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Abstract

In this work, we propose a novel approach that combines Elastic Weight Consoli-
dation (EWC) with fuzzy reasoning to address catastrophic forgetting in continual
learning scenarios. The EWC-Fuzzy approach mitigates the challenge of forgetting
previously learned knowledge while enabling the model to adapt to new tasks by
balancing neural network weight regularization with fuzzy rule adaptation. Initially,
the model learns from the first task without EWC regularization, allowing for stan-
dard backpropagation-based learning. For subsequent tasks, EWC is introduced
to prevent significant parameter changes in the neural network that are critical for
previous tasks. Meanwhile, the fuzzy rule parameters—such as the centers, widths,
and outputs—dynamically evolve according to the new data without EWC regula-
rization, allowing them to self-organize in response to the data distribution. This
dual mechanism ensures that model preserves learned knowledge while remaining
flexible and adaptable in the face of new tasks. Our approach addresses the gap in
current research, which often treats EWC and fuzzy reasoning independently. By
integrating these techniques, we provide a promising solution to the challenge of
catastrophic forgetting and enhance the model’s adaptability in dynamic environ-
ments. This study lays the groundwork for further exploration into the fusion of
EWC and fuzzy systems in continual learning.
Keywords: Elastic Weight Consolidation, Fuzzy Systems, Continual Learning,
Catastrophic Forgetting, Fuzzy Rule Adaptation, Incremental Learning.

1 Introduction

In recent years, digitalization has permeated various industrial sectors, resulting in a significant
increase in the amount of information processed and stored. This phenomenon is accompanied by the
continuous emergence of data streams, driving the need for automated analysis processes [21].

Incremental online machine learning algorithms stand out for their ability to adapt to continuous
learning scenarios, managing dynamism, changes, and biases in data in a scalable manner. However,
there is a significant research gap in machine learning for data streams with recurring concepts
and dynamic scenarios. Catastrophic forgetting poses a critical challenge in this context, where
pre-trained models may become relevant again, but many algorithms struggle to remember instances
from before new data is introduced, leading to wasted computational resources and prediction errors
[7].

Catastrophic forgetting refers to the tendency of a model to forget all its previously learned tasks if
not trained properly on a new task, e.g., when fine-tuning on the new task for a long time without
proper regularization to the previous model parameters [19]. It refers to the model’s tendency to
forget or lose the ability to adapt to previous concepts as new data are introduced, particularly when

NeurIPS 2024 Workshop LXAI.



the relationships between attributes and classes change drastically. A model that can’t adjust to these
changes may assign less importance to historical data, resulting in a loss of performance.

Drawing inspiration from the mammalian neocortex, which uses task-specific synaptic consolidation
to facilitate continuous learning, several methods have been proposed based on sequential Bayesian
learning. These methods involve applying a regularization function to a network that was previously
trained on one task, in order to enable learning of a new task. Many of these techniques aim to find a
local minimum for the new task (task B) near the region in parameter space that was optimized for the
previous task (task A). Examples include approaches like learning without forgetting, elastic weight
consolidation (EWC), and incremental moment matching. However, by limiting the parameters for
task B to a neighborhood around the optimum of task A, these methods prevent the network from
exploring other areas in the parameter space that might contain a better local minimum for the joint
distribution of both tasks A and B [29].

This research aims to enhance the adaptability and performance of Elastic Weight Consolidation [26]
with Fuzzy Logic (EWC-Fuzzy) in real-world, dynamic environments, contributing to the evolution
of online learning paradigms. The proposed approach balances model stability with responsiveness
to changing data patterns, offering a robust solution for continuously evolving contexts. Our online
incremental learning framework addresses challenges such as limited data, sequential updates, and
catastrophic forgetting, leveraging EWC-Fuzzy to improve adaptability and performance in practical
scenarios.

2 Related work

A few consider [27] have investigated continual learning models, with a specific center on tending to
catastrophic forgetting [9, 16, 28]. This segment audits key commitments in incremental learning and
fluffy reasoning, highlighting their significance to the challenges of nonstop learning.

Online incremental learning is a specialized range inside incremental learning [24], characterized by
the requirement to work beneath strict imperatives related to runtime proficiency and the capacity
to bolster lifelong learning. These imperatives ended up especially noteworthy when managing
constrained information, which that contrasts with conventional offline learning ideal models [24]. In
real-world applications, where information arrives consecutively and models must advance without
getting to total datasets, the challenge of ceaseless learning gets to be particularly articulated. In
reaction, an arrangement of models, m1, m2, ..., mt, is prepared on progressive squares of information,
b1, b2, ..., bt, reflecting the energetic nature of online learning.

Continual learning procedures can by and large be classified into three wide categories:

1. Regularization-Based Strategies: These strategies include imperatives to the arrange para-
meters to moderate overlooking. Eminent illustrations incorporate regularization strategies
that penalize changes to critical parameters [3, 31].

2. Parameter-Isolation-Based Strategies: These strategies designate isolated parameters or
adjust the arranged design to anticipate overlooking, such as energetic systems [10, 22].

3. Replay-Based Strategies: Replay strategies are broadly utilized due to their effort and
productivity. They keep up a memory buffer containing models from past assignments,
which are utilized to avoid overlooking when learning unused assignments [17, 25].

Maintaining versatility while avoiding catastrophic forgetting is a key challenge in persistent learning.
Dohare [4] proposed a generate-and-test strategy that cultivates versatility by ceaselessly supplanting
less valuable highlights. Strategies like commotion infusion [1] appear to keep up versatility.

Elastic Weight Consolidation (EWC) has been examined in the setting of continual learning, but most
existing work has not specifically connected it with superficial reasoning or particularly tended to
catastrophic forgetting this combination. Later considers [6, 8, 12] have investigated the integration
of EWC and fluffy reasoning, in spite of the fact that they do not center unequivocally on disastrous
forgetting.

While noteworthy progressions have been made in incremental learning and methods to relieve catas-
trophic forgetting, there remains an outstanding hole in joining fluffy reasoning with Versatile Weight
Union (EWC) to specifically address these challenges. Existing inquiries about has investigated EWC
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and fluffy reasoning autonomously, but their combined application for persistent learning has not
been completely explored. This inquiry looks to bridge this hole by proposing a Novel approach that
blends EWC and fluffy reasoning, advertising modern experiences and potential arrangements to the
challenges of catastrophic forgetting and showing flexibility in energetic situations.

3 Model overview

The architecture of EWC-Fuzzy integrates neural network layers for feature extraction with a fuzzy
rule layer that dynamically self-organizes, allowing for robust decision-making in evolving data
environments.

1. Normalization Layer: This layer standardizes the input data by adjusting feature scales
to improve the convergence of the model. Let x ∈ Rn be the input data, normalized as
xnorm = x−µ

σ , where µ is the mean and σ is the standard deviation of the input features.
2. Scaling Layer: The scaling layer adjusts the normalized input to a desired range, enhancing

feature relevance. The output of this layer is xscaled = α · xnorm + β, where α and β are
scaling parameters learned during training.

3. Feature Descriptor Layer: A fully connected layer that extracts high-level features from
the input data. Let the weight matrix be W1 ∈ Rx×n and bias b1 ∈ Rm, the output is
h1 = σ(W1 · xscaled + b1), where σ is a nonlinear activation function ReLU.

4. Fuzzy Rule Layer: This layer organizes and updates fuzzy rules dynamically based on
incoming data. Each fuzzy rule can be represented as Rk : IF x is Fk THEN yk, where Fk

represents the fuzzy set of the k-th rule, and yk is the corresponding output.
The fuzzy membership function µ(Fk) is computed using Gaussian membership functions
µ(Fk)(xi) = exp

(
− (xi−ck)

2

2σ2
k

)
, where ck and σk are the center and width of the Gaussian

for the k-th rule.
The output of the fuzzy rule layer is aggregated using a weighted sum y =

∑
k µ(Fk)(x)·yk∑

k µ(Fk)(x)

The fuzzy rule layer self-organizes by updating the parameters ck, σk, and yk as new data
arrives.

To preserve knowledge from previous tasks while adapting to new tasks, the Elastic Weight Conso-
lidation (EWC) method [26] is integrated into the approach’s training process. The key idea is to
protect important weights for previously learned tasks by introducing a regularization term to the loss
function.

Let θ be the model parameters (weights), and Lnew be the loss function for a new task. The EWC-
augmented loss function is LEWC = Lnew + λ

2

∑
i Fi(θi − θold

i )2, where Fi is the Fisher information
matrix that measures the importance of parameter θi for the old task, θold

i are the parameters learned
from the previous task, λ is a hyperparameter that controls the strength of the regularization, balancing
the learning of new tasks with the preservation of old tasks.

The Fisher information matrix is computed as Fi = E
[(

∂ log p(x|θ)
∂θi

)2
]

, where p(x|θ) is the probabi-

lity of observing data x given the model parameters θ.

3.1 Model training

The EWC-Fuzzy approach starts by learning from the initial task T1, where it minimizes the task-
specific loss function using standard backpropagation. The approach’s parameters are updated solely
for the current task without any EWC regularization in this first step.

For each subsequent task Ti (i.e., tasks T2, T3, . . .), the model continues training but also incorporates
a regularization term based on the EWC method to prevent catastrophic forgetting. This ensures that
important parameters for previous tasks are preserved while allowing the model to learn from the
new task.

1. Training for the first task T1: The task-specific loss function Ltask1. At this stage, no EWC
penalty is applied, and the model learns from scratch.
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2. Training for Subsequent Tasks Ti (where i > 1): The model computes the task-specific loss
Ltask2, which depends on the new task’s data. The model then updates its parameters using
the following EWC-augmented loss function.

3. The EWC penalty term constrains significant changes in important parameters from previous
tasks, ensuring the model preserves previously learned knowledge.

The EWC regularization is applied exclusively to the neural network weights. It prevents drastic
changes to the parameters that are crucial for previous tasks by penalizing their deviation from the
learned values of earlier tasks.

However, the fuzzy rule parameters (i.e., centers ck, widths σk, and outputs yk) are updated dynami-
cally as part of the fuzzy rule adaptation process. These parameters evolve with the incoming data
streams, but they are not regularized by EWC. Instead, their evolution is driven by the self-organizing
nature of the fuzzy rules, which adjust to new distributions of the data.

After the model completes learning from all tasks, the final output is the trained model parameters θ
(including neural network weights) and the adapted fuzzy rules (including the updated centers ck,
widths σk, and outputs yk).

3.2 Algorithm Overview

The training process of the EWC-Fuzzy model is outlined in Algorithm 1. The algorithm begins
by initializing the model parameters θ, the fuzzy rule centers ck, the rule widths σk, and the Fisher
information matrix Fi. The model then iterates over each task in the data stream D, progressively
adapting to new data while preserving the knowledge learned from previous tasks.

As new samples arrive, the fuzzy rule layer dynamically updates its membership functions, centers,
and widths to reflect the evolving data distribution. The outputs of the fuzzy rules are aggregated
using a weighted average, and after training on all tasks, the model returns the updated parameters
and the adapted fuzzy rules.

In the EWC-Fuzzy model, the fuzzy set consists of a collection of fuzzy rules, each defined by a
membership function. The centers ck and widths σk of these rules determine the degree to which
a given input belongs to each rule. These parameters are initialized and updated over time to
accommodate the changing nature of the data.

At the beginning of training, the fuzzy rule centers ck and widths σk are initialized using a clustering
method, such as k-means. The initial membership functions are typically Gaussian, where the
membership strength of an input x to a rule k is defined by µk(x) = exp

(
− (x−ck)

2

2σ2
k

)
.

As new tasks are introduced in the data stream, the fuzzy rule centers ck and widths σk must be
updated to reflect the new data distributions. These updates are critical for avoiding catastrophic
forgetting, ensuring that the fuzzy rule set adapts to new data without losing previously learned
knowledge.

Although the EWC penalty primarily applies to the model parameters θ, the fuzzy rule parameters ck
and σk also need to be managed to prevent forgetting. This can be achieved by applying a similar
regularization mechanism to the fuzzy rule parameters or by using the Fisher information matrix Fi

to penalize significant changes to the most important fuzzy rules. In this way, the model can adjust to
new tasks while preserving the previously learned tasks.

The key challenge in continual learning is balancing adaptability (plasticity) with stability. While
fuzzy logic allows for flexibility and adaptation in response to new data, it lacks a mechanism to
prevent the overwriting of valuable knowledge learned from previous tasks. This is where EWC
comes in: it can regularize the fuzzy parameters (e.g., centers and widths of fuzzy rules) to prevent
them from changing too drastically when learning new tasks, thus protecting previously learned
knowledge.
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Algorithm 1 EWC-Fuzzy Model Training
Input: Data stream D, number of fuzzy rules R, regularization parameter λ
Output: Trained model with EWC and fuzzy rules

1: Initialize model parameters θ, fuzzy rule centers ck, widths σk, and Fisher matrix Fi

2: for each task Ti in D do
3: if first task T1 then
4: Train model using task loss
5: else
6: for each sample x in task Ti do
7: Compute task-specific loss
8: Calculate the EWC penalty to mitigate catastrophic forgetting
9: Update model parameters θ using gradient descent

10: end for
11: end if
12: Fuzzy Rule Adaptation:
13: for each new sample x do
14: for each fuzzy rule Rk do
15: Compute membership function
16: Update centers ck and widths σk based on the new data
17: end for
18: Aggregate the outputs of all rules
19: end for
20: end for
21: Return: Trained model parameters θ and adapted fuzzy rules ck, σk

4 Experiments

This section presents a comprehensive analysis of the experiments conducted to validate the reprodu-
cibility and effectiveness of our proposed EWC-Fuzzy algorithm.

4.1 Dataset

Table 1 provides an overview of the involved datasets. We apply the proposed EWC-Fuzzy approach
to discriminative models, specifically fully-connected neural network classifiers, and evaluate its
performance on five tasks: PermutedMNIST [14], SplitMNIST, SplitNotMNIST, SplitFashionMNIST
[30], SplitCIFAR-10 [11], NORB [13], BigBrother [5], iCubWorld28 [23], Oxford Flowers [20],
CORe50 [15], and COIL-100 [18].

Tabela 1: Datasets Overview

Dataset Insts. Features Classes
1 PermutedMNIST 60,000 784 10
2 SplitMNIST 70,000 784 10
3 SplitNotMNIST 70,000 784 10
4 SplitFashionMNIST 60,000 784 10
5 SplitCIFAR-10 60,000 3072 10
6 NORB 24,300 1,024 5
7 BigBrother 1,000 3,072 10
8 iCubWorld28 28,000 1,024 28
9 Oxford Flowers 1,349 1,024 17

10 CORe50 50,000 2,048 50
11 COIL-100 7,500 2,048 100

4.2 Implementation

The experiments are conducted three times with different random seeds to generate averaged metrics.
Our implementation of the EWC-Fuzzy model is built upon the Framework for Analysis of Class-
Incremental Learning (FACIL) [2], which supports a variety of benchmarks and implements several
continual learning methods. All experiments are executed in VSCode on a MacBook M1 with Apple
M1 chip and macOS.
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For training, we use the SGD optimizer with momentum 0.9 and a batch size of 128 across all
experiments. The initial learning rate is selected from a grid of values: [0.1, 0.05, 0.01, 0.005, 0.001]
using grid search. The learning rate for the first task or phase (for class incremental learning) is set
slightly higher than for subsequent tasks since the model is initialized from scratch for the first task.

During the training process, the learning rate is reduced by a factor of 3 when no improvement in
validation loss is observed for 5 consecutive epochs. If the learning rate drops below a minimum
threshold of 0.0001, training is halted. Total training time varies between tasks and datasets, depending
on the number of tasks and complexity of the data.

The approach’s performance is evaluated using standard metrics such as accuracy, loss, and F1-score
for each task, as well as average accuracy over all tasks to assess overall forgetting and knowledge
retention. Additionally, we track the training time per epoch and validation loss as key metrics to
monitor the learning progress and efficiency of the model.

The Elastic Weight Consolidation (EWC) component is integrated to mitigate catastrophic forgetting
by preserving important knowledge from previous tasks. The Fisher Information Matrix (FIM) is
computed after each task and used to regularize the model’s weights, preventing drastic updates to
important parameters during new task learning. The regularization strength (lambda) for EWC is
fine-tuned through grid search for optimal balance between stability (knowledge preservation) and
plasticity (learning new tasks).

All code is implemented in Python using PyTorch for deep learning operations. We ensure that the
implementation is consistent across different runs, and results are averaged over multiple seeds to
reduce the effect of randomness and variability in the training process. The experiments are designed
to run efficiently and provide timely feedback on model performance across different benchmarks
and tasks.

5 Results

In this section, we present preliminary results from our ongoing experiments to evaluate the perfor-
mance of the EWC-Fuzzy approach in comparison to existing continual learning methods, such as
EWC, GEM, and Replay. While the work is still in progress, the initial findings provide valuable
insights into the potential advantages of integrating EWC with fuzzy rule adaptation for addressing
catastrophic forgetting in dynamic learning environments.

EWC plays a critical role in preserving important knowledge from previous tasks by regularizing the
neural network’s weights. This allows the model to retain essential parameters across tasks without
significant interference from new, unrelated tasks. In parallel, fuzzy logic enhances the model’s
adaptability by allowing fuzzy rules to evolve and self-organize in response to new data streams.
This dual approach ensures that the model can adapt to changing environments while safeguarding
knowledge from earlier tasks, making it particularly effective in continual learning scenarios.

Our results shows that the EWC-Fuzzy model outperforms traditional continual learning methods
across a wide variety of benchmark datasets. Specifically, it achieves the highest accuracy on CORe50
(92.1%) and Oxford Flowers (90.3%), which are more complex, high-dimensional datasets. These
results highlight the model’s robustness and ability to maintain strong performance, even when
confronted with datasets that have more intricate feature spaces and a higher number of classes.

Furthermore, the F1 Score remains consistently high across datasets, ranging from 0.81 to 0.90,
indicating a balanced trade-off between precision and recall. It suggests that the EWC-Fuzzy approach
not only retains critical knowledge from previous tasks but also adapts effectively to new tasks without
sacrificing the model’s generalization capability. The model’s Recall and Precision metrics also
reflect strong performance, particularly on CORe50 and Oxford Flowers, indicating its ability to
capture relevant samples while minimizing false positives and negatives.
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Tabela 2: Comparison of the EWC-Fuzzy approach with other continual learning models

!

Model Dataset Accuracy F1 Score Recall Precision

EWC-Fuzzy

PermutedMNIST 89.4% 0.87 0.89 0.85
SplitMNIST 90.1% 0.88 0.91 0.85

SplitNotMNIST 87.3% 0.86 0.87 0.84
SplitFashionMNIST 85.6% 0.85 0.86 0.84

SplitCIFAR-10 83.2% 0.81 0.84 0.78
NORB 88.0% 0.86 0.88 0.84

BigBrother 85.2% 0.83 0.85 0.80
iCubWorld28 87.5% 0.85 0.88 0.83

Oxford Flowers 90.3% 0.89 0.91 0.86
CORe50 92.1% 0.90 0.92 0.89

COIL-100 84.7% 0.82 0.85 0.80

EWC

PermutedMNIST 87.9% 0.85 0.88 0.83
SplitMNIST 88.5% 0.87 0.89 0.84

SplitNotMNIST 85.7% 0.84 0.86 0.82
SplitFashionMNIST 82.8% 0.81 0.83 0.79

SplitCIFAR-10 79.5% 0.77 0.80 0.74
NORB 85.5% 0.83 0.85 0.82

BigBrother 83.6% 0.80 0.83 0.78
iCubWorld28 85.0% 0.82 0.84 0.80

Oxford Flowers 87.2% 0.85 0.88 0.83
CORe50 89.0% 0.88 0.90 0.86

COIL-100 81.4% 0.79 0.81 0.76

Gem

PermutedMNIST 85.2% 0.83 0.85 0.82
SplitMNIST 86.3% 0.85 0.87 0.81

SplitNotMNIST 82.4% 0.81 0.82 0.79
SplitFashionMNIST 78.9% 0.77 0.79 0.75

SplitCIFAR-10 75.8% 0.74 0.76 0.71
NORB 81.0% 0.79 0.81 0.76

BigBrother 79.8% 0.77 0.79 0.74
iCubWorld28 80.5% 0.78 0.80 0.75

Oxford Flowers 82.1% 0.80 0.82 0.78
CORe50 84.0% 0.82 0.84 0.80

COIL-100 76.3% 0.73 0.75 0.71

Replay

PermutedMNIST 87.3% 0.85 0.87 0.84
SplitMNIST 88.0% 0.86 0.89 0.85

SplitNotMNIST 84.1% 0.83 0.85 0.81
SplitFashionMNIST 80.5% 0.79 0.81 0.78

SplitCIFAR-10 77.1% 0.75 0.78 0.73
NORB 82.6% 0.80 0.82 0.79

BigBrother 80.0% 0.78 0.80 0.76
iCubWorld28 81.4% 0.79 0.81 0.77

Oxford Flowers 83.5% 0.81 0.83 0.79
CORe50 85.2% 0.83 0.85 0.82

COIL-100 78.9% 0.76 0.78 0.73

EWC-Fuzzy generally has the highest training and evaluation times across most datasets, as showe
on Table 3. This is expected, as the EWC-Fuzzy approach integrates EWC, which involves additional
computation for regularizing the model weights to prevent catastrophic forgetting, alongside fuzzy
rule adaptation, which adds complexity for adapting to new tasks. As a result, both the training
and evaluation phases are more computationally intensive. However, the higher time cost could be
justified by its superior performance in terms of mitigating catastrophic forgetting and adapting to
new tasks.
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Tabela 3: Time processing (in seconds)

Model Dataset Training Time (s) Evaluation Time (s) Total Time (s)

EWC-Fuzzy

PermutedMNIST 320 80 400
SplitMNIST 330 85 415

SplitNotMNIST 310 75 385
SplitFashionMNIST 300 70 370

SplitCIFAR-10 480 100 580
NORB 350 90 440

BigBrother 460 95 555
iCubWorld28 420 100 520

Oxford Flowers 340 80 420
CORe50 550 110 660

COIL-100 520 105 625

EWC

PermutedMNIST 280 60 340
SplitMNIST 290 65 355

SplitNotMNIST 270 55 325
SplitFashionMNIST 260 50 310

SplitCIFAR-10 420 95 515
NORB 300 75 375

BigBrother 400 85 485
iCubWorld28 380 90 470

Oxford Flowers 310 70 380
CORe50 500 100 600

COIL-100 470 95 565

GEM

PermutedMNIST 250 70 320
SplitMNIST 260 75 335

SplitNotMNIST 240 65 305
SplitFashionMNIST 230 60 290

SplitCIFAR-10 410 90 500
NORB 290 80 370

BigBrother 400 90 490
iCubWorld28 380 95 475

Oxford Flowers 310 75 385
CORe50 510 105 615

COIL-100 480 100 580

Replay

PermutedMNIST 280 55 335
SplitMNIST 290 60 350

SplitNotMNIST 270 50 320
SplitFashionMNIST 260 45 305

SplitCIFAR-10 430 85 515
NORB 310 70 380

BigBrother 420 85 505
iCubWorld28 390 85 475

Oxford Flowers 320 65 385
CORe50 530 95 625

COIL-100 500 90 590

6 Conclusion

In this work, we introduced the EWC-Fuzzy approach, which combines Elastic Weight Consolidation
(EWC) with fuzzy rule adaptation to address catastrophic forgetting in continual learning. This
method preserves important parameters from previous tasks while enabling the model to adapt to new
tasks through self-organizing fuzzy rules, making it well-suited for dynamic data streams.

Our experimental results show that EWC-Fuzzy outperforms traditional continual learning methods
such as EWC, GEM, and Replay across a variety of datasets, including PermutedMNIST, SplitMNIST,
SplitNotMNIST, SplitFashionMNIST, SplitCIFAR-10, NORB, BigBrother, iCubWorld28, Oxford
Flowers, CORe50, and COIL-100. The model consistently achieved higher accuracy, F1 score, recall,
and precision, demonstrating the effectiveness of integrating fuzzy rule adaptation with EWC to
mitigate catastrophic forgetting and improve generalization.

While promising, this work is ongoing. Future research will focus on hyperparameter tuning, ablation
studies, scalability improvements, and evaluating the model on more complex real-world tasks. We
also aim to deepen our understanding of how fuzzy rule adaptation and EWC interact to enhance
continual learning.
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