ
1
L ℓ
⋆,j

)2}r
i ̸=j︸ ︷︷ ︸

interaction with other singular values

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,k · αℓ
)2}r

k=1︸ ︷︷ ︸
interaction with initialization

where σ⋆,i is the i-th singular value of the target matrix M⋆ ∈ Rd×d, α ∈ R is the initialization
scale, L is the depth of the network, and the second element of the set under “self-interaction” has
a multiplicity of d− r.

We defer all of the proofs to Appendix C. By Lemma 1, we can see that the sharpness is exactly
∥∇2f(Θ)∥2 = Lσ

2− 2
L

⋆,1 under strict balancing. Hence, as long as η is set to η > 2/Lσ
2− 2

L
⋆,1 , we will

observe oscillations in the loss. Interestingly, notice that all non-zero eigenvalues are a function of
network depth. For a deeper network, the sharpness will be larger, implying that a smaller learning
rate can be used to drive the DLN into EOS. This provides a unique perspective on how the learning
rate should be chosen as networks become deeper and explains the observation made by Cohen
et al. (2021), who observed that sharpness scales with the depth of the network. In Section 3.3, we
show that these eigenvalues account for the primary difference between DLNs and diagonal linear
networks – the eigenvalues that correspond to the “interaction with other singular values” are absent
in diagonal linear networks, leading to oscillations in two or more dimensions occurring at different
learning rates. Next, we present our result on the two-period orbit in the first singular value.
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Theorem 1 (Rank-1 Oscillation). Let M⋆ = U⋆Σ⋆V
⊤
⋆ denote the SVD of the tar-

get matrix and let S := Lσ
2− 2

L
⋆,1 , α′ :=

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆,1

)
· σ

4
L
⋆,1

L2·2
2L−3

L

) 1
4

, and K ′ :=

max

{∑L−1
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,1 · σ
1
L ℓ
⋆,2

)2
, S
2
√
2

}
. If we run GD on the deep matrix factorization loss with

initialization scale α < α′ and learning rate η = 2
K , where K ′ < K < S, then under strict

balancing, each weight matrix Wℓ ∈ Rd×d oscillates around the minima in a 2-period fixed orbit
(i ∈ {1, 2}) as follows:

WL = ρi · u⋆,1v⊤
⋆,1︸ ︷︷ ︸

oscillation subspace

+

r∑
j=2

σ⋆,ju⋆,jv
⊤
⋆,j︸ ︷︷ ︸

stationary subspace

, i ∈ {1, 2},

Wℓ = ρi · v⋆,1v⊤
⋆,1︸ ︷︷ ︸

oscillation subspace

+

r∑
j=2

σ⋆,jv⋆,jv
⊤
⋆,j︸ ︷︷ ︸

stationary subspace

i ∈ {1, 2}, ∀ℓ ∈ [L− 1],

where ρ1 ∈
(
0, σ

1/L
⋆,1

)
and ρ2 ∈

(
σ
1/L
⋆,1 , (2σ⋆,1)

1/L
)

are the two real roots of the polynomial

g(ρ) = 0, where

g(ρ) = ρL ·
1 +

(
1 + ηL(σ⋆,1 − ρL) · ρL−2

)2L−1

1 + (1 + ηL(σ⋆,1 − ρL) · ρL−2)
L−1

− σ⋆,1.

Remarks. From Lemma 1, the second largest eigenvalue is given by
∑L−1
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,1 · σ
1
L ℓ
⋆,2

)2
.

If the learning rate is chosen such that K less than the second largest eigenvalue, then oscillation
occurs within the top eigenvector direction of the Hessian, which is amenable to the oscillation in
the first singular value as shown in Theorem 1. The oscillation amplitude is governed by ρ1 and ρ2,
which are below and above the minima, respectively. Hence, the oscillations will occur about the
minima. This aims to theoretically show why (i) oscillations only occur within top subspaces of the
network as observed by Zhu et al. (2023a) and (ii) oscillations are more prevalent in the direction
of the stronger features (measured by the magnitude of the singular values). Finally, we remark that
the additional bound on the learning rate as well as the initialization scale is an artifact of Lemma 2,
which are needed to ensure that balancing occurs.

Our result also generalizes the recent theoretical findings of Chen & Bruna (2023), where they
proved the existence of a certain class of scalar functions f(x) for which GD does not diverge
even when operating beyond the stability threshold η > 2

f ′′ (x̂)
, where x̂ is a local minimum of

f(x). Specifically, they showed that for a function dependent ϵ > 0, there exists a range η ∈(
2

f ′′ (x̂)
, 2
f ′′ (x̂)

(1 + ϵ)
)

, where the loss oscillates around the local minima with a certain periodicity.

As η increases beyond 2
f ′′ (x̂)

, the oscillations gradually enter higher periodic orbits (e.g., 2, 4, 8
periods), then transition into chaotic behavior, and ultimately lead to divergence. In our work, we
prove that this oscillatory behavior beyond the stability threshold occurs even in DLNs.

To generalize Theorem 1 to show oscillations in two or more subspaces, we require a careful
treatment of the derivation of the roots for ρ1 and ρ2 and the corresponding singular vectors
that contribute to the oscillation subspace. However, in the following, we prove that as long
as K is set to λr ≥ K > λr+1, where λr is the r-th eigenvalue of the Hessian, we will ob-
serve oscillations in the top-r subspaces. This is proved using Lemma 11 (restated from Chen &
Bruna (2023)), where the necessary condition for stable two-period orbit is that f (3)∆i

(x) ̸= 0 and

3[f
(3)
∆i

(x)]2 − f
(2)
∆i

(x)f
(4)
∆i

(x) > 0 around a local minima x, where ∆i is the i-th eigenvector of the
Hessian and f∆i is the loss function restricted to the line {y : y = x+ t∆i, t ∈ R}. In Theorem 2,
we prove that this condition holds for each eigenvector direction.
Theorem 2 (Stable Subspace Oscillations (Informal)). Consider running GD on the loss in Equa-
tion (1) with initialization scale α < α′ from Theorem 1. If η = 2

K with λi ≤ K < λi+1, then

5
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Figure 3: Illustrations of the singular vector and value evolution of the end-to-end DLN. The sin-
gular vectors of the network remain static across all iterations, as suggested by the singular vector
stationary set, regardless of the learning rate. The angle between the true singular vectors and those
of the network remains aligned throughout. The first singular values undergo oscillations in the large
η regime, whereas they remain constant in the small η regime.

2-period orbit oscillation occurs in the direction of ∆i, where λi and ∆i denote the i-th largest
eigenvalue and its corresponding eigenvector of the Hessian at convergence, respectively.

3.2 TOOLS USED IN THE ANALYSES

This section presents the two main tools used in our analyses: the singular vector stationary set and
singular value balancedness. First, we present the singular vector stationary set, which allows us to
encompass a wider range of initialization schemes. This set defines a broad class of initialization for
which singular vector alignment occurs, simplifying the dynamics to only singular values.

Proposition 1 (Singular Vector Stationary Set). Consider the deep matrix factorization loss in Equa-
tion (1). Let M⋆ = U⋆Σ⋆V

⊤
⋆ and Wℓ(t) = Uℓ(t)Σℓ(t)V

⊤
ℓ (t) denote the compact SVD for

the target matrix and the ℓ-th layer weight matrix at time t, respectively. For any time t ≥ 0, if
U̇ℓ(t) = V̇ℓ(t) = 0 for all ℓ ∈ [L], then the singular vector stationary points for each weight
matrix are given by

SVS(f(Θ)) =


(UL,VL) = (U⋆,QL),

(Uℓ,Vℓ) = (Qℓ+1,Qℓ), ∀ℓ ∈ [2, L− 1],

(U1,V1) = (Q2,V⋆),

where {Qℓ}Lℓ=2 are any set of orthogonal matrices.

The singular vector stationary set states that for any set of weights where the gradients with respect
to the singular vectors become zero, the singular vectors become fixed points for subsequent itera-
tions. Once the singular vectors become stationary, running GD further isolates the dynamics on the
singular values. Hence, throughout our analysis, we re-write and consider the loss

1

2
∥WL:1(t)−M⋆∥2F =

1

2
∥ΣL:1 −Σ⋆∥2F =

1

2

r∑
i=1

(σi(ΣL:1(t))− σ⋆,i)
2
, (4)

where ΣL:1 are the singular values of WL:1. This allows us to decouple the dynamics of the singular
vectors and singular values, focusing on the periodicity that occurs in the singular values within the
EOS regime. In Propositions 2 and 3, we prove that both the unbalanced and balanced initializations
converge to this set respectively, with an illustration in Figure 3. Specifically, we show that the
singular vectors belongs to the singular vector stationary set after GD iteration t = 1 (far before
entering the EOS regime), allowing us to consider the loss in Equation (4). In Appendix B, we
provide another example that belongs to this set. Next, we present a result to validate our use of
the strictly balanced assumption on the unbalanced initialization case by showing that the singular
values become increasingly balanced throughout the GD iterations.

6
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Lemma 2 (Balancing). Let σ⋆,i and σℓ,i(t) denote the i-th singular value of M⋆ ∈ Rd×d and

Wℓ(t), respectively and define S := Lσ
2− 2

L
⋆,1 . Consider GD on the deep matrix factorization loss in

Equation (1) with unbalanced initialization in (3) and learning rate η < 2
√
2

S . If the initialization

scale α satisfies 0 < α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆,1

)
· σ

4
L
⋆,1

L2·2
2L−3

L

) 1
4

, then there exists a c ∈ (0, 1] such that

for all i ∈ [r], we have
∣∣∣σ2
L,i(t+ 1)− σ2

ℓ,i(t+ 1)
∣∣∣ < c

∣∣∣σ2
L,i(t)− σ2

ℓ,i(t)
∣∣∣.
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Figure 4: Plot of |σ2
i,L(t)−σ2

i,ℓ(t)| for
initialization scale α = 0.01 showing
strict balancing.

To summarize, Lemma 2 states that, provided α is cho-
sen below a certain threshold, the top-r singular values of
the weights across all layers become increasingly balanced
during GD, even if they are unbalanced as in the initial-
ization of Equation (3). This can be viewed as an im-
plicit property of GD, which has been shown to hold for
two-layer matrix factorization (Wang et al., 2021; Ye &
Du, 2021; Chen & Bruna, 2023). Our result is an exten-
sion of these analyses, but to the deep matrix factorization
case. Our analysis shows that the constant c changes for
two different cases1: (i) 0 < c < 1 when the product of
singular values across all layers σi(ΣL:1) < σ⋆,i and (ii)
c = 1 when σi(ΣL:1) > σ⋆,i. In the literature, it has been
widely shown that the dynamics of DLNs (along with diag-
onal linear networks) exhibit an incremental learning phe-
nomenon, where the singular values σi(Wℓ) start from α
and increase to the target singular value one-by-one (Gissin
et al., 2020; Berthier, 2023; Min Kwon et al., 2024; Jacot et al., 2021). Empirically, this implies that
we often operate in the regime of σi(ΣL:1) < σ⋆,i, as the oscillations begin to occur once we reach
and about the minima. Hence, throughout most of the learning trajectory, 0 < c < 1 holds, and the
balancing gap becomes infinitesimally small. In Figure 4, we plot the balancing gap between the
top-3 singular values of a weight matrix initialized to zero and those initialized to α for a rank-3 ma-
trix. This plot shows that the gap decreases and goes to zero empirically, and this is consistently the
case across all of our experiments, with additional results provided in Appendix B. Interestingly, the
iterations that correspond to the decrease in the balancing gap in Figure 4 corresponds to the case in
which σi(ΣL:1) < σ⋆,i and that the gap almost goes to zero before entering the EOS regime. To this
end, we use this insights to assume that strict balancing holds for both initializations in Equation (3).
This allows us to write the loss of the singular values into the form σi(ΣL:1(t)) = σLi (t), which
allows us to focus on the dynamics in the singular values.

3.3 RELATION TO DIAGONAL LINEAR NETWORKS

Due to singular vector stationarity and balancing, DLNs may appear equivalent to diagonal linear
networks at first glance. In this section, we characterize an explicit distinction between the two
networks by deriving the eigenvalues of diagonal linear networks from the Hessian at convergence
and explaining how they contribute to periodic oscillations in the EOS regime.
Theorem 3 (Subspace Oscillation for Diagonal Linear Networks). Consider an L-layer diagonal
linear network on the loss

L
(
{sℓ}Lℓ=1

)
:=

1

2
∥s1 ⊙ . . .⊙ sL − s⋆∥22, (5)

where s⋆ ∈ Rd be an r-sparse vector with ordered coordinates such that s⋆,1 > . . . > s⋆,d and

define Sp := Ls
2− 2

L
⋆,p and α′ :=

(
ln

(
2
√
2

ηLs
2− 2

L
⋆,1

)
· s

4
L
⋆,1

L2·2
2L−3

L

) 1
4

. For any p < r − 1 and α < α′,

suppose we run GD on Equation (5) with learning rate η = 2
K , where Sp ≥ K > Sp+1 with

1We exclude the case σi(ΣL:1) = σ⋆,i, as this occurs with probability 0 in the presence of oscillations in
the EOS regime.
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initialization sℓ = α1d for all ℓ ∈ [L − 1] and sL = 0d. Then, under strict balancing, the top-p
coordinates of sℓ oscillate within a 2-period fixed orbit around the minima in the form

sℓ,i(t) = ρi,j(t), ∀i < p, ∀ℓ ∈ [L],

where ρi,j(t) ∈ {ρi,1, ρi,2}, ρi,1 ∈
(
0, s

1/L
⋆,i

)
and ρi,2 ∈

(
s
1/L
⋆,i , (2s⋆,i)

1/L
)

are two real roots of

the polynomial h(ρ) = 0:

h(ρ) = ρL ·
1 +

(
1 + ηL(s⋆,i − ρL) · ρL−2

)2L−1

1 + (1 + ηL(s⋆,i − ρL) · ρL−2)
L−1

− s⋆,i.

Remarks. Similar to Theorem 1, each coordinate of the diagonal linear network undergoes pe-
riodic oscillations with an appropriately chosen learning rate. However, as shown in the proof of
Theorem 3, the main difference lies in the eigenvalues themselves – the number non-zero eigenval-
ues for diagonal linear networks are much smaller than those of the DLN. The set of eigenvalues
corresponding to the interaction with other singular values in Lemma 1 are missing for diagonal
linear networks. Therefore, the top two eigenvalues of the diagonal linear network are Ls2−

2
L

⋆,1 and

Ls
2− 2

L
⋆,2 , whereas the top two eigenvalues of the DLN are Ls2−

2
L

⋆,1 and
∑L−1
ℓ=0

(
s
1− 1

L− 1
L ℓ

⋆,1 · s
1
L ℓ
⋆,2

)2
.

Hence, the dynamics in the EOS regime between the two networks differ significantly (see Fig-
ure 5). The primary difference in the landscape arises from the zero off-diagonal elements of the
singular value diagonal matrix of the DLN which introduces additional curvature directions despite
singular vector invariance.

4 EXPERIMENTAL RESULTS

Section 4.1 presents experiments that corroborate our theory. Section 4.2 discusses (i) phenomena
in non-linear networks currently unexplained in the literature and how our theory can account for
them in deep linear networks and (ii) how landscape in DLNs behave at EOS compared to more
complicated non-convex landscapes.

4.1 SUBSPACE OSCILLATIONS IN DEEP NETWORKS

Firstly, we provide experimental results corroborating Theorem 1 and Theorem 3 to highlight their
differences. We let the target matrix be M⋆ ∈ R50×50 with rank 3, with dominant singular values
σ⋆ = 10, 9, 6. For the DLN, we consider a 3-layer network, with each layer as Wℓ ∈ R50×50

and use an initialization scale of α = 0.01. For the diagonal linear network, we consider a sim-
ilar setup, with initialization scale α = 0.01 and the top-3 elements of s⋆ ∈ R50 to be 10, 9, 6.
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Figure 6: Oscillation range as a
function of the learning rate.

In Figure 5, we present the behaviors of both end-to-end net-
works under different learning rate regimes. By Theorem 1
and Theorem 3, the largest eigenvalue λ1 is the same for both
networks, and thus both undergo oscillations in the largest
component when η > 2/λ1. However, the difference in the
loss landscape plays a role in oscillations for the second com-
ponent. When η > 2/λ2, where λ2 is the second largest eigen-
value of the DLN, the diagonal linear network does not ex-
perience oscillations in the second component, as its second
largest eigenvalue is much smaller. This highlights a distinc-
tion between the two networks and how the landscape changes
between them. In Figure 6, we present an experiment demon-
strating the relationship between the range of oscillations and
the learning rate by plotting the amplitude of the singular value
oscillations in the end-to-end network. We see that there exists
no oscillations when η < 2/λ1, but begins to occur at η > 2/λ1 with increasing amplitude.

4.2 SIMILARITIES AND DIFFERENCES BETWEEN LINEAR AND NONLINEAR NETS AT EOS

Mild Sharpening. “Mild” sharpening refers to the sharpness not rising to 2/η throughout learning,
and generally occurs in tasks with low complexity as discussed in Caveat 2 of (Cohen et al., 2021).
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Figure 5: Dynamics of the singular values of the end-to-end DLN (top) and diagonal lin-
ear network (bottom) trained using a learning rate η = 2/K. λ1 = Lσ

2−2/L
⋆,1 and λ2 =∑L−1

ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,1 · σ
1
L ℓ
⋆,2

)2
are the top two eigenvalues of the Hessian of the training loss at conver-

gence for the DLN. By Theorem 1, the DLN has corresponding oscillations for these two regimes,
while the diagonal linear network does not due to the difference in the curvature of the landscape.

We illustrate mild sharpening in Figure 9, where we plot sharpness in two settings: (i) regression
with simple images and (ii) classification with an MLP using a subset of the CIFAR-10 dataset.
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Figure 7: DLNs do not enter EOS
regime if Lσ2− 2

L
1 < 2/η.

For the regression task, we minimize the loss L(Θ) =
∥G(Θ)−yimage∥22, whereG(Θ) is a UNet parameterized by Θ,
and yimage denotes one of the images in Figure 9b. We observe
that when yimage is a smooth, low-frequency image, the sharp-
ness of the loss generally remains low. However, when yimage

has higher frequency content, the sharpness increases and en-
ters the EOS regime (Figure 9a). Similarly, for the classifica-
tion task, we train a 2-layer fully connected neural network on
N labeled training images from the CIFAR-10 dataset using
MSE loss and plot the sharpness in Figure 9c. The sharpness
links to N , the number of data points used for training. For
small N values, such as 100 or 200, the network learns only
a limited set of latent features, resulting in mild sharpening,
and it does not reach the EOS threshold. However, when N
exceeds 1000, the sharpness increases and reaches the EOS

threshold. The intrinsic dimension update in neural networks for such low complexity tasks is usu-
ally smaller (Li et al., 2018) which could cause the sharpness to be small. Similar observations can
also be seen in DLNs. In Figure 7, we show that the sharpness reaches Lσ2− 2

L
⋆,1 , where σ⋆,1 is the

singular value of the target matrix. Whenever Lσ2− 2
L

⋆,1 < 2/η, the network will not enter the EOS
regime. This can be viewed as low-complexity learning, as σ⋆,1 corresponds to the magnitude of
the strongest feature of the target matrix. Hence, when σ⋆,1 is not large enough, the sharpness will
not rise to 2/η. While these observations do not fully explain mild sharpening, our experiments
demonstrate that interpreting sharpness as a measure of complexity, combined with our findings
from DLNs, marks an important first step toward fully understanding this phenomenon.

Difference in Oscillation Behaviors. Here, we discuss the differences in oscillations that arise in
DLNs compared to catapults that occur in practical deep nonlinear networks. The main difference

9
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(a) Sharpness plots for training im-
age generator networks using SGD
with learning rate η = 2× 10−4.

(b) Target images (denoted as
yimage) with different frequencies
used for training.

(c) 2-layer FC network trained
with small number N of CIFAR-10
dataset with η = 10−2

Figure 9: Illustration of Caveat 2 by Cohen et al. (2021) on how mild sharpening occurs on simple
datasets and network. (a) Regression task showing the evolution of the sharpness when an UNet
(with fixed initialization) is trained to fit a single image shown in (b). (c) Evolution of the minimal
progressive sharpening on a classification task of a 2-layer MLP trained on a subset of CIFAR-10.

lies in the loss landscape—at convergence, the Hessian for DLNs is positive semi-definite, as shown
in Lemma 1, meaning there are only directions of positive curvature and flat directions (in the null
space of the Hessian). In this landscape, oscillations occur because the basin walls bounce off,
without direction of escape. However, in deep nonlinear networks, it has been frequently observed
that the Hessian at the minima has negative eigenvalues (Ghorbani et al., 2019; Sagun et al., 2016).
This enables an escape direction along the negative curvature, preventing sustained oscillations.

Figure 8: Left: Loss landscape via the Holder table func-
tion showing that non-convex functions with local min-
imas allows catapulting by escaping to other minima at
EOS. Right: DLNs have stable oscillations around the
minimum since there are no spurious local minima.

In Figure 8, we demonstrate these two
differences by visualizing the loss land-
scapes and the iterates throughout GD
marked in red. The Holder table func-
tion Figure 8 (left) exhibits numerous lo-
cal minima, causing the loss to exhibit
sharp “catapult” when a large learning
rate is used. In contrast, for DLNs
(shown in the right) the loss oscillates in
a periodic orbit around the minima since
there are no spurious local minima (Ge
et al., 2016). In Appendix B.1, we pro-
vide experimental details.

Lastly, Damian et al. (2023) studies
self-stabilization, where sharpness de-
creases below 2/η after initially ex-
ceeding 2/η. Their analysis on self-
stabilization requires certain assump-
tions such as ∇L(θ) · u(θ) = 0 and ∇S(θ) lies in the null space of the Hessian, where S(θ)
and u(θ) denotes the maximum eigenvalue and its corresponding eigenvector respectively. These
assumptions do not hold exactly in DLNs. Rather, the sharpness oscillates about 2/η as shown in
Figure 2 as the condition for stable oscillation holds along each eigenvector of the Hessian.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we presented a fine-grained analysis of the learning dynamics of deep matrix factor-
ization with the aim of understanding unexplained phenomena in deep nonlinear networks within
the EOS regime. Our analysis revealed that within EOS, DLNs exhibit periodic oscillations in small
subspaces, where the subspace dimension is exactly characterized by the learning rate. There are
two limitations to our work: we require (i) the dynamics converge to the singular vector station-
ary set, and (ii) strict balancing of the singular values. However, we provide thorough empirical
evidence validating the use of these assumptions, along with more results in Appendix B. For the
balancing assumption, we leave for future work on alleviating the assumption of strict balancing,
and rigorously show that this holds before entering the EOS regime.
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A DISCUSSION ON RELATED WORK

Implicit Bias of Edge of Stability. Edge of stability was first coined by Cohen et al. (2021), where
they showed that the Hessian of the training loss plateaus around 2/η when deep models were trained
using GD. However, Jastrzebski et al. (2020); Jastrzebski et al. (2018) previously demonstrated
that the step size influences the sharpness along the optimization trajectory. Due to the important
practical implications of the edge of stability, there has been an explosion of research dedicated to
understanding this phenomenon and its implicit regularization properties. Here, we survey a few
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of these works. Damian et al. (2023) explained edge of stability through a mechanism called “self-
stabilization”, where they showed that during the momentary divergence of the iterates along the
sharpest eigenvector direction of the Hessian, the iterates also move along the negative direction of
the gradient of the curvature, which leads to stabilizing the sharpness to 2/η. Agarwala et al. (2022)
proved that second-order regression models (the simplest class of models after the linearized NTK
model) demonstrate progressive sharpening of the NTK eigenvalue towards a slightly different value
than 2/η. Arora et al. (2022) mathematically analyzed the edge of stability, where they showed that
the GD updates evolve along some deterministic flow on the manifold of the minima. Lyu et al.
(2022) showed that the normalization layers had an important role in the edge of stability – they
showed that these layers encouraged GD to reduce the sharpness of the loss surface and enter the
EOS regime. Ahn et al. (2024) established the phenomenon in two-layer networks and find phase
transitions for step-sizes in which networks fail to learn “threshold” neurons. Wang et al. (2022) also
analyze a two-layer network, but provide a theoretical proof for the change in sharpness across four
different phases. Even et al. (2024) analyzed the edge of stability in diagonal linear networks and
found that oscillations occur on the sparse support of the vectors. Lastly, Wu et al. (2024) analyzed
the convergence at the edge of stability for constant step size GD for logistic regression on linearly
separable data.

Edge of Stability in Toy Functions. To analyze the edge of stability in slightly simpler settings,
many works have constructed scalar functions to analyze the prevalence of this phenomenon. For
example, Chen & Bruna (2023) studied a certain class of scalar functions and identified conditions in
which the function enters the edge of stability through a two-step convergence analysis. Wang et al.
(2023) showed that the edge of stability occurs in specific scalar functions, which satisfies certain
regularity conditions and developed a global convergence theory for a family of non-convex func-
tions without globally Lipschitz continuous gradients. Zhu et al. (2023b) analyzed local oscillatory
behaviors for 4-layer scalar networks with balanced initialization. Song & Yun (2023); Kalra et al.
(2023) provide analyses of learning dynamics at the EOS in simplified settings such as two-layer
networks. Zhu et al. (2022); Chen et al. (2023) study GD dynamics for quadratic models in large
learning rate regimes. Overall, all of these works showed that the necessary condition for the edge
of stability to occur is that the second derivative of the loss function is non-zero, even though they
assumed simple scalar functions. Our work takes one step further to analyze the prevalence of the
edge of stability in DLNs. Although our loss simplifies to a loss in terms of the singular values, they
precisely characterize the dynamics of the DLNs for the deep matrix factorization problem.

Deep Linear Networks. Over the past decade, many existing works have analyzed the learning
dynamics of DLNs as a surrogate for deep nonlinear networks to study the effects of depth and
implicit regularization (Saxe et al., 2014; Arora et al., 2018; 2019; Zhang et al., 2024a). Generally,
these works focus on unveiling the dynamics of a phenomenon called “incremental learning”, where
small initialization scales induce a greedy singular value learning approach (Min Kwon et al., 2024;
Gissin et al., 2020; Saxe et al., 2014), analyzing the learning dynamics via gradient flow (Saxe
et al., 2014; Chou et al., 2024a; Arora et al., 2019), or showing that the DLN is biased towards
low-rank solution (Yaras et al., 2024; Arora et al., 2019; Min Kwon et al., 2024), amongst others.
However, these works do not consider the occurence of the edge of stability in such networks. On
the other hand, while works such as those by Yaras et al. (2024) and Min Kwon et al. (2024) have
similar observations in that the weight updates occur within an invariant subspace as shown by
Proposition 2, they do not analyze the edge of stability regime.

B ADDITIONAL RESULTS

B.1 EXPERIMENTAL DETAILS

In this section, we provide additional details regarding the experiments used to generate the figures
in the main text. For Figure 1, we consider a rank-3 target matrix M⋆ ∈ R5×5 with ordered singular
values 10, 6, 3. We use a 3-layer DLN to fit the target matrix. Since σ⋆,1 = 10, the network enters
the EOS regime at

η =
2

Lσ
2−2/L
⋆,1

= 0.0309.
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Oscillation along Y-axis: 2/λ2 > η > 2/λ1

Oscillation along both X and Y-axis: η > 2/λ2

Loss Landscape Sharpness Oscillatory Components

Figure 10: Demonstration of the EOS dynamics of a 2-dimensional depth-4 scalar network as shown
in Equation (6). X,Y axes are the eigenvectors of the Hessian with eigenvalues λ1 and λ2 respec-
tively. Top: when η > 2/λ1, the X component remains fixed, while the Y component oscillates
with a periodicity of 2. Bottom: for η > 2/λ2, the iterates oscillation in both directions.

We show that there exists a two-period orbit after 0.0309/2 = 0.0154, as we do not have a scaling
of 1/2 in the objective function for the code used to generate the figures.

In Figure 8 and 10, we compared the landscape of DLNs with that of a more complicated non-convex
function such as the Holder table function. To mimic the DLN, we considered the loss function

z = L(x, y) = (x4 − 0.8)2 + (y4 − 1)2, (6)

which corresponds for a 4-layer network. Here the eigenvector of the Hessian at the global minima
coincides with the x, y-axis. We calculate the eigenvalues λ1 and λ2 at the minimum (0.80.25, 1)
and plot the dynamics of the iterate for step size range 2

λ2
> η > 2

λ1
and η > 2

λ2
. When 2

λ2
>

η > 2
λ1

the x-coordinate stays fixed at the minima 0.80.25 and the y-coordinate oscillates around its
minimum at y = 1. This is evident in the landscape figure. Similarly, when η > 2

λ2
, oscillations

occur in both the x and y direction. The loss landscape z = L(x, y) does not have spurious local
minima, so sustained oscillations take place in the loss basin.

For the non-convex landscape as shown in Figure 8 and 11, we consider the Holder table function:

f(x, y) = −

∣∣∣∣∣sin(x) cos(y) exp
(
1−

√
x2 + y2

π

)∣∣∣∣∣ .
By observation, we initialize near a sharp minima and run GD with an increasing learning rate step
size as shown in the lefthand side of Figure 11. When the learning rate is fixed, we observe that
oscillations take place inside the local valley, but when learning rate is increased, it jumps out of the
local valley to find a flatter basin. Similar to the observations by Cohen et al. (2021), the sharpness
of the GD iterates are “regulated” by the threshold 2/η, as it seems to closely follow this value as
shown in Figure 11.
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Figure 11: EOS dynamics at various step learning rates from the Holder table function. Left: plot of
the learning rate steps and sharpness, showing that sharpness follows the EOS limit 2/η. Right: Plot
showing that the iterates catapult out of a local basin when the learning rate is increased and jumps
out to a surface where the sharpness is about 2/η.

Overall, these examples aim to highlight the difference in linear and complex loss landscapes. The
former consists of only saddles and global minima, and hence (stably) oscillate about the global
minimum. However, in more complicated non-convex landscapes, sharpness regularization due to
large learning rates enable catapulting to flatter loss basins, where sharpness is smaller than 2/η.

B.2 INITIALIZATION OUTSIDE SINGULAR VECTOR INVARIANT SET

In this section, we present an initialization example that is outside the Singular vector stationary set.
We consider the following initialization:

WL(0) = 0, Wℓ(0) = αPℓ, ∀ℓ ∈ [L− 1], (7)

where Pℓ ∈ Rd×d is an orthogonal matrix. Note that here for ℓ > 1, the singular vectors do not align
and lies outside the SVS set we defined in Proposition 2. We consider the deep matrix factorization
problem with a target matrix M⋆ ∈ Rd×d, where d = 100, r = 5, and α = 0.01. We empirically
obtain that the decomposition after convergence admits the form:

WL(t) = U⋆

[
ΣL(t) 0
0 0

] [( 1∏
i=L−1

Pi

)
V⋆

]⊤
, (8)

Wℓ(t) =

[(
1∏
i=ℓ

Pi

)
V⋆

] [
Σℓ(t) 0
0 αId−r

] [( 1∏
i=ℓ−1

Pi

)
V⋆

]⊤
, ∀ℓ ∈ [2, L− 1], (9)

W1(t) = P1V
⋆

[
Σ1(t) 0
0 αId−r

]
V⋆⊤, (10)

where WL(0) = 0 and Wℓ(0) = αPl, ∀ℓ ∈ [L− 1]. The decomposition after convergence lies in
the SVS set as the singular vectors now align with each other. This demonstrates an example where
even when the initialization is made outside the SVS set, GD aligns the singular vectors such that
after certain iterations it lies in the SVS set.

B.3 BALANCING OF SINGULAR VALUES

In this section, we present additional experimental results on Lemma 2 and how close the iterates
become for different initialization scales. To this end, we consider the same setup from the previous
section, where we have a target matrix M⋆ ∈ Rd×d, where d = 100, r = 5, and varying initializa-
tion α. In Figure 13, we observe that for larger values of α, the balancing quickly occurs, whereas
for smaller values of α, the balancing is almost immediate. This is to also highlight that our bound
on α in Lemma 2 may be an artifact of our analysis, and can choose larger values of α in practice.
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Left Singular Vectors Right Singular Vectors

Figure 12: Empirical verification of the decomposition for initialization with orthogonal matrices
(lying outside SVS set) in that after some GD iterations, the singular vectors of the intermediate
matrices align to lie within SVS set, displaying singular vector invariance.

α = 0.01 α = 0.10 α = 0.30

Figure 13: Observing the balancedness between the singular value initialized to 0 and a singular
value initialized to α. The scattered points are successive GD iterations (going left to right). The
initial gap between the two values is larger for a larger α, but quickly gets closer over more GD
iterations.

B.4 ADDITIONAL EXPERIMENTS FOR BALANCING, SINGULAR VECTOR INVARIANCE, AND
THEORY

Our theory relied on two tools and assumptions: balancing of singular values and stationarity of the
singular vectors. In this section, we investigate how the dynamics at EOS are affected if these two
assumptions do not hold.

Balancing. By Lemma 2, recall that balancing only holds as long as α chosen below a certain
threshold. To this end, we consider the dynamics of a 3-layer DLN to fit a target matrix M⋆ ∈
R10×10 of rank-3 with ordered singular values 10, 8, 6. We use a learning rate of η = 0.0166, which
corresponds to oscillations in the top-2 singular values. In Figure 14, we show the dynamics of
when the initialization scale is α = 0.01 and α = 0.5, where balancing holds theoretically for the
former but not for the latter. Clearly, we observe that balancing does not hold for α = 0.5. However,
examining the middle plots reveals that the oscillations in the singular values still have the same
amplitude in both cases and for both singular values. This suggests that balancing is merely a tool
for analysis, as the oscillations of interest remain prevalent in both scenarios.

Singular Vector Stationarity. Throughout this paper, we considered two initializations in Equa-
tion (3), where balancing holds immediately and one where balancing holds for a sufficiently small
initialization scale. In this section, we investigate different initializations with aim to observe (i) if
they do not converge to the SVS set and (ii) how they affect the oscillations if they do not belong to
the SVS set. To this end, we consider the following:

WL(0) = 0, Wℓ(0) = αId, ∀ℓ ∈ [L− 1], (Original)
WL(0) = 0, Wℓ(0) = αPℓ, ∀ℓ ∈ [L− 1], (Orthogonal)
WL(0) = 0, Wℓ(0) = αHℓ, ∀ℓ ∈ [L− 1], (Random)
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Figure 14: Top: EOS dynamics of a 3-layer DLN with initialization scale α = 0.01, where balancing
theoretically holds. Bottom: EOS dynamics of the DLN with initialization scale α = 0.5. While the
balancing does not hold for α = 0.5, the oscillations in the singular values are still prevalent, with
the same amplitude.

where Pℓ is an orthogonal matrix and Hℓ is a random matrix with Gaussian entries. For all of these
initialization schemes, we consider the same setup as in the balancing case, with an initialization
scale of α = 0.01. To observe if singular vector stationarity holds, we consider the subspace distance
as follows:

Subspace Distance = ∥U⊤
ℓ−1,rVℓ,r − Ir∥F, (11)

where Uℓ,r and Vℓ,r are the top-r left and right singular vectors of layer Wℓ, respectively. Since
Proposition 1 implies that the intermediate singular vectors cancel, the initialization converges to
the SVS set if the subspace distance goes to zero. In Figure 15, we plot the dynamics for all of the
initializations. Generally, we observe that the subspace distance for all cases go to zero, validating
the use of the SVS set for analysis purposes.

Additional Results. In this section, we provide more experimental results to corroborate our the-
ory. Recall that in Lemma 1, we proved that the learning rate needed to enter the EOS is a function
of the depth, and that deeper networks can enter EOS using a smaller learning rate. To verify this
claim, we provide an additional experiment where the target matrix is M⋆ ∈ R5×5 with the top
singular value set to σ⋆,1 = 0.5. We use an initialization scale of α = 0.01. In Figure 16, we can
clearly see that shallower networks need a larger learning rate, and vice versa to enter EOS. Here,
black refers to stable learning and white refers to regions in which oscillations occur (EOS regime).

B.5 PERIODIC AND FREE OSCILLATIONS

In this section, we present additional experiments on oscillation and catapults in both deep linear and
nonlinear networks to supplement the results in the main paper. First, we consider a 3-layer MLP
without bias terms for the weights, with each hidden layer consisting of 1000 units. The network is
trained using MSE loss with a learning rate of η = 4, along with random weights scaled by α = 0.01
and full-batch gradient descent on a 5K subset of the MNIST dataset, following Cohen et al. (2021).
The motivation for omitting bias terms comes from the findings of Zhang et al. (2024b), where
they provably show that a ReLU network without bias terms behaves similarly to a linear network.
With this in mind, we aimed to investigate how oscillations manifest in comparison to deep linear
networks (DLNs). In Figure 17, we plot the training loss, top-5 singular values, and sharpness
throughout training. Interestingly, despite the non-convexity of the loss landscape, the oscillations
appear to be almost periodic across all three plots. It would be of great interest to theoretically study
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Figure 15: EOS dynamics of a 3-layer DLN for different initializations where it all converges to
the SVS set. The subspace distance is defined in Equation (11). Top: Dynamics with the original
identity initialization. Middle: Dynamics with orthogonal initialzation. Bottom: Dynamics with
random initialization.
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Figure 16: Demonstrating that deeper networks requires a smaller learning rate to enter the EOS
regime for DLNs, as implied by Lemma 2, for a target matrix with top singular value σ⋆,1 = 0.5
and initialization α = 0.01. Black refers to stable learning and white refers to regions in which
oscillations in the loss and singular values occur. The EOS limit exactly matches η = 2

Lσ
2− 2

L
⋆,1.

the behavior of EOS for this network architecture and determine whether our analyses extend to this
case as well.

Next, we consider the DLN setting to corroborate our result from Theorem 1. We consider modeling
rank-3 target matrix with singular values σ⋆,i = {10, 9, 8} with a 3-layer DLN with initialization

scale α = 0.1. By computing the sharpness under these settings, notice that 2/λ1 = Lσ
2− 2

L
⋆,1 ≈

0.01547 and 2/λ2 ≈ 0.01657. In Figure 18, we use learning rates near these values, and plot the
oscillations in the singular values. Here, we can see that the oscillations follow exactly our theory.

Lastly, we provide additional experiments demonstrating stronger oscillation in feature directions
as measured by the singular values. To this end, we consider a 4-layer MLP with ReLU activations
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Figure 17: Plot of the training loss, singular values, and sharpness for an MLP network with no bias.
Similar to the DLN case, there are oscillations in each of the plots throughout iterations.

with hidden layer size in each unit of 200 for classification on a subsampled 20K set on MNIST and
CIFAR-10. In Figure 19, we show that the oscillations in the training loss are artifacts of jumps only
in the top singular values, which is also what we observe in the DLN setting.

B.6 INVESTIGATION OF OSCILLATIONS IN LOW-RANK ADAPTORS

Previously, we investigated the differences in oscillations (i.e., oscillations versus catapults) in deep
linear and nonlinear networks, and how changes in the landscape present one behavior or the other.
Low-rank adaptation (LoRA) (Hu et al., 2022) has arguably become one of the most popular methods
for fine-tuning deep neural networks. By viewing the adaptations as individual low-rank matrix
factorization problems, then this formulation closely aligns with our theoretical setup with a depth
of 2. Here we pose the question (i) does oscillations may appear in such a setup and (ii) what these
oscillations may imply in terms of generalization.

Briefly, the main idea behind LoRA is that rather than training from scratch, we can update two
low-rank factor matrices to “append” onto an existing weight matrix. That is, give a pre-trained
weight matrix W0 ∈ Rd1×d2 , LoRA involves updating two low-rank factors commonly referred to
as “adaptors”:

W⋆︸︷︷︸
new weight

= W0︸︷︷︸
pre-trained weight

+AB⊤︸ ︷︷ ︸
adaptors

.

For a sufficiently small rank r, upon training only A ∈ Rd1×r and B ∈ Rd2×r, W⋆ ∈ Rd1×d2 is
used for inference.
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Figure 20: Catapults in the training
loss for different ranks for LoRA.

For the experimental settings, we follow the setup
used by Yaras et al. (2024) and consider a pre-trained
BERT (Wang et al., 2019) base model and apply adaptation
on all attention and feedforward weights in the transformer,
resulting in 72 adapted layers in total. For initialization, we
use random weights and scale them using an initialization
scale of α = 10−3 for the adaptors and randomly sample
512 examples from the STS-B (Wang et al., 2019) dataset
for fine-tuning. We choose a batch size of 64 with a maxi-
mum sequence length of 128 tokens. First, we experiment
how large the rank of the adaptors must be to drive the en-
tire network to EOS. Using a learning rate of η = 10−4,
Figure 20 shows oscillatory behavior across all ranks. How-
ever, this behavior may also be an artifact of the stochasticity
induced by updating with only a batch of samples.

In Figure 21, we present the training loss and Pearson corre-
lation for different learning rates using rank r = 8. When η = 10−4, the training loss catapults from
a magnitude of 7 to 4 whereas other learning rates cannot decrease the loss with such a magnitude.
Consequently, η = 10−4 achieves the best Pearson correlation coefficient. This suggests that learn-
ing rate plays an important role when the optimization is restricted to a small subspace as used in
LoRA. We leave this for future work a careful study of this observation, aiming to accurately select
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the learning rate to maximize the efficiency of LoRA.
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Train Loss (η = 0.015) Layer 1 σi (η = 0.015) Layer 2 σi (η = 0.015) Layer 3 σi (η = 0.015)

Train Loss (η = 0.016) Layer 1 σi (η = 0.0154) Layer 2 σi (η = 0.0154) Layer 3 σi (η = 0.0154)

Train Loss (η = 0.0165) Layer 1 σi (η = 0.0165) Layer 2 σi (η = 0.0165) Layer 3 σi (η = 0.0165)

Train Loss (η = 0.017) Layer 1 σi (η = 0.017) Layer 2 σi (η = 0.017) Layer 3 σi (η = 0.017)

Train Loss (η = 0.0178) Layer 1 σi (η = 0.0178) Layer 2 σi (η = 0.0178) Layer 3 σi (η = 0.0178)

Train Loss (η = 0.02) Layer 1 σi (η = 0.02) Layer 2 σi (η = 0.02) Layer 3 σi (η = 0.02)

Train Loss (η = 0.022) Layer 1 σi (η = 0.022) Layer 2 σi (η = 0.022) Layer 3 σi (η = 0.022)

Figure 18: Depiction of the edge of stability progressively where oscillation is occurring on each
singular value depending on the learning rate η. When η = 2/Lσ

2− 2
L

⋆,1 ≈ 0.0154, oscillation occur

on the first singular value. When η = 2/
∑L−1
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,1 · σ
1
L ℓ
⋆,2

)2
≈ 0.0165, oscillation occur

on second singular value and so on.
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MNIST Dataset with 4-Layer MLP CIFAR-10 Dataset with 4-Layer MLP

Figure 19: Prevalence of oscillatory behaviors in top subspaces in 4-layer networks with ReLU
activations on two different datasets.
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Figure 21: Illustration of different behaviors in the training loss for various learning rates with a
fixed rank of r = 8 for fine-tuning BERT using LoRA. These plots indicate that larger learning rates
lead to higher Pearson correlations. When η = 10−4, the training loss catapults from a magnitude
of 7 to 4 whereas other learning rates do not decrease the loss with such large magnitude.
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C DEFERRED PROOFS

C.1 DEFERRED PROOFS FOR OSCILLATIONS

Proposition 1 (Singular Vector Stationary Set). Consider the deep matrix factorization loss in Equa-
tion (1). Let M⋆ = U⋆Σ⋆V

⊤
⋆ and Wℓ(t) = Uℓ(t)Σℓ(t)V

⊤
ℓ (t) denote the compact SVD for

the target matrix and the ℓ-th layer weight matrix at time t, respectively. For any time t ≥ 0, if
U̇ℓ(t) = V̇ℓ(t) = 0 for all ℓ ∈ [L], then the singular vector stationary points for each weight
matrix are given by

SVS(f(Θ)) =


(UL,VL) = (U⋆,QL),

(Uℓ,Vℓ) = (Qℓ+1,Qℓ), ∀ℓ ∈ [2, L− 1],

(U1,V1) = (Q2,V⋆),

where {Qℓ}Lℓ=2 can be any orthogonal matrices.

Proof. Let us consider the dynamics of Wℓ(t) in terms of its SVD with respect to time:

Ẇℓ(t) = U̇ℓ(t)Σℓ(t)V
⊤
ℓ (t) +Uℓ(t)Σ̇ℓ(t)V

⊤
ℓ (t) +Uℓ(t)Σℓ(t)V̇

⊤
ℓ (t). (12)

By left multiplying by U⊤
ℓ (t) and right multiplying by Vℓ(t), we have

U⊤
ℓ (t)Ẇℓ(t)Vℓ(t) = U⊤

ℓ (t)U̇ℓ(t)Σℓ(t) + Σ̇ℓ(t) +Σℓ(t)V̇
⊤
ℓ (t)Vℓ(t), (13)

where we used the fact that Uℓ(t) and Vℓ(t) have orthonormal columns. Now, note that we also
have

U⊤
ℓ (t)Uℓ(t) = Ir =⇒ U̇⊤

ℓ (t)Uℓ(t) +U⊤
ℓ (t)U̇ℓ(t) = 0,

which also holds for Vℓ(t). This implies that U̇⊤
ℓ (t)Uℓ(t) is a skew-symmetric matrix, and hence

have zero diagonals. Since Σℓ(t) is diagonal, U⊤
ℓ (t)U̇ℓ(t)Σℓ(t) and Σℓ(t)V̇

⊤
ℓ (t)Vℓ(t) have zero

diagonals as well. On the other hand, since Σ̇ℓ(t) is a diagonal matrix, we can write

Îr ⊙
(
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)

)
= U⊤

ℓ (t)U̇ℓ(t)Σℓ(t) +Σℓ(t)V̇
⊤
ℓ (t)Vℓ(t), (14)

where ⊙ stands for the Hadamard product and Îr is a square matrix holding zeros on its diago-
nal and ones elsewhere. Taking transpose of Equation (14), while recalling that U⊤

ℓ (t)U̇ℓ(t) and
V⊤
ℓ (t)V̇ℓ(t) are skew-symmetric, we have

Îr ⊙
(
V⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

)
= −Σℓ(t)U

⊤
ℓ (t)U̇ℓ(t)− V̇⊤

ℓ (t)Vℓ(t)Σℓ(t). (15)

Then, by right multiplying Equation (14) by Σℓ(t), left-multiply Equation (15) by Σℓ(t), and by
adding the two terms, we get

Îr ⊙
(
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V

⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

)
= U⊤

ℓ (t)U̇ℓ(t)Σ
2
ℓ(t)−Σ2

ℓ(t)V̇
⊤
ℓ (t)Vℓ(t).

Since we assume that the singular values of M⋆ are distinct, the top-r diagonal elements of Σ2
ℓ(t)

are also distinct (i.e., Σ2
r(t) ̸= Σ2

r′(t) for r ̸= r′). This implies that

U⊤
ℓ (t)U̇ℓ(t) = H(t)⊙

[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V

⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

]
,

where the matrix H(t) ∈ Rd×d is defined by:

Hr,r′(t) :=

{(
Σ2
r′(t)− Σ2

r(t)
)−1

, r ̸= r′,

0, r = r′.
(16)
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Then, multiplying from the left by Uℓ(t) yields

PUℓ(t)U̇ℓ(t) = Uℓ(t)
(
H(t)⊙

[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V

⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

])
, (17)

with PUℓ(t) := Uℓ(t)U
⊤
ℓ (t) being the projection onto the subspace spanned by the (orthonor-

mal) columns of Uℓ(t). Denote by PUℓ⊥(t) the projection onto the orthogonal complement ( i.e.,
PUℓ⊥(t) := Ir −Uℓ(t)U

⊤
ℓ (t)). Apply PUℓ⊥(t) to both sides of Equation (12):

PUℓ⊥(t)U̇ℓ(t) = PUℓ⊥(t)U̇ℓ(t)Σℓ(t)V
⊤
ℓ (t) +PUℓ⊥(t)Uℓ(t)Σ̇ℓ(t)V

⊤
ℓ (t) (18)

+PUℓ⊥(t)Uℓ(t)Σℓ(t)V̇
⊤
ℓ (t). (19)

Note that PUℓ⊥(t)Uℓ(t) = 0, and multiply from the right by Vℓ(t)Σ
−1
ℓ (t) (the latter is well-defined

since we have the compact SVD and the top-r elements are non-zero):

PUℓ⊥(t)U̇ℓ(t) = PUℓ⊥(t)Ẇℓ(t)Vℓ(t)Σ
−1
ℓ (t) = (Ir −Uℓ(t)U

⊤(t))Ẇ(t)Vℓ(t)Σ
−1
ℓ (t). (20)

Then by adding the two equations above, we obtain an expression for U̇(t):

U̇ℓ(t) = PUℓ(t)U̇ℓ(t) +PUℓ⊥(t)U̇ℓ(t)

= Uℓ(t)
(
H(t)⊙

[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)Σℓ(t) +Σℓ(t)V

⊤
ℓ (t)Ẇ

⊤
ℓ (t)Uℓ(t)

])
+ (Ir −Uℓ(t)U

⊤
ℓ (t))Ẇ(t)Vℓ(t)Σ

−1
ℓ (t). (21)

We can similarly derive the dynamics for V̇ℓ(t) and Σ̇ℓ(t):

V̇ℓ(t) = Vℓ(t)
(
H(t)⊙

[
Σℓ(t)U

⊤
ℓ (t)Ẇℓ(t)Vℓ(t) +V⊤

ℓ (t)Ẇℓ
⊤
(t)Uℓ(t)Σℓ(t)

])
(22)

+
(
Ir −Vℓ(t)V

⊤
ℓ (t)

)
Ẇℓ

⊤
(t)Uℓ(t)Σ

−1
ℓ (t), (23)

Σ̇ℓ(t) = Ir ⊙
[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)

]
.

Now, we will left multiply U̇ℓ(t) and V̇ℓ(t) with U⊤
ℓ (t) and V⊤

ℓ (t), respectively, to obtain

U⊤
ℓ (t)U̇ℓ(t) = −H(t)⊙

[
U⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t)Σℓ(t) +Σℓ(t)V
⊤
ℓ (t)∇Wℓ

f(Θ)Uℓ(t)
]
,

V⊤
ℓ (t)V̇ℓ(t) = −H(t)⊙

[
Σℓ(t)U

⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t) +V⊤
ℓ (t)∇Wℓ

f(Θ)Uℓ(t)Σℓ(t)
]
,

where we replaced Ẇℓ(t) := −∇Wℓ
f(Θ), as Ẇℓ(t) is the gradient of f(Θ) with respect to Wℓ

by definition. By rearranging and multiplying by Σℓ(t), we have

U⊤
ℓ (t)U̇ℓ(t)Σℓ(t)−Σℓ(t)V

T (t)V̇ℓ(t) = −Îr ⊙ [U⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t)]. (24)

Hence, when U̇ℓ(t) = 0 and V̇ℓ(t) = 0, it must be that the left-hand side is zero and so
U⊤
ℓ (t)∇Wℓ

f(Θ)Vℓ(t) is a diagonal matrix.

Now, notice that for the given loss function f(Θ), we have

−Ẇℓ(t) = ∇Wℓ
f(Θ(t)) = W⊤

L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤
ℓ−1:1(t).

Then, from Equation (24), when the singular vectors are stationary, we have

U⊤
ℓ (t)W

⊤
L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤

ℓ−1:1(t)Vℓ(t)

must be a diagonal matrix for all ℓ ∈ [L]. The only solution to the above should be (since the
intermediate singular vectors need to cancel to satisfy the diagonal condition), is the set

SVS(f(Θ)) =


(UL,VL) = (U⋆,QL),

(Uℓ,Vℓ) = (Qℓ+1,Qℓ), ∀ℓ ∈ [2, L− 1],

(U1,V1) = (Q2,V⋆),

where {Qℓ}Lℓ=2 are any set of orthogonal matrices. Then, notice that when the singular vectors are
stationary, the dynamics become isolated on the singular values:

Σ̇ℓ(t) = Ir ⊙
[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)

]
,

since
[
U⊤
ℓ (t)Ẇℓ(t)Vℓ(t)

]
is diagonal. This completes the proof.
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Theorem 1 (Rank-1 Oscillation). Let M⋆ = U⋆Σ⋆V
⊤
⋆ denote the SVD of the tar-

get matrix and let S := Lσ
2− 2

L
⋆,1 , α′ :=

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆,1

)
· σ

4
L
⋆,1

L2·2
2L−3

L

) 1
4

, and K ′ :=

max

{∑L−1
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,1 · σ
1
L ℓ
⋆,2

)2
, S
2
√
2

}
. If we run GD on the deep matrix factorization loss with

initialization scale α < α′ and learning rate η = 2
K , where K ′ < K < S, then under strict

balancing, each weight matrix Wℓ ∈ Rd×d oscillates around the minima in a 2-period fixed orbit
(i ∈ {1, 2}) as follows:

WL(t) = ρi(t) · u⋆,1v⊤
⋆,1︸ ︷︷ ︸

oscillation subspace

+

r∑
j=2

σ⋆,iu⋆,jv
⊤
⋆,j︸ ︷︷ ︸

stationary subspace

, i = 1, 2,

Wℓ(t) = ρi(t) · v⋆,1v⊤
⋆,1︸ ︷︷ ︸

oscillation subspace

+

r∑
j=2

σ⋆,iv⋆,jv
⊤
⋆,j︸ ︷︷ ︸

stationary subspace

, i = 1, 2, ∀ℓ ∈ [L− 1],

where ρi(t) ∈ {ρ1, ρ2} and ρ1 ∈
(
0, σ

1/L
⋆,1

)
and ρ2 ∈

(
σ
1/L
⋆,1 , (2σ⋆,1)

1/L
)

are the two real roots of

the polynomial g(ρ) = 0, where

g(ρ) = ρL ·
1 +

(
1 + ηL(σ⋆,1 − ρL) · ρL−2

)2L−1

1 + (1 + ηL(σ⋆,1 − ρL) · ρL−2)
L−1

− σ⋆,1.

Proof. For ease of exposition, let us denote the first singular value as σ1 := σℓ,1. Under balancing,
consider the two-step GD update on the first singular value:

σ1(t+ 1) = σ1(t) + ηL ·
(
σ⋆,1 − σL1 (t)

)
· σL−1

1 (t)

σ1(t) = σ1(t+ 2) = σ1(t+ 1) + ηL ·
(
σ⋆,1 − σL1 (t+ 1)

)
· σL−1

1 (t+ 1). (By 2-period orbit)

Define z :=
(
1 + ηL ·

(
σ⋆,1 − σL1 (t)

)
· σL−2

1 (t)
)

and by plugging in σ1(t+ 1) for σ1(t), we have

σ1(t) = σ1(t)z + ηL ·
(
σ⋆,1 − σL1 (t)z

L
)
· σL−1

1 (t)zL−1

=⇒ 1 = z + ηL ·
(
σ⋆,1 − σL1 (t)z

L
)
· σL−2

1 (t)zL−1

=⇒ 1 =
(
1 + ηL ·

(
σ⋆,1 − σL1 (t)

)
· σL−2

1 (t)
)
+ ηL ·

(
σ⋆,1 − σL1 (t)z

L
)
· σL−2

1 (t)zL−1

=⇒ 0 =
(
σ⋆,1 − σL1 (t)

)
+
(
σ⋆,1 − σL1 (t)z

L
)
· zL−1

Simplifying this expression further, we have

0 = σ⋆,1 − σL1 (t) + σ⋆,1z
L−1 − σL1 (t)z

2L−1

=⇒ σL1 (t) + σL1 (t)z
2L−1 = σ⋆,1 + σ⋆,1z

L−1

=⇒ σL1 (t) ·
(
1 + z2L−1

)
= σ⋆,1 ·

(
1 + zL−1

)
=⇒ σL1 (t)

(
1 + z2L−1

)
(1 + zL−1)

= σ⋆,1,

and by letting ρ := σ1(t), we obtain the polynomial

σ⋆,1 = ρL
1 + z2L−1

1 + zL−1
, where z :=

(
1 + ηL(σ⋆,1 − ρL) · ρL−2

)
.

Next, we show the existence of the roots within the ranges for ρ1 and ρ2. First, consider ρ1 ∈(
0, σ

1/L
⋆,1

)
. We will show that for two values within this range, there is a sign change for all L ≥ 2.

More specifically, we show that there exists ρ ∈
(
0, σ

1/L
⋆,1

)
such that

ρL
1 + z2L−1

1 + zL−1
− σ⋆,1 > 0 and ρL

1 + z2L−1

1 + zL−1
− σ⋆,1 < 0.
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For the positive case, consider ρ = ( 12σ⋆,1)
1/L. We need to show that

1 + z2L−1

1 + zL−1
=

1 +

(
1 + ηL ·

(σ⋆,1

2

) σ1− 2
L

⋆,1

21−
2
L

)2L−1

1 +

(
1 + ηL ·

(σ⋆,1

2

) σ1− 2
L

⋆,1

21−
2
L

)L−1
> 2.

To do this, we will plug in the smallest possible value of η = 2

Lσ
2− 2

L
⋆,1

to show that the fraction is still

greater than 2, which gives us

1 +
(
1 + 1

21−
2
L

)2L−1

1 +
(
1 + 1

21−
2
L

)L−1
, (25)

which is an increasing function of L for all L ≥ 2 and so Equation (25) must be greater than 2. For
the negative case, we can simply consider ρ = 0. Hence, since the polynomial is continuous, by the
Intermediate Value Theorem (IVT), there must exist a root within the range ρ ∈

(
0, σ

1/L
⋆,1

)
.

Next, consider the range ρ2 ∈
(
σ
1/L
⋆,1 , (2σ⋆,1)

1/L
)

. Similarly, we will show sign changes for two

values in ρ2. For the positive case, consider ρ =
(
3
2σ⋆,1

)1/L
. For η, we can plug in the small-

est possible value within the range to show that this value of ρ still provides a positive quantity.
Specifically, we need to show that

1 + z2L−1

1 + zL−1
− σ⋆,1 >

2

3
=⇒

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)2L−1

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)L−1
>

2

3
.

We can simplify the fraction as follows:

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)2L−1

1 +

(
1 + 2

σ
2− 2

L
⋆,1

· (σ⋆,1 − 3
2σ⋆,1) ·

(
3
2σ⋆,1

)1− 2
L

)L−1
=

1 +
(
1− ( 32 )

1− 2
L

)2L−1

1 +
(
1− ( 32 )

1− 2
L

)L−1
.

Then, since we are subtracting by ( 32 )
1− 2

L , we can plug in its largest value for L ≥ 2, which is 3/2.
This gives us

1 + (−0.5)
2L−1

1 + (−0.5)
L−1

>
2

3
,

as for odd values of L, the function increases to 1 starting from L = 2, and decreases to 1 for even
L. To check negativity, let us define

h(ρ) :=
f(ρ)

g(ρ)
:=

ρL
(
1 + z2L−1

)
1 + zL−1

.
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We will show that h′
(
σ
1/L
⋆,1

)
< 0:

h′
(
σ
1/L
⋆,1

)
=
f ′
(
σ
1/L
⋆,1

)
g
(
σ
1/L
⋆,1

)
− f

(
σ
1/L
⋆,1

)
g′
(
σ
1/L
⋆,1

)
g2
(
σ
1/L
⋆,1

)
=
f ′
(
σ
1/L
⋆,1

)
− σ⋆,1g

′
(
σ
1/L
⋆,1

)
2

=
Lσ

1− 1
L

⋆,1 − σ⋆,1(2L− 1)
(
ηL2σ

2− 3
L

⋆,1

)
− σ⋆,1(L− 1)

(
ηL2σ

2− 3
L

⋆,1

)
2

=
Lσ

1− 1
L

⋆,1 − (3L− 2)
(
ηL2σ

3− 3
L

⋆,1

)
2

< 0,

as otherwise we need η ≤ σ
2/L−2
⋆,1

3L2−2L , which is out of the range of interest. Since h′(ρ) < 0, it follows
that there exists a δ > 0 such that h(ρ) > h(x) for all x such that ρ < x < ρ + δ. Lastly, since
h(ρ) − σ⋆,1 = 0 for ρ = σ

1/L
⋆,1 , it follows that h(ρ) − σ⋆,1 must be negative at ρ + δ. Similarly, by

IVT, there must exist a root within the range ρ2 ∈
(
σ
1/L
⋆,1 , (2σ⋆,1)

1/L
)

.

Then, by Proposition 2, notice that we can write the dynamics of the weight matrices as

WL(t) = σ⋆,1u⋆,1v
⊤
⋆,1 +

r∑
j=1

σi,⋆u⋆,jv
⊤
⋆,j ,

Wℓ(t) = σ⋆,1v⋆,1v
⊤
⋆,1 +

r∑
j=1

σi,⋆v⋆,jv
⊤
⋆,j , ∀ℓ ∈ [L− 1].

By the oscillations, we can replace σ⋆,1 with ρi for i = 1, 2. This completes the proof.

Lemma 1 (Hessian Eigenvalues at Convergence). Consider running GD on the deep matrix factor-
ization loss f(Θ) defined in Equation (1). Under strict balancing, for any stationary point Θ such
that ∇Θf(Θ) = 0, the set of all non-zero eigenvalues of the Hessian of the training loss are given
by

λΘ =
{
Lσ

2− 2
L

⋆,i , σ
2− 2

L
⋆,i

}r
i=1

,︸ ︷︷ ︸
self-interaction

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,i · σ
1
L ℓ
⋆,j

)2}r
i ̸=j︸ ︷︷ ︸

interaction with other singular values

⋃ {
L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,k · αℓ
)2}r

k=1︸ ︷︷ ︸
interaction with initialization

where σ⋆,i is the i-th singular value of the target matrix M⋆ ∈ Rd×d, α ∈ R is the initialization
scale, L is the depth of the network, and the second element of the set under “self-interaction” has
a multiplicity of d− r.

Proof. By Proposition 2, notice that we can re-write the loss in Equation (1) as
1

2
∥WL:1 −M⋆∥2F =

1

2
∥ΣL:1 −Σ⋆∥2F,

where ΣL:1 are the singular values of WL:1. We will first show that the eigenvalues of the Hessian
with respect to the weight matrices Wℓ are equivalent to those of the Hessian taken with respect to
its singular values Σℓ. To this end, consider the vectorized form of the loss:

f(Θ) :=
1

2
∥WL:1 −M⋆∥2F =

1

2
∥vec(WL:1)− vec(M⋆)∥22.

Then, each block of the Hessian ∇2
Θf(Θ) ∈ Rd2L×d2L with respect to the vectorized parameters is

given as [
∇2

Θf(Θ)
]
m,ℓ

= ∇vec(Wm)∇⊤
vec(Wℓ)

f(Θ) ∈ Rd
2×d2 .
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By the vectorization trick, each vectorized layer matrix has an SVD of the form vec(Wℓ) =
vec(UℓΣℓV

⊤
ℓ ) = (Vℓ ⊗Uℓ) · vec(Σℓ). Then, notice that we have

∇vec(Wℓ)f(Θ(t)) = (Vℓ ⊗Uℓ) · ∇vec(Σℓ)f(Θ(t)),

which gives us that each block of the Hessian is given by[
∇2

Θf(Θ)
]
m,ℓ

= ∇vec(Wm)∇⊤
vec(Wℓ)

f(Θ)

= (Vm ⊗Um) · ∇vec(Σm)∇⊤
vec(Σℓ)

f(Θ)︸ ︷︷ ︸
=:Hm,ℓ

·(Vℓ ⊗Uℓ)
⊤.

Then, since the Kronecker product of two orthogonal matrices is also an orthogonal matrix by
Lemma 9, we can write the overall Hessian matrix as

H̃ =


R1H1,1R1 R1H1,2R2 . . . R1H1,LRL

R2H2,1R1 R2H2,2R2 . . . R2H2,LRL

...
...

. . .
...

RLHL,1R1 RLHL,2R2 . . . RLHL,LRL

 ,
for orthogonal matrices {Rℓ}Lℓ=1. Then, by Lemma 8, the eigenvalues of H̃ are the same as those
of H, where H ∈ Rd2L×d2L is the Hessian matrix with respect to the vectorized Σℓ:

H =


H1,1 H1,2 . . . HL,1

H2,1 H2,2 . . . HL,2

...
...

. . .
...

H1,L H2,L . . . HL,L

 .
Now, we can consider the following vectorized loss:

f(Θ) =
1

2
∥ΣL:1 −Σ⋆∥2F =

1

2
∥vec (ΣL:1 −Σ⋆)∥22

=
1

2
∥
(
Σ⊤
ℓ−1:1 ⊗ΣL:ℓ+1

)︸ ︷︷ ︸
=:Aℓ

·vec(Σℓ)− vec(Σ⋆)∥22.

Then, the gradient with respect to vec(Σℓ) is given by

∇vec(Σℓ)f(Θ) = A⊤
ℓ (Aℓ · vec(Σℓ)− vec(Σ⋆)) .

Then, for m = ℓ, we have

Hℓ,ℓ = ∇2
vec(Σℓ)

f(Θ) = A⊤
ℓ Aℓ.

For m ̸= ℓ, we have

Hm,ℓ = ∇vec(Σm)∇vec(Σℓ)f(Θ) = ∇vec(Σm)

[
A⊤
ℓ (Aℓvec(Σℓ)− vec(M⋆))

]
= ∇vec(Σm)A

⊤
ℓ · (Aℓvec(Σℓ)− vec(M⋆))︸ ︷︷ ︸

=0 at convergence

+A⊤
ℓ · ∇vec(Σm)(Aℓvec(Σℓ)− vec(M⋆))

= A⊤
ℓ Am,

where we have used the product rule along with the fact that Aℓvec(Σℓ) = Amvec(Σm).

Overall, the Hessian at convergence for GD is given by

H =


A⊤

1 A1 A⊤
1 A2 . . . A⊤

1 AL

A⊤
2 A1 A⊤

2 A2 . . . A⊤
2 AL

...
...

. . .
...

A⊤
LA1 A⊤

LA2 . . . A⊤
LAL



31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Now, we can derive an explicit expression for each Am,ℓ by considering the implicit balancing effect
of GD in Lemma 2. Under balancing and Proposition 2, we have that at convergence,

ΣL:1 = Σ⋆ =⇒ Σℓ =

[
Σ

1/L
⋆,r 0
0 α · Id−r

]
, ∀ℓ ∈ [L− 1], and ΣL = Σ

1/L
⋆ .

Thus, we have

Hm,ℓ =

{
Σ

2(ℓ−1)
ℓ ⊗Σ

2(L−ℓ)
L

⋆ for m = ℓ,

Σm+ℓ−2
ℓ ⊗Σ2L−m−ℓ

⋆ for m ̸= ℓ.

Now, we are left with computing the eigenvalues of H ∈ Rd2L×d2L. To do this, let us block
diagonalize H into H = PCP⊤, where P is a permutation matrix and

C =

C1

. . .
Cd2

 ∈ Rd
2L×d2L,

where each (i, j)-th entry of Ck ∈ RL×L is the k-th diagonal element of Hi,j . Since C and H
are similar matrices, they have the same eigenvalues. Then, since C is a block diagonal matrix, its
eigenvalues (and hence the eigenvalues of H) are the union of each of the eigenvalues of its blocks.

By observing the structure of Hm,ℓ, notice that each Ck is a rank-1 matrix. Hence, when considering
the top-r diagonal elements of Hm,ℓ corresponding to each Kronecker product to construct Ck, each
Ck can be written as an outer product uu⊤, where u ∈ RL is

u⊤ =
[
σ
1− 1

L
⋆,i σ0

⋆,j σ
1− 2

L
⋆,i σ

1
L
⋆,j σ

1− 3
L

⋆,i σ
2
L
⋆,j . . . σ0

⋆,iσ
1− 1

L
⋆,j

]⊤
. (26)

Then, the non-zero eigenvalue of this rank-1 matrix is simply ∥u∥22, which simplifies to

∥u∥22 =

L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,i · σ
1
L ℓ
⋆,j

)2
.

Next, we can consider the remaining d− r components of each Kronecker product of Hm,ℓ. Notice
that for m = ℓ = L, we have

HL,L =


σ

2(L−1)
L

⋆,1 · Id
. . .

σ
2(L−1)

L
⋆,r · Id

α2(L−1)Id−r ⊗ Id

 .

This amounts to a matrix Ck with a single element σ
2(L−1)

L
⋆,i and 0 elsewhere. This gives an eigen-

value σ
2(L−1)

L
⋆,i for all i ∈ [r], with multiplicity d− r.

Lastly, we can consider the diagonal components of Hm,ℓ that is a function of the initialization scale
α. For this case, each Ck can be written as an outer product vv⊤, where

v⊤ =
[
σ
1− 1

L
⋆,i α0 σ

1− 2
L

⋆,i α σ
1− 3

L
⋆,i α2 . . . σ0

⋆,iα
L−1

]⊤
. (27)

Similarly, the non-zero eigenvalue is simply ∥v∥22, which corresponds to

∥v∥22 =

L−1∑
ℓ=0

(
σ
1− 1

L− 1
L ℓ

⋆,k · αℓ
)2
.

This completes the proof.
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Lemma 2 (Balancing). Suppose we run GD on the deep matrix factorization loss in Equation (1)
with learning rate η < 2

√
2

Lσ
2− 2

L
⋆,1

, where σ⋆,1 is the first singular value of M⋆ ∈ Rd×d. Let σi,ℓ

denote the i-th singular value of the ℓ-th layer matrix. If the initialization scale α satisfies 0 < α <(
ln

(
2
√
2

ηLσ
2− 2

L
⋆,1

)
· σ

4
L
⋆,1

L2·2
2L−3

L

) 1
4

, we have |σ2
i,L(t+1)− σ2

i,ℓ(t+1)| < c|σ2
i,L(t)− σ2

i,ℓ(t)| for some

0 < c ≤ 1.

Proof. From Proposition 1, we can re-write the loss in terms of the singular values:

1

2
∥WL:1(t)−M⋆∥2F =

1

2

r∑
k=1

(σk(ΣL:1(t))− σ⋆,k)
2
=

r∑
k=1

1

2

(
L∏
ℓ=1

σℓ,k − σ⋆,k

)2

. (28)

We aim to prove that balancing occurs on each singular value scalar index k, and so we focus on the
scalar loss

1

2

(
L∏
ℓ=1

σℓ,k − σ⋆,k

)2

=:
1

2

(
L∏
ℓ=1

σℓ − σ⋆

)2

,

and omit the dependency on k for ease of exposition. Then, let us define the balancing dynamics

between σi and σj as b(t+1)
i,j :=

(
σ
(t+1)
i

)2
−
(
σ
(t+1)
j

)2
and π(t) :=

∏L
ℓ=1 σℓ(t) for the product of

singular values at iteration t. We can simplify the balancing dynamics as follows:

b
(t+1)
i,j =

(
σ
(t+1)
i

)2
−
(
σ
(t+1)
j

)2
=

(
σ
(t)
i − η

(
π(t) − σ⋆

) π(t)

σ
(t)
i

)2

−

(
σ
(t)
j − η

(
π(t) − σ⋆

) π(t)

σ
(t)
j

)2

=
(
σ
(t)
i

)2
−
(
σ
(t)
j

)2
+ η2

(
π(t) − σ⋆

)2 (π(t)
)2(

σ
(t)
i

)2 −
(
π(t)

)2(
σ
(t)
j

)2


=

((
σ
(t)
i

)2
−
(
σ
(t)
j

)2)1− η2(π(t) − σ⋆)
2

(
π(t)

)2(
σ
(t)
i

)2 (
σ
(t)
j

)2


= b
(t)
i,j

1− η2(π(t) − σ⋆)
2

(
π(t)

)2(
σ
(t)
i

)2 (
σ
(t)
j

)2
 .

Then, in order to show that
∣∣∣b(t+1)
i,j

∣∣∣ < c
∣∣∣b(t)i,j ∣∣∣, we need to prove that∣∣∣∣∣∣∣1− η2(π(t) − σ⋆)

2

(
π(t)

)2(
σ
(t)
i

)2 (
σ
(t)
j

)2
∣∣∣∣∣∣∣ < c,

for all iterations t and for some 0 < c ≤ 1. Now we introduce a definition called gradient flow
solution sharpness (GFS sharpness) before we proceed.

Definition 3 (GFS Sharpness). The GFS sharpness denoted by ψ(x) is the sharpness achieved by
the global minima which lies in the same GF trajectory of x (i.e., ∥∇2L(z)∥ such that L(z) = 0 and
z = GF (x), where GF (·) denotes the gradient flow solution).

Then, we complete the following two steps:
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(i) We show that for all scalars σ in the trajectory, if ψ(σ) < 2
√
1+c
η and σ > 0, then it holds that∑min{2,L−1}

i=1
η2(π(σ)−σ⋆)

2π2(σ)
σ2
L−iσ

2
L

≤ 1 + c, where π(σ) denotes the product given the trajectory

of all σi. This case is analyzed when π(σ) ∈ [0, σ⋆) where 0 < c < 1 and when π(σ) > σ⋆
where c = 1.

(ii) If
∑min{2,L−1}
i=1

η2(π(σ)−σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ 1 + c, then iterates become more balanced, i.e, |b(t+1)
i,j | <

c|b(t)i,j |.

We prove (i) in Lemma 3 and (ii) in Lemma 4. Both of the proofs are originally from Kreisler et al.
(2023), which we adapted using our notation for ease of the reader. Then, in Lemma 5, we show
that for each σ⋆, as long as the initialization scale satisfies

α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4
L
⋆

L2 · 2 2L−3
L

) 1
4

,

then it holds that the GFS sharpness satisfies ψ(σ) < 2
√
2

η , which is the necessary condition for
balancing. Then, to satisfy this condition for all singular values σ⋆,i for all i ∈ [r], we need

α <

ln

 2
√
2

ηLσ
2− 2

L
⋆,1

 ·
σ

4
L
⋆,1

L2 · 2 2L−3
L

 1
4

=⇒ η <
2
√
2

Lσ
2− 2

L
⋆,1

, (29)

for the validity of the initialization scale. Thus, as long as the conditions in Equation (29) hold, we
will have balancing. This completes the proof.

Lemma 3. If the GFS sharpness ψ(σ) ≤ 2
√
1+c
η and σ > 0, then

∑min{2,L−1}
i=1

η2(π(σ)−σ⋆)
2π2(σ)

σ2
[L−i]

σ2
[D]

≤
(1 + c) for some 0 < c ≤ 1.

Proof. We will consider two cases: (i) π(σ) ∈ [0, σ⋆) and (ii) π(σ) > σ⋆
2 .

Case 1: Let σ ∈ RD and consider the case where π(σ) ∈ [0, σ⋆). Then, we have

min{2,L−1}∑
i=1

η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ η2π2(σ)

σ2
L−iσ

2
L

.

Our goal is to show that if ψ(σ) ≤ 2
√
1+c
η for some 0 < c < 1 then,

min{2,L−1}∑
i=1

η2(π(σ)− 1)2π2(σ)

σ2
L−iσ

2
L

≤ η2π2(σ)

σ2
L−iσ

2
L

≤ 1 + c.

Since the GFS sharpness is constant for all the weights on the gradient flow (GF) trajectory by
definition, we can focus on the singular values (or weights) at the global minima. Consider z =
GF(σ), the GF solution of σ. In Lemma 6, we proved that GF preserves unbalancedness, such that
σ2
l − σ2

m = z2l − z2m for all layers. Hence, it is sufficient to show that
∑min{2,L−1}
i=1

η2π(z)2

z2L−iz
2
L
≤ 1+ c

in order to ensure
∑min{2,L−1}
i=1

η2π2(σ)
σ2
L−iσ

2
L

≤ 1 + c. Note that π(z) = σ⋆, since it lies on the global
minima. Then,

min{2,L−1}∑
i=1

η2π2(z)

z2L−iz
2
L

=

min{2,L−1}∑
i=1

η2σ2
⋆

z2L−iz
2
L

. (30)

2We ignore the case π(t) = σ⋆ when we get b(t+1)
i,j = b

(t)
i,j . Since the occurence π(t) = σ⋆ holds with a

probability of zero where EOS ceases to exist.
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From Lemma 7, we know that the sharpness at the global minima is given as

ψ(σ) =
∥∥∇2L(z)

∥∥ =

L∑
i=1

σ2
⋆

z2i
. (31)

This immediately implies that σ2
⋆

z2L
≤ ψ(σ) and equivalently, ∃α ∈ [0, 1] such that σ2

⋆

z2L
= αψ(σ).

Therefore, we have

min{2,L−1}∑
i=1

σ2
⋆

z2L−i
≤ (1− α)ψ(σ). (32)

Substituting Equations (31) and (32) into the expression we aim to bound, we obtain

min{2,L−1}∑
i=1

η2(π(σ)− σ2
⋆)

2π2(σ)

σ2
L−iσ

2
L

=

min{2,L−1}∑
i=1

η2σ2
⋆

z2L−iz
2
L

≤ η2α(1−α)ψ2(σ) ≤ η2

4
ϕ2(σ) ≤ 1+c,

where we used the fact that the maximum of α(1− α) is 1
4 when α = 1

2 and ψ(σ) ≤ 2
√
1+c
η . Thus,

if ψ(σ) ≤ 2
√
1+c
η , then for every weight σ lying on its GF trajectory, we have

min{2,L−1}∑
i=1

η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ 1 + c.

Case 2: Consider the case in which π(σ) > σ⋆. We already have that σ > 0 throughout the
trajectory (refer to Lemma 3.11 in Kreisler et al. (2023)) and so π(σ) > 0. So, the GD update from
σi will also stay positive

σi − η(π(σ)− σ⋆)π(σ)
1

σi
> 0.

From this, we get

2 >
η(π(σ)− σ⋆)π(σ)

σ2
i

> 0,

This implies
∑min{2,L−1}
i=1

η2(π(σ)−σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ (1 + c) with c = 1. This completes the proof.

Lemma 4. If
∑min{2,L−1}
i=1

η2(π(σ)−σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ 1 + c for i, j ∈ [L] for some 0 < c ≤ 1, then∣∣∣b(t+1)
i,j

∣∣∣ < c
∣∣∣b(t)i,j ∣∣∣.

Proof. Recall that the condition for balancing was given by

b
(t+1)
i,j = b

(t)
i,j

1− η2(π(t) − σ⋆)
2 π(t)2(
σ
(t)
i

)2 (
σ
(t)
j

)2
 . (33)

WLOG, suppose that the σ are sorted such that σ1 ≥ σ2 ≥ . . . ≥ σL. We know that

min{2,L−1}∑
i=1

η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−iσ

2
L

≤ 1 + c,

which implies

η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−1σ

2
L

< 1 + c and
η2(π(σ)− σ⋆)

2π2(σ)

σ2
i σ

2
j

<
1 + c

2
, (34)
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for all i ∈ [L], j ∈ [L− 2] and i < j. Notice that the latter inequality comes from the fact that

η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−2σ

2
L

+
η2(π(σ)− σ⋆)

2π2(σ)

σ2
L−2σ

2
L

<
η2(π(σ)− σ⋆)

2π2(σ)

σ2
L−1σ

2
L

+
η2(π(σ)− σ⋆)

2π2(σ)

σ2
L−2σ

2
L

< 1 + c,

which implies that

2
η2(π(σ)− σ⋆)

2π2(σ)

σ2
L−2σ

2
L

< 1 + c =⇒ η2(π(σ)− σ⋆)
2π2(σ)

σ2
L−2σ

2
L

<
1 + c

2
,

and since σ are sorted, it holds for all other σ. Therefore from Equation (33), we have for all
i ∈ [L− 2],

b
(t+1)
i,i+1 < cb

(t)
i,i+1 and b

(t+1)
L−2,L < cb

(t)
L−2,L and − cb

(t)
L−1,L < b

(t+1)
L−1,L < cb

(t)
L−1,L. (35)

Then, notice that since we initialized all of the singular values σℓ for ℓ ∈ [L − 1] to be the same,
they follow the same dynamics. Since we already showed that |b(t+1)

L−1,L| < c|b(t)L−1,L|, it must follow
that ∣∣∣b(t+1)

i,j

∣∣∣ < c
∣∣∣b(t)i,j ∣∣∣ for i, j ∈ [L].

This completes the proof.

Lemma 5. Consider running GD with learning rate η in Equation (2) on the scalar loss

L({σi}di=1) =
1

2

(
L∏
i=1

σi − σ⋆

)2

,

with initialization σL(0) = 0 and σℓ(0) = α for all ℓ ∈ [L − 1]. If α <(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4
L
⋆

L2·2
2L−3

L

) 1
4

, then the GFS sharpness ψ(σ) ≤ 2
√
1+c
η for some 0 < c < 1.

Proof. Since the singular values σℓ for all ℓ ∈ [L − 1] are initialized to α, note that they all follow
the same dynamics. Then, let us define

y := σ1 = . . . = σL−1 and x := σL.

The gradient flow (GF) solution is the intersection between

xyL−1 = σ⋆ and x2 − y2 = −α2,

where the first condition comes from convergence and the second comes from the conservation flow
law of GF which we prove in Lemma 6. Then, if we can find a solution at the intersection such that

(x̂(α), ŷ(α)) =

{
xyL−1 = σ⋆
x2 − y2 = −α2,

(36)

solely in terms of α, then we can plug in (x̂(α), ŷ(α)) into the GFS3 from Lemma 7

ψ(x̂(α), ŷ(α)) = ψ(σ) =

L∑
i=1

σ2
⋆

σ2
i

= σ2
⋆

(
1

x̂(α)2
+
L− 1

ŷ(α)2

)
<

2
√
2

η

and solve to find an upper bound on α. The strict inequality ensures that we can find a c in c ∈ [0, 1)

such that ψ(α) < 2
√
1+c
η . However, the intersection (x̂(α), ŷ(α)) is a 2L-th order polynomial in

ŷ(α) which does not have a straightforward closed-form solution solely in terms of α. Hence, we

3Note that throughout the proof (x̂(α), ŷ(α)) denotes the gradient flow solution as function of α. It does
not refer to the GF trajectory.
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aim to find the upper bound on α by using a calculus of variations. By plugging in x, the solution
ŷ(α) satisfies

y2L − α2y2L−2 = σ2
⋆.

Then, by differentiating the relation with respect to α, we obtain the following variational relation:

2Ly2L−1dy − α22(L− 1)y2L−3dy − 2αy2L−2dα = 0

=⇒ y2L−3(y2L− α2(L− 1))dy = αy2(L−1)dα

=⇒ dy =
yα

(y2L− α2(L− 1))
dα, (37)

where we used the fact that y2L−2 > 0 from Lemma 3 in the last line. Then, in order to have dy
dα > 0,

we need y >
√

L−1
L α, which is always true since y > α from initialization. Then, since α → 0,

limα→0 ŷ(α) = σ
1
L
⋆ and limα→0 x̂(α) = σ

1
L
⋆ , as it corresponds to exact balancing. Hence, dydα > 0

implies as α increases from 0, ŷ(α) would increase from σ
1
L
⋆ and ŷ(α) is an increasing function of

α. Similarly, the intersection at the global minima would satisfy the following relation for x̂(α):

x(2+
2

L−1 ) + x
2

(L−1)α2 = σ
2

L−1
⋆

=⇒
(
2 +

2

L− 1

)
x1+

2
L−1 dx+

(
2

L− 1

)
α2x

2
L−1−1dx+ x

2
L−1 (2αdα) = 0

=⇒ dx =
−α(

L
L−1x+ α2

L−1
1
x

)dα. (38)

Note that since x > 0, we will always have dx
dα < 0. Then, since limα→0 x̂(α) = σ

1
L
⋆ , dx

dα < 0

implies that as α increases, x̂(α) would decrease from σ
1
L
⋆ . Now, with the variational relations dx̂

dα

and dŷ
dα in place, we aim to find dψ

dα :

Ψ(α) := ψ(x̂(α), ŷ(α)) = σ2
⋆

(
1

x̂(α)2
+
L− 1

ŷ(α)2

)
=⇒ dΨ = σ2

⋆

(
− 2

x̂3
dx̂− 2(L− 1)

ŷ3
dŷ

)

=⇒ dΨ =
1

x̂3

 2ασ2
⋆(

L
L−1

)
x̂+

(
α2

L−1

)
1
x̂

 dα−
[
(L− 1)

ŷ3
2αŷσ2

⋆

(ŷ2L− α2(L− 1))

]
dα

=⇒ dΨ =

[
1

x̂4 + α2

L x̂
2
− 1

(ŷ4 − α2ŷ2 (L−1)
L )

]
2
(L− 1)σ2

⋆

L
αdα

=⇒ dΨ = G(α)dα,

where we defined G(α) :=

[
1

x̂4+α2

L x̂2
− 1

(ŷ4−α2ŷ2
(L−1)

L )

]
2
(L−1)σ2

⋆

L α and used the notation

x̂ = x̂(α) and ŷ = ŷ(α) for simplicity.

Next, we will show the three following steps:

(i) Prove that G(α) > 0 for all α > 0 to show that the sharpness Ψ(α) is an increasing function of
α.

(ii) Solve the differential dΨ to find the relationship between dΨ and Ψ(α).

(iii) Find an upper bound on a part of dΨ
Ψ(α) found in Step 2.
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Figure 22: Sharpness Ψ(α) as a function of initialization α. The theoretical approximation bound

Ψ = Ψ0 exp

(
L2·2

2(L−1)
L

2σ
4
L
⋆

α4

)
serves as proxy upper bound to this increasing function.

These series of steps comes from the fact that the intersection does not have a closed-form solution.
The goal is to find a function in which we can upper bound dΨ

Ψ(α) with a function with a closed-form

solution to find a bound on α such that the sharpness ψ(α) < 2
√
2

η .

Step 1: Prove G(α) > 0 to show sharpness Ψ(α) is an increasing function of α.

There have been several lines of work such as those by Kreisler et al. (2023) and Marion & Chizat
(2024) which showed that GD would decrease the sharpness of the solution. The more balanced the
solution (which corresponds to smaller α), the smaller the sharpness. We prove this again here:

G(α) > 0 =⇒ ŷ4 − α2ŷ2
(L− 1)

L
> x̂4 +

α2

L
x̂2

=⇒ (ŷ4 − x̂4) > α2

(
1

L
x̂2 + ŷ2

(L− 1)

L

)
=⇒ (ŷ2 − x̂2)︸ ︷︷ ︸

=α2

(ŷ2 + x̂2) > α2

(
1

L
x̂2 + ŷ2

(L− 1)

L

)

=⇒ x̂2(1− 1

L
) + ŷ2

1

L
> 0,

where the last inequality always holds since we have L > 2. This proves that Ψ is an increasing
function of α since for dΨ = G(α)dα, as it always holds that G(α) > 0 for any L > 2 and α > 0.

Step 2: Solve the differential to establish the relation between Ψ(α) and α.

Rewriting the expression for sharpness and establishing an equation we have

Ψ(α) = σ2
⋆

(
1

x̂(α)2
+
L− 1

ŷ(α)2

)
=⇒ Ψ(α) = σ2

⋆

(
ŷ2 + (L− 1)x̂2

x̂2ŷ2

)
(39)

=⇒ ŷ2

L
+

(
1− 1

L

)
x̂2 =

Ψ(α)x̂2ŷ2

Lσ2
⋆

. (40)
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Figure 23: P (α) for GF has a unique maxima at α = σ
1
L
∗(

1√
L(L−2)

(1+ 1
L(L−2) )

L−1
2

) 1
L

for L > 2.

Now, we revisit the original differential between Ψ(α) and α:

dΨ =

[
1

(x̂4 + α2

L x̂
2)

− 1

(ŷ4 − α2ŷ2 (L−1)
L )

]
2
(L− 1)σ2

⋆

L
αdα

=⇒ dΨ =
ŷ4 − x̂4 − α2( x̂

2

L + (1− 1
L ŷ

2))

(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2 (L−1)

L )
2

(
1− 1

L

)
σ2
⋆αdα

=⇒ dΨ =
α2
(
ŷ2

L + (1− 1
L )x̂

2
)

(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2 (L−1)

L )
2

(
1− 1

L

)
σ2
⋆αdα (41)

Using the expression for ŷ
2

L +(1− 1
L )x̂

2 derived in Equation (40) and plugging it into Equation (41),
we obtain

dΨ =
α2
(

Ψ(α)x̂2ŷ2

Lσ2
⋆

)
(x̂4 + α2

L x̂
2)(ŷ4 − α2ŷ2 (L−1)

L )
2

(
1− 1

L

)
σ2
⋆αdα

=⇒ dΨ

Ψ(α)
=

2

(x̂2 + α2

L )(ŷ2 − α2 (L−1)
L )

(
1

L
− 1

L2

)
α3dα

=⇒ dΨ

Ψ(α)
=

2

(x̂2 + α2

L )2

(
1

L
− 1

L2

)
α3dα (42)

=⇒ dΨ

Ψ(α)
= P (α)α3dα, (43)

(44)

where we have defined P (α) := 2

(x̂2+α2

L )2

(
1
L − 1

L2

)
.

Solving the differential dΨ
Ψ(α) = P (α)α3dα in exact closed-form is difficult since x̂ is also an func-

tion of α. However, in Step 1, we proved that Ψ(α) is an increasing function of α, and so instead
of solving exactly, we can find a differential equation dΨ

Ψ(α) = F (α)α3dα with F (α) > P (α)

such that F (α) is more increasing, and use it to solve the PDE instead. Though, note that the
initialization limit on α that would be found after solving the surrogate PDE dΨ

Ψ(α) = F (α)α3dα

would be smaller than the α if it was found using the original PDE dΨ
Ψ(α) = P (α)α3dα.

Step 3: Finding an upper bound function and solving for initialization.
Note that the original coefficient in dΨ

Ψ(α) = P (α)α3dα is of the form

P (α) =
2

(x̂2 + α2

L )2

(
1

L
− 1

L2

)
(45)
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Let us consider the two corner cases for α. We showed before that limα→0 x̂(α) = σ
1
L
⋆ , so

lim
α→0

P (α) =
2
(
1
L − 1

L2

)
σ

4
L
⋆

As α→ ∞, we have limα→∞ P (α) → 0 since limα→∞ x̂ = 0. Furthermore, we have

P ′(α) =
−4

(x̂2 + α2

L )3

(
1

L
− 1

L2

)
(2x̂

dx̂

dα
+

2α

L
)

=
−4
(
1
L − 1

L2

)
(x̂2 + α2

L )3

2x̂(
−α(

L
L−1 x̂+ α2

L−1
1
x̂

) ) + 2α

L


=

8α
(
1
L − 1

L2

)
(x̂2 + α2

L )3

(
L− 1

L+ α2

x̂2

− 1

L

)

For L = 2, we always have P ′(α) < 0. Hence, choosing F (α) = limα→0 P (α) =
2( 1

L− 1
L2 )

σ
4
L
⋆

, will

serve as the correct upper bound.

Then, let us consider L > 2. We can see that α at which x̂(α) = α√
L(L−2)

is the critical point of

P (α). Further, we note that when x̂(α) < α√
L(L−2)

, P ′(α) < 0 meaning P (α) is decreasing. Since

x̂(α) is itself decreasing in α, this states there for any α > αcrit, P (α) is decreasing. αcrit is the
solution of x̂(α) = α√

L(L−2)
.

For any α < αcrit, P ′(α) > 0, so P (α) is increasing. So, P (αcrit) corresponds to the maximum
of P in α. Choosing F (α) = P (αcrit), a constant allows us to find an upper bound function for the
function in Equation (45). Furthermore, note that since dx̂

dα < 0 and x̂ > 0, α > 0, there must be
only one critical point of P (α) which is at αcrit.

Hence, we have x̂(αcrit) = αcrit√
L(L−2)

. From Equation (36), we also get ŷ = αcrit
√
1 + 1

L(L−2)

and (
αcrit√
L(L− 2)

)(
αcrit

√
1 +

1

L(L− 2)

)L−1

= σ∗

=⇒ αcrit =
σ

1
L
∗(

1√
L(L−2)

(
1 + 1

L(L−2)

)L−1
2

) 1
L

Using αcrit, we obtain the maximum of P (α) to be

P (αcrit) =
2

(x̂(αcrit)2 +
α2

crit

L )2

(
1

L
− 1

L2

)
=

2(
α2
crit(

1
L(L−2) +

1
L )
)2 ( 1

L
− 1

L2

)

=
2

σ
4
L
∗

g(L)

where g(L) =
( 1
L− 1

L2 )[ 1√
L(L−2)

(1+ 1
L(L−2) )

L−1
2 ]

4
L

( 1
L(L−2)

+ 1
L )2

.
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Now, chosing F (α) = P (αcrit), we integrate the upper bound function as

∫
dΨ

Ψ
=

2g(L)

σ
4
L
⋆

∫
α3 dα

=⇒ ln(
Ψ

Ψ0
) =

g(L)

2σ
4
L
⋆

(α4)

=⇒ Ψ = Ψ0 exp

(
g(L)

2σ
4
L
⋆

α4

)

where Ψ0 = limα→0 Ψ = Lσ
2− 2

L
⋆ . We verify this upper bound empirically from Figure 22, where

we see a near exponential growth in sharpness as function of α.

Now, note that the function Ψ = Ψ0 exp

(
g(L)

2σ
4
L
⋆

α4

)
acts an upper bound to the original sharpness

function of α and both are increasing in α (Step 1). So, solving for an initialization α-upper limit
with Ψ = 2

√
2

η would mean that the original sharpness with this initialization would be less than
2
√
1+c
η for some 0 < c < 1. Hence, α is restricted to

α <

(
ln

(
2
√
2

η

Lσ
2− 2

L
⋆

)
· 2σ

4
L
⋆

g(L)

) 1
4

.

We can simplify the bound further by finding an upper bound on g(L) 4:

g(L) ≤

((
1 + 1

L(L−2)

)L−1
2

) 4
L

(
1

L(L−2) +
1
L

)2 ≤ L2 ·

((
1 +

1

L(L− 2)

)L−1
2

) 4
L

≤ L2 · 2
2(L−1)

L .

Then, we get obtain a lower bound on α:

α <

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· 2σ

4
L
⋆

L2 · 2
2(L−1)

L

) 1
4

=

(
ln

(
2
√
2

ηLσ
2− 2

L
⋆

)
· σ

4
L
⋆

L2 · 2 2L−3
L

) 1
4

Hence, as long as α satisfies this upper bound, we will have balancing. This completes the proof.

Lemma 6. Consider the minimizing the loss

L
(
{σℓ}Lℓ=1

)
=

1

2

(
L∏
ℓ=1

σℓ − σ⋆

)2

,

using gradient flow. Then, the balancedness between two singular values defined by σ2
ℓ (t)− σ2

m(t)
for all m, ℓ ∈ [L] is constant for all t.

Proof. Notice that the result holds specifically for gradient flow and not descent. The dynamics of
each scalar factor for gradient flow can be written as

σ̇ℓ(t) = −

(
L∏
ℓ=1

σℓ(t)− σ⋆

)
·
L∏
i ̸=ℓ

σi(t)

4This includes the case for L = 2 since ( 1
L
− 1

L2 ) < L2 · 2
2(L−1)

L for L = 2.
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Then, the time derivative of balancing is given as

∂

∂t
(σ2
ℓ (t)− σ2

m(t)) = σℓ(t)σ̇ℓ(t)− σm(t)σ̇m(t)

= −σℓ(t)

(
L∏
ℓ=1

σℓ(t)− σ⋆

)
·
L∏
i ̸=ℓ

σi(t) + σm(t)

(
L∏

m=1

σℓ(t)− σ⋆

)
·

L∏
j ̸=m

σj(t).

= 0.

Hence, the quantity σ2
ℓ (t)−σ2

m(t) remains constant for all time t, hence preserving unbalancedness.

Lemma 7. Consider the scalar loss

L({σi}di=1) =
1

2

(
L∏
i=1

σi − σ⋆

)2

,

The sharpness at the global minima is given as ∥∇2L∥2 =
∑L
i=1

σ2
⋆

σ2
i

.

Proof. The gradient is given by

∇σi
L =

(
L∏
ℓ=1

σℓ(t)− σ⋆

)
L∏
j ̸=i

σj(t).

Then,

∇σj
∇σi

L =

L∏
ℓ̸=i

σℓ(t)

L∏
ℓ ̸=j

σℓ(t) +

(
L∏
ℓ=1

σℓ(t)− σ⋆

)
L∏

ℓ ̸=j,ℓ ̸=i

σℓ(t)

Let π(t) =
∏L
i=1 σi(t). Then, at the global minima, we have

∇σj
∇σi

L =
π2

σiσj
=

σ2
⋆

σiσj

Thus, the sharpness of the largest eigenvalue is given as ∥∇2L∥2 =
∑L
i=1

σ2
⋆

σ2
i

.

Theorem 2 (Stable Subspace Oscillations). Consider running GD on the deep matrix factorization
loss in Equation (1) and denote the SVD of the target matrix as M⋆ = U⋆Σ⋆V

⊤
⋆ , with distinct

singular values σ⋆,1 > . . . > σ⋆,r. Let ∆i denote the i-th eigenvector of the Hessian with unit norm,
λi the corresponding eigenvalue after strict balancing occurs and denote f∆i as the 1-D function
at the cross section of the loss landscape and the line following the direction of ∆i passing the
minima. Then, if the minima of f∆i

satisfy f (3)∆i
> 0 and 3[f

(3)
∆i

]2 − f
(2)
∆i
f
(4)
∆i

> 0, then 2-period
orbit oscillation occurs in direction of ∆i if η > 2

λi
.

Proof. First, we derive the eigenvectors of the Hessian of the training loss at convergence (i.e.,
M⋆ = WL:1). To obtain the eigenvectors of the Hessian of parameters (WL, . . . ,W2,W1),
consider a small perturbation of the parameters:

Θ := (∆Wℓ +Wℓ)
L
ℓ=1 = (WL +∆WL, . . . ,W2 +∆W2,W1 +∆W1).

Given that WL:1 = M⋆, consider and evaluate the loss function at this minima:

L(Θ) =
1

2

∥∥∥∥∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1 (46)

+
∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1 + . . .+∆WL:1

∥∥∥∥2
F

. (47)
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By expanding each of the terms and splitting by the orders of ∆Wℓ (perturbation), we get that the
second-order term is equivalent to

Θ

(
L∑
ℓ=1

∥∆Wℓ∥2
)

:
1

2

∥∥∥∥∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1

∥∥∥∥2
F

Θ

(
L∑
ℓ=1

∥∆Wℓ∥3
)

: tr

(∑
ℓ

WL:ℓ+1∆WℓWℓ−1:1

)⊤(∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)
Θ

(
L∑
ℓ=1

∥∆Wℓ∥4
)

:
1

2
∥
∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1∥2F

+ tr

∑
l

(WL:ℓ+1∆WℓWℓ−1:1)
⊤

 ∑
l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1


The direction of the steepest change in the loss at the minima correspond to the largest eigenvector
direction of the Hessian. Since higher order terms such as Θ

(∑L
ℓ=1 ∥∆Wℓ∥3

)
are insignifcant

compared to the second order terms Θ
(∑L

ℓ=1 ∥∆Wℓ∥2
)

, finding the direction that maximizes the
second order term leads to finding the eigenvector of the Hessian. Then, the eigenvector correspond-
ing to the maximum eigenvalue of ∇2L is the solution of

∆1 := vec(∆WL, . . .∆W1) = argmax
∥∆WL∥2

F+...+∥∆W1∥2
F=1

f (∆WL, . . . ,∆W1) , (48)

where

f(∆WL, . . . ,∆W1) :=
1

2
∥∆WLWL−1:1 + . . .+WL:3∆W2W1 +WL:2∆W1∥2F. (49)

While the solution of Equation (48) gives the maximum eigenvector direction of the Hessian, ∆1,
the other eigenvectors can be found by solving

∆r := argmax
∥∆WL∥2

F+...+∥∆W1∥2
F=1,

∆r⊥∆r−1,..,∆r⊥∆1

f (∆WL, . . . ,∆W1) . (50)

By expanding f(·), we have that

f(∆WL, . . . ,∆W1) = ∥∆WLWL−1:1∥2F + . . .+ ∥WL:3∆W2W1∥2F + ∥WL:2∆W1∥2F
+ tr

[
(∆WLWL−1:1)

⊤
(WL:3∆W2W1 + . . .+WL:2∆W1)

]
+ . . .+

tr
[
(WL:2∆W1)

⊤
(WL:3∆W2W1 + . . .+WL:3∆W2W1)

]
. (51)

We can solve Equation (48) by maximizing each of the terms, which can be done in two steps:

(i) Each Frobenius term in the expansion is maximized when the left singular vector of ∆Wℓ

aligns with WL:ℓ+1 and the right singular vector aligns with Wℓ−1:1. This is a result of Von
Neumann’s trace inequality (Mirsky, 1975). Similarly, each term in the trace is maximized when
the singular vector of the perturbations align with the products.

(ii) Due to the alignment, Equation (48) can be written in just the singular values. Let ∆sℓ,i denote
the i-th singular value of the perturbation matrix ∆Wℓ. Recall that all of the singular values
of M⋆ are distinct (i.e., σ⋆,1 > . . . > σ⋆,r). Hence, it is easy to see that Equation (48) is
maximized when ∆sℓ,i = 0 (i.e, all the weight goes to ∆sℓ,1). Thus, each perturbation matrix
must be rank-1.
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Now since each perturbation is rank-1, we can write each perturbation as

∆Wℓ = ∆sℓ∆uℓ∆v⊤
ℓ , ∀ℓ ∈ [L], (52)

for ∆sℓ > 0 and orthonormal vectors ∆uℓ ∈ Rd and ∆vℓ ∈ Rd with
∑L
ℓ=1 ∆s

2
ℓ = 1. Plugging

this in each term, we obtain:

∥WL:ℓ+1∆1WℓWℓ−1:1∥22 = ∆1s
2
ℓ ·
∥∥∥∥V⋆σ

L−ℓ
L

⋆ V⊤
⋆ ∆uℓ︸ ︷︷ ︸

=:a

∆v⊤
ℓ V⋆σ

ℓ−1
L
⋆ V⊤

⋆︸ ︷︷ ︸
=:b⊤

∥∥∥∥2
2

.

Since, allignment maximizes this expression as discussed in first point, we have:

uℓ = vℓ = v⋆,1 for all ℓ ∈ [2, L− 1], then

a = σ
L−ℓ
L

⋆,1 v⋆,1 and b⊤ = σ
ℓ−1
L
⋆,1 v⊤

⋆,1 =⇒ ab⊤ = σ
1− 1

L
⋆,1 · v⋆,1v⊤

⋆,1.

The very same argument can be made for the trace terms. Hence, in order to maximize f(·), we
must have

vL = v⋆,1, and u1 = v⋆,1,

uℓ = vℓ = v⋆,1, ∀ℓ ∈ [2, L− 1].

To determine uL and v1, we can look at one of the trace terms:

tr
[
(∆1WLWL−1:1)

⊤
(WL:3∆1W2W1 + . . .+WL:2∆1W1)

]
≤
(
L− 1

L

)
· σ2− 2

L
⋆,1 .

To reach the upper bound, we require uL = u⋆,1 and v1 = v⋆,1. Finally, as the for each index,
the singular values are balanced, we will have ∆1sℓ =

1√
L

for all ℓ ∈ [L] to satisfy the constraint.
Finally, we get that the leading eigenvector is

∆1 := vec

(
1√
L
u1v

⊤
1 ,

1√
L
v1v

⊤
1 , . . . ,

1√
L
v1v

⊤
1

)
.

Notice that we can also verify that f(∆1) = Lσ
2− 2

L
⋆,1 , which is the leading eigenvalue (or sharpness)

derived in Lemma 1.

To derive the remaining eigenvectors, we need to find all of the vectors in which ∆⊤
i ∆j = 0 for

i ̸= j, where

∆i = vec(∆iWL, . . .∆iW1),

and f(∆i) = λi, where λi is the i-th largest eigenvalue. By repeating the same process as above,
we find that the eigenvector-eigenvalue pair as follows:

∆1 = vec

(
1√
L
u1v

⊤
1 ,

1√
L
v1v

⊤
1 , . . . ,

1√
L
v1v

⊤
1

)
, λ1 = Lσ

2− 2
L

⋆,1

∆2 = vec

(
1√
L
u1v

⊤
2 ,

1√
L
v1v

⊤
2 , . . . ,

1√
L
v1v

⊤
2

)
, λ2 =

(
L−1∑
i=0

σ
1− 1

L− 1
L i

⋆,1 · σ
1
L i
⋆,2

)

∆3 = vec

(
1√
L
u2v

⊤
1 ,

1√
L
v2v

⊤
1 , . . . ,

1√
L
v2v

⊤
1

)
, λ3 =

(
L−1∑
i=0

σ
1− 1

L− 1
L i

⋆,1 · σ
1
L i
⋆,2

)
...

∆d = vec

(
1√
L
u2v

⊤
2 ,

1√
L
v2v

⊤
2 , . . . ,

1√
L
v2v

⊤
2

)
, λd = Lσ

2− 2
L

⋆,2

...

∆dr+r = vec

(
1√
L
udv

⊤
r ,

1√
L
vdv

⊤
r , . . . ,

1√
L
vdv

⊤
r

)
,
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which gives a total of dr + r eigenvectors.

Second, equipped with the eigenvectors, let us consider the 1-D function f∆i
generated by the cross-

section of the loss landscape and each eigenvector ∆i passing the minima:

f∆i(µ) = L(WL + µ∆WL, . . . ,W2 + µ∆W2,W1 + µ∆W1),

= µ2 · 1
2
∥∆WLWL−1:1 + . . .+WL:3∆W2W1 +WL:2∆W1∥2F

+ µ3 ·
L∑

ℓ=1,ℓ<m

tr
[
(WL:ℓ+1∆WℓWℓ−1:1)

⊤
(WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1)

]

+ µ4 · 1
2

∥∥∥∥∥
(∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥∥
2

F

+ µ4 ·
L∑

ℓ<m<p

tr
[
(WL:ℓ+1∆WℓWℓ−1:1)

⊤
(WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1)

]
.

Then, the several order derivatives of f∆i
(µ) at µ = 0 can be obtained from Taylor expansion as

f
(2)
∆i

(0) = ∥∆iWLWL−1:1 + . . .+WL:3∆iW2W1 +WL:2∆iW1∥2F = λ2i

f
(3)
∆i

(0) = 6

L∑
ℓ=1

tr
[
(WL:ℓ+1∆iWℓWℓ−1:1)

⊤
(WL:ℓ+2∆iWℓ+1Wℓ∆iWℓ−1Wℓ−2:1)

]
= 6

∥∥∥∥∑
ℓ

WL:ℓ+1∆iWℓWℓ−1:1

∥∥∥∥
F

·
∥∥∥∥
(∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥
F

:= 6λi · βi
f
(4)
∆i

(0) = 12∥∆iWL∆iWL−1WL−2:1 + . . .+WL:4∆iW3W2∆iW1 +WL:3∆iW2∆iW1∥2F

+ 24

L∑
ℓ=1

tr

(WL:ℓ+1∆iWℓWℓ−1:1)
⊤

 ∑
l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1


:= 12β2

i + 24λi · δi,

where we defined

λi =

∥∥∥∥∑
ℓ

WL:ℓ+1∆iWℓWℓ−1:1

∥∥∥∥
F

(Total
(
L
1

)
terms)

βi =

∥∥∥∥
(∑
ℓ<m

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:1

)∥∥∥∥
F

(Total
(
L
2

)
terms)

δi =

∥∥∥∥
 ∑
l<m<p

WL:ℓ+1∆WℓWℓ−1:m+1∆WmWm−1:p+1∆WpWp−1:1

∥∥∥∥
F

,

(Total
(
L
3

)
terms)

and used the fact that tr(A⊤B) = ∥A∥F · ∥B∥F under singular vector alignment.

Then, since βi has
(
L
2

)
terms inside the sum, when the Frobenium term is expanded, it will have

(L2)((
L
2)+1)
2 number of terms. Under alignment and balancedness, β2

i = ∆s2ℓσ
2− 4

L
i × (L2)((

L
2)+1)
2
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and λiδi = ∆s2ℓσ
2− 4

L
i ×

(
L
3

)
L. Thus, we have the expression

2β2
i − λiδi = ∆s2ℓσ

2− 4
L

i

2

(
L
2

) ((
L
2

)
+ 1
)

2
−
(
L

3

)
L


= ∆s2ℓσ

2− 4
L

i

(
L

3

)
L×

3
(
L(L−1)

2 + 1
)

L(L− 2)
− 1


= ∆s2ℓσ

2− 4
L

i

2
(
L
3

)
L

L(L− 2)
×
(
(L− 1)2 + 5

)
> 0,

for any depth L > 2. Finally, the condition of stable oscillation of 1-D function is

3[f
(3)
∆i

]2 − f
(2)
∆i
f
(4)
∆i

= 108λ2iβ
2
i − (λ2i )(12β

2
i + 24(2λi)(δi)) = 48λ2i (2β

2
i − λiδi) > 0,

which we have proven to be positive for any depth L > 2, for all the eigenvector directions corre-
sponding to the non-zero eigenvalues. This completes the proof.

Theorem 3 (Subspace Oscillation for Diagonal Linear Networks). Consider an L-layer diagonal
linear network on the loss

L
(
{sℓ}Lℓ=1

)
:=

1

2
∥s1 ⊙ . . .⊙ sL − s⋆∥22, (53)

where s⋆ ∈ Rd be an r-sparse vector with ordered coordinates such that s⋆,1 > . . . > s⋆,d and

define Sp := Ls
2− 2

L
⋆,p and α′ :=

(
ln

(
2
√
2

ηLs
2− 2

L
⋆,1

)
· s

4
L
⋆,1

L2·2
2L−3

L

) 1
4

. For any p < r − 1 and α < α′,

suppose we run GD on Equation (5) with learning rate η = 2
K , where Sp ≥ K > Sp+1 with

initialization sℓ = α1d for all ℓ ∈ [L − 1] and sL = 0d. Then, under strict balancing, the top-p
coordinates of sℓ oscillate within a 2-period fixed orbit around the minima in the form

sℓ,i(t) = ρi,j(t), ∀i < p, ∀ℓ ∈ [L],

where ρi,j(t) ∈ {ρi,1, ρi,2}, ρi,1 ∈
(
0, s

1/L
⋆,i

)
and ρi,2 ∈

(
s
1/L
⋆,i , (2s⋆,i)

1/L
)

are two real roots of

the polynomial h(ρ) = 0:

h(ρ) = ρL ·
1 +

(
1 + ηL(s⋆,i − ρL) · ρL−2

)2L−1

1 + (1 + ηL(s⋆,i − ρL) · ρL−2)
L−1

− s⋆,i.

Proof. This proof essentially mimics that of the DLN proof from Theorem 1, in that we will

(i) Compute the eigenvalues and eigenvectors of the flattened training loss Hessian of the diagonal
linear network at convergence under the balancing assumption.

(ii) Show that in 1D cross-section of the eigenvector, the stable condition oscillation 3[f
(3)
∆i

]2 −
f
(2)
∆i
f
(4)
∆i

> 0 is satisfied, where f∆i
denotes the 1D cross-section function at the i-th eigenvector

direction.
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With a slight abuse in notation, let s := {sℓ}Lℓ=1. Let us first derive the Hessian at convergence by
considering each block of the flattened Hessian matrix denoted by Hm,ℓ:

Hℓ,ℓ =


∏
k ̸=ℓ sk,1

. . . ∏
k ̸=ℓ sk,d

 if m = ℓ (54)

Hm,ℓ =

γ1 . . .
γd

 if m ̸= ℓ, (55)

where

γi :=

∏
k ̸=l

sk,i

∏
k ̸=m

sk,i

+

(∏
k

sk,i − s⋆,i

) ∏
k ̸=l,k ̸=m

sk,i

 .

Then, under Lemma 2, at convergence (i.e. the gradient is zero), we have(∏
k

sk,i − s⋆,i

)
= 0 =⇒ sk,i = s

1
L
⋆,i,

which means that at convergence, the Hessian is given by

H =


A . . . A A
...

. . .
...

...
A . . . A A
A . . . A B

 ∈ RdL×dL,

where

A :=


s
2− 2

L
⋆,1

. . .

s
2− 2

L
⋆,r

0d−r

 ∈ Rd×d, B :=


s
2− 2

L
⋆,1

. . .

s
2− 2

L
⋆,r

α2(L−1) · Id−r

 ∈ Rd×d.

To compute the eigenvalues of H, we can block diagonalize H into the form C = PHP⊤, where
P is a permutation matrix and

C =

C1

. . .
Cd

 ∈ RdL×dL,

where each (i, j)-th entry of Ck ∈ RL×L is the k-th diagonal element of Hi,j . Then, since C is a
block diagonal matrix, its eigenvalues are the union of each of the eigenvalues of its blocks. Then,
notice that

Cj = s
2− 2

L

⋆,k · 1L1⊤
L , ∀j ∈ [r] Ck =


0 . . . 0 α2(L−1)

...
. . .

...
...

0 . . . 0 α2(L−1)

α2(L−1) . . . α2(L−1) α2(L−1)

 , ∀k ∈ [r + 1, d].

Hence, the eigenvalues of C (and the eigenvalues of H) are given by

λH =

{
Ls

2− 2
L

⋆,i , 0︸︷︷︸
multiplicity L−1

}r
i=1

⋃ {
−α2(L−1) ±

√
(4L− 3) · α4(L−1)2

−2︸ ︷︷ ︸
multiplicity d−r

, 0︸︷︷︸
multiplicity (d−r)(L−2)

}
,

which can be computed using co-factor expansion. For the eigenvectors, notice that we can write

Cv = PHP⊤v = λv =⇒ HP⊤v = λP⊤v.
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Hence, we can find the eigenvectors of the block diagonal matrix C, and left multiply them by P⊤

to obtain the eigenvectors of the Hessian H. This yields the eigenvector and eigenvalue pairs

∆1 = P⊤vec

(
1√
L
1L,0, . . . ,0

)
, λ1 = Ls

2− 2
L

⋆,1 (56)

∆2 = P⊤vec

(
0,

1√
L
1L, . . . ,0

)
, λ2 = Ls

2− 2
L

⋆,2 (57)

...
... (58)

∆r = P⊤vec

(
0, . . . ,

1√
L
1L, . . . ,0

)
, λr = Ls

2− 2
L

⋆,r (59)

...
... (60)

∆r+j = P⊤vec (0, . . . , er+j , . . . ,0) , λr+j =
−α2(L−1) ±

√
(4L− 3) · α4(L−1)2

−2
, (61)

where ei is an i-th elementary basis vector.

Then, in each 1-D eigenvector direction, we can analyze the loss and verify if it satisfies the stability
condition. Notice that we can consider the scalar loss

Li(s) =
1

2
(s1,i ⊙ . . .⊙ sL,i − s⋆,i)

2 =
1

2
(sLi − s⋆,i)

2. (By Lemma 2)

Using Corollary 5 by Chen & Bruna (2023) or restated Lemma 11 on the 1D scalar function, this 1D
loss is amenable to stable oscillation when learning rate η > 2

λi
. Finally, to prove the uniqueness

and existence of two period orbit fixed point for η > 2
λi

, we show that the polynomial obtained by
solving two step fixed point has a real root. This is the same loss we analyzed in Theorem 2, where
we showed that the oscillations are real roots of the polynomial

σ⋆,1 = ρL
1 + z2L−1

1 + zL−1
, where z :=

(
1 + ηL(σ⋆,1 − ρL) · ρL−2

)
.

and ρ1 ∈
(
0, σ

1/L
⋆,1

)
and ρ2 ∈

(
σ
1/L
⋆,1 , (2σ⋆,1)

1/L
)

are the two real roots of the polynomial which
exists and are unique. Hence, whenever the learning rate η lies between [2/λp, 2/λp+1], we will
have oscillations in all of the p eigenvector directions. This completes the proof.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

C.2 DEFERRED PROOFS FOR SINGULAR VECTOR INVARIANCE

Proposition 2. Let M⋆ = U⋆Σ⋆V
⊤
⋆ denote the SVD of the target matrix. The initialization in

Equation (3) is a member of the singular vector stationary set in Proposition 1, where QL = . . . =
Q2 = V⋆.

Proof. Recall that the initialization is given by

WL(0) = 0 and Wℓ(0) = αId ∀ℓ ∈ [L− 1].

We will show that under this initialization, each weight matrix admits the following decomposition
for all t ≥ 1:

WL(t) = U⋆

[
Σ̃L(t) 0
0 0

]
V⊤
⋆ , Wℓ(t) = V⋆

[
Σ̃(t) 0
0 αId−r

]
V⊤
⋆ , ∀ℓ ∈ [L− 1], (62)

where

Σ̃L(t) = Σ̃L(t− 1)− η ·
(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆,r

)
· Σ̃L−1(t− 1)

Σ̃(t) = Σ̃(t− 1) ·
(
Ir − η · Σ̃L(t− 1) ·

(
Σ̃L(t− 1) · Σ̃L−1(t− 1)−Σ⋆,r

)
· Σ̃L−3(t− 1)

)
,

where Σ̃L(t), Σ̃(t) ∈ Rr×r is a diagonal matrix with Σ̃L(1) = ηαL−1 ·Σr,⋆ and Σ̃(1) = αIr.

This will prove that the singular vectors are stationary with ΣL = . . . = Σ2 = V⋆. We proceed
with mathematical induction.

Base Case. For the base case, we will show that the decomposition holds for each weight matrix
at t = 1. The gradient of f(Θ) with respect to Wℓ is

∇Wℓ
f(Θ) = W⊤

L:ℓ+1 · (WL:1 −M⋆) ·W⊤
ℓ−1:1.

For WL(1), we have

WL(1) = WL(0)− η · ∇WL
f(Θ(0))

= WL(0)− η · (WL:1(0)−M⋆) ·W⊤
L−1:1(0)

= ηαL−1Σ⋆

= U⋆ ·
(
ηαL−1 ·Σ⋆

)
·V⊤

⋆

= U⋆

[
Σ̃L(1) 0

0 0

]
V⊤
⋆ .

Then, for each Wℓ(1) in ℓ ∈ [L− 1], we have

Wℓ(1) = Wℓ(0)− η · ∇Wℓ
f(Θ(0))

= αId,

where the last equality follows from the fact that WL(0) = 0. Finally, we have

Wℓ(1) = αV⋆V
⊤
⋆ = V⋆

[
Σ̃(1) 0
0 αId−r

]
V⊤
⋆ , ∀ℓ ∈ [L− 1].

Inductive Step. By the inductive hypothesis, suppose that the decomposition holds. Then, notice
that we can simplify the end-to-end weight matrix to

WL:1(t) = U⋆

[
Σ̃L(t) · Σ̃L−1(t) 0

0 0

]
V⊤
⋆ ,

for which we can simplify the gradients to

∇WL
f(Θ(t)) =

(
U⋆

[
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r 0

0 0

]
V⊤
⋆

)
·V⋆

[
Σ̃L−1(t) 0

0 0

]
V⊤
⋆

= U⋆

[(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−1(t) 0

0 0

]
V⊤
⋆ ,
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for the last layer matrix, and similarly,

∇Wℓ
f(Θ(t)) = V⋆

[
Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−2(t) 0

0 0

]
V⊤
⋆ , ℓ ∈ [L− 1],

for all other layer matrices. Thus, for the next GD iteration, we have

WL(t+ 1) = WL(t)− η · ∇WL
(Θ(t))

= U⋆

[
Σ̃L(t)− η ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−1(t) 0

0 0

]
V⊤
⋆

= U⋆

[
Σ̃L(t+ 1) 0

0 0

]
V⊤
⋆ .

Similarly, we have

Wℓ(t+ 1) = Wℓ(t)− η · ∇Wℓ
(Θ(t))

= V⋆

[
Σ̃(t)− η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−2(t) 0

0 αId−r

]
V⊤
⋆

= V⋆

[
Σ̃(t) ·

(
Ir − η · Σ̃L(t) ·

(
Σ̃L(t) · Σ̃L−1(t)−Σ⋆,r

)
· Σ̃L−3(t)

)
0

0 αId−r

]
V⊤
⋆

= V⋆

[
Σ̃(t+ 1) 0

0 αId−r

]
V⊤
⋆ ,

for all ℓ ∈ [L− 1]. This completes the proof.

Proposition 3. Let M⋆ = V⋆Σ⋆V
⊤
⋆ ∈ Rd×d denote the SVD of the target matrix. The balanced

initialization in Equation (3) is a member of the singular vector stationary set in Proposition 1,
where UL = QL = . . . = Q2 = V1 = V⋆.

Proof. Using mathematical induction, we will show that with the balanced initialization in Equa-
tion (3), each weight matrix admits a decomposition of the form

Wℓ(t) = V⋆Σℓ(t)V
⊤
⋆ , (63)

which implies that the singular vectors are stationary for all t such that UL = QL = . . . = Q2 =
V1 = V⋆.

Base Case. Consider the weights at iteration t = 0. By the initialization scheme, we can write
each weight matrix as

Wℓ(0) = αId =⇒ Wℓ(0) = αV⋆V
⊤
⋆ ,

which implies that Wℓ(0) = V⋆Σℓ(0)V
⊤
⋆ with Σℓ(0) = αId.

Inductive Step. By the inductive hypothesis, assume that the decomposition holds for all t ≥ 0.
We will show that it holds for all iterations t + 1. Recall that the gradient of f(Θ) with respect to
Wℓ is

∇Wℓ
f(Θ) = W⊤

L:ℓ+1 · (WL:1 −M⋆) ·W⊤
ℓ−1:1.

Then, for Wℓ(t+ 1), we have

Wℓ(t+ 1) = Wℓ(t)− η · ∇WL
f(Θ(t))

= V⋆Σℓ(t)V
⊤
⋆ − ηW⊤

L:ℓ+1(t) · (WL:1(t)−M⋆) ·W⊤
ℓ−1:1(t)

= V⋆Σℓ(t)V
⊤
⋆ − ηV⋆ ·

(
ΣL−ℓ
ℓ (t) ·

(
ΣL
ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t)
)
·V⊤

⋆

= V⋆ ·
(
Σℓ(t)− η ·ΣL−ℓ

ℓ (t) ·
(
ΣL
ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t)
)
·V⊤

⋆

= V⋆Σ(t)V⊤
⋆ ,

where Σ(t) = Σℓ(t)− η ·ΣL−ℓ
ℓ (t) ·

(
ΣL
ℓ (t)−Σ⋆

)
·Σℓ−1

ℓ (t). This completes the proof.
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C.3 AUXILIARY RESULTS

Lemma 8. Let {Rℓ}Lℓ=1 ∈ Rn×n be orthogonal matrices and Hi,j ∈ Rn2×n2

be diagonal matrices.
Consider the two following block matrices:

H =


H1,1 H1,2 . . . HL,1

H2,1 H2,2 . . . HL,2

...
...

. . .
...

H1,L H2,L . . . HL,L



H̃ =


RLH1,1R

⊤
L RLH1,2R

⊤
L−1 . . . RLH1,LR

⊤
1

RL−1H2,1R
⊤
L RL−1H2,2R

⊤
L−1 . . . RL−1H2,LR

⊤
1

...
...

. . .
...

R1HL,1R
⊤
L R1HL,2R

⊤
L−1 . . . R1HL,LR

⊤
1

 .
Then, the two matrices H and H̃ are similar, in the sense that they have the same eigenvalues.

Proof. It suffices to show that H and H̃ have the same characteristic polynomials. Let us define

H̃ :=

[
A B
C D

]
,

where

A := RLH1,1R
⊤
L B :=

[
RLH1,2R

⊤
L−1 . . . RLH1,LR

⊤
1

]
(64)

C :=

RL−1H2,1R
⊤
L

...
R1HL,1R

⊤
L

 D :=


RL−1H2,2R

⊤
L−1 . . . RL−1H2,LR

⊤
1

...
. . .

...
R1HL,2R

⊤
L−1 . . . R1HL,LR

⊤
1

 . (65)

Then, we have

det(H̃− λI) = det

([
A− λI B

C D− λI

])
= det(A− λI) · det((D− λI)−C(A− λI)−1B),

where the second equality is by the Schur complement. Notice that

(A− λI)−1 = (RLH1,1R
⊤
L − λI)−1 = (RLH1,1R

⊤
L − λRLRL

⊤)−1

= RL · (H1,1 − λI)−1 ·R⊤
L .

Then, we also see that,

C(A− λI)−1B =

RL−1

. . .
R1


︸ ︷︷ ︸

=:V̂

·E ·

R
⊤
L−1

. . .
R⊤

1


︸ ︷︷ ︸

=:V̂⊤

.

where

E :=

H2,1 · (H1,1 − λI)−1 ·H1,2 . . . H2,1 · (H1,1 − λI)−1 ·H1,L

...
. . .

...
HL,1 · (H1,1 − λI)−1 ·H1,2 . . . HL,1 · (H1,1 − λI)−1 ·H1,L

 .
Similarly, we can write D as

D = V̂

H2,2 . . . H2,L

...
. . .

...
HL,2 . . . HL,L


︸ ︷︷ ︸

=:F

V̂⊤.
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Then, we have

det(H̃− λI) = det(RL · (H1,1 − λI) ·R⊤
L ) · det

(
V̂ · (E− F) · V̂⊤

)
= det(H1,1 − λI) · det(E− F),

which is not a function of U,V, {Rℓ}Lℓ=1. By doing the same for H, we can show that both H̃ and
H have the same characteristic polynomials, and hence the same eigenvalues. This completes the
proof.

Lemma 9. Let A,B ∈ Rd×d be two orthogonal matrices. Then, the Kronecker product of A and
B is also an orthogonal matrix:

(A⊗B)⊤(A⊗B) = (A⊗B)(A⊗B)⊤ = Id2 .

Proof. We prove this directly by using properties of Kronecker products:

(A⊗B)⊤(A⊗B) = A⊤A⊗B⊤B

= Id ⊗ Id = Id2 .

Similarly, we have

(A⊗B)(A⊗B)⊤ = AA⊤ ⊗BB⊤

= Id ⊗ Id = Id2 .

This completes the proof.

Lemma 10. Let {a(t)}Nt=1 be a sequence such that a(t) ≥ 0 for all t. If there exists a constant
c ∈ (0, 1) such that a(t+ 1) < c · a(t) for all t, then limt→∞ a(t) = 0.

Proof. We prove this by direct reasoning. From the assumption a(t + 1) < c · a(t) for some
c ∈ (0, 1), we can iteratively expand this inequality:

a(t+ 1) < c · a(t), a(t+ 2) < c · a(t+ 1) < c2 · a(t),

and, more generally, by induction:

a(t+ k) < ck · a(t), for all k ≥ 0.

Since c ∈ (0, 1), the sequence {ck}∞k=0 converges to 0 as k → ∞. Hence:

0 ≤ lim
k→∞

a(t+ k) ≤ lim
k→∞

ck · a(t) = 0.

Therefore, by the squeeze theorem, the sequence {a(t)} converges to 0 as t→ ∞.

Lemma 11 (Chen & Bruna (2023)). Consider any 1-D differentiable function f(x) around a local
minima x̄, satisfying (i) f (3)(x̄) ̸= 0, and (ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists ϵ with
sufficiently small |ϵ| and ϵ · f (3) > 0 such that: for any point x0 between x̄ and x̄− ϵ, there exists a
learning rate η such that F 2

η (x0) = x0, and

2

f ′′(x̄)
< η <

2

f ′′(x̄)− ϵ · f (3)(x̄)
.

52


	Introduction
	Notation and Problem Setup
	Deep Matrix Factorization Beyond the Edge of Stability
	Main Results
	Tools used in the Analyses
	Relation to Diagonal Linear Networks

	Experimental Results
	Subspace Oscillations in Deep Networks
	Similarities and Differences Between Linear and Nonlinear Nets at EOS

	Conclusion, Limitations and Future Work
	Discussion on Related Work
	Additional Results
	Experimental Details
	Initialization Outside Singular Vector Invariant Set
	Balancing of Singular Values
	Additional Experiments for Balancing, Singular Vector Invariance, and Theory
	Periodic and Free Oscillations
	Investigation of Oscillations in Low-Rank Adaptors

	Deferred Proofs
	Deferred Proofs for Oscillations
	Deferred Proofs for Singular Vector Invariance
	Auxiliary Results


