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ABSTRACT

We develop a linear response framework for interpretability that treats a neural
network as a Bayesian statistical mechanical system. A small perturbation of the
data distribution, for example shifting the Pile toward GitHub or legal text, induces
a first-order change in the posterior expectation of an observable localized on a
chosen component of the network. The resulting susceptibility can be estimated
efficiently with local SGLD samples and factorizes into signed, per-token contri-
butions that serve as attribution scores. We combine these susceptibilities into a
response matrix whose low-rank structure separates functional modules such as
multigram and induction heads in a 3M-parameter transformer.

1 INTRODUCTION

The microscopic organization enabling the complex behaviors of neural networks remains poorly
understood. This paper introduces susceptibilities, a novel interpretability framework rooted in
statistical physics, to probe this internal structure. We treat a neural network as a Bayesian statistical
mechanical system (Balasubramanian, 1997; LaMont and Wiggins, 2019) where an infinitesimal,
controlled perturbation to the data distribution induces a first-order linear response in the expected
behavior of a chosen network component, such as an attention head. This response, the susceptibility,
quantifies the component’s sensitivity to the specific data shift (Section 2) and is further related to
geometry and generalization within singular learning theory Watanabe (2007).

Contributions. Our main contribution is the development of a new interpretability paradigm
derived from Bayesian learning theory and statistical physics. In particular:

• We derive the theoretical framework of susceptibilities for quantifying how model com-
ponents respond to changes in the data distribution. This provides a principled link between
structure in data and model internals.

• We introduce the methodology of structural inference for discovering internal structure in
neural networks and attributing that structure to patterns in data. This yields new insight
into how models balance expression and suppression.

Applying this methodology to a 3M-parameter transformer trained on the Pile (Section 4.2) we
demonstrate that attention heads exhibit meaningfully differentiated susceptibilities to various data
shifts. Our structural inference approach successfully distinguishes and separates known functional
circuits from Hoogland et al. (2025),Wang et al. (2024) such as the induction circuit. This work
thus provides a principled and empirically validated tool for dissecting the functional organization of
neural networks, offering insights that align with and extend prior mechanistic studies.

2 THEORY

2.1 SETUP

We consider the model-truth-prior triplet (p(y|x,w), q(x, y), φ(w)) where q(x, y) = q(y|x)q(x) is
the true data-generating mechanism, p(y|x,w) is the posited model of the conditional distribution
with parameter w ∈ W ⊂ Rd representing the neural network weights, and φ is a prior on w. We
assume that q(x, y) > 0 and p(y|x,w) > 0 for all (x, y) ∈ X × Y and w ∈ W . We assume W is

1
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compact. Let the sample spaces X,Y be measure spaces so that q(x, y) is a probability density with
respect to the measure µ on X × Y . In our intended application X is the set of sequences of lengths
1 ≤ k < K in some alphabet Σ of tokens and Y = Σ, with the counting measure.

Given a dataset Dn = {(xi, yi)}ni=1, drawn i.i.d. from q(x, y), we define the sample negative
log-likelihood function as Ln(w) = − 1

n

∑n
i=1 log p(yi|xi, w) and its theoretical counterpart, the

average negative log-likelihood or population loss, as L(w) = −Eq(x,y) log p(y|x,w). The quenched
posterior at inverse temperature β > 0 and sample size n is

pβn(w) =
1

Zβn
exp{−nβL(w)}φ(w) where Zβn =

∫
exp{−nβL(w)}φ(w) dw. (1)

2.2 VARIATION IN THE TRUTH

We consider a one-parameter variation of the data distribution of the following form. Let H ⊆ R
be some open interval containing 0 and for h ∈ H let qh(x, y) be a probability density with
respect to the measure µ on X × Y . We assume that h 7→ qh is differentiable as a map from
H to L1(X × Y, µ). We write dxdy for dµ(x, y). The average negative log-likelihood for qh is
Lh(w) = −Eqh(x,y) log p(y|x,w) and the quenched posterior is

pβn(w|h) =
1

Zβ,hn

exp{−nβLh(w)}φ(w) where Zβ,hn =

∫
exp{−nβLh(w)}φ(w) dw. (2)

The simplest kind of one-parameter variation in the data distribution is a mixture. Let q′ be another
probability density on X × Y . Given h ∈ [0, 1] we define

qh = (1− h) q + h q′ . (3)

Then the (one-sided) derivative exists and is the function gh(x, y) = q′(x, y)− q(x, y).

2.3 SUSCEPTIBILITIES

A response function measures how some observable changes under a small external perturbation
or variation of a controlling parameter. In our Bayesian setting, suppose we pick an observable (a
function or generalized function (Gelfand and Shilov, 1977) on parameter space) ϕ(w). We then
consider its (quenched) posterior expectation, where we denote by h some hyperparameter

⟨ϕ⟩β,h =

∫
ϕ(w)pβn(w|h)dw. (4)

If we drop h from the notation it means we are computing expectations with respect to the unperturbed
(quenched) posterior (i.e. h = 0). A small change in h induces a shift in the posterior as a distribution,
and some aspect of this shift is captured by the shift in the expectation value ⟨ϕ⟩β,h.

Definition 2.1. The susceptibility of ϕ to the perturbation qh at inverse temperature β is

χ =
1

nβ

∂

∂h
⟨ϕ⟩β,h

∣∣∣∣
h=0

. (5)

Lemma 2.2. The susceptibility for an observable ϕ is computed by

χ = −Covβ
[
ϕ,∆L

]
(6)

where Covβ
[
ϕ,∆L

]
=

〈
ϕ∆L

〉
β
−
〈
ϕ
〉
β

〈
∆L

〉
β

and ∆L = ∂Lh

∂h

∣∣∣
h=0

.

Proof. See Appendix A.

Lemma 2.3. For the (data-mixture) susceptibility, qh is the variation in (3), and we have ∆L(w) =
L1(w)− L(w) where L1(w) and L(w) are Lh(w) with h = 1 and h = 0, respectively.

Proof. See Appendix A.

2
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From the lemma we learn that the susceptibility can be defined in terms of the unperturbed posterior.
Next we define the primary class of observables to be considered in this paper. We consider models
p(y|x,w) parametrized by neural networks with weights w ∈W . By a component, we mean a subset
C of these weights (e.g., an attention head in a transformer). Formally, a component is a product
decomposition W = U × C with U the parameters not in the component.
Definition 2.4. Given a component C with W = U × C and a chosen parameter w∗ = (u∗, v∗)
write w = (u, v) and define

ϕC(w) = δ(u− u∗)
[
L(w)− L(w∗)

]
. (7)

The motivation for using the observable ϕC in the setting of susceptibilities is that its expectation
value is related to refined learning coefficients introduced in Wang et al. (2024). This means that
we can think of the susceptibility associated to this observable as a kind of “rate of change” of the
local learning coefficient, a geometric measure of model complexity (Appendix D.3). This provides a
principled link between susceptibilities, generalization error in Bayesian statistics and changes in the
geometry of the loss landscape with changes in the data distribution (Watanabe, 2009).
Definition 2.5. The per-sample susceptibility of C for (x, y) ∈ X × Y is

χC(x,y) := −Covβ
[
ϕC , ℓ(x,y)(w)− L(w)

]
, ℓ(x,y)(w) = − log p(y|x,w) . (8)

The notation is justified by the fact that the expectation of χC(x,y) under the probe distribution q′(x, y)
is the susceptibility χ of ϕC (see Appendix A). In our applications x is a sequence of tokens, y is a
single token and so we also refer to χC(x,y) as the per-token susceptibility.

3 METHODOLOGY

In condensed matter physics, one way to define internal structure is that it is what causes the
patterns that manifest in the responses of a system to external perturbations, as measured by natural
observables (Altland and Simons, 2010, §7). In the previous section, we adapted this perspective to
neural networks: changes in data are the external fields or perturbations we use to probe the system,
changes in component-wise loss ϕC are the observables, and the susceptibility is the response.

In Section 3.1, we develop the local susceptibility, which enables us to practically estimate sus-
ceptibility matrices for individual neural network checkpoints. We then discuss how to interpret
positive and negative susceptibility values as suppression and expression, respectively (Section 3.2).
Finally, in Section 3.3, we introduce structural inference, a framework for identifying the patterns
that manifest across a set of susceptibilities or, equivalently, for discovering internal structure.

3.1 ESTIMATING THE LOCAL SUSCEPTIBILITY

In practice, we are concerned with the properties of specific neural network checkpoints trained
via stochastic optimizers, rather than ensembles drawn from the full Bayesian posterior. Moreover,
sampling from global posterior is computationally infeasible. To circumvent these issues, we
introduce local susceptibilities, which make it possible to estimate susceptibilities for individual
models with samplers like Stochastic Gradient Langevin Dynamics (SGLD; Welling and Teh 2011).

We “localize” the posterior by replacing the prior φ with a Gaussian prior centered at w∗, a local
minimizer of L(w). This ensures that sampling remains in a small neighborhood of w∗. We define a
local Gibbs posterior (Bissiri et al., 2016) with inverse temperature β > 0,

p(w;w∗, β, γ) ∝ exp
{
−nβLn(w)−

γ

2
||w − w∗||22

}
, (9)

as well as a local quenched posterior,

p(w;w∗, β, γ, h) ∝ exp
{
−nβLh(w)− γ

2
||w − w∗||22

}
. (10)

Given an observable ϕ, we write the associated local (quenched) expectation as ⟨ϕ;w∗⟩β,h which is
the integral against this distribution

∫
ϕ(w)p(w;w∗, β, γ, h)dw.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Per-token susceptibilities reveal patterns of expression and suppression. In this context,
the beginning of three lines are shown. Each line is repeated six times, and each repeat is divided
into three color bars. These bars correspond to individual heads 0:0 -0:7 in layer 0 and 1:0 -1:7
in layer 1, as shown on the left. The susceptibility values are standardized for each head, with
solid red representing a z-score of -3 and solid green representing a z-score of +3. We see that the
susceptibility increases for some heads on repeated token sequences like Prior Art . These
positive susceptibilities are examples of the suppression of induction patterns.

Definition 3.1. We define the local susceptibility at inverse temperature β to be

χ(w∗) =
1

nβ

∂

∂h
⟨ϕ;w∗⟩β,h

∣∣∣∣
h=0

. (11)

By Lemma 2.2 we can write

χ(w∗) = −
〈
ϕ∆L;w∗〉

β
+
〈
ϕ;w∗〉

β

〈
∆L;w∗〉

β
. (12)

We fix a mixture percentage δh ∈ (0, 1) and, as in Remark D.1, approximate ∆L by

∆Ln(w) := Lδhn (w)− Ln(w) (13)

for a dataset size n. We also replace the expectations in (12) over the quenched posterior (10) with
expectations over the ordinary localized posterior (9) involving Ln. We obtain an estimator for the
per-token susceptibility χ̂(x,y) by replacing Lδhn with ℓ(x,y) (see Appendix C.4).

We compute Ln(w) by drawing a sample from the original data distribution q, and Lδhn (w) by
drawing a set of samples of size n, consisting of a mixture of samples from the unperturbed data
distribution and samples from the perturbed data distribution (the mixture being controlled by δh).
Given approximate samples {wt}rt=1 from the (unperturbed and unquenched) localized posterior
with parameter β we compute our estimate of the susceptibility to be

χ̂(w∗) := −1

r

r∑
t=1

[
ϕ(wt)∆Ln(wt)

]
+

1

r2

[ r∑
t=1

ϕ(wt)
][ r∑

t=1

∆Ln(wt)
]
. (14)

We further average this quantity over multiple chains {wt}rt=1. For the precise expression that we
implement in code in our experiments, see Appendix C.2.

3.2 INTERPRETING SUSCEPTIBILITIES AS expression AND suppression

The per-token susceptibility is defined as the first-order response of an expectation value to a change
in the data distribution and as such, it is intrinsically meaningful. However there is a more concrete
interpretation which is helpful in interpreting the empirical results in this paper.

4
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Note that by linearity of the covariance

χC(x,y) = −Covβ
[
δ(u− u∗)

[
L(w)− L(w∗)

]
, ℓ(x,y)(w)− L(w)

]
= −Covβ

[
δ(u− u∗)L(w), ℓ(x,y)(w)

]
︸ ︷︷ ︸

ψC
(x,y)

+Covβ

[
δ(u− u∗)L(w), L(w)

]
︸ ︷︷ ︸

Does not depend on x, y

we get a decomposition of the per-token susceptibility into a part ψC(x,y) which depends on both C
and the token sequence xy and a part that depends only on C. In our analysis we will form matrices
of per-token susceptibilities and then standardize them by subtracting the mean across rows which
are indexed by pairs (x, y). This process of standardization cancels off the second term above and
this means that our analysis ultimately depends only on the first summand ψC(x,y).

We call this the standardized susceptibility and now offer an interpretation of the sign of this term.

The standardized susceptibility measures how δ(u− u∗)L(w) and ℓ(x,y)(w) covary when we perturb
w away from w∗, with perturbations being more likely according to their probability in the quenched
posterior (that is, perturbations which increase the population loss L(w) are exponentially suppressed).
A variation in w which only changes L(w) by a small amount may nonetheless increase ℓ(x,y)(w)
for some tokens and lower it for others, and this correlation is what we care about.

Negative standardized susceptibility means that variations w∗ → w which increase ℓ(x,y) (that is,
make y less probable in context x) tend to be perturbations in the weights of C which increase the loss
overall. This makes sense if (x, y) follows a pattern that C is involved in predicting, mechanistically.
Thus we associate negative susceptibility with the component C expressing that y should follow x.

Positive standardized susceptibility means that variations w∗ → w which lower ℓ(x,y) (that is, make
y more probable in context x) tend to be perturbations in the weights of C which increase the loss
overall. This makes sense if (x, y) follows a pattern that C is involved in “opposing”, mechanistically.
It could be predicting an alternative completion, or just decreasing the probability of this one. Thus
we associate positive susceptibility with the component C suppressing the continuation of x by y.

Sign of ψ Interpretation

ψCxy < 0 Expression Variations in C which decrease loss, also raise p(y|x,w).
ψCxy > 0 Suppression Variations in C which decrease loss, also lower p(y|x,w).

A visualization of the pattern of expression and suppression in natural language is given in Figure 1.
For an analogy with magnetic susceptibility see Appendix D.1.

A natural question is how this susceptibility-centered notion of expression and suppression relates to
existing work on prediction and suppression neurons in mechanistic interpretability, characterized
through direct effects on logits (Gurnee et al., 2024b) (Lad et al., 2025). Our preliminary investigation
does not reveal any simple relation (Appendix H).

3.3 SUSCEPTIBILITIES FOR STRUCTURAL INFERENCE

Our main application of susceptibilities is to discovering internal structure in neural networks. In our
approach we start with two inputs: a finite set of components {Cj}j∈H with associated observables
ϕj := ϕCj

(e.g. attention heads) and a finite set of data distributions {qd}d∈D with associated
variations from q by taking mixtures (e.g. Pile subsets like GITHUB). We refer to this as a probe set
and the individual data distributions as probe distributions. The responses are by definition the entries
of the |D| × |H| data matrix or response matrix

X =
(
χ̂
Cj

d

)
d∈D,j∈H (15)

where χ̂Cj

d is the estimated susceptibility of observable ϕCj
with respect to the variation of q in the

direction of qd. Alternatively we can perform the analysis at the token level using variations in the
data distribution which upweight continuations y in contexts x, where some number of samples

5
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(x, y) are taken from each qd and we use a data matrix containing per-token susceptibilities for these
samples (see Section 4.2 below).

In this view internal structure in the network means the linear algebraic structure of X (to first-
order). In Appendix D.4, we explain how for a particular formal definition of “patterns” in the data
distribution (which we call modes, following Chen and Murfet (2025)) we can factor X as a product
X = CP where C consists of coupling constants between the probe distributions and modes, and P
couples observables and modes.

This motivates applying PCA to the data matrix and identifying the principal components (left singular
vectors multiplied by singular values) with patterns in the data and the loadings (right singular vectors)
with structures in the model. We call this approach, where we infer the internal structure in models
via data analysis of matrices of susceptibilities, structural inference.

4 RESULTS

In this section, we apply our framework to study structure in a small language model. Our analysis
automatically identifies attention heads’ different functional roles, specializations, and higher-level
structure like the “induction circuit.” Following Elhage et al. (2021), Olsson et al. (2022), Hoogland
et al. (2025) and Wang et al. (2024) we study two-layer attention-only (without MLP layers) trans-
formers trained on next-token prediction on a subset of the Pile (Gao et al., 2020; Xie et al., 2023).
For architecture and training details see Hoogland et al. (2025). Throughout, we refer to attention
head h ∈ {0, . . . , 7} in layer l ∈ {0, 1} by the notation l:h . The empirical loss for the transformer is
defined in the usual way (see Appendix C.1).

We denote by Σ the set of tokens. For tokenization, we used a truncated variant of the GPT-2 tokenizer
that cut the original vocabulary of 50,000 tokens down to 5,000 (Eldan and Li, 2023). We denote
token sequences as follows: wa vel ength is a sequence of three tokens. We set X to be
the disjoint union X =

⊔K−1
k=1 Σk and Y = Σ, both with the counting measure. We assume given

a probability distribution qk(x, y) on Σk × Σ for 1 ≤ k < K and define q(x, y) = 1
K−1qk(x, y)

for x ∈ X, y ∈ Y with x of length k. The conditional distribution p(y|x,w) is parametrized by the
transformer in the usual way (Phuong and Hutter, 2022).

4.1 SANITY CHECKS

We performed a range of checks to validate that our estimates of susceptibilities are non-trivial.
While some of these are of independent interest, we have relegated them to appendices which we
now summarize: (Appendix F) Across heads and datasets there is a significant variation in the
susceptibilities (so there is signal); (Appendix E.1) The correlation of per-token susceptibilities with
per-token losses and loss difference after ablation is very small (so the signal is not redundant),
(Appendix E.2) Per-token susceptibilities tend to increase with context length especially for some
layer 1 heads (so the signal depends also on x, not just y); (Appendix E.3) Per-token susceptibilities
explain variation in overall susceptibilities (which justifies their use); (Appendix E.4) The same token
y can appear with positive or negative susceptibility depending on context.

4.2 FINDING INTERNAL STRUCTURE WITH SUSCEPTIBILITIES

We adopt the hypothesis from Wang et al. (2024) that internal structure in models reflects structure in
the data distribution (Harris, 1954; Rogers and McClelland, 2004; Saxe et al., 2019). We therefore
organize our results around six kinds of patterns, by which we mean a property of a token sequence
xy (full definitions in Appendix C.8; examples in Figure 2):

• Word start: a token that decodes to a space followed by lower or upper case letters.
• Word part: a non-word-end token that decodes to a sequence of upper or lower case letters.
• Word end: a token that decodes to a sequence of upper or lower case letters followed by a

formatting token (see Appendix C.8 for an exhaustive list) delimiter or space.
• Induction pattern: a sequence of tokens uvUuv where U is a sequence of any length, u, v

are individual tokens, and uv is not a common bigram, q(v|u) ≤ 0.05.

6
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Patterns in Data
Data-loadings of the 
susceptibilities matrix

wa vel ength
 differe nces 

Word End
wa vel ength
 differe nces 

Word Part
wa vel ength
 differe nces 

Word Start Induction Pattern

A B ... A BA B ... A B

Delimiters
( ... )
</ ... >

" ... ")
[ ... ]

\n \t \r
\n\n

Spacing

Figure 2: Susceptibilities decompose into interpretable loadings over data. Among the tokens with
the coefficients of the largest magnitude in each principal component for the per-token susceptibility
PCA, the percentage following each of the six patterns. The components are computed separately for
each layer.

• Spacing: a token made up of one or more characters from , \n , \t , \r , \f .
• Right delimiter: brackets and composite tokens, e.g. ) , ) , ] , ); .

We randomly sample N = 20000 tokens from each dataset and form the data matrix

X(l) = (χ̂
Cj

d,i)d∈D,1≤i≤N,j∈H(l)

whereH(l) indexes the heads in layer l ∈ {0, 1}, D all datasets, and χ̂Cj

d,i = χ̂
Cj

(x,y) is the estimated
per-token susceptibility for the observable ϕCj

where (x, y) is the ith sampled token y in context x in
dataset d. The data matrix has size N |D| × |H(l)|. We perform PCA on this data matrix (including
standardizing the columns) and find the top three PCs explaining resp. 95.34%, 1.83%, 0.73% of the
variance for layer 0 and 99.14%, 0.39%, 0.11% for layer 1. We examine the principal components to
find the top positive and negative per-token susceptibilities and find the frequency of our six patterns
among these top tokens. The resulting “data loadings” are shown in Figure 2, and in Appendix C.8
we include the background frequencies. The “component loadings” are shown in Figure 3. In the
following we provide interpretations for each principal component.

PC1: Word segmentation The first PC is uniform across the heads in layer 0 and layer 1 and
explains the majority of the variance. The interpretation is visually apparent in Figure 4: on most
tokens the heads have similar susceptibilities which are broadly positive for word endings, induction
patterns and right delimiters and negative for word starts and spaces. Note that, as with human infants,
one of the first problems a language model must solve in acquiring language is word segmentation:
identifying boundaries in a stream of tokens (Goldwater et al., 2009). It is therefore notable that
the strongest pattern in the per-token susceptibilities seems to be associated with the model having
learned to segment the token stream into words.

PC2: The induction circuit In data, PC2 is dominated by the dichotomy between word endings
(positive) and induction patterns (negative). In components, PC2 has positive loadings on all heads
identified in Wang et al. (2024) as being part of the induction circuit for this model, and negative
loadings on the remaining heads. The induction circuit consists of the induction heads 1:6 , 1:7
composing with the previous-token heads 0:1 , 0:4 and current-token head 0:5 .

In Wang et al. (2024) it was found that the negative effect of ablating the heads 1:0 - 1:5 was mainly
on prediction of n-grams and skip n-grams and were thus termed layer-1 (L1) multigram heads. The

7
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Figure 3: Susceptibilities decompose into interpretable loadings over components. The loadings
of the top two principal components for per-token susceptibility PCA on attention heads.

interpretation of PC2 is therefore that the induction circuit tends to express induction patterns which
the remaining heads (including the layer 1 multigram heads) suppress, with the role of expression
and suppression reversed for word endings.

We note that the appearance of the induction circuit as the heads with positive loadings in PC2 holds
across all four independently trained seeds that we considered (Appendix I). In this sense structural
inference finds the induction circuit and associates it with a pattern in the data distribution.

PC3: Bracket matching . In data, PC3 has more variation between the two layers than the earlier
PCs, but in both layers there is a significant negative loading on right delimiters. This is interesting
because among the five positively loaded components in Figure 3 are 0:7 , 1:3 , 1:5 which were
identified using ablations in Wang et al. (2024, Appendix B.3) as Dyck heads meaning that they are
involved in predicting matching closing brackets of various kinds.

The role of 1:4 here is unclear, but it was noted in (Wang et al., 2024, Appendix B.4.2) that this head
seems to specialize in verb-particle phrases and other patterns including :// . . . / which could be
viewed as generalized bracketings. The presence of this head in PC3 could also be explained by the
data loadings on other patterns besides delimiters. Overall this component seems somewhat related
to structure in the model for predicting brackets previously identified in Wang et al. (2024), although
not as clearly as PC2 is related to the induction circuit.

To check the robustness of the claim to have distinguished the layer 1 multigram heads from the
induction heads by per-token susceptibility PCA, we run an independent analysis in Appendix G.1
using PCA of the full susceptibilities including the values over training.

5 RELATED WORK

Ablations and mechanistic interpretability. Susceptibilities measure correlations of various
changes in losses that result from perturbing the weights. A somewhat analogous set of techniques are
ablations, which involve perturbing activations. These are widely used in mechanistic interpretability
to test hypotheses about the computation being performed by parts of neural networks (Chan et al.,
2022; Wang et al., 2023a; Rauker et al., 2023; Bereska and Gavves, 2024). By performing these
interventions and observing the change in losses, researchers aim to infer facts about internal structure.
In this paper we compare susceptibilities to zero ablation (Meyes et al., 2020; Hamblin et al., 2023;
Nanda et al., 2023; Morcos et al., 2018; Zhou et al., 2018).

Influence functions. Classical influence functions measure the effect of up-weighting one training
example on an estimator (Cook and Weisberg, 1980; Koh and Liang, 2017). Susceptibilities are
closely related to the Bayesian form of influence functions (Giordano and Broderick, 2023; Iba, 2023).
Suppose we have a dataset Dn = {(xi, yi)}ni=1. We introduce a single new sample (xnew, ynew)
with negative log likelihood ℓ(w;xnew, ynew) into the likelihood with a (small) inverse-temperature
parameter h controlling how “strongly” this new sample is weighted. Concretely, we define

p(w|Dn, h) ∝ exp{−nLn(w)} exp{−h ℓ(w;xnew, ynew)}φ(w).
Next we fix a test point (xtest, ytest) and define an observable ϕ(w) = ℓ

(
w;xtest, ytest

)
. Then

it is easy to check that χ in this case is −Covp(w|Dn)

[
ℓ(w;xtest, ytest), ℓ(w;xnew, ynew)

]
. Thus
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influence functions, in this sense, are a special case of susceptibilities. However, in this paper we
focus on a different special case, where the observables are tied to parts of the model.

Suppression behavior in neural networks. Mechanistic interpretability has discovered many
examples of suppression in language models, such as anti-induction heads that suppress induction
patterns (Olsson et al., 2022; McDougall et al., 2024) and negative name-mover heads that decrease
the probability of an earlier name being copied in the Indirect Object Identification (IOI) circuit
(Wang et al., 2023a). McGrath et al. (2023) explore the phenomenon of self-repair, where later
layers counteract the effects of ablation in earlier layers. McDougall et al. (2024) introduce the
idea of copy suppression more generally, identifying a specific head in GPT2-small that actively
inhibits copying patterns. Further evidence of copy suppression and self-repair across models in the
Pythia family (Biderman et al., 2023) is presented in Tigges et al. (2024) and Rushing and Nanda
(2024). Rushing and Nanda (2024) also speculate that self-repair might be an incorrect framing,
since ablations are inherently evaluating the model off-distribution. These negative components are a
challenge for scaling mechanistic interpretability (McDougall et al., 2024) as self-repair obscures the
effect of ablations; see McGrath et al. (2023) and Rushing and Nanda (2024, §5.1).

Lad et al. (2024) suggest that predictions in neural networks with residual connections (such as
transformers) result from an ensemble of many components which vote (Veit et al., 2016), and some
of those votes may be “against”. Gurnee et al. (2024a) study universal neurons across training seeds
of GPT2 models and find consistently that models learn neurons in later layers that suppress particular
sets of tokens. Building on a perspective in Geva et al. (2022) they endorse a view of networks
building predictions by both “promoting and suppressing concepts in the vocabulary space”. In
this vein Yan and Jia (2025) show that language models answer factual queries by promoting many
answers and then suppressing some of them. More generally, suppression or inhibition has been a
key part of artificial neural networks since McCulloch and Pitts (1990); Wang et al. (2023b).

6 LIMITATIONS AND FUTURE WORK

The main limitation of our methodology is the quality of the approximate posterior sampling method.
The effect of hyperparameter selection in SGLD on susceptibility estimation remains poorly un-
derstood. Furthermore, SGLD generates correlated samples. Averaging over multiple chains only
partially mitigates this issue. In this paper we examine a small 3M parameter model, but as SGLD is
inherently scalable, we do not expect major obstacles in applying the methods to larger models. For
example, Wang et al. (2024) use SGLD to estimate similar observables in Pythia-70M. The main
limitation for scalability is the need for separate posterior samples for each component; for details on
costs up to the scale of 1.4B parameters see Appendix C.5.

7 CONCLUSION

We have introduced susceptibilities, a novel interpretability framework inspired by statistical physics.
In this analogy we view a neural network as a complex material whose internal structure is reflected by
the differential response of parts of that structure to a range of “external fields” in the form of variations
in the data distribution. Applying this methodology to a 3M-parameter transformer demonstrates
that this analogy is fruitful: attention heads exhibit meaningfully differentiated susceptibilities, and
structural inference via response matrix analysis successfully separates known functional modules.

This work builds on the literature establishing singular learning theory (Watanabe, 2009) and local
learning coefficient estimation as principled tools for understanding neural networks and their
development (Lau et al., 2024; Hoogland et al., 2025; Wang et al., 2024; Urdshals and Urdshals, 2025;
Carroll et al., 2025). The study of the balance of expression and suppression using susceptibilities
fits naturally into existing literature within mechanistic interpretability (Section 5). We hope these
techniques will lead to scalable and theoretically principled tools for interpretability in large neural
networks, parallel to existing approaches within mechanistic interpretability such as ablations or
sparse auto-encoders, but with deeper foundations in the mathematical theory of generalization.

9
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8 REPRODUCIBILITY STATEMENT

Appendix C outlines experimental details of the model and of hyperparameters used in sampling and
Appendix B lists hyperlinks to the datasets used.
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APPENDIX

The appendix provides supplementary material to support and expand upon the main text. It is
organized as follows:

• Appendix A: Contains mathematical proofs for lemmas presented in the main text.
• Appendix B: Describes the datasets used in our experiments.
• Appendix C: This section details the experimental and computational methodologies,

covering loss definitions (Appendix C.1), susceptibility estimation (Appendices C.2 to C.4),
scalability to larger models (Appendix C.5), SGLD parameters (Appendix C.6), data mixing
(Appendix C.7), and pattern definitions (Appendix C.8).

• Appendix D: This section offers further theoretical context for susceptibilities, including
analogies to physics (Appendix D.1), discussions on perturbation scale (Appendix D.2),
relation to Local Learning Coefficients (LLCs) (Appendix D.3), connection to data modes
(Appendix D.4), and a geometric interpretation (Appendix D.6).

• Appendix E: This section presents additional empirical results, including metric compar-
isons (Appendix E.1), context length effects (Appendix E.2), explanations of susceptibility
differences (Appendix E.3), bimodal token analysis (Appendix E.4), and further PCA details
(Appendix E.5).

• Appendix F: Presents a detailed breakdown of top per-token susceptibilities across various
attention heads and datasets.

• Appendix G: Details an alternative structural inference approach using PCA on susceptibil-
ity trajectories over training time.

• Appendix I: Analysis of the per-token susceptibility PCA for three additional training runs.
• Appendix J: Information on the sample variance of the principal components and loadings

on heads.
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A PROOFS

Proof of Lemma 2.2. Let Zβ,hn be as in Section 2.2. Then

nβ χ =
∂

∂h
⟨ϕh⟩β,h

∣∣∣
h=0

(16)

=
∂

∂h

[
1

Zβ,hn

∫
ϕh(w) exp(−nβLh(w))φ(w)dw

]∣∣∣
h=0

(17)

=
∂

∂h

1

Zβ,hn

∣∣∣
h=0

Zβn
〈
ϕ
〉
β
− nβ

〈
ϕ∆L

〉
β
. (18)

Since
∂

∂h

1

Zβ,hn

= − 1

(Zβ,hn )2

∫ [
− nβ ∂

∂h
Lh(w)

]
exp(−nβLh(w))φ(w)dw (19)

we have
∂

∂h

1

Zβ,hn

∣∣∣
h=0

=
nβ

Zβn

〈
∆L

〉
β
. (20)

Combining (18) and (20) we obtain

nβ χ = nβ
〈
ϕ
〉
β

〈
∆L

〉
β
− nβ

〈
ϕ∆L

〉
β
.

Dividing through by nβ gives the result.

Proof of Lemma 2.3. We compute

∆L =
∂

∂h
Lh

∣∣∣
h=0

= − ∂

∂h

∫
qh(x, y) log p(y|x,w)dxdy

= −
∫

∂

∂h
qh(x, y) log p(y|x,w)dxdy

= −
∫
(q′(x, y)− q(x, y)) log p(y|x,w)dxdy

= L1(w)− L(w)

using the definition of ∂
∂hqh from Section 2.2.

Lemma A.1. We have

χ =

∫
X×Y

χ(x,y) q
′(x, y) dx dy .

Proof. Exchanging the order of integration gives∫
q′(x, y)χ(x,y)dx dy = −

∫
q′(x, y) Covβ

[
ϕ(w), ℓ(x,y)(w)− L(w)

]
dx dy

= −
∫
q′(x, y)

{〈
ϕ(w)

{
ℓ(x,y)(w)− L(w)

}
;w∗

〉
β

−
〈
ϕ(w);w∗〉

β

〈
ℓ(x,y)(w)− L(w);w∗

〉
β

}
dx dy

= −
〈
ϕ(w)

{
L1(w)− L(w)

}
;w∗

〉
β

+
〈
ϕ(w);w∗〉

β

〈
L1(w)− L(w);w∗

〉
β

= −Covβ
[
ϕ,∆L

]
= χ

where L1(w) =
∫
q′(x, y)ℓ(x,y)(w)dx dy.
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Table 1: Details of the Pile (Gao et al., 2020) subset datasets used in our analysis.

Dataset Description Size (Rows)

PILE-GITHUB Code and documentation from GitHub 100k
PILE-PILE-CC Web crawl data from Common Crawl 100k
PILE-PUBMED_ABSTRACTS Scientific abstracts from PubMed 100k
PILE-USPTO_BACKGROUNDS Patent background sections 100k
PILE-PUBMED_CENTRAL Full-text scientific articles 100k
PILE-STACKEXCHANGE Questions and answers from tech forums 100k
PILE-WIKIPEDIA_EN English Wikipedia articles 100k
PILE-FREELAW Legal opinions and case law 100k
PILE-ARXIV Scientific papers from arXiv 100k
PILE-DM_MATHEMATICS Mathematics problems and solutions 100k
PILE-ENRON_EMAILS Corporate emails from Enron 100k
PILE-HACKERNEWS Tech discussions from Hacker News 100k
PILE-NIH_EXPORTER NIH grant applications 100k
PILE_SUBSETS_MINI Combined samples from all subsets 6.66k
PILE1M Combined samples from all subsets 1M

Note that in the main text we actually consider a mixture between q and (1− δh)q + δh q′ and so
∆L = Lδh(w)−L(w). Substituting in the above we obtain not χ =

∫
q′(x, y)χ(x,y)dx dy but rather

χ = δh

∫
q′(x, y)χ(x,y)dx dy (21)

since Lδh(w) = (1− δh)L(w) + δhL1(w).

B DATA

The datasets we used to evaluate model performance are described in Table 1. These are generated by
filtering for the first 100k rows from subsets of the uncopyrighted Pile (Devin Gulliver, 2025), which
was generated by dropping copyrighted subsets from the Pile (Gao et al., 2020). Several subsets were
omitted because there were too few rows to easily retrieve 100k samples.

We use two github datasets PILE-GITHUB and GITHUB-ALL. The former is a pile subset, while the
latter is CODEPARROT/GITHUB-CODE and is included for consistency with (Wang et al., 2024).

C METHODS

C.1 EMPIRICAL LOSS

Recall that Σ denotes the set of tokens, and our sample space is X × Y where X =
⊔K−1
k=1 Σk and

Y = Σ. For a probability distribution P over tokens we denote by P [t] the probability of token t,
and fw is the function from contexts to probability distributions of next tokens computed by the
transformer then for x ∈ Σk and y ∈ Σ we set

p(y|x,w) = softmax(fw(x))[y] .

See Phuong and Hutter (2022) for a formal definition of transformers. In practice for transformer
training pairs (x, y) are not sampled i.i.d, but instead are generating from full contexts SK =
(t1, . . . , tK) ∈ ΣK . We denote by S≤k the sub-sequence (t1, . . . , tk) of SK . Our dataset Dn is a

All datasets are available on HuggingFace at https://huggingface.co/collections/
timaeus/datasets-pile-subsets-673a6a6c7ffc522a34ebfb0b. These datasets are derived
from The Pile (Gao et al., 2020) and specifically from the uncopyrighted version (Devin Gulliver, 2025), with
cleaning performed by removing all content from the Books3, BookCorpus2, OpenSubtitles, YTSubtitles, and
OWT2 subsets.
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collection of full contexts, {SiK}ni=1. The empirical loss with respect to Dn is

Ln(w) = −
1

n

n∑
i=1

1

K − 1

K−1∑
k=1

log
(
softmax(fw(S

i
≤k))[t

i
k+1]

)
. (22)

We can think of this as the negative log-likelihood for biased samples {(Si≤k, tik+1)}1≤k<K,1≤i≤n
from q(x, y) over X × Y or as the negative log-likelihood for the unbiased samples {SiK}ni=1 over
full contexts with probability model

p(SK |w) =
K−1∏
k=1

p(tk+1|t1, . . . , tk, w) .

In this paper K = 1024 and all full contexts begin with a BOS token <|endoftext|> (which
has index 4999 in our tokenizer) so p does not model the first token. In the case where we think of p
as modelling full contexts the factor of 1

K−1 is unnatural (although standard in transformer training).
If we set ln(w) = (K − 1)Ln(w) then

nβ Ln = n β
K−1 ln

so the effective inverse temperature in tempered posteriors is β
K−1 . Similarly if we want to treat

Ln(w) as the empirical negative log-likelihood for the biased set of n(K − 1) samples then

nβ Ln = n(K − 1) β
K−1 Ln

so the effective inverse temperature is again β
K−1 .

C.2 LOCAL SUSCEPTIBILITY

Let us consider the observable ϕ from (7) for some component C and a variation in the data
distribution as in (3) for some q′. Substituting this observable into (12), we denote the result by

χ(w∗;C, q′) = −
〈
ϕ∆L;w∗, C

〉
β
+

〈
ϕ;w∗, C

〉
β

〈
∆L;w∗〉

β
(23)

where ⟨−;w∗, C⟩β denotes an expectation defined as in Wang et al. (2024) where we fix the pa-
rameters u = u∗. To explain: the generalized function δ(u− u∗) in ϕ means that the expectations
involving ϕ are computing an integral over the weight-refined posterior, where only parameters in the
circuit C (represented by the variables v) are allowed to vary. However the expectation

〈
∆L;w∗〉

β

is defined with respect to the “full” posterior, where all parameters are allowed to vary.

If we let {wt}rt=1 denote approximate samples from the weight-refined posterior for C (that is, the
same kind of samples we would use to define the weight-refined but not also data-refined LLC) and
let {w′

t}rt=1 denote approximate samples from the full posterior (the kind of samples we would use
to define the ordinary LLC) then the susceptibility is

χ̂(w∗;C, q′) = −1

r

r∑
t=1

[{
Ln(wt)− Ln(w∗)

}
∆Ln(wt)

]
+

1

r2

[ r∑
t=1

{
Ln(wt)− Ln(w∗)

}][ r∑
t=1

∆Ln(w
′
t)
]

= −1

r

r∑
t=1

[{
Ln(wt)− Ln(w∗)

}{
Lδhn (wt)− Ln(wt)

}]
+

1

r2

[ r∑
t=1

{
Ln(wt)− Ln(w∗)

}][ r∑
t=1

{
Lδhn (w′

t)− Ln(w′
t)
}]
. (24)

C.3 IMPLEMENTING SUSCEPTIBILITIES

Let χ̂ denote the susceptibility estimate (24) for the probe data distribution q′ and weight restric-
tion C where wt are SGLD weight samples from the weight restricted posterior, w′

t are SGLD
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weight samples from the full not weight restricted posterior, w⋆ are the initial model weights,
Ln is the loss function on the pretraining dataset q on a random batch of size n, in this case
q = timaeus/dsir-pile-1m-2, and Lδhn is the loss function on a random batch of size n on
qδh = (1− δh)q + δhq′. That is, a mixture between the pretraining dataset q and probe dataset q′
using the process as specified in Appendix C.7.

These susceptibilities were found for each of the datasets listed in Appendix B, for each checkpoint
step in

S = {0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 40000, 49900}

and each attention head weight restriction, as well as no weight restriction at all. For these experiments
we had a batch size of n = 64, and δh = 0.1. SGLD hyperprameters can be found in Appendix C.6.

The hardware used for the computation consisted of 10 A100 GPUs run in parallel, each computing
all weight-refined susceptibilites on all datasets for an evenly distributed subset of S, each GPU took
about 20 hours to complete its task.

C.4 PER-TOKEN SUSCEPTIBILITIES

With the same notation as Appendix C.2 we estimate per-token susceptibilities using the equation

χ̂(x,y) = −
1

r

r∑
t=1

[{
Ln(wt)− Ln(w∗)

}{
ℓ(x,y)(wt)− Ln(wt)

}]
+

1

r2

[ r∑
t=1

{
Ln(wt)− Ln(w∗)

}][ r∑
t=1

{
ℓ(x,y)(w

′
t)− Ln(w′

t)
}]
.

For a total of approximately M = 160 × 1023 = 163680 samples, across 160 different contexts,
where each context cr = (cr1, . . . , c

r
k) is a list of k ≤ 1023 tokens, with the property that for all

j ∈ [2, k], (cr1:j−1, c
r
j) ∈ D1

M .

We choose these contexts using the datasets.Dataset.shuffle method with seed 0 after
tokenizing the dataset under consideration, and taking the 160 contexts.

To visualize these per-sample susceptibilities, let

χ̂(crj) = −
1

r

r∑
t=1

[{
Ln(wt)− Ln(w∗)

}{
ℓ(cr1:j−1,c

r
j )−Ln(wt)(wt)

}]
+

1

r2

[ r∑
t=1

{
Ln(wt)− Ln(w∗)

}][ r∑
t=1

{
ℓ(cr1:j−1,c

r
j )−Ln(w′

t)
(w′

t)
}]
.

Then this is a real number, and we can map it to a color value via either or where the only differences

Require: χ̂(crj) ∈ R
1: max(χ̂)← maxr,i |χ̂(crj)|
2: if χ̂(crj) > 0 then

3: color← rgba

(
0, 255, 0,

|χ̂(crj )|
max(χ̂)

2
)

4: else
5: color← rgba

(
255, 0, 0,

|χ̂(crj )|
max(χ̂)

2
)

6: end if

are the shade of green and the quadratic versus linear opacity scaling.

Each crj can also be decoded into a string of characters using our model’s tokenizer. Therefore we
can highlight each such string the corresponding color computed above. Let s(crj) be this highlighted
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Require: χ̂(crj) ∈ R
1: max(χ̂)← maxr,i |χ̂(crj)|
2: if χ̂(crj) > 0 then

3: color← rgba
(
0, 128, 0,

|χ̂(crj )|
max(χ̂)

)
4: else
5: color← rgba

(
255, 0, 0,

|χ̂(crj )|
max(χ̂)

)
6: end if

string. Then this produces Figure 9 using the first coloring algorithm while the latter is used to
produce Figure 4 and Figure 1.

For Figure 9, we sort each per-sample susceptibility in a descending manner, giving us the list
χ̂(cr1j1 ) ≥ · · · ≥ χ̂(crMjM ). We then choose the first 100 of these susceptibilities, and visualize
their surrounding context by concatenating each of their highlighted strings. With + denoting
concatenation,

s(cr1j1−200) + · · · + s(cr1j1+200)
...

s(cr100j1−200) + · · · + s(cr100j1+200)

And we also choose the last 100 of these susceptibilities, and visualize the surrounding context in the
same way

s(crMj1−200) + · · · + s(crMj1+200)
...

s(c
rM−100

j1−200 ) + · · · + s(c
rM−100

j1+200 )

For Figure 4 and Figure 1, we use the same context samples from each dataset but do no sorting of
the data and instead search manually for representative examples.

Here we use all the same definitions and parameters as in Appendix C.3, and SGLD sampling with
hyperparameters as in Appendix C.6, modified to only use 100 draws. We run these per-token
susceptibilities for all datasets in Appendix B and on checkpoint step 49900.

The hardware used for this computation consisted of 16 A100 GPUs, each computing a quarter of the
weight restrictions for each seed. Each GPU took 50 hours to complete its task

C.5 SCALABILITY TO LARGER MODELS

For a given model, let T be the time cost of a training step, F be the cost of a forward pass, k the
number of probe datasets, m the number of model components being analyzed, and C some roughly
constant O(100) number of SGLD samples. Then we expect that the cost of estimating susceptibilities
on a given checkpoint of that model scales like

mC(T + kF ) .

In practice, we take approximately log-spaced checkpoints of models, so the total cost of analysis
scales logarithmically with the total number of training steps and typically ends up comparable to
the cost of training. Some preliminary work suggests that we may be able to significantly reduce the
computational cost in larger models without loss of signal, such as by using much less than the entire
set of attention heads. Not accounting for these cost improvements, we were for example able to
run susceptibilities on the full set of attention heads (384 in total) on Pythia 410m and Pythia 1.4b
(Biderman et al., 2023) for around $2,000 and $5,000 respectively, for a single checkpoint each.

C.6 SGLD HYPERPARAMETERS

Following Wang et al. (2024) we used SGLD with hyperparameters γ = 300, nβ = 30, ε = 0.001,
batch size 64, 4 chains, and 200 draws for the regular susceptibilities as in Appendix C.3, but only
100 draws and batch size 16 for the per-token susceptibilities as in Appendix C.4.
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Figure 4: Visualizing per-token susceptibilities for three heads on a sample from ARXIV. Each
token is highlighted in three segments (top, middle, buttom) which correspond to the per-token
susceptibilities for three heads (0:0 ,1:2 ,1:7 ). The susceptibility values are standardized for each
head, with solid red representing a z-score of -3 and solid green representing a z-score of +3. Green
means positive susceptibility and red means negative.

Note that for these experiments we did not use RMSProp SGLD.

C.7 DATASET MIXING

To create the mixed dataset Dδh consisting of samples from qδh = (1− δh)q + δhq′, we interleaved
the pretraining dataset with each probe dataset using Algorithm 1 in order to ensure even mixing,
determinacy, and the property that if q′ = q, then Dδh = D0.

Let (xi, yi) be samples from q and (x′i, y
′
i) be samples from q′, with N = 1, 000, 000 the size of the

pretraining dataset, and M = 100, 000 the size of the probe dataset. PILE1M

Algorithm 1 Data Mixing Algorithm

Require: D0
N = {(xi, yi)}Ni=1, D1

M = {(x′i, y′i)}Mi=1, δh ∈ [0, 1]
1: Dδh

min(N,M) ← ∅
2: probe count← 0
3: j ← 1
4: while j ≤ N,M do
5: target probe count← ⌊(j + 1)δh⌋
6: if probe count < target probe count then
7: Dδh

min(N,M) ← Dδh
min(N,M) ∪ {(x

′
j , y

′
j)}

8: probe count← probe count + 1
9: else

10: Dδh
min(N,M) ← Dδh

min(N,M) ∪ {(xj , yj)}
11: end if
12: j ← j + 1
13: end while

This new dataset is then shuffled, and during SGLD minibatches of size 64 are drawn from this
shuffled pre-computed data-distribution for loss estimates.

C.8 TOKEN PATTERNS

Let Σ denote the set of tokens in our tokenizer.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

arx
iv cc

dm
_m

ath
em

ati
cs

en
ron

_em
ails

fre
ela

w

git
hu

b-a
ll

ha
cke

rne
ws

nih
_ex

po
rte

r

pu
bm

ed
_ab

str
act

s

pu
bm

ed
_ce

ntr
al

sta
cke

xch
an

ge

usp
to_

ba
ckg

rou
nd

s

wikip
ed

ia_
en

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ok

en
s Word Start

Word Part
Word End
Induction
Spacing
Formatting
Right Delimiter
Left Delimiter
Numeric

Figure 5: Percentages of tokens in each dataset which follow a given pattern. Note that not all patterns
are mutually exclusive, which is why some totals exceed 100.

Definition C.1. A left delimiter token is an element of the set of tokens{
< , < , { , { , ( , ( , [ , [ , </ , {" , $

}
.

A right delimiter token is an element of the set of tokens{
> , > , } , } , ) , ) , ] , ] , ), , ], , ): , ). , )) , ); , %) , $

}
.

We call a token a delimiter token if it is either a left or right delimiter token.

The asymmetry between left and right delimiters is due to the tokenizer. For our model right delimiters
seem much more important than left delimiters.
Definition C.2. A formatting token is an element of the set of tokens{

∼ , \\ , \\ , / , // , // , :// , - , - , -- , -- , _ ,

======== , -- , ---- , -------- , ---------------- , ** , **** , ******** ,

#### , . , , , : , :: , : , ; , ; , ", , <|endoftext|> ,

=" , ":" , | , ’ , " , -> , -> , ˆ , %
}
.

Definition C.3. A word start is a single token that begins with a space and is followed by lower or
upper case letters. That is, it is a token which when de-tokenized matches the regular expression "
[A-Za-z]+$".
Definition C.4. A spacing token is a token which when de-tokenized is a sequence of characters
from the set {

, \n , \t , \r , \f
}
.

Definition C.5. A numeric token is a token which when de-tokenized and with spaces removed,
consists of one or more digits.

The patterns defined above are independent of the context in which a token appears. By contrast, the
subsequent definitions apply to a token in a given context.
Definition C.6. A word end token is a token which when de-tokenized is made up of upper or lower
case letters and which is followed in its context by a single formatting token, delimiter or space.
Definition C.7. A word part token is a token which is not a word ending in its context and which
when de-tokenized consists of upper or lower case letters.
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Definition C.8. An induction pattern is a sequence xyUxy where U ∈ Σ∗ and x, y ∈ Σ, satisfying
the following conditions:

• The conditional probability of y following x satisfies q(y|x) ≤ 0.05.

• x, y /∈ { , \n , , , . , the , to , : , and , by , in , a , be }.

Note that U can be the empty sequence and may contain occurrences of x, y. In a given context we
classify a token as an induction pattern token if it is y for an induction pattern xyUxy within the
context.

We use estimated conditional probabilities based on samples from the Pile. Note that the sets of left
delimiters, right delimiters, formatting tokens, word start tokens and word part tokens are pairwise
disjoint. The set of induction pattern tokens and word part tokens are disjoint. The percentage of
N = 20000 tokens sampled from each dataset which fit each of these patterns are given in Figure 5.

D THEORETICAL BACKGROUND

D.1 ANALOGY WITH MAGNETIC SUSCEPTIBILITY

The Bayesian susceptibility introduced above is the direct analogue of susceptibilities in physics,
such as the magnetic susceptibility. We recall briefly the linear response of a spin system placed in
an external magnetic field H . With energy E(σ) (which may also depend on H) and magnetization
M(σ) =

∑
i σi, the field-perturbed Boltzmann weight is

pH(σ) =
1

ZH
exp

[
−β

(
E(σ)−HM(σ)

)]
, ZH =

∫
exp[−β(E −HM)] dσ.

The magnetic susceptibility is the first derivative of the equilibrium magnetisation,

χmag =
∂

∂H

〈
M

〉
H

∣∣∣
H=0

, ⟨M⟩H =

∫
M(σ) pH(σ) dσ .

Its sign carries immediate physical meaning:

Sign of χmag Interpretation

χmag > 0 (paramagnetism) spins align with H; response reinforces the field
χmag = 0 (insensitive) system insensitive or already saturated
χmag < 0 (diamagnetism) induced currents oppose H; response cancels the field

The Bayesian susceptibility χ parallels the magnetic susceptibility, with the probe parameter h
replacing the magnetic field strength H and ϕ(w) replacing the magnetization M(σ).

D.2 THE SCALE OF h

Since the scale of the parameter h is arbitrary, there is a sense in which susceptibilities are only
well-defined up to a rescaling. This is easy to understand if we consider multiple variations of the
form (3), say q → q′ and q → q′′ where the KL divergence between q, q′′ is much larger than
between q, q′. By default therefore we should not read too much into comparisons of magnitudes of
susceptibilities across different variations of the data distribution.

For example if we set h̄ = h
κ for some κ > 0 then

1

nβ

∂

∂h̄
⟨ϕ⟩β,h̄

∣∣∣
h̄=0

=
κ

nβ

∂

∂h
⟨ϕ⟩β,h

∣∣∣∣
h=0

= κχ . (25)

It would also be natural to include a factor 1/δh in (13) so that ∆Ln(w) is a finite difference quotient.
This could be motivated by the principle given above that we should rescale the deformation parameter
h since our interval is “really” of length δh.
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Remark D.1. Given a target distribution q′(x, y) and the mixture (3) we obtain ∆L = L1(w)−L(w)
from Lemma 2.3. However, if the difference between q′ and q is large, w∗ may not be a local minima
of L1(w). The likelihood of this being a reasonable assumption increases as we move q′ closer to q.

Since susceptibilities are in any case infinitesimal, this suggests that we replace the original variation
from q to q′ with a variation from q to (1− δh)q+ δhq′ for some small δh. In this case the mixture is

h ∈ [0, 1] 7−→ (1− h)q + h(1− δh)q + hδhq′

= (1− hδh)q + hδhq′ .

In this case, again by Lemma 2.3, we will have that ∆L is a finite difference

∆L(w) := Lδh(w)− L(w) .

For local susceptibilities we always choose a variation which is sufficiently small, in this sense.

D.3 SUSCEPTIBILITIES AS A DERIVATIVE

Let w∗ be a local minima of L(w). Recall from Lau et al. (2024); Watanabe (2009) that the estimated
local learning coefficient (LLC) is defined by

λ̂(w∗) = nβ
[
Eβw|w∗,γ [Ln(w)]− Ln(w

∗)
]
, (26)

where Eβw|w∗,γ is the expectation with respect to the Gibbs posterior (9).

Suppose we approximate the derivative in the local susceptibility by a difference quotient

χfinite(w
∗) :=

1

nβ

1

δh

[
⟨ϕ;w∗⟩β,δh − ⟨ϕ;w∗⟩β

]
.

When the observable ϕ is associated to a component C as in Theorem 2.4 but with a dependence on h

ϕ(w) = δ(u− u∗)
[
Lh(w)− Lh(w∗)

]
the expectations in question are, up to scalars, estimates of the weight- and data-refined LLCs as
introduced in Wang et al. (2024) once we replace the quenched posteriors by the ordinary ones, since

Eβw|w∗,γ

[
δ(u− u∗)

{
Lhn(w)− Lhn(w∗)

}]
=

1

nβ
λ̂(w∗; qh, C) .

Hence χfinite(w
∗) is related to the difference quotient

1

(nβ)2
1

δh

[
λ̂(w∗; qδh, C)− λ̂(w∗; q, C)

]
which measures a rate of change of the refined LLC as a function of the shift in the data distribution.

D.4 MODES AND MATRIX FACTORIZATIONS

In the main text we have focused on a decomposition of susceptibilities χ as an integral of per-token
susceptibilities χ(x,y) (Theorem A.1). Such a presentation implicitly relates to a choice of token
sequences as a basis of a function space containing the conditional distributions q(y|x), and it is
conceptually useful to consider an alternative basis of “patterns” or more precisely modes. In this
appendix we explain how to make this precise in the setting of (Chen and Murfet, 2025).

That paper explains how to think about the data distribution over sequences as a tensor, and use tensor
decomposition methods to produce natural orthonormal bases of function space. Similar techniques
are commonly used in the field of natural language processing (Anandkumar et al., 2012).

We fix a finite alphabet of tokens Σ and let

H = Hk,l = L2(Σk, qk;RΣl

)
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be the space of functions Σk → RΣl

where k, l > 0. In the main text 1 ≤ k < K − 1 and l = 1.
Here RΣl

denotes the vector space of formal linear combinations of sequences of tokens of length l.
The inner product is defined by

⟨f, g⟩ =
∫ 〈

f(x), g(x)
〉
RΣl q(x)dx .

We set X = Σk, Y = Σl with the counting measure, q(x, y) is the distribution for x ∈ Σk, y ∈ Σl

and q(x) = qk(x) denotes the distribution over sequences of length k. Let C ∈H be the function
corresponding to the true conditional probabilities

C(x) =
∫
q(y|x) ydy , ∀x ∈ Σk . (27)

As explained in Chen and Murfet (2025) by applying tensor decomposition methods such as SVD
to C we obtain a natural orthonormal basis {eαβ}α∈Λ,β∈Λ++ of H . Here Λ indexes right singular
vectors, Λ+ indexes left singular vectors for nonzero singular values, and Λ++ ⊇ Λ+ is an extended
set of indices associated to an arbitrary extension of the left singular vectors to an orthonormal basis
of RΣl

.* The examples given in Chen and Murfet (2025) justify identifying such modes with atomic
patterns in the data distribution.

Let us consider a variation of the data distribution q(x, y) which is a “concept shift”, that is, we
vary the conditional distribution q(y|x) but not q(x). Let us write q′(y|x) for some other conditional
distribution and set q′(x, y) = q′(y|x)q(x). Let C′ denote the equivalent of (27) but for q′.

Definition D.2. We say a variation in the data distribution of the form

C′ − C =
∑
α∈Λ

cαeαα (28)

for some cα ∈ R is mode aligned.

Recall that ℓ(x,y)(w) = − log p(y|x,w).
Definition D.3. Given w ∈W we define Φ(w) ∈H by

Φ(w)(x) =

∫
ℓ(x,y)(w) ydy .

Given α ∈ Λ we define Φα :W −→ R by Φα(w) =
〈
Φ(w), eαα

〉
H

.

Let χ be a susceptibility as defined in Section 2.3.

Lemma D.4. For a mode aligned concept shift as above

χ = −
∑
α∈Λ

cα Covβ
[
ϕ,Φα

]
.

Proof. We compute that

∆L = −
∫
(q′(y|x)− q(y|x))q(x) log p(y|x,w)dxdy

= −
∑
α∈Λ

cα
∫
eαα(x)(y)q(x) log p(y|x,w)dxdy

=
∑
α∈Λ

cα
〈
Φ(w), eαα

〉
H

so the conclusion follows from Lemma 2.2 and bilinearity of the covariance.

*For consistency with Chen and Murfet (2025) we continue to use β as an index, note this is distinct from
the inverse temperature.
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Therefore in this setting the fundamental quantities are the covariances of ϕ with Φα. Note that if
C′ − C ∝ eαα, that is, the deformation of the data distribution is pure in the sense it affects only a
single mode, then ∆L ∝ Φαα. Note however that generally adding a multiple of eαα to C produces
a valid function in H but not a valid conditional distribution; thus the Φα are ∆L for “imaginary”
deformations of the data distribution.

We call the resulting covariances pure susceptibilities:
Definition D.5. For any α ∈ Λ we call

χpure
α = −Covβ

[
ϕ,Φα

]
the pure susceptibility of ϕ at inverse temperature β to the mode α.

This depends on the observable ϕ but not on the variation in the data distribution. From Lemma D.4
we obtain that the susceptibility for any concept shift is of the form

χ =
∑
α∈Λ

cαχpure
α (29)

for some coefficients cα.

Absolute bigrams. If x ∈ Σk, y ∈ Σl form an absolute bigram xy for q in the sense of Chen
and Murfet (2025) then this corresponds to a mode α with singular value sα = q(x)1/2 = q(xy)1/2.
Suppose xy is an absolute bigram also for q′, then cα = q′(xy)1/2 − q(xy)1/2 and

Φα(w) =
〈
Φ(w), eαα

〉
H

= − log p(y|x,w)q(x)1/2 . (30)

Note that − log p(y|x,w) is the cross-entropy loss of the model on predicting the bigram. Hence the
contribution of any absolute bigram to ∆L is

cαΦα(w) = log p(y|x,w)q(x)
(
1−

√
q′(xy)
q(xy)

)
.

Let us now consider the meaning of the pure susceptibility for the observable ϕC of Theorem 2.4
with respect to the absolute bigram mode α. We have

χpure
α = −Covβ

[
δ(u− u∗)

[
L(w)− L(w∗)

]
,Φα

]
.

Let us consider a variation in w = (u, v) that only varies v. Such a variation increases Φα if and only
if it makes the model worse at predicting τ given σ, that is, if it makes the model worse at predicting
the bigram. Such a variation increases L − L(w∗) if and only if it makes the overall loss of the
network higher, that is, it makes the model worse at prediction in general. In the following we write
pattern for bigram so that the general philosophy is clearer.

Positive covariance. These two functions of w (meaning Φα and L− L(w∗)) have large positive
covariance if variations in C tend to make the model worse at prediction if and only if they make
the model worse at predicting this particular pattern. This seems plausibly true if the main role
of the component C is predicting the pattern (it does not preclude that other components are also
involved). In this case χpure

α is large and negative. Suppose now that the variation q → q′ increases
the probability of the pattern. Then cα > 0 so cαχpure

α < 0 and this pattern contributes negatively to
the overall susceptibility. The sign is reversed if the pattern is less frequent in q′ than in q.

Negative covariance. In the other direction, these two functions have large negative covariance if
variations in C tend to make the model better at prediction if and only if they make the model worse
at predicting this particular pattern. That is, C is a counter-weight to the pattern α. For example,
C might be optimizing for something that conflicts with predicting the pattern (e.g. a syntactic rule
may conflict with a bigram). In this case χpure

α is large and positive. If further the variation q → q′

increases the probability of the pattern then cαχpure
α > 0 so this pattern contributes positively to the

overall susceptibility. The sign is reversed if the pattern is less frequent in q′ than in q.

Zero covariance. These two functions of w have zero covariance if variations in C which tend to
make the model worse at prediction are equally likely to make the model better or worse at predicting
this particular pattern. That is, whatever contributions C makes to prediction seem independent of
predicting the pattern. In this case χpure

α = 0.
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In general it is difficult to classify by hand the modes of q beyond simple examples like absolute
bigrams, although see Chen and Murfet (2025) for some examples. Moreover, the variations q → q′

that we consider in this paper, with q the Pile and q′ a Pile subset, are unlikely to be concept shifts
and we do not expect that all patterns in the data distribution are necessarily captured by modes in
the above sense. Nonetheless, the decomposition in (29) and the characterization above of positive,
negative and zero covariance provide some useful intuition about susceptibilities.

D.5 STRUCTURAL INFERENCE AND MODES

In this section we provide motivation for the approach introduced in Section 3.3, by explaining how
the theory of modes provides a factorization of the data matrix. We use the notation introduced in the
main text. We denote by χdj the susceptibility for qd and observable ϕj . We denote by χpure

α,j the pure
susceptibility for a mode α and the observable ϕj , as introduced in Appendix D.4. Ideally we would
like to measure χpure

α,j but in practice we do not have the ability to sample from variations of the data
distribution which only affect single modes. However, by Lemma D.4

χdj =
∑
α∈Λ

cd,αχpure
α,j (31)

where we note that cd,α is from Definition D.2 and does not depend on j. This is a matrix equation
X = CP (32)

C is the |D| × |Λ| matrix with entries cd,α and P is the |Λ| × |H| matrix with entries χpure
α,j . Then

C gives the coefficients of each variation of the data distribution in each mode (e.g. for an absolute
bigram στ as above the entry in position d, α gives the difference in square-root probability of the
bigram in the variation d) and P is the matrix of pure susceptibilities. More informally, we think
of C as the coupling coefficients between variations in the data and modes, and P as the coupling
coefficients between observables and modes.

The quantities χdj may be estimated from data, that is, we can obtain an empirical estimate of the data
matrix X . On the other hand C,P are not directly observable because it is intractable to determine
the complete set of modes of a complex distribution. However (32) suggests a way to apply methods
of data analysis to the matrix X in order to infer the modes and their couplings to the observables.

Applying matrix factorization methods like SVD to the data matrix X is therefore one way to attempt
to recover (linear combinations of) the underlying modes of the data distributions, or at least a
coarse-graining of them. In this interpretation, the right singular vectors tell us about the relationship
between attention heads and modes, and the principal components tell us about the coupling between
modes and datasets.

D.6 SUSCEPTIBILITIES AS A TANGENT MAP

This is all summarized neatly by Figure 6. We can define a smooth map F which sends a distribution
q′ ∈ D over sequences of tokens to (for fixed n, β) the quenched and tempered posterior distribution
F (q′) = pβn(w|q′) as a point in the Frechét manifold Prob(W ) of positive densities of integral 1
on W (Bauer et al., 2016). Suitably well-behaved observables ϕj : W −→ R define, by taking
expectations, functions on this manifold. Given a set {ϕj}j∈H we therefore obtain a map

G =


⟨ϕ1⟩(−)

...
⟨ϕj⟩(−)

...

 : Prob(W ) −→ RH .

Composing with F gives a map D −→ RH whose tangent map at q is

Tq
(
G ◦ F

)
= Tpβn(w)(G) ◦ Tq(F ) : TqD −→ T⟨ϕ⟩RH (33)

where ⟨ϕ⟩ denotes the vector of expectation values of all observables with respect to the unperturbed
(quenched, tempered) posterior pβn(w). By definition this linear map, or rather its restriction to the
subspace of the tangent space spanned by the tangents to the mixtures with the qd, has as its matrix
the (transposed) response matrix XT (up to a factor of nβ). The relationship between the matrix
factorizations in (32) and (33) seems important.
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Training q

Statistical manifold of 
data distributions 𝒟

Frechét manifold of 
“Posteriors” Prob(W)

arXiv

DM math
pβ

n(w)

F ℝ

⟨ϕ1⟩(−)

⟨ϕ2⟩(−)

⟨ϕj⟩(−)

⋮

Figure 6: Susceptibilities as components of a tangent map. We can think of susceptibilities as
components of the tangent map from data distributions to the expectations of a family of observables
with respect to the posterior formed for that data distribution, with a fixed model. In this diagram
we indicate q ∈ D , the training distribution, and tangent vectors in this space corresponding to the
mixtures with ARXIV and DM_MATHEMATICS. The tangent map of F sends these tangent vectors to
tangent vectors in the space of “posteriors”.

E SUPPORTING RESULTS

In this section we collect data and analysis that was performed to validate the basic methodology of
susceptibilities, and which supports the headline results of the main text.

E.1 PER-TOKEN METRIC COMPARISONS

In Figure 8 we select a pair of attention heads 0:0 , 1:2 and a pair of datasets GITHUB,
DM_MATHEMATICS and for data sampled from each dataset we compute the pair (s, a) where
s is the per-token susceptibility and a is the loss after ablation minus the pre-ablation loss (we call
this the ablation delta). The correlation between these two metrics is very small.

In Figure 9, we see a specific example where the induction pattern is particularly visible in the positive
susceptibilities, while there is no discernible induction pattern in the zero-ablation loss differences or
original per-token loss.

E.2 PER-TOKEN SUSCEPTIBILITY VARIATION WITH CONTEXT

In Figure 10 we plot the change in average per-token susceptibility for each atten-
tion head using 160 contexts from each of the following datasets: pile1m, arxiv,
dm_mathematics, enron_emails, freelaw, github, nih_exporter, philpapers,
pubmed_abstracts, pubmed_central, stackexchange, uspto_backgrounds,
wikipedia_en.

We note that in general the per-token susceptibilities increase with context length, with the strongest
rate of increase being in the layer 1 multigram heads 1:0 -1:5 from length 10 onwards. It is not clear
what the full explanation for this phenomenon is, but it is consistent with the observation that these
heads tend to suppress induction patterns (Section 4.2) and the longer the context, the more token
pairs xy are recognizable as induction patterns.

E.3 PER-TOKEN SUSCEPTIBILITIES EXPLAIN SUSCEPTIBILITY DIFFERENCES

It is natural to ask why some heads are outliers for particular datasets but not others. For instance
0:1 is a negative outlier (by which we mean that it lies below the other heads) for GITHUB but not
FREELAW or HACKERNEWS (see Appendix F). Based on Appendix D.4 our model for susceptibilities
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Figure 7: Pairwise comparisons of per-token susceptibilities, ablation, and loss as density maps for
attention head 0:0 . The color bar legend on the right of each subplot indicates the number of points
represented by each colored hex.
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Figure 8: Susceptibilities vs ablations. Each plot shows distributions of per-token susceptibilities
versus zero ablation loss differences as density maps. Each subplot corresponds to a pair of attention
head and Pile subset, with datasets fixed across rows (top: GITHUB, bottom: DM_MATHEMATICS)
and heads fixed across columns (left: 0:0 , right: 1:2 ). Hexagon colors indicate a count of tokens
with susceptibility and ablation delta values in a given region. Shown inset are the Pearson correlation
coefficients, indicating negligible correlation.

Figure 9: The same sample from freelaw is shown three times, from left to right with per-
token susceptibilities, per-token ablation loss differences, and original token loss highlighted, with
susceptibilities and ablations calculated for 1:4 . On the left, green indicates a positive susceptibility
and red a negative one. In the middle, green indicates a negative ablation loss difference (ablating the
head improves performance) and red a positive ablation loss difference. On the right, a deeper red
highlight indicates higher loss on that token.

is that a head is sensitive to some patterns in the data distribution more than others (we say it is
susceptible to the pattern) and as we vary the data distribution this will drive different responses from
different heads.

On this basis our hypothesis is that 0:1 is negatively susceptible to a pattern that is common in
GITHUB but not in the other two datasets. To explore this we turn to the per-token susceptibilities
(Definition 2.5) which we use to explain differences in overall susceptibilities. For this to be a
sound methodology we need the averaged per-token susceptibilities to co-vary correctly with the
susceptibility. In Figure 11 we plot one against the other. The Pearson’s correlation coefficient is
0.958 and the line of best fit has slope 9.794. Since δh = 0.1 we would predict that the slope should
be 10. We view this as sufficiently well-correlated that we can use per-token susceptibilities to study
differences between susceptibilities.
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Figure 10: Per-token susceptibilities as a function of context length. The per-token susceptibilities
for each attention head averaged over pairs x, y where x has a given length. Layer 0 heads are shown
in blue, layer 1 induction heads in orange and the other layer 1 heads in red. We note a strong
dependence on context length for these heads 1:0 -1:5 .
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Figure 11: Comparison of average per-token susceptibilities and susceptibilities for every attention
head and dataset. The dotted red line is the line of best fit.
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Figure 12: Top negative susceptibility tokens. Shown is the overall sum of negative susceptibility
magnitude from 163k tokens sampled from GITHUB-ALL. Left: 0:0 , Right: 0:1 . In both cases the
top contributing token is a space .

Let us now turn to a detailed study of 0:0 versus 0:1 on GITHUB (at the end of training). For 163k
tokens sampled from GITHUB-ALL we form the data in Table 2. Note that to obtain the scaled sum
we add up the total positive and total negative susceptibility, compute the average over tokens by
dividing by the total number of tokens (163k), and then multiply by δh = 0.1.

Head Total pos. Total neg. Sum Scaled sum Mean Std
0:0 171,561 -145,342 26,219 0.016 -1.49 0.52
0:1 139,458 -205,255 -65,797 -0.040 -1.89 0.73

Table 2: Total negative and positive per-token susceptibility for two attention heads on GITHUB-ALL
and statistics for per-token susceptibilities χ(x,y) with y = the space token.

Comparing to the susceptibilities in Figure 28 we see that 0:0 lies in the range [0.01, 0.02] and 0:1
is in the range [−0.05,−0.06]. The gap in total positive per-token susceptibility is 32k vs a gap of
60k in the negative susceptibility. Since we want to understand why 0:1 is a negative outlier, we
focus on the latter gap. In Figure 12 we show the total contributions of individual tokens y (over all
contexts x) to the total negative susceptibility for the two heads. In both cases we see that the bulk
comes from the space token , which contributes roughly an order of magnitude more than the next
most important token. In fact accounts for 44% of the total negative susceptibility for 0:0 and
39% for 0:1 . The space token appears 42,764 times in this dataset, and the statistics of the per-token
susceptibilities for (in any context) are shown in the rightmost two columsn of Table 2. The full
distributions are shown in Figure 13.

The difference in the means is enough to explain about 17k of the total 60k gap in negative suscep-
tibility, so about a third. This is evidence that a primary reason that 0:1 is a negative outlier on
GITHUB-ALL is that this head is substantially more susceptible to the space token than other heads
(e.g. it is 27% larger in magnitude than the mean susceptibility of 0:0 ) and spaces are more frequent
in GITHUB than FREELAW or HACKERNEWS (compare 43k occurrences for GITHUB with 32k for
FREELAW and 16k for HACKERNEWS). This is not surprising since code is often structured using
space tokens.

E.4 BIMODAL TOKENS

The per-token susceptibility χ(x,y) is a function of a context x and an individual token y being
predicted in that context. In Appendix E.3 we saw how differences in susceptibilities of heads can
potentially be attributed to per-token susceptibilities, but there the analysis was of a token y =
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Figure 13: Histogram of susceptibilities. Shown is a histogram of per-token susceptibility values
for the space token across 163k tokens sampled from GITHUB-ALL. Left: 0:0 , Right: 0:1 .

independent of its context x. Since not all occurrences of y are semantically the same, we should
expect that the distribution of susceptibilities across x for a fixed y should sometimes reflect this.

Indeed, in this section we report on an interesting phenomena where this distribution can be bimodal:
there are some tokens y for which there are two kinds of contexts x with the susceptibilities χ(x,y) in
each context clustering around well-separated values.

The head 0:0 and token to . On both GITHUB-ALL and ARXIV we observe that the token to
is bimodal for the attention head 0:0 , as shown in Figure 14. On ARXIV there is one mode with
positive susceptibility and another with negative susceptibility. A typical negative instance is

app ears
1.56

to be relative ly ins ens itive

where the overset number is the susceptibility of the outlined token. A typical instance of the negative
mode is

$ N \
−2.23

to \ in ft y $ al ong .

That is, the examples in the positive mode are normal occurrences of to as a word, whereas the
negative mode consists of occurrences that are part of LaTeX commands. For GITHUB-ALL the token
is also bimodal, with one positive mode and a negative mode. Typical instances of the positive mode
are again occurrences of to in normal English sentences and a typical negative instance is

if ( by tes _
−2.17

to _ s k ip = = - 1 ) .

The head 1:7 and token / . Similarly we see in Figure 14 a positive and negative mode in the
distribution of susceptibility values for 1:7 and the token / in HACKERNEWS. A typical instance of
the positive mode is a forward slash in a URL:

n pr . org
4.10

/ se ctions
2.35

/

while typical negative instances are “either/or” constructions

sa ving
−2.76

/ com m itting , has h ic or p
−3.61

/ go - m mult ier ror .

Interestingly the distribution of susceptibilities is also bimodal for the same head and token on
ENRON_EMAILS, with the positive mode still being about slashes in URLs, but the negative mode is
closer to zero and occurs much more frequently (see Figure 15). Typical negative instances are

K ay M ann
−2.73

/ C or p
−1.12

/ En ron , 11
−0.33

/ 09
1.60

/ 2 000 .
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Figure 14: Bimodal tokens. Histograms showing frequency of certain susceptibility values for
particular tokens and heads in particular datasets. Left: Attention head 0:0 and token to in ARXIV.
Right: Attention head 1:7 and token / in HACKERNEWS.
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Figure 15: Bimodal token. Histograms showing frequency of certain susceptibility values for 1:7
and token / in ENRON_EMAILS.
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E.5 PER-TOKEN SUSCEPTIBILITY PCA

Here we collect some additional analysis of the PCs in Section 4.2.

In Figure 16 and Figure 17 we compare the complete distribution of susceptibilities for all heads on
USPTO_BACKGROUNDS for all tokens vs just the induction pattern tokens, and we see here how the
distribution for the layer 1 multigram heads (and to a significant but lesser extent 1:6 ) shifts to the
right.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

15 10 5 0 5 10 15 20
Susceptibility

0.0

0.1

0.2

0.3

0.4

De
ns

ity
 All Tokens 

 uspto_backgrounds 

l0h0
l0h1
l0h2
l0h3
l0h4
l0h5
l0h6
l0h7
l1h0
l1h1
l1h2
l1h3
l1h4
l1h5
l1h6
l1h7

Layer 0:
  l0h0: =0.21, =2.13 
  l0h1: =0.14, =2.69 
  l0h2: =0.17, =1.97 
  l0h3: =0.18, =1.90 
  l0h4: =0.19, =2.42 
  l0h5: =0.16, =2.81 
  l0h6: =0.17, =1.65 
  l0h7: =0.09, =1.09 

Layer 1:
  l1h0: =0.78, =4.65 
  l1h1: =0.48, =2.98 
  l1h2: =0.57, =4.09 
  l1h3: =0.55, =3.72 
  l1h4: =0.61, =3.49 
  l1h5: =0.53, =3.93 
  l1h6: =0.20, =3.48 
  l1h7: =0.11, =2.29 

Figure 16: Distribution of per-token susceptibilities for all heads on USPTO_BACKGROUNDS, mea-
sured on all tokens. Curves are produced by KDE smoothing of data from 163k tokens.
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Figure 17: Distribution of per-token susceptibilities for all heads on USPTO_BACKGROUNDS, mea-
sured on just induction tokens. Curves are produced by KDE smoothing.
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F TOP SUSCEPTIBILITIES

In this section we give additional details for each dataset (see Appendix B). The purpose of measuring
susceptibilities is to use these “responses” to external perturbations in the data distribution to infer
internal structure. Thus the first test for the methodology is whether or not the set of perturbations
that we are using (e.g. Pile subsets) elicits a sufficient variety of responses. To see this it suffices
to compare the plots of susceptibilities for each head across training on some datasets, for instance
HACKERNEWS (Figure 27) and GITHUB-ALL (Figure 28).

Note that by definition the susceptibility with respect a variation of the Pile q in the direction of
dataset q′ is zero if q′ is distributed identically to q. Thus for subsets that are similarly distributed to
the overall Pile we should expect susceptibilities to be small; see Appendix F.9.

Attention head h in layer l is denoted l:h . Tokens are denoted t and the token with high (positive
or negative) susceptibility is denoted with a border like t . In this section x stands for a numeric
token, e.g. 4 , 13 .

In each section we plot the susceptibility of each head for a particular dataset, and provide the
three largest positive and negative susceptibility tokens taken from the one hundred tokens with
largest susceptibility magnitude found in a sample of contexts. Note that these outlier tokens are not
necessarily a good indicator of the “function” of a head.

The per-token susceptibility χ(x,y) is a function of the predicted token y and context x. We typically
only give y with at most some small segment of x, e.g.

···xk−1xk︷ ︸︸ ︷
wa vel

y

ength

where only the last two tokens of the context x is given. In some cases we also show the largest
magnitude negative per-token susceptibilities, with the same conventions. Recall from Section 3.2
that we interpret χ(x,y) > 0 for a particular head as a tendency for that head to act to suppress the
prediction of y in context x, so to a large extent this appendix is a “catalogue of suppression”.

In the following :// always appears as part of http :// or https :// unless specified
otherwise, and #### appears as part of a “line” underneath a title or separating sections of a
document. The token =" appears as part of HTML, e.g. class =" or similar markup.
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Figure 18: ARXIV susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 18.

Examples of positive per-token susceptibilities:
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• 0:2 : wa vel ength , es pecially , differe nces

• 1:4 : =" , wa vel ength , \ ome ga

• 1:7 : =" , es pecially , wa vel ength

Examples of negative per-token susceptibilities:

• 0:2 : \ te xt , $ e ˆ , r . h . s

• 1:4 : L ˆ { , [ ** , \ om in us

• 1:7 : [ ** , <|endoftext|> , \ [ ree

F.2 DM_MATHEMATICS
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Figure 19: DM_MATHEMATICS susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 19.

Examples of positive per-token susceptibilities:

• 0:0 : D eter mine , } , ))

• 0:1 : der iv ative , repl ac ement

• 0:4 : der iv ative , D eter mine , repl ac ement

Examples of negative per-token susceptibilities:

• 0:0 : , is , be

• 0:1 : , is , be

• 0:4 : , is , be

F.3 ENRON_EMAILS

The susceptibilities for each head are shown in Figure 20.

Examples of positive per-token susceptibilities:

• 0:3 : =" , :// , ####

• 1:1 : =" , #### , ://

• 1:7 : =" , :// , el im inate
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Figure 20: ENRON_EMAILS susceptibilities for each head over training.

Examples of negative per-token susceptibilities:

• 0:3 : <|endoftext|> , cc , . as p

• 1:1 : <|endoftext|> , For , . as p

• 1:7 : <|endoftext|> , , R ose

F.4 NIH_EXPORTER
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Figure 21: NIH_EXPORTER susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 21. Below x stands for a token representing a
number.

Examples of positive per-token susceptibilities:

• 0:6 : differe nces , ev al uate , el im inate

• 1:3 : th y roid , ( x %) , prot ot ype

• 1:5 : th y roid , el im inate , full - l ength

Examples of negative per-token susceptibilities:
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• 0:6 : qual i ty , ; , obvious

• 1:3 : qual i ty , ; , (

• 1:5 : qual i ty , ; , Ca 2 ion

F.5 PUBMED_ABSTRACTS
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Figure 22: PUBMED_ABSTRACTS susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 22. Below x stands for a token representing a
number.

Examples of positive per-token susceptibilities:

• 0:0 : C a ++ , ( x %) , differe nces

• 0:5 : ( x %) , demon st ration , differe nces

• 1:5 : C a ++ , Th y roid , ( x %)

Examples of negative per-token susceptibilities:

• 0:0 : med ium , , pub oper ine al is

• 0:5 : ili oc oc cy ge ous , ol id ined ion es ,
• 1:5 : , sc ro ful ace um , ev al u ations

F.6 PUBMED_CENTRAL

The susceptibilities for each head are shown in Figure 23.

Examples of positive per-token susceptibilities:

• 0:1 : :// , differe nces , ====

• 1:4 : full - l ength , =" , ://

• 1:7 : :// , =" , full - l ength

Examples of negative per-token susceptibilities:

• 0:1 : pro ins ul in , , end ere r nd r one

• 1:4 : k in ase , ect od er m al , l un ul ate

• 1:7 : pro ins ul in , k in ase ,
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Figure 23: PUBMED_CENTRAL susceptibilities for each head over training.
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Figure 24: USPTO_BACKGROUNDS susceptibilities for each head over training.
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F.7 USPTO_BACKGROUNDS

The susceptibilities for each head are shown in Figure 24.

Examples of positive per-token susceptibilities:

• 0:2 : wa vel ength , es pecially , differe nces

• 1:2 : wa vel ength , S od er berg , mag n itude

• 1:4 : wa vel ength , mag n itude , . ht ml

Examples of negative per-token susceptibilities:

• 0:2 : , of , color

• 1:2 : , color , of

• 1:4 : met er , color ,

F.8 WIKIPEDIA_EN
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Figure 25: WIKIPEDIA_EN susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 25.

Examples of positive per-token susceptibilities:

• 0:0 : :// , R ef erences , differe nces

• 1:3 : R ef erences , al bum , Y is rael

• 1:4 : E k berg , :// , al bum

Examples of negative susceptibilities:

• 0:0 : in , <|endoftext|> , on

• 1:3 : <|endoftext|> , record , on

• 1:4 : <|endoftext|> , of , record

F.9 CC

The susceptibilities for each head are shown in Figure 26. Instances of ":" typically occur as part
of dictionaries, e.g. {" name ":" but the preceding tokens vary.

Examples of positive per-token susceptibilities:
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Figure 26: PILE-CC susceptibilities for each head over training.

• 0:1 : th is , more , from

• 0:7 : 23 , and ,

• 1:6 : g all ery , O ly mp ic , under ground

Examples of negative per-token susceptibilities:

• 0:1 : f il m f est ival . com , a ,

• 0:7 : f il m f est ival . com , a , st one

• 1:6 : a , games , st one

We note that the susceptibilities for heads on CC are small relative to other datasets. Note that by
definition the susceptibility should be zero for a variation q → q′ where q′ is distributed identically
to q, so this could be because CC is a significant fraction of the Pile (18% according to Gao et al.
(2020)). In Table 3 we give a variant of Table 2 where we compute the total positive and negative
per-token susceptibility of 0:0 on the datasets CC, GITHUB-ALL.

Dataset Total pos. Total neg. Sum Scaled sum
GITHUB-ALL 171,561 -145,342 17,816 0.016

CC 128,026 -130,095 -966 -0.0013

Table 3: Total negative and positive per-token susceptibility for 0:0 on two datasets, and the sum
divided by the total number of tokens and multipled by δh = 0.1.

We note that the total positive and negative per-token susceptibilities are of a similar order of
magnitude for both datasets, but their difference is an order of magnitude smaller (966 vs 17816) and
this explains the order of magnitude difference in the final susceptibility. Recall that macroscopic
bodies have near zero electric charge because of the exact cancellation of very large amounts of
positive and negative charge in physical matter at equilibrium; it seems a reasonable intuition that
near zero susceptibilities are likewise caused by near-exact cancellations rather than both positive and
negative per-token susceptibilities being small.

Also note that, given the similarity between the tokens with top positive susceptibility shown above,
it is no surprise that Figure 26 shows little differentiation of the heads. This particular variation in the
data distribution away from the full Pile is not enough to “break the symmetry” between the heads,
by exposing them to distributions of patterns for which they have distinct preferences.
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Figure 27: HACKERNEWS susceptibilities for each head over training.

F.10 HACKERNEWS

The susceptibilities for each head are shown in Figure 27.

Examples of positive per-token susceptibilities:

• 0:0 : I ’ve , I , just

• 1:1 : , al one , I ’ve

• 1:5 : , I , I ’ve

Examples of negative per-token susceptibilities:

• 0:0 : recommend , and , mon et ary

• 1:1 : and , the , co ff ee

• 1:5 : and , recommend , mon et ary

F.11 GITHUB-ALL
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Figure 28: GITHUB-ALL susceptibilities for each head over training.
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The susceptibilities for each head are shown in Figure 28.

Examples of positive per-token susceptibilities:

• 0:0 : =" , Get St ring L ength , ()

• 0:1 : :// , =" , count

• 1:6 : =" , :// , . l ength

Examples of negative per-token susceptibilities:

• 0:0 : ( , <|endoftext|> , int count

• 0:1 : def connect _ , int count , con st base

• 1:6 : con st base , con st st d , int count

F.12 FREELAW
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Figure 29: FREELAW susceptibilities for each head over training.

The susceptibilities for each head are shown in Figure 29.

Examples of positive per-token susceptibilities:

• 0:6 : :// , An al ysis , differe nces

• 1:4 : :// , O d ys sey , d oc uments

• 1:5 : :// , O d ys sey , K ap n icks

Examples of negative per-token susceptibilities:

• 0:6 : on , rem - \n edy , defense

• 1:4 : C . H , A ri - \n z ona , S up . Ct

• 1:5 : Rep resent a - t ives , C . H , S up . Ct

We note here the role of the - token as splitting a word across multiple lines, and . in abbreviations.
In the negative susceptibilities there are several other examples of the tokens being used in other split
words and abbreviations respectively.
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Figure 30: STACKEXCHANGE susceptibilities for each head over training.

F.13 STACKEXCHANGE

The susceptibilities for each head are shown in Figure 30.

Examples of positive per-token susceptibilities:

• 0:2 : :// , =" , D ou ble >

• 0:4 : :// , =" , differe nces

• 1:3 : =" , ":" , ()

Examples of negative per-token susceptibilities:

• 0:2 : with , H T M LE lement ,
• 0:4 : H T M LE lement , with , b in

• 1:3 : , H T M LE lement , where
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Figure 31: Loadings of PCs on heads. The loadings of each principal component on each head is
shown, with the first principal component being a uniform mode, the second principal component
loading (in layer 1) on the multigram heads, and the third principal component loading on the
induction heads and 1:5 .

G STRUCTURAL INFERENCE VIA TRAJECTORY PCA

In the main text (Section 4.2) we do structural inference on our small language model using PCA on
a data matrix of per-token susceptibilities at the end of training. To provide an independent check on
the basic results we provide in this appendix details of an alternative analysis using PCA of a data
matrix of susceptibilities (not per-token) of heads over training. First we explain the methodology
(Appendix G.1) and then present the results (Appendix G.2).

G.1 JOINT TRAJECTORY PCA

We adapt a multi-trajectory variant of trajectory PCA (Amadei et al., 1993; Briggman et al., 2005)
to study how the behaviors of attention heads in our small language model evolve with respect to
different data distributions; see also Carroll et al. (2025, §4.2).

For each attention head j ∈ H and each dataset d ∈ D, we measure the susceptibility χdj (t) at
each training checkpoint t ∈ T . The checkpoints used are the same ones given in Appendix C.3.
This gives us, for each dataset d, a trajectory through a space with dimensions corresponding to
attention heads γd(t) =

(
χd1(t), χ

d
2(t), . . . , χ

d
|H|(t)

)
∈ R|H|. We combine these trajectories into a

data matrix X ∈ R|D||T |×|H| where each row represents the susceptibility measurements across all
attention heads for a specific dataset at a specific checkpoint. For each d ∈ D, we aggregate the row
vectors from each checkpoint into a matrix Xd ∈ R|T |×|H| and then stack each Xd vertically into
X ∈ R|D||T |×|H|:

Xd =


γd(t1)
γd(t2)

...
γd(t|T |)

 for d ∈ D, X =

 Xd1
...

Xd|D|

 .
We standardize each column of X to have zero mean and unit variance, ensuring that attention heads
with larger susceptibility magnitudes do not dominate the analysis. Let Xstd denote this standardized
matrix. We then perform singular value decomposition (SVD)

Xstd = UΣV T (34)

where U ∈ R|D||T |×c contains the left singular vectors, Σ ∈ Rc×c is a diagonal matrix of singular
values, and V ∈ Rc×|H| contains the right singular vectors where c is the chosen number of principal
components. The principal components are given by the columns of UΣ, and the loadings that
indicate how attention heads contribute to each principal component are given by the rows of V T .

For each dataset d, we project its trajectory γd(t) onto the reduced space defined by the first k principal
components πd(t) = (γd(t)− µ) · Vk where µ is the mean vector used during standardization and Vk
consists of the first k columns of V . This gives us a low-dimensional representation πd(t) ∈ Rk of
the trajectory for dataset d at checkpoint t.

G.2 RESULTS

We perform joint trajectory PCA as a concrete realisation of the structural inference proposed in
Section 3.3. We found that three principal components explained 98% of the variance (with the top
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three PCs explaining respectively 85.78%, 10.76%, 1.63%). In more detail, the loadings of the PCs
as presented in Figure 31 are:

• PC1 is a uniform mode, loading on all heads.

• PC2 loads strongly positively on 0:1 and negatively on 1:0 - 1:5 , that is, the layer 1
multigram heads.

• PC3 loads strongly positively on 0:0 , 0:5 and negatively on 0:2 ,0:7 in layer 0 and strongly
negatively on 1:6 , 1:7 in layer 1.

We see therefore that PC2 separates the layer 1 multigram heads and induction heads, as noted in
Section 4.2 for the per-token susceptibility PC2. Since the susceptibility for a head is the expectation
over the probe data distribution of the per-token susceptibilities, it is not a surprise to see that
there is broad agreement between the structure revealed by the trajectory PCA and the analysis in
Section 4.2. Nonetheless the switch from per-token to overall susceptibility, and the inclusion of
multiple checkpoints, provides a non-trivial check on the robustness of that analysis.

H COMPARISON TO DIRECT LOGIT EFFECTS

Previous work (Gurnee et al., 2024b) (Lad et al., 2025) has defined prediction and suppression neurons
with reference to WUW

h
O, where Wh

O is the output matrix for head h, and WU the unembedding
matrix for the network, following Elhage et al. (2021). Entry (i, j) is interpreted as the direct
contribution of neuron j in head h to token i in our vocabulary Σ. In particular, one says a neuron
at index j in head h is predictive when the effect distribution (WUW

h
O):,j has a high kurtosis and

positive skew, and suppressive when the effect distribution has a high kurtosis and negative skew.

Given our own characterization of negative susceptibilities as indicating expression, one hypothesis
is that a negative susceptibility for head h on a token t means that neurons in head h typically have
a positive effect on the logits of t, while a positive susceptibility indicates neurons typically have a
negative effect.

Let X = {(x1, y1), . . . , (xn, yn)} ∈ DN be n samples for which we have computed χ(xi,yi) from
our dataset DN , and U = {u1, . . . , um} ⊆ Σ be the set of unique yi’s in this subset. Then
for each u ∈ U define Xy=u = {(xj , yj) ∈ X|yj = u} = {(xj1 , yj1), . . . , (xjk , yjk)}, and
χhy=u = 1

k

∑k
i=1 χ

h
(xji

,yji )
, where χh(x,y) is the per-sample susceptibility of head h to sample (x, y),

so that χhy=u is the average per-sample susceptibility on samples with the completion u.

For each attention head h and every token u ∈ U we plot the quantity χhy=u against the average value
of (WUW

h
O)u,:. The results for each head are shown in Figure 32 along with the corresponding r2

and slope of each graph.

We note that both the r2 values and the slopes are very small, with slopes having inconsistent signs,
rejecting the hypothesized connection.

I ADDITIONAL SEEDS

Three additional models were trained with the same architecture and training data, but different
random seeds; we refer to these as seeds 2, 3, 4 (with the original being seed 1).

J VARIANCE OF PRINCIPAL COMPONENTS

In Figure 2 and Figure 3 of the main text we present the data and component loadings of the top
principal components of the per-token susceptibility PCA. Recall that this is done separately for
the two layers. A prerequisite for assigning meaning to these principal components is that they are
suitably stable with respect to the tokens chosen.

In this appendix we present the top five principal components of the per-token susceptibility PCA for
both layers, including data for all nine patterns identified in Appendix C.8 as well as information
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Figure 32: Average token susceptibility plotted against average neuron effect. Hex bin plots for
each head l : h plotting the points (χl:hy=u1

, (WUW l:h
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Figure 33: Per-token susceptibility PCAs for Seed 2. Among the tokens with the coefficients of the
largest magnitude in each principal component for the per-token susceptibility PCA, the percentage
following each of the six patterns (Top). The loadings of the principal components on heads (Bottom).
In Wang et al. (2024, Appendix G) it was found that in this seed the previous-token head is 0:1 , the
current-token head is 0:6 and the induction head is 1:0 .
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Figure 34: Per-token susceptibility PCAs for Seed 3. Among the tokens with the coefficients of the
largest magnitude in each principal component for the per-token susceptibility PCA, the percentage
following each of the six patterns (Top). The loadings of the principal components on heads (Bottom).
In Wang et al. (2024, Appendix G) it was found that in this seed the previous-token head is 0:4 , the
current-token head is 0:2 and the induction head is 1:6 .
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Figure 35: Per-token susceptibility PCAs for Seed 4. Among the tokens with the coefficients of the
largest magnitude in each principal component for the per-token susceptibility PCA, the percentage
following each of the six patterns (Top). The loadings of the principal components on heads (Bottom).
In Wang et al. (2024, Appendix G) it was found that in this seed the previous-token heads are 0:0
and 0:3 , the current-token head is 0:6 and the induction heads are 1:1 and 1:3 .

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

about sample variance. As in the rest of the paper (with the exception of Appendix I) all data is for
seed 1. The stochasticity here is the 20000 sampled tokens from each dataset. We report the mean
and standard deviation of the percentages and head loadings in Figure 36, Figure 37 for layer 0 and
Figure 38, Figure 39 for layer 1.

The conclusion is that the sample variance is sufficiently small to justify the interpretations given in
the main text.
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Figure 36: Per-token susceptibility PCA for layer 0 heads showing mean and standard deviation
of loadings of principal components on data patterns across 10 independent draws of 20000 tokens
from each dataset.
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Figure 37: Loadings of the top three principal components on layer 0 attention heads, showing
mean and standard deviation across 10 independent draws of 20000 tokens from each dataset.
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Figure 38: Per-token susceptibility PCA for layer 1 heads showing mean and standard deviation
of loadings of principal components on data patterns across 10 independent draws of 20000 tokens
from each dataset.
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Figure 39: Loadings of the top three principal components on layer 1 attention heads, showing
mean and standard deviation across 10 independent draws of 20000 tokens from each dataset.
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