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Abstract
Clustered Federated Learning (CFL) is a promis-
ing distributed learning framework that addresses
data heterogeneity issues across multiple clients
by grouping clients and providing a shared gen-
eralized model for each group. However, under
privacy-preserving federated learning protocols
where there is no direct sharing of clients’ local
datasets, existing approaches often fail to find op-
timal client groupings resulting in sub-optimal
performance. In this paper, we propose a novel
CFL algorithm that achieves robust clustering and
learning performance. Conceptually, our algo-
rithm groups clients that exhibit similarity in their
model updates by periodically accumulating and
clustering the gradients that clients compute for
various models. The proposed algorithm is shown
to achieve a near-optimal error rate for stochastic
convergence to optimal models under mild con-
ditions. We present a detailed analysis of the al-
gorithm along with an evaluation on several CFL
benchmarks demonstrating that it outperforms ex-
isting approaches in terms of convergence speed,
clustering accuracy, and task performance.

1. Introduction
The exploitation of distributed data via privacy preserving
cooperative learning algorithms is one of the foundational
challenges of modern machine learning. In this regard,
substantial attention has been given to Federated Learning
(FL), a distributed learning framework that provides a degree
of data privacy by only sharing information about locally
trained models versus raw data (McMahan et al., 2017).
Indeed FL has proved to be widely successful for training
one global model for multiple local machines (Bonawitz
et al., 2019; Yang et al., 2020; Niknam et al., 2020; Rieke
et al., 2020).
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When dealing with heterogeneous local datasets, the training
of a shared global model for all clients may not yield optimal
results. To address this issue, researchers have proposed
model personalization techniques (Kulkarni et al., 2020)
that involve clients collaboratively learning a global model
and then fine-tuning it to each client’s data (Fallah et al.,
2020; Singhal et al., 2021; Smith et al., 2017; Wang et al.,
2019; Yu et al., 2020). However, in real-world scenarios,
the effectiveness of fine-tuning may be limited by the small
size of clients’ local datasets. Moreover, the use of a shared
large backbone model across clients may be impractical in
scenarios where one wishes to obtain lightweight models,
e.g., for IoT devices, or when clients lack common features.

The Clustered Federated Learning (CFL) framework (Sat-
tler et al., 2020; Mansour et al., 2020; Ghosh et al., 2020)
can effectively address these issues by clustering/grouping
clients to share a few models, thus creating models tailored
for each cluster, rather than one personalized to each client.
CFL promotes cooperation among clients with shared lo-
cal distributions only rather than aggregating all the clients,
resulting in more accurate lightweight models.

While CFL has the potential to deliver tremendous advan-
tages, algorithmic developments have proved to be remark-
ably challenging due to the need to jointly cluster and train
over distributed data. Recent theoretically grounded CFL
algorithms group clients based on the models which cur-
rently provide each the best performance (Ghosh et al., 2020;
Mansour et al., 2020), or recursively perform bipartitioning
when clients’ gradients differ on a converged global model
(Sattler et al., 2020). Unfortunately, the state-of-the-art CFL
algorithms face difficulties in various relevant settings in-
cluding e.g., linear regression tasks (See 5.1). This raises
the following question:

“What are statistically well-founded and empirically reliable
features that could be used for clustering clients during FL
training with limited access to raw datasets and how should
clustering be performed?”

In this paper, we provide an answer to this question and pro-
pose a new class of robust CFL algorithms that can handle
the abovementioned challenges. The main contributions of

Source code: https://github.com/Heasung-Kim/clustered-
federated-learning-via-gradient-based-partitioning
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this paper can be summarized as follows.

Algorithm design: We devise a novel CFL algorithm moti-
vated by the intuition that clients with similar distributions
would share similar gradients and thus good prospects for
clustering. The proposed algorithm periodically computes
gradients based on clients’ local datasets over a set of mod-
els, accumulates this information, and partitions clients into
groups that exhibit similarity in their accumulated gradients
via spectral clustering. The clients are assigned to models
based on the estimated client clusters, and the models are
updated accordingly. Given the above design principle, in
the sequel, we refer to our algorithm as CFL-GP (Clustered
Federated Learning via Gradient-based Partitioning).

Theoretical analysis: To the best of our knowledge, CFL-
GP is the first CFL algorithm with provable guarantees
for convergence to both an optimal client clustering and
set of models without requiring assumptions on the algo-
rithm’s initial conditions on the model parameters. This is
achieved by combining recent ideas from spectral clustering
and leveraging the Gaussianity of noise in high dimensional
model gradient vectors. This distinguishes CFL-GP from
other state-of-the-art approaches which either require a suf-
ficiently large gap between optimal models associated with
client clusters and/or require good initial conditions.

Evaluation: We demonstrate our approach’s real-world
effectiveness via extensive experiments. These include syn-
thetic setups wherein we can explore CFL-GP’s robustness
to various parameters/settings and large-scale industrial ap-
plications. We find that for many representative CFL bench-
mark tasks, CFL-GP achieves optimal clustering signifi-
cantly faster, up to 100 times faster than existing state-of-
the-art algorithms that frequently struggle to achieve accu-
rate clustering results. As a result we find that CFL-GP
achieves better performance at lower overall communica-
tion and computational costs. Our comprehensive evaluation
also includes an exploration of the impact of the model gap,
batch size, number of clients, mixture of distributions, and
gradient vector compression.

2. System Model
We consider a federated learning system with C clients,
where the c-th client is modelled as having a minibatch
dataset generated from one of D distinct distributions, i.e.,
D(c) ∈ {D1, · · · ,DD}, where D ≤ C. This results in
a natural clustering of the clients defined as S∗

i = {c ∈
[C] : D(c) = Di} for i ∈ [D]. Here, [C] denotes a set of
consecutive natural numbers {1, 2, ...C}, C ∈ N.

Let F (D,θ) = Ex∼D[l(x,θ)] denote the population loss,
i.e., expectated loss l of a data sample x generated from the
distribution D on a model θ ∈ Θ. Here Θ ⊂ Rd denotes
the space of parameterized models. The following problem

definition formalizes CFL.

Problem 1 (Clustered Federated Learning). Given a pre-
specified number of clusters K where K ≤ C, we aim to
find the optimal clustering π : [C] → [K] and K models
{θk}Kk=1 which minimizes the sum loss, i.e.,

min
{θk}K

k=1,π

{ C∑
c=1

F (D(c),θπ(c))
∣∣∣π ∈ Π

}
(1)

where Π = {π : [C]
S−→ [K]} denotes a surjective function

space, indicating that the problem involves clustering.

Let Sk = {c ∈ [C] : π(c) = k} denote the set of clients
assigned to the k-th model for k ∈ [K], i.e., clusters arising
from π. Then, the objective function in (1) can be equiva-
lently expressed as

∑K
k=1

∑
c∈Sk

F (D(c),θk).

During the training, each client c is modelled as capable of
sampling a finite minibatch Xc. We define the empirical loss
function f(Xc,θ) and its corresponding gradient ∇f(Xc,θ)
associated with Xc as

f(Xc,θ) =
1

|Xc|
∑
x∈Xc

l(x,θ) (2)

∇f(Xc,θ) = ∇F (D(c),θ) + ec(θ) (3)

where ∇F (D(c),θ) denotes the gradient of the population
loss with respect to the model parameters θ, and ec(θ)
corresponds to a zero-mean Stochastic Gradient Noise
(SGN) vector modeling noise associated with minibatch
sampling, following the convention of the stochastic
gradient descent analysis (Ahn et al., 2012; Chen et al.,
2014; Zhu et al., 2019).

Notation: We use superscripts within parentheses, e.g., θ(t)

to signify the t-th iteration. We write x ≲ y if there exists
a universal constant Cu such that x ≤ Cuy where Cu > 0.
We use O to denote the order of functions.

3. Algorithm
CFL-GP is based on the intuition that clients whose model
gradient updates align during the learning process should
be grouped into the same cluster. Due to potential noise
and high dimensionality of the gradients, exploiting these as
clustering features while maintaining theoretical optimality
can be challenging. To tackle this issue, we propose a
novel algorithm that enables us to effectively leverage these
features without compromising optimality.

In CFL-GP, the Central Unit (CU) maintains and updates K
models {θk}Kk=1 and K clusters of clients {Sk}Kk=1, where
each cluster denotes a subset of clients whose distributions
are believed to be similar and thus assigned to a shared
common model. As depicted in the Algorithm 1 panel the
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Algorithm 1 CFL-GP

Input: K initial models {θ(0)
k }Kk=1, K initial clusters {S(0)

k }Kk=1, clustering period P , learning rate γ(t)k , gradient features
initialized as g(−1)

c = 0 ∀c ∈ [C], feature moving average factor {βt}Tt=1, and the number of cluster updates Tcl

Output: K trained models {θ(T )
k }Kk=1 and K updated clusters {S(T )

k }Kk=1

1: for t = 0 to T do
2: for k = 1 to K in parallel do ——————————————————————————— ▷ Model Update
3: CU transmits θ(t)

k to the clients in S(t)
k and receives ∇f(X (t)

c ,θ
(t)
k ) ∀c ∈ S(t)

k

4: CU updates θ(t+1)
k := θ

(t)
k − γ

(t)
k

∑
c∈S(t)

k

∇f(X (t)
c ,θ

(t)
k )

5: if tmodP = 1 and t < Tcl then—————————————————————————– ▷ Cluster Update
6: Select k̄ ∈ [K] in a round-robin manner
7: CU broadcasts θ(t)

k̄
and receives ∇f(X (t)

c ,θ
(t)

k̄
) ∀c ∈ [C]

8: CU updates g(t)

c,k̄
:= (1− βt)g

(t−1)

c,k̄
+ βt∇f(X (t)

c ,θ
(t)

k̄
) ∀c ∈ [C]

9: g
(t)
c,k′ := g

(t−1)
c,k′ ∀c ∈ [C], k′ ∈ [K] s.t. k′ ̸= k̄

10: {S(t+1)
k }Kk=1 := SPECTRALCLUSTERING({g(t)

c }Cc=1, {S
(t)
k }Kk=1)

11: else
12: S(t+1)

k := S(t)
k ∀k ∈ [K] and g

(t)
c := g

(t−1)
c ∀c ∈ [C]

CU iteratively updates both the model parameters and the
client clusters.

Model update (Lines 2-4). Each of the K models is
updated based on the gradients of clients in the associated
cluster. As seen in Lines 2-4, the CU sends the k-th model
θ
(t)
k to every client in the k-th cluster S(t)

k and collects
their gradients ∇f(X (t)

c ,θ
(t)
k ). Then it updates the k-th

model as θ(t+1)
k := θ

(t)
k − γ

(t)
k

∑
c∈S(t)

k

∇f(X (t)
c ,θ

(t)
k ) for

all k ∈ [K].

Cluster update (Lines 5-12). Every P iterations, the
CU updates the clustering of clients {S(t)

k }Kk=1 by collect-
ing their gradients on various common models and per-
forming spectral clustering, provided that t remains within
the clustering iteration threshold Tcl. Specifically, as ex-
plained in the next paragraph, we construct a feature vector
g
(t)
c ∈ RKd (K d-dimensional vectors) for each client c by

concatenating its averaged gradients associated with K dif-
ferent models. This permits the clustering of clients based
on the similarity of their gradients across time and diverse
models.

As shown in Lines 5-7, the gradient data is collected by
periodically broadcasting (in a round-robin manner) one
of the K models, denoted by k̄, to all clients and collect-
ing the associated gradients from each client. As shown
in Line 8, in each clustering period, the feature vector is
smoothly updated to incorporate the newly received gradi-
ent information. We denote the k̄-th block of g(t)

c as g(t)

c,k̄
,

which is defined by the (k̄d−d+1: k̄d)-th elements of g(t)
c .

The k̄-th block of the feature vector is smoothly updated
as g(t)

c,k̄
:= (1−βt)g(t−1)

c,k̄
+ βt∇f(X (t)

c ,θ
(t)

k̄
), where βt de-

notes the moving average factor. The remaining parts of the
clients’ feature vectors are maintained as in Line 9. We set
βt =

1
⌊t/(KP )⌋+1 which means that we take the cumulative

averaging for the feature vectors.

As gradients are high-dimensional, clustering them directly
may be infeasible. To address this challenge, in Line 10, we
utilize spectral clustering on the clients’ feature vectors to
group them based on similarity. We demonstrate through
theoretical analysis and experimentation that even when the
dimensionality of the gradient information is significantly
reduced, as elaborated in the next paragraph, our method can
efficiently perform clustering without sacrificing optimality.

Spectral clustering. By Spectral clustering here we refer
to a family of methods involving dimensionality reduction
and clustering (Löffler et al., 2021). The subroutine SPEC-
TRALCLUSTERING is performed in three steps; (a) First is
the dimensionality reduction. Let G(t) = (g

(t)
1 · · · g(t)

C ) ∈
RKd×C denote the matrix form of the clients feature vectors.
The CU computes Û (t) ∈ RKd×K whose k-th column is
the singular vector of G(t) corresponding to the k-th largest
singular value. Let g′(t)

c = Û (t)⊤g
(t)
c ∈ RK denote the

c-th client’s projected feature vector, achieving a d-fold di-
mensionality reduction from g

(t)
c ∈ RKd to g

′(t)
c ∈ RK . (b)

Next, the CU performs K-means clustering to partition the
clients into K groups. (c) Finally, we assign a unique model
to each group, resulting in K labeled clusters {S(t+1)

k }Kk=1.
Specifically, among all possible assignments of models to
groups, we choose one maximally aligned and coherent
with the previous assignment, i.e., one that maximizes the
number of clients whose new model assignment is equal to
the previous one. A more formal description of Algorithm 1
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is provided in Appendix B.

Next, we present several techniques to improve the effi-
ciency, complexity, and scalability of CFL-GP for practical
deployment.

Model averaging protocol. The gradient averaging-based
model update process of Lines 3-4 in Algorithm 1 can be
replaced by the model averaging method for communica-
tion efficiency, where the clients perform multi-step local
updates for the model update. See Appendix C.

Complexity. The primary contributor to the computation
complexity of CFL-GP is the computation of the leading
singular vectors of the gradient profile matrix within the
spectral clustering, which can be rapidly solved by recent
leading singular vectors recovery techniques, e.g., (Shamir,
2015) through additional iterations where the runtime is log-
arithmic in the required accuracy (Shamir, 2016). The spec-
tral clustering ultimately leads CFL-GP to achieve much
lower communication and computation costs as it quickly
achieves a correct clustering (Section 4). Empirical results
show that CFL-GP can achieve optimal clustering with only
a few spectral clustering updates (up to 100 times faster
than existing methods in various benchmarks as shown in
Section 5 and Appendix D).

Scalability. To improve the scalability of CFL-GP in han-
dling large neural networks (e.g., > 106 parameters), one
can let clients send compressed gradients for clustering pur-
poses in Line 7. We observe that effective spectral clustering
can still be performed when gradients are compressed by
more than 100×, which is in line with recent findings that
gradients or task objective landscapes have low intrinsic
dimensionality in many tasks (Li et al., 2018; Aghajanyan
et al., 2020; Hu et al., 2021a). See Appendix E for more
details.

4. Theoretical Analysis
In this section, we show that under the assumption that the
gradients’ noise is Gaussian, CFL-GP eventually achieves
proper client clustering and convergence to the optimal
model parameters with high probability. For analysis pur-
poses, we shall assume that the number of distinct distribu-
tions D clients can have is equal to the number of models
K to be trained.

For a given distribution Dk, we let θ∗
k denote an optimal

model, i.e., θ∗
k = argminθ∈ΘEx∼Dk

[l(x,θ)]. In an ideal
setting the clients in S∗

k sharing distribution Dk would even-
tually be grouped together and assigned to the associated
model.

It is imperative to note that in Algorithm 1, the model θ(t)
k

and client cluster S(t)
k at iteration t are not tied to the k-th

distribution. The index k in θ
(t)
k only signifies its ordinal

position among K models rather than a specific distribution
association. The k-th model may engage with a variety of
clients during training, each possibly having a different data
distribution index. Given this variability, an appropriate
notion for tracking the convergence of the models becomes
necessary.

To address this challenge, we introduce a new notion in
model indexing for clustering and convergence analysis: for
a given distribution Dk, we consider a model which the
plurality of clients in S∗

k agree. This is formally defined as
follows.

Definition 1 (Client plurality model). The client-plurality
model for clients with distribution Dk, denoted θ̂

(t)
k , is given

as θ̂
(t)
k = θ

(t)
M(k,t) where M(k, t) ∈ argmaxm∈[K] |S∗

k ∩
S(t)
m | and with ties are broken arbitrarily. We shall see

plurality will more often than not be in fact the majority as
clients become properly grouped.

In other words, this formulation provides an index of a
model predominantly chosen by clients whose underlying
true data distribution is Dk at iteration t.

Our convergence analysis regarding client clustering
will show the unordered client clusters converges as
{S(t)

1 , . . . ,S(t)
K } → {S∗

1 , . . . ,S∗
K} as t→ ∞. This directly

implies that, θ̂(t)
k will eventually align with the correct client

cluster for the k-th distribution Dk as t→ ∞ and naturally
the corresponding optimal model should be θ∗

k. Therefore,
our model convergence analysis aims to show that θ̂(t)

k ,
the client plurality model for distribution Dk at iteration t,
converges to θ∗

k, the optimal model for distribution Dk as
t→ ∞.

Remark 1. Our algorithm differentiates itself by assuring
convergence in both client clustering and model optimiza-
tion, diverging from representative CFL approaches, which
only guarantee to obtain the near-optimal models (Ghosh
et al., 2020). These guarantees enable effective learning
of clusters and models, circumventing the need for advan-
tageous initial conditions such as partially well-clustered
clients or near-optimal starting models, often assumed in
existing research (Ghosh et al., 2020; Vahidian et al., 2023).

We begin by introducing some additional notation and as-
sumptions. The normalized size of the smallest cluster is
denoted by ρ as ρ = mink |S∗

k |/C. To allow for theoretical
analysis we shall assume that each iteration t each client c
has access to an independent minibatch dataset X (t)

c of size
b from its associated data distribution.

Assumption 1. For each k ∈ [K], we assume that there are
at least two clients that have the distribution Dk – this im-
plies Cρ ≥ 2. We also assume that Kd ≥ C ≥ (logKd)

3
2
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and ∥θ∥ ≤ ω almost surely where ω > 0, i.e., the norm of
the model is bounded.

Discussions on Gaussianity of SGN. Several studies
(Ahn et al., 2012; Chen et al., 2014; Jastrzębski et al., 2017;
Hu et al., 2017; Jastrzębski et al., 2017; Zhu et al., 2019)
have reached the conclusion that a Gaussian approximation
for SGN is theoretically well-founded when the Central
Limit Theorem applies and the size of minibatches is suf-
ficiently large. Counterarguments have also been made
suggesting that the Gaussian assumption may fail with the
SGN being better modeled by a heavy-tailed distribution
(Simsekli et al., 2019). Recently, Panigrahi et al. (Panigrahi
et al., 2019) explored the statistical properties of SGN for
deep neural networks for machine learning applications for
numerous practical settings. They found that the SGN ex-
hibits clear Gaussian characteristics during early phases of
training and loses Gaussianity as learning progresses. This
series of works suggests that at least in the early phases of
learning, it may be realistic to assume it follows a Gaussian
distribution for machine learning applications with neural
networks. Thus, we make the following assumption on the
SGN.

Assumption 2 (Gaussianity and bounded variance). Let
X = {x1, · · · ,xb} denote a dataset generated from Dk for
some k ∈ [K]. For any given θ, we assume that ec(θ) ∼
N (0,Σ), where N is multivariate Gaussian distribution
with the covariance matrix Σ such that Tr(Σ) ≤ v2/b and
∥Σ∥∞ ≤ Tr(Σ). For a single data instance x ∼ Dk, we
have E∥∇f({x},θ) − ∇F (Dk,θ)∥2 ≤ v2 and all SGN
vectors, ec(θ), are independent.

Next, let Tk(t) denote the set of time indices where the k-th
block of the feature vectors is updated before time t. Subse-
quently, the sequence of updates of the k-th model before
time t can be denoted as Θ̃(k, t) = {θ(t′)

k |t′ ∈ Tk(t)}.

Assumption 3 (Minimum average gradient gap). For
any k1,k2 ∈ [K], k1 ̸= k2, a gap between av-
erage gradients over a sequence, which is given as
mink,t ∥

∑
θ∈Θ̃(k,t)

1
|Θ̃(k,t)| (∇F (Dk1 ,θ)−∇F (Dk2 ,θ))∥

where k ∈ [K] and t > 1, is greater than ∆g(> 0), almost
surely.

Assumption 3 is indeed a mild assumption for real-world
problems as it states that the average gradients associated
with different data distributions are different.

Now we present an analysis of the proposed algorithm from
the following perspectives: (1) clustering performance, (2)
contractive property, and (3) convergence.

(1) Clustering Performance

Let W (t) denote the fraction of incorrectly clustered clients
at t. The following Lemma 1 establishes the monotonic

decrease of an upper bound of W (t) as t increases, with its
proof provided in Appendix B.1.

Lemma 1. Consider any δ ∈ (0, 1). Under Assumptions
1, 2, 3, and for t and Tcl such that Tcl > t > KP+1, the
fraction of incorrectly clustered clients at t, W (t), is upper
bounded as W (t) ≤ O( 1

δ2t ) with probability at least 1− δ.

Remark 2 (Monotonic decrease of bound on number of
incorrectly clustered clients). The high probability result of
the monotonic decrease in the upper bound of the number
of incorrectly clustered clients is in stark contrast to the
existing CFL algorithms, which do not guarantee enhanced
clustering accuracy through an increase in the number of
iterations (Ghosh et al., 2020; Sattler et al., 2020; Mansour
et al., 2020). Instead, the clustering accuracy of the existing
methods relies on large batch sizes or significant differences
between clusters, which are often beyond the control of
learning system operators.

(2) Contractive property

In Appendix B.2, we will show the following Theorem 1.

Assumption 4. The population loss function F (Dk,θ) is
µ-strongly convex and L-smooth for all k ∈ [K]. Recall
that a differentiable function f is µ-strong convex if ,∀θ′,θ,
f(θ′) ≥ f(θ) + ⟨∇f(θ),θ′ − θ⟩ + µ

2 ∥θ
′ − θ∥2 and L-

smooth if ∀θ′,θ, ∥∇f(θ′)−∇f(θ)∥ ≤ L∥θ′ − θ∥.

Theorem 1. Suppose that Assumptions 1-4 hold. Consider
δ ∈ (0, 1), γ(t)k = 2

C(µ+L) , and t such that Tcl > t >
λK2PCv2

δ2∆2
gρb

+KP+ 1where λ is a constant.

For any k, Algorithm 1 satisfies the following contractive
property for the client plurality model of Dk with probability
at least 1− δ.

∥θ̂(t+1)
k − θ∗

k∥ ≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+ ϵ(t) (4)

ϵ(t) =
6v

δ(µ+ L)
√
bCρ(1− λKCv2

4ρ∆2
gδ

2⌊ t−1
KP ⌋b )

+
λLwKCv2

(µ+ L)∆2
gδ

2⌊ t−1KP ⌋b
+

3
√
λK2v2

(µ+ L)δ2∆g

√
⌊ t−1KP ⌋b

. (5)

Theorem 1 shows a contractive property of CFL-GP with a
per-iteration error rate ϵ(t) as in (5). We note that this error
rate is asymptotically optimal.

Remark 3 (Optimality of error rate). When the CU in the
CFL framework knows all clients’ distribution identities, the
optimal error rate ϵ(t) in (5) with respect to the batch size b
and number of clients C is shown to be Õ(1/

√
bC) (Ghosh

et al., 2020), where the order notation Õ omits the other
parameters except b and C. It is worth noting that the order

The constant is not problem-specific and given in B.2.1.
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of error rate ϵ(t) of CFL-GP converges to this one as t →
∞. We also note that the guaranteed increase in clustering
accuracy shown in Lemma 1 results in a monotonic decrease
of error rate with respect to t, demonstrating that the model
update towards the optimal solution becomes increasingly
accurate with more iterations.

Notably, the contractive property is guaranteed without re-
quiring any good initialization assumptions, unlike prior
works that require the initial model to be near the optimal, a
correct initial clustering of certain amounts of clients (Ghosh
et al., 2020; Vahidian et al., 2023), or rely on clustering trig-
gering parameters that potentially require prior knowledge
of the gradient statistics (Sattler et al., 2020).

(3) Convergence

In Appendix B.4, we will show the following Proposition 1.

Proposition 1. Suppose Assumptions 1-4 hold and for all
c, k, t, ∥∇f(X (t)

c ,θ
(t)
k )∥ ≤ H almost surely. Consider any

δ ∈ (0, 1), γ(t)k =1/(µ|S(t)
k |(max(t−Tcl +1, 1))), and T

such that T ≥Tcl + 4 with Tcl>(λKC
2v2

δ2∆2
gb

+ 1)KP+1.

For any k, after T iterations, Algorithm 1 satisfies the fol-
lowing convergence property for the client plurality model
of Dk with probability at least 1− δ.

∥θ̂(T )
k − θ∗

k∥ ≤ O
( log(log(T − Tcl)/δ)

T

)
. (6)

Proposition 1 indicates that the proposed algorithm can
achieve the order of the conventional stochastic gradient
(Rakhlin et al., 2012) and the client plurality model for the
k-th distribution, θ̂k, converges to the optimal model θ∗

k as
T → ∞ with high probability.

5. Numerical Evaluation
Evaluation Summary and Roadmap. We shall show
the superiority of CFL-GP over a comprehensive set of
state-of-the-art baselines on various benchmarks. Below we
provide an overview, highlighting the key themes of each
experiment.

[Section 5.1]: We conduct a thorough assessment of our
algorithm on a linear regression task and its robustness to
environmental variables such as client count, batch size,
data distribution heterogeneity, and model initialization, uti-
lizing controllable synthetic datasets. [Section 5.2]: We
then extend our evaluation to neural network based image
classification tasks, again examining robustness to client
number and batch size, data distribution heterogeneity, as
well as communication and computation costs. [Section
5.3]: We further evaluated our proposed algorithm on large-
scale models (e.g., ResNet-18, deep autoencoders with over
a million parameters) with image and non-image industrial

datasets and assessed its applicability for high-dimensional
models and diverse datasets. [Appendix D]: This appendix
includes a detailed analysis of computation and communi-
cation costs, including clustering convergence speed and
accuracy, is provided. [Appendix F]: details the configu-
ration of all simulation environments and algorithms, and
includes additional ablation studies for the proposed algo-
rithm. [Appendicies F.2 and F.3]: In these sections, we
compare CFL-GP’s performance with recent algorithms in
related domains, such as PFL and other CFL algorithms
from different communication protocols.

Across varied setups, CFL-GP consistently outperforms in
task and clustering performance, demonstrating its robust-
ness and effectiveness.

Baselines. We evaluate representative theoretically well-
founded CFL algorithms, including: Iterative Federated
Clustering Algorithm (IFCA) (Ghosh et al., 2020), Model-
Agnostic Distributed Multi-Task Optimization (MADMO)
(Sattler et al., 2020), and Principal Angles analysis for Clus-
tered Federated Learning (PACFL) (Vahidian et al., 2023),
as well as traditional FL, which uses a single global model
(McMahan et al., 2017). In Sec. 5, we primarily focus on
contrasting the algorithms CFL-GP, IFCA, MADMO, and
the traditional approach using a single model due to their
comparable FL communication protocols: gradient sharing
(CFL-GP, IFCA, MADMO, Global Model) and model eval-
uation sharing (IFCA). PACFL, using sharing of principal
angle analysis of dataset to the CU, is analyzed separately
in Appendix F.3. We also discuss PFL methods such as
FedEM (Marfoq et al., 2021), noting their differences from
CFL, with further comparisons in Appendix F.2.

Metric. The performance of CFL can be evaluated using
clustering accuracy and overall loss. To measure clustering
accuracy, we use the Adjusted Rand Index (ARI) (Hubert
& Arabie, 1985; Steinley, 2004), which ranges from -0.5 to
1.0. An ARI of 1.0 indicates optimal clustering, while an
ARI of 0.0 indicates random clustering. We also provide a
comparison of computation and communication costs.

5.1. Synthetic Dataset: Multiple Linear Regressions
over Gaussian Label Noise

We first consider a CFL problem where the objective is
to learn three linear models for regression tasks. For a
given k ∈ [3], we generate data pairs x = (x, y) as
y = xtan(ϕk) + n where n ∼ N (0, 0.22) and x follows
U(0,cos(ϕk)), a uniform distribution over [0,cos(ϕk)].
We consider three angles (ϕ1, ϕ2, ϕ3) = (∆ϕ, 0, −∆ϕ)
for vaious ∆ϕs. The k-th model’s output is computed as
ŷ = θk,1x+ θk,2 with two initialization strategies for θ(0)

k,1,

θ
(0)
k,1 ∼ U(−0.8, 0.8) and θ

(0)
k,1 ∼ U(−1.6, 1.6). In all cases,

θ
(0)
k,2 = 0. See Appendix F.4 for further details.
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initialization (ii)

initialization (i)

Figure 1. Multiple Linear Regression: The clustering performance
(ARI) according to the number of clients C, data distribution gap
∆ϕ, batch size b, and initialization strategies, respectively. Subplot
(d) shows the corresponding Loss values (MSE) for Subplot (c).
CFL-GP exhibits near-optimal performance and is much less sen-
sitive to the environmental variables and model gap/initialization
than the existing CFL algorithms.

Robustness of CFL-GP. In Figure 1 we plot various CFL
algorithms’ ARI in relation to the number of clients, cluster
gaps, and batch sizes in subplots (a), (b), and (c) and the
corresponding task loss (MSE) in (d). The solid lines cor-
respond to the first initialization strategy mentioned above,
while the dotted lines correspond to the other (default setup
with b=10, ∆ϕ=20◦, and C=12). Throughout the results
in (a) to (c), we observe that the CFL-GP exhibits impressive
performance with an ARI close to 1.0, being robust over the
system parameters and outperforming the baselines, leading
to near-optimal task performance in (d). The results in (b)
especially demonstrate the statistical rigor and reliability of
CFL-GP’s clustering; when ∆ϕ = 5◦, the clustering perfor-
mance of both baselines is equivalent to random clustering
(0 ARI), while CFL-GP achieves an ARI above 0.8. The
results in (c) show that CFL-GP is much more robust over
the initialization of models than others.

5.2. Real Image Dataset: Rotated MNIST

This subsection presents an extension to the benchmark
commonly used in CFL literature (Lopez-Paz & Ranzato,
2017; Ghosh et al., 2020; Sattler et al., 2020). We employ
the MNIST dataset (LeCun et al., 1998), which contains
handwritten digits with 10 classes. The dataset is divided
equally among eight sets of clients, and rotation transfor-
mations of 0, 15, 90, 105, 180, 195, 270, and 275 degrees
are applied to each client’s data (D = 8). Consequently, the
clients possess heterogeneous datasets due to the division
and rotation transformations.

Figure 2. Rotated MNIST: Accuracy and ARI are plotted against
batch size and number of clients in subplots (a)-(d), while commu-
nication and computation costs are plotted in subplots (e) and (f),
respectively. CFL-GP’s rapid and robust clustering (b,d) not only
lowers communication and computational costs to reach target
performance (e,f) but also yields high final accuracy (a,c).

Our goal is to train four nonlinear models (K = 4), each
with over 150K parameters, to accurately classify the digits
in the transformed datasets without knowledge of the cluster
identities (specific rotation applied to the data). We assess
the results using the ARI, assuming that optimal partition-
ing occurs when clusters with similar rotation angles are
grouped together. For a detailed experimental setup, see
Appendix F.5.

Classification accuracy and clustering performance.
Subplots (a-d) in Figure 2 present the average classifica-
tion accuracy and ARI after T = 200 of the algorithms
with respect to changes in batch size and number of clients.
CFL-GP demonstrates remarkable consistency in achiev-
ing perfect clustering performance with ARI scores of 1.0
across various batch sizes and client numbers, as illustrated
in Figure 2-(b,d). This allows for the efficient allocation
of similar data distributions to each model, resulting in the
highest classification accuracy observed in all experiments
(a,c). Competing CFL algorithms, on the other hand, exhibit
sensitivity to both batch sizes and client numbers, with their
ARI and accuracy patterns fluctuating significantly as a re-
sult (a-d). Notably, these algorithms experience substantial
ARI degradation, especially when applied to small client
numbers (d).

Communication and computation cost. Subplot (e) in
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t =400

t =200

t =5

Figure 3. Accuracy and ARI vs. mixture ratio κ. CFL-GP achieves
higher model performance (classification accuracy, left) as well as
higher clustering accuracy (ARI, right) across all mixture ratios.
CFL-GP’s ARI at t = 5 exceeds that of others at t = 400 in most
cases, demonstrating CFL-GP’s fast clustering ability (right).

Figure 2 displays the required communication cost (total
number of model transmissions between CU and all clients)
and computation cost (total runtime for clustering, gradient
computation, and forward computing) to achieve an accu-
racy of 0.6 (achievable by all the CFL algorithms), as a
function of the number of clients. In all cases, CFL-GP
achieves the lowest computation and communication costs
owing to its rapid convergence towards optimal clustering,
which facilitates fast and precise model learning. For a more
detailed analysis of the learning process, see Appendix F.5.
We also note that CFL-GP has the lowest runtime and com-
munication cost for a given round on average due to its rapid
convergence (Appendix D).

Extension to mixture distributions and convergence. To
evaluate the robustness of the CFL-GP based on distribution
similarity, the dataset is partitioned into three groups: one
rotated 0 degrees, another 180 degrees, and the remaining
group is subjected to the two rotation transformations with
probabilities κ and 1− κ, respectively. The data is divided
equally among four clients for each group. See Appendix
F.5 for more details.

Figure 3 (Right) illustrates the changes in ARI for t =
5, 200, 400 and corresponding accuracy as a function of
κ, with larger markers indicating greater t. CFL-GP’s ARI
at t = 5 outperforms that of all other algorithms at t=400
when κ ∈ [0.3, 0.7], and it achieves the highest ARI score at
t = 400. Also, CFL-GP achieves optimal clustering at t=5,
particularly when κ was around 0.5, which is a relatively
easy mixture of distributions to cluster.

Figure 3 (Left) shows that CFL-GP’s rapid convergence to
optimal clustering leads to improved accuracy for a given
mixture ratio κ and t. When κ is close to zero or one, the
average accuracy slightly improves as clients with a more
biased mixture of distributions have better performance with-
out confusion from rotation transformations.

Table 1. Performance comparison in various benchmarks includ-
ing Industrial and Large-Scale scenarios, demonstrating CFL-GP’s
versatility with consistent attainment of optimal ARI of 1.

Algorithm [Exp 1: Deep AE / COST2100] NMSE/ARI C=16,C=32

CFL-GP -19.38(dB)±3e-3/1.00±0.00 -17.56(dB)±7e-3/1.00±0.00
IFCA -15.83(dB)±6e-3/-0.01±0.01 -14.07(dB)±1e-2/0.00±0.00
MADMO -17.63(dB)±1e-2/0.50±0.50 -16.28(dB)±2e-3/0.44±0.18
FedAvg -14.57(dB)±6e-3/0.00±0.00 -14.47(dB)±3e-3/0.00±0.00

Algorithm [Exp 2:Resnet18, CIFAR10] ACC/ARI for C=20, C=40, C=80

CFL-GP 73.93±0.50/1.00±0.00 72.16±0.33/1.00±0.00 70.49±0.35/1.00±0.00
IFCA 73.97±0.37/1.00±0.00 72.15±0.33/1.00±0.00 70.32±0.32/1.00±0.00
MADMO 68.42±2.14/0.27±0.27 65.56±2.36/0.14±0.17 52.53±7.44/0.00±0.00
FedAvg 70.75±1.10/0.00±0.00 65.59±2.91/0.00±0.00 52.48±8.15/0.00±0.00

Algorithm [Exp 3: CNN, EMNIST] ACC/ARI for C=10, C=80, C=160

CFL-GP 82.28±0.30/1.00±0.00 79.11±0.34/1.00±0.00 76.73±0.24/1.00±0.00
IFCA 78.68±5.41/0.71±0.45 77.52±4.62/0.86±0.35 76.55±0.21/1.00±0.00
MADMO 76.73±5.89/0.53±0.47 78.30±0.52/0.74±0.09 75.07±0.52/0.40±0.15
FedAvg 70.09±0.78/0.00±0.00 65.77±0.56/0.00±0.00 66.23±0.71/0.00±0.00

5.3. Additional Experiments Including Large Scale and
Industrial Applications

We demonstrate the robustness of CFL-GP on various prac-
tical scenarios and large scale applications, an overview of
which is provided in the following, along with part of the
results presented in Table 1.

In [Exp 1], we address a Channel State Information (CSI)
compression problem via deep AutoEncoders (AE) with
wireless channel datasets such as COST2100 (Wen et al.,
2018) and (Jaeckel et al., 2021). CFL algorithms are re-
quired to cluster local data centers having heterogeneous
data distributions where they typically exhibit high sample
variance, posing challenges in distinguishing them. In [Exp
2], the aim is to cluster clients with a part of the CIFAR10
dataset (Krizhevsky et al., 2009) and a large neural network
ResNet18 (He et al., 2016) based on their label heterogene-
ity while allowing partial model sharing among the client
clusters. In [Exp 3], we adopt a setup from (Sattler, 2020)
that involves client clustering where clients have a part of
the EMNIST dataset (Cohen et al., 2017) with both hetero-
geneous label distribution and rotation transformation.

Notably, the CFL-GP algorithm consistently achieves the
perfect clustering (ARI score of 1.0) and the highest perfor-
mance across all tasks, outperforming other approaches by a
significant margin, both in terms of the clustering accuracy
and the model performance. Although not shown in the
table, we note that CFL-GP has the lowest average runtime
in most simulations resulting from its rapid convergence.
(See Appendix F for details).

6. Conclusion and Discussion
We have theoretically established and validated that CFL
clients’ model gradients during the learning process can be
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used to effectively group clients, delivering excellent results.
Indeed our proposed CFL-GP algorithm is able to circum-
vent the challenges associated with high dimensionality and
noise while preserving clustering and learning optimality.
Our algorithm not only satisfies theoretical guarantees un-
der mild assumptions but also demonstrates significantly
faster clustering performance, up to 100 times faster than
the state-of-the-art, leading to better performance at a lower
cost. The computational and communication costs can fur-
ther be reduced by exploiting highly compressed gradients
with CFL-GP still preserving optimality for a wide range of
tasks.

In practical scenarios with uncontrollable variables and un-
known data statistics, a CFL algorithm’s performance robust-
ness to hyperparameter choices is crucial. Unlike MADMO
and PACFL, CFL-GP does not require cluster-branching sen-
sitivity hyperparameters, avoiding potentially inconsistent
outputs. Instead, CFL-GP and IFCA require the fixing of the
number of models to be learned, and we propose a method
in Appendix G to efficiently identify what it should be in
practical settings. This highlights CFL-GP’s adaptability to
various learning contexts.
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A. Related Work
Federated Learning. FL is a distributed learning framework in which multiple clients with local datasets participate in
training to learn a global model without sharing the raw local dataset (Konečnỳ et al., 2016; McMahan et al., 2017; Li et al.,
2019; 2020; Zhang et al., 2021); success has been shown across various fields throughout the industry (Bonawitz et al.,
2019; Yang et al., 2020; Niknam et al., 2020; Rieke et al., 2020). However, one of the main challenges of FL is the presence
of non-i.i.d. data across clients (Kairouz et al., 2021), which implies that applying one global model to all clients under the
traditional FL framework may not be the optimal solution for the clients.

Personalized Federated Learning. In order to overcome the data heterogeneity across the clients due to the non-i.i.d.
nature, research on FL system design for model personalization draws valuable attention (Kulkarni et al., 2020). Traditional
model personalization involves multiple clients cooperating to train a global model and transforming that global model to fit
each client’s unique local dataset. In (Wang et al., 2019), after training one global model, the authors presented a method of
additional learning starting with the global model using the local data of each client, which can be interpreted as a transfer
learning technique (Torrey & Shavlik, 2010). A model-agnostic meta learning (Finn et al., 2017) has been applied to the
FL framework (Fallah et al., 2020) to find an initial global model that allows clients to quickly fine-tune the model with a
local dataset. Partially Local Federated Learning (Singhal et al., 2021) is also motivated by the meta learning, which shows
fast personalization of the global model. Multitask learning (MTL) frameworks (Caruana, 1997) for learning personalized
models are studied under the FL framework in (Smith et al., 2017; Corinzia et al., 2019; Marfoq et al., 2021).

Recently, (Ruan & Joe-Wong, 2022) especially considered mixture distribution scenario with focus on learning a global
model for future adaptation and multiple personalized models. To enhance feature representation, recent work (Xu et al.,
2023) introduced an approach that leverages feature alignment and classifier combination to address personalization
challenges within deep neural networks. Ruan et al. (2022) addressed scenarios characterized by mixture distributions,
focusing on the development of a global model primed for future adaptation alongside several personalized models. (Xu
et al., 2023) introduced a method that capitalizes on feature alignment and classifier combinations to address the challenges
of personalization in deep neural networks.

Clustered Federated Learning. CFL can be distinguished from Personalized Federated Learning (PFL) in that CFL
considers the absence of a global model for clients’ datasets and desired tasks. CFL not only aims to provide a common
model for each set of clients but also determines the appropriate cluster identity assignments for each participating client
during the learning process. In many relevant practical tasks, it has been found that providing a shared model to clusters of
clients is advantageous over providing a personalized model for each client; we discuss some motivating practical examples
in Appendix F.6.

Under the CFL framework, (Sattler et al., 2020) introduced the bipartitioning-based CFL algorithm. The loss-based client
clustering method was proposed in (Mansour et al., 2020; Ghosh et al., 2020) along with thorough theoretical analyses.
In addition, the clustering method based on the locally trained empirical risk minimizer was proposed in (Ghosh et al.,
2019). (Duan et al., 2021) considered distribution shift issues on the CFL framework with clustering based on optimization
direction similarities. Recently, (Shenaj et al., 2023) proposed a clustering algorithm that utilizes clients’ inference similarity,
designed for scenarios where distinct user groups may have unique objectives yet can benefit from mutual leveraging
through clustering. In (Vahidian et al., 2023), introduced a clustering method that operates by examining the principal angles
between client data subspaces.

(Long et al., 2023) devised an effective loss function, which incorporates a distance-based regularization term. This term
penalizes deviations from central models, promoting convergence of local models towards a common objective. (Zeng
et al., 2023) utilized cosine similarity of updates from an anchor model to construct a client similarity matrix, enabling
effective client clustering. (Yan et al., 2023) employed cosine similarity of model parameters combined with the average
connectivity within client clusters to optimize the clustering process. (Vardhan et al., 2024) proposed a new successive
clustering algorithm for CFL that adapts clustering based on local model similarities, which does not require prior knowledge
of the cluster count.

Note that our approach stands out from the existing methods by strengthening clustering criteria through the accumulation
of gradient information acquired during the training process, which leads to theoretical optimality for both client clustering
and model convergence, and empirical robustness.
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Table 2. Notation and Description

Notation Description Note

G(t) gradient profile matrix G(t) = (g
(t)
1 · · · g(t)

C ) at t G(t) ∈ RKd×C

E(t) stochastic gradient noise matrix at t
ec(θ) stochastic gradient noise on model θ of client c
X (t)

c minibatch (set of data instances) from client c at t
x data instance
K total number of models (clusters)
C total number of clients
P clustering period
S(t)
k set of clients assigned to the k-th model at t

S∗
k set of clients whose distribution identity is k |S∗

k | > 0
S̄∗
k set of clients whose distribution identity is not k

Ŝ(t)
k set of clients which the plurality of clients in S∗

k agree at t
b batch size
d number of model parameters θ ∈ Rd

k∗c Distribution identity for c-th client k∗c ∈ [K]

k
(t)
c estimated cluster identity for c-th client at t k

(t)
c ∈ [K]

θk k-th model (a set of parameters) θk ∈ Rd

θ̂k client plurality model associated with k-th distribution
ρ normalized minimum number of clients in cluster ρ = minc

|S∗
k |
C

ω maximum norm of θ

Ψ bijective permutation function space Ψ = {ψ : [K]
B−→ [K]}

Π surjective clustering function space Π = {π : [C]
S−→ [K]}

Θ model parameter space Θ ⊂ Rd

Algorithm 2 CFL-GP

Input: K initial models {θ(0)
k }Kk=1, K initial clusters {S(0)

k }Kk=1, clustering period P , learning rate γ(t)k , gradient features
initialized as g

(−1)
c = 0 ∀c ∈ [C], feature moving average factor {βt}Tt=1, and the number of cluster updates Tcl,

broadcast model index k̄(−1) = K

Output: K trained models {θ(T )
k }Kk=1 and K updated clusters {S(T )

k }Kk=1

1: for t = 0 to T do
2: for k = 1 to K in parallel do ——————————————————————————— ▷ Model Update
3: CU transmits θ(t)

k to the clients in S(t)
k and receives ∇f(X (t)

c ,θ
(t)
k ) ∀c ∈ S(t)

k

4: CU updates θ(t+1)
k := θ

(t)
k − γ

(t)
k

∑
c∈S(t)

k

∇f(X (t)
c ,θ

(t)
k )

5: if tmodP = 1 and t < Tcl then—————————————————————————– ▷ Cluster Update
6: Update k̄(t) := (k̄(t−1) modK) + 1 ▷ round-robin manner
7: CU broadcasts θ(t)

k̄
and receives ∇f(X (t)

c ,θ
(t)

k̄
) ∀c ∈ [C]

8: CU updates g(t)

c,k̄
:= (1− βt)g

(t−1)

c,k̄
+ βt∇f(X (t)

c ,θ
(t)

k̄
) ∀c ∈ [C]

9: g
(t)
c,k′ := g

(t−1)
c,k′ ∀c ∈ [C], k′ ∈ [K] s.t. k′ ̸= k̄

10: {S(t+1)
k }Kk=1 := SPECTRALCLUSTERING({g(t)

c }Cc=1, {S
(t)
k }Kk=1)

11: else
12: S(t+1)

k := S(t)
k ∀k ∈ [K], g(t)

c := g
(t−1)
c ∀c ∈ [C], and k̄(t) := k̄(t−1)

B. Technical Results
In preparation for the theoretical proofs to follow, Table 2 lists key notations, Algorithm 2 formalizes CFL-GP, including the
notation for the broadcast model index at t as k̄(t), and Algorithm 3 details the SPECTRALCLUSTERING subroutine.
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Algorithm 3 SPECTRALCLUSTERING

Input: gradient features {g(t)
c }Cc=1, client clusters {S(t)

k }Kk=1 ▷G(t) = (g
(t)
1 , · · · , g(t)

C )

Output: ordered client clusters ({c|k′c = 1}, · · · , {c|k′c = K})
1: Û (t) = argmax

U∈RKd×K :U⊤U=I

U⊤(ΣCc=1g
(t)
c g

(t)⊤
c

)
U ▷ Leading singular vectors

2: (ẑ(t+1), {h̄(t+1)
k }Kk=1) = argmin

z,{hk}K
k=1

C∑
c=1

∥(Û (t)⊤G(t)):,c − hzc∥2 ▷ Spectral clustering

3: ψ̂ = argmax
ψ∈Ψ

|{c : ψ(ẑ(t+1)
c ) = kc}| ▷ kc = {k|c ∈ Sk}

4: Set k′c = ψ̂(ẑ
(t+1)
c ) ∀c ▷ New model index assignment

B.1. Proof of Lemma 1

In this section, we establish an upper bound on the number of clients inaccurately clustered. Our analysis demonstrates that
this upper bound is decreasing as a function of t, indicating that increasing t enhances the accuracy of clustering. Recall that
CFL-GP selects one of the K models in a round-robin manner every P cycles for broadcast to clients, leading to an update
of a part of the clients’ feature vectors. For example, at time t = 1 + (k − 1)P , the k-th block row of the gradient profile
matrix G is updated if t < Tcl. Subsequent updates occur at 1 + (k − 1)P + nKP for n ∈ N ∪ {0} where N is the set of
natural numbers. We can formally define the set of update times for the k-th block row of G up to time t as follows.

Tk(t) = {1 + (k − 1)P + nKP |n ∈ N ∪ {0}, 1 + (k − 1)P + nKP < t, t < Tcl}. (7)

For every t′ ∈ Tk(t), it holds that t′ < t. The k-th block of the gradient profile matrix G(t) is updated |Tk(t)| times up to
the commencement of time step t.

The algorithm updates the client feature vectors with a smoothing ratio βt = 1
⌊t/(KP )⌋+1 during each clustering phase. This

approach integrates multi-step gradient information into clustering decisions and ensures cumulative average updates of the
feature vectors. Given that the k-th block of the gradient profile matrix G(t−1) aggregates the average of past gradients, the
k-th feature block vector for client c at t can be expressed as follows.

g
(t−1)
c,k =

∑
tk∈Tk(t)

∇F (Dk∗c ,θ
(tk)
k )

|Tk(t)|
+

∑
tk∈Tk(t)

ec(θ
(tk)
k )

|Tk(t)|
. (8)

Here we clarify the usage of the time (iteration) notation ·(t). It should be noted that G(t−1) is employed for the formation
of client clusters {S(t)

1 , . . . ,S(t)
k }. Based on this clustering, the models {θ(t)

1 , . . . ,θ
(t)
K } undergo updates. In other words,

the clustering results at the beginning of t rely on the information in G(t−1). In our analysis of clustering accuracy at time
t-specifically at the commencement of the t-th iteration process, we shall consider the gradient profile matrix, which is
updated up to time t− 1 and utilized to create client clusters for t.

Using this notation, we can represent the gradient profile matrix at t− 1 as G(t−1) = A(t−1) +E(t−1) where A(t−1) and
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E(t−1) are given as follows.

A(t−1) =



∑
t1∈T1(t)

∇F (Dk∗1 ,θ
(t1)
1 )

|T1(t)|
· · ·

∑
t1∈T1(t)

∇F (Dk∗C ,θ
(t1)
1 )

|T1(t)|
...

. . .
...∑

tK∈TK(t)

∇F (Dk∗1 ,θ
(tK)
K )

|TK(t)|
· · ·

∑
tK∈TK(t)

∇F (Dk∗C ,θ
(tK)
K )

|TK(t)|


(9)

E(t−1) =



∑
t1∈T1(t)

e1(θ
(t1)
1 )

|T1(t)|
· · ·

∑
t1∈T1(t)

eC(θ
(t1)
1 )

|T1(t)|
...

. . .
...∑

tK∈TK(t)

e1(θ
(tK)
K )

|TK(t)|
· · ·

∑
tK∈TK(t)

eC(θ
(tK)
K )

|TK(t)|


. (10)

Equations (9) and (10) illustrate that the gradient profile matrix G(t−1) is a composite of the average population loss gradient
matrix and the stochastic gradient noise (SGN) matrix, with varying row update frequencies at a given time t. We can
decompose G(t−1) into a central component, A(t−1), and a noise component, E(t−1). Based on this notion, the subsequent
subsections will delve into spectral clustering using this matrix framework and analyze the iteration-wise clustering accuracy.

B.1.1. SPECTRAL CLUSTERING

To generate the clustering results used for the update of the models at time (t), the spectral clustering is applied to a
realization of the random matrix G(t−1). For ease of discussion, the superscript time notation ·(t−1) is omitted, presuming
a constant and specified t − 1. Therefore, G(t−1), A(t−1), and E(t−1) are referred to as G, A, and E. Additionally, in
accordance with Algorithm 3, the estimated cluster identity ẑ(t) for the c-th client, derived from {g(t−1)

c }Cc=1, is simply
denoted as ẑ. In this subsection, we deal with the realization of these random variables.

Spectral clustering commences by identifying the top-K leading singular vectors of the gradient profile matrix G. It should
be noted that extraction of these singular vectors from G does not strictly mandate the use of Singular Value Decomposition
(SVD). Nevertheless, for the sake of brevity within this proof, we utilize a reduced SVD approach to process the matrix G,
as follows.

G =

C∑
i=1

σ̂iûiv̂
⊤
i (11)

where σ̂i represents the i-th largest singular value of G, ûi and v̂i are the left and right singular vectors corresponding to σ̂i,
respectively. According to the definition of SVD, the matrix containing the top-K singular vectors can be represented as
follows where K < C.

Û = argmax
U∈RKd×K :U⊤U=I

U⊤(ΣCc=1G:,cG
⊤
:,c

)
U = (û1, ..., ûK). (12)

After obtaining the matrix Û , the dimensionality of the gradient profile matrix is reduced from G ∈ RKd×C to Û⊤G ∈
RK×C . Next, the clustering is performed based on the low-dimensional matrix Û⊤G.

The objective of the clustering process is to acquire K cluster centers denoted as {h̄k}Kk=1, where h̄k ∈ RK , and to estimate
the cluster identities of the clients, denoted as (ẑ1, ..., ẑC) ∈ [K]C . The vectorized form of the cluster indices of the clients is
represented by ẑ ∈ [K]C where c-th element of ẑ is ẑc. The complete process of clustering, which involves dimensionality
reduction and obtaining K cluster centers, is commonly known as spectral clustering and can be represented as follows.

(ẑ, {h̄k}Kk=1) = argmin
z,{hk}K

k=1

C∑
c=1

∥(Û⊤G):,c − hzc∥2 (13)
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where z denotes the vectorized form of the cluster identities, and the c-th element of the vector z ∈ [K]C is represented by
zc ∈ [K]. This clustering divides the clients into K disjoint sets.

It is important to note that ẑc only represents the index of the cluster to which the c-th client is assigned, within the K
distinct clusters generated by solving (13). ẑc does not yield any information regarding the utilization of the model. The
clusters of clients identified through (13) are mapped to corresponding models via an additional process, the cluster-model
index matching process, as shown in Lines 3-4 in Algorithm 3. The specifics of this process, including a detailed explanation
and its justification, are provided in Appendix B.2.2.

The ultimate goal of utilizing spectral clustering is to obtain the client clustering assignment ẑ. It is worth noting that the
clustering result, ẑ, from Problem (13) can also be achieved by performing clustering on the rank-K approximated matrix
of G, which is denoted as Â, along with index permutation. More specifically, we adopt the following lemma.

Lemma 2 (Application of Lemma 4.1 in (Löffler et al., 2021)). Consider a K-means clustering problem on the rank-K
matrix Â as follows.

Â =

K∑
i=1

σ̂iûiv̂
⊤
i (14)

(
ẑ′, {āk}Kk=1

)
= argmin

z,{ak}K
k=1

C∑
c=1

∥Â:,c − azc∥2. (15)

Then there exists a permutation function ψ ∈ Ψ such that ẑc = ψ(ẑ′c) ∀ c.

Lemma 2 states that the clustering results obtained from spectral clustering in Problem (13) can also be achieved by using the
matrix Â which is the rank-K approximation of G. Note that if the set {ẑ′c}Cc=1 can be transformed into {ẑc}Cc=1 through a
specific permutation function, then the clusters represented by the two sets are considered identical. Due to the equivalence
of the clustering result, without loss of generality, we use ẑ′ and {āk}Kk=1 instead of ẑ and {h̄k}Kk=1 for further analysis.

Now we use the proof technique of Lemma 4.2 in Löffler’s work (Löffler et al., 2021) to derive (16)-(21) and rewrite the
logic for readability.

We first establish the lower bound of the spectral norm of the SGN matrix ∥E∥. This is achieved through the application of
the following.

∥Â−A∥F ≤
√
2K∥Â−A+G−G∥ ≤

√
2K(∥Â−G∥+ ∥A−G∥)

≤ 2
√
2K∥A−G∥ = 2

√
2K∥E∥. (16)

The first inequality in (16) can be obtained from the inequality of the Frobenius norm and the spectral norm. The second
inequality is satisfied by the triangle inequality of the spectral norm. As we denote in (14), Â is an optimal rank-K
approximation of the matrix G with respect to the Frobenius norm and spectral norm by the properties of SVD. Based on
this, the third inequality is satisfied.

Now Consider a matrix Ā ∈ RKd×C whose c-th column is āẑ′c as Ā = (āẑ′1 , ..., āẑ′C ). Then ∥Â−A∥F is lower-bounded
as follows.

1

2
∥Ā−A∥F ≤ 1

2
∥Ā− Â∥F +

1

2
∥A− Â∥F ≤ ∥Â−A∥F. (17)

The first inequality of (17) holds by the triangle inequality, and the second inequality holds by the definition of Ā in (15).

Consider a set W = {c : ∥āẑ′c − A:,c∥ ≥ ∆g/2}, which is a set of clients where the corresponding clients show the
l2-norm of the gap between the estimated cluster center for them and the corresponding concatenated population gradient is
greater than ∆g/2. Then, the cardinality of the set W is bounded as follows.

|W| ≤ ∥Ā−A∥2F
(∆g/2)2

≤ 128K∥E∥2

∆2
g

. (18)

Now we state that all the clients belonging to the complement of W are correctly clustered. Consequently, the number
of clients clustered erroneously is bounded above by the cardinality of W . Consider sets {Ỹk}Kk=1 which are defined as
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Ỹk = {c ∈ [C] : k∗c = k, c ∈ (W)∁},∀k where (W)∁ is the complement of the set W , and Ỹk is non-empty. Note that the
correctly clustered clients c and c′ means that if the cluster indices from the output of the clustering are different, then the
true distribution identities of the clients c and c′ are also different. The statement is equivalent to the following.

∄c, c′ ∈ [C] : c ∈ Ỹk, c′ ∈ Ỹk′ and ẑ′c = ẑ′c′ (19)

where k, k′ ∈ [K], k ̸= k′.

To prove the statement (19), we employ a proof by contradiction. Let us assume that the statement is false. Then there
exist c ∈ Ỹk and c′ ∈ Ỹk′ such that ẑ′c = ẑ′c′ . This implies that the spectral clustering algorithm has grouped clients c and
c′ together into the same cluster, even though their true distribution identities are different and both clients belong to the
complement of W . By the definition of ∆g , we have

∆g ≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∑
t1∈T1(t)

∇F (Dk∗c ,θ
(t1)
1 )

|T1(t)|
...∑

tK∈TK(t)

∇F (Dk∗c ,θ
(tK)
K )

|TK(t)|


−



∑
t1∈T1(t)

∇F (Dk∗
c′
,θ

(t1)
1 )

|T1(t)|
...∑

tK∈TK(t)

∇F (Dk∗
c′
,θ

(tK)
K )

|TK(t)|



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (20)

Note that the right-hand side of the inequality (20) is equal to ∥A:c −A:c′∥. By the triangle inequality of the norm, we have
an upper bound for ∥A:c −A:c′∥ as follows.

∥A:c − āẑ′c∥+
∥∥āẑ′c − āẑ′c′

∥∥+ ∥∥A:c′ − āẑ′c′
∥∥ < ∆g (21)

where the inequality holds due to the assumption of ẑ′c = ẑ′c′ and the definition of W as c and c′ are clients belonging to
the complement of set W .

It is straightforward to see that the inequalities (20) and (21) are contradictory to the definition of ∆g since the right-hand
side term of the inequality (20) is smaller than or equal to the left-hand side of (21).

B.1.2. UPPER BOUND OF THE NUMBER OF INCORRECTLY CLUSTERED CLIENTS

Up to this point, we have established an upper bound for the number of incorrectly clustered clients as in (18), which is
shown to be directly proportional to the square of the spectral norm of the SGN matrix. Given that the SGN vectors exhibit
Gaussian characteristics, the spectral norm of the matrix E(t−1) can be upper-bounded with high probability. It is noteworthy
that as t increases, the spectral norm of the matrix tends to decrease. This is attributed to the fact that the act of averaging a
larger number of independent-centered Gaussian vectors is more likely to yield an SGN matrix with reduced variance.

Recall the each block row of matrix G has been updated at least Ta times, where Ta is defined as Ta = ⌊ t−1
KP ⌋. The

clustering results observable at the beginning of the t-th iteration are obtained by the t− 1-th gradient profile matrix. The
t− 1-th gradient profile matrix G is updated ⌊(t− 1)/P ⌋ times, given that P denotes the clustering period. Since the K
different blocks of G are updated in a round-robin manner, each block is updated at least ⌊ t−1

KP ⌋ times up to t. Therefore, the
set |TK(t)| contains more than or equal to Ta elements and we have |TK(t)| ≥ Ta for a given t.

Based on this observation and the given assumptions for Lemma 1, we introduce the following lemma for the SGN matrix
E(t−1).

Lemma 3. Suppose that Assumptions 1, 2, 3 hold. Consider any δ ∈ (0, 1) and recall the representation of the gradient
profile matrix G(t−1), G(t−1) = A(t−1) +E(t−1) where A(t−1) and E(t−1) are given as (9). The spectral norm of E(t−1)

is bounded as ∥E(t−1)∥ ≲ C
δ

(
v2

Tab

) 1
2

with probability at least 1− δ.

Proof. See Appendix B.3.

Lemma 3 states that, with high probability, the spectral norm of the SGN matrix is upper-bounded subsequent to the
completion of t− 1 iterations.
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Finally, combining (18) and Lemma 3, we have the following inequalities which hold with probability at least 1− δ.

|W| ≤ 128K∥E(t−1)∥2

∆2
g

≲
KC2v2

∆2
gδ

2Tab
. (22)

This observation directly implies that the upper bound on the number of incorrectly clustered clients can be characterized by
the order of O( 1

δ2t ).

B.2. Proof of Theorem 1

Proof Sketch. The proof of Theorem 1 is established by sequentially addressing the following problems.

• [Spectral clustering] In B.2.1, we first explore the accuracy of spectral clustering based on the gradient profile matrix
for client clustering. We employ Lemma 1 to compute the count of clients that are incorrectly clustered during the
training process.

• [Cluster-model index matching] Secondly, in B.2.2, we delve into the cluster-model index matching, which focuses
on assigning the client sets obtained from spectral clustering to their respective models. The main objective of this
process is to ensure that the majority of clients are consecutively assigned to a particular model for updating. This
approach guarantees that each model is ultimately updated to an optimal model for the corresponding distribution.
We will show that by correctly clustering a sufficient number of clients and employing an appropriate permutation
function, the majority of clients with a specific distribution identity can consistently contribute to updating the same
model during the training process.

• [Cluster driven model update] Finally, in B.2.3, we shift our focus to the model updates based on the clustering
outcomes from the preceding steps. Within each cluster, the central unit collects gradients from the associated clients
and performs a model update on the corresponding model. We establish the contractive property of the algorithm under
the potential presence of the incorrectly clustered clients within each cluster.

B.2.1. SPECTRAL CLUSTERING

To estimate the number of clients incorrectly clustered at time t, we utilize Lemma 3, particularly under the conditions
outlined in Theorem 1. We present Proposition 2 to formalize this.

Proposition 2. Recall that |W (t)| represents the number of incorrectly clustered clients at t. For any given δ ∈ (0, 1), it
can be shown that with a probability of at least 1− δ

6 , |W (t)| < Cρ
4 .

The proof of this proposition commences by invoking the established bound on the spectral norm of E(t−1) from Lemma 3.

This lemma indicates that ∥E(t−1)∥ ≤ ζ′C
δ

(
v2

Tab

) 1
2

with probability at least 1− δ. In the same context of Lemma 3, the
term Ta is defined as the minimum number of updates that any k-th block has received. This definition implies that each
block row of the gradient profile matrix G(t−1) has undergone updates at least Ta times. Based on the assumption, we have
Ta = ⌊ t−1

KP ⌋ = ⌊(λK
2PCv2

δ2∆2
gρb

)/(KP ) + 1⌋. Here, λ is defined as λ = (96
√
2ζ ′)2 + 1 with ζ ′ being the universal constant

outlined in Lemma 3 and λ is not problem-specific but is instead a universal constant.

Consequently, with probability at least 1 − δ
6 , we have ∥E(t−1)∥ ≤ 6ζ′C

δ

(
v2

Tab

) 1
2

. Further, incorporating the condition

Ta ≥ λKCv2

δ2∆2
gρb

into the inequality (22), we obtain

|W(t)| ≤ 128K∥E(t−1)∥2

∆2
g

≤ 128K(ζ ′Cv)2

∆2
g(δ/6)

2Tab
<
Cρ

4
. (23)

In other words, at time t, the number of incorrectly clustered clients is upper bounded by |W (t)| < Cρ
4 with probability

at least 1 − δ
6 . Furthermore, it is fact that |W(t+1)| < Cρ

4 also holds with probability at least 1 − δ
6 . An event of

interest is defined wherein both conditions |W (t)| < Cρ
4 and |W (t+1)| < Cρ

4 are concurrently satisfied as E1 ={
|W (t)| < Cρ

4 , |W (t+1)| < Cρ
4

}
. E1 holds with probability at least 1− δ

3 . Hereafter, we assume that E1 holds.
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B.2.2. CLUSTER-MODEL INDEX MATCHING

Up until now, we have established the upper bound for the number of incorrectly clustered clients based on the results
obtained from the spectral clustering. However, clustering itself does not provide information on which model each client
should participate in. Therefore, in our algorithm, we compare the clustering results obtained from consecutive steps and
match each of the K groups, the clustered clients and the models, one-to-one. Among several one-to-one matching methods,
we select a function that can preserve the cluster identity for the majority of clients and permute ẑ′ obtained from the current
spectral clustering accordingly. This subsection will focus on this Cluster-Model Index Matching that determines which
model updates each client should participate in using the results of spectral clustering.

Consider the K models at t, θ(t)
1 , ...,θ

(t)
K and recall the definition of the client-plurality model for clients with distribution

Dk as θ̂(t)
k = θ

(t)
M(k,t) where M(k, t) ∈ argmaxm∈[K] |S∗

k ∩ S(t)
m |. The function M(k, t) designates the model index most

frequently chosen by the plurality of clients with distribution identity k at time t. Similarly, we can consider M(k, t+ 1),
which represents the model index most frequently chosen by the plurality of clients with distribution identity k at time t+ 1.
The objectives of this subsection B.2.2 are twofold. First, we aim to demonstrate that after updating the models resulting in
θ
(t+1)
1 , . . . ,θ

(t+1)
K , the K client-plurality models are distinct. In other words, each set of clients associated with a particular

data distribution selects different models as their respective client-plurality models. Secondly, we aim to demonstrate that
M(k, t) = M(k, t + 1), thereby indicating that the associations between the model indices and the distribution indices
remain unchanged from time step t to t+ 1 with high probability.

We begin by introducing the following proposition.
Proposition 3. Consider any k ∈ [K] and m =M(k, t). Then, we have

|S∗
k ∩ S(t)

m | ≥ 0.75Cρ. (24)

Proposition 3 indicates that more than 0.75Cρ clients who have k as its distribution index have been grouped together into
the given set S(t)

m . It can be shown by contradiction. Assume that the given statement does not hold. Then, there exists
k ∈ [K] such that |S∗

k ∩ S(t)
m | < 0.75Cρ. It indicates that more than mink(|S∗

k |)− 0.75Cρ clients are incorrectly clustered
and implies W (t) ≥ 0.25Cρ. Such a result is in direct contradiction to the assumption that event E1 is true. We also have
the following proposition.
Proposition 4. Consider any two distinct distribution indices k1 and k2 such that k1, k2 ∈ [K] and k1 ̸= k2. Then, it holds
that M(k1, t) ̸=M(k2, t).

In simpler terms, for any two distinct distribution indices k1 and k2, the plurality of clients associated with k1 are mapped
to the model M(k1, t), and those associated with k2 are mapped to M(k2, t). Then, M(k1, t) and M(k2, t) are distinct.
Proposition 4 can also be established through a proof by contradiction. Assume the existence of distribution indices k1, k2
such that M(k1, t) =M(k2, t) = m where k1 ̸= k2, and k1, k2 ∈ [K]. Then, according to Proposition 3, in the client set
S(t)
m , we have that |S∗

k1
∩ S(t)

m | ≥ 0.75Cρ. and |S∗
k2

∩ S(t)
m | ≥ 0.75Cρ. It directly implies that W (t) ≥ 0.75Cρ, which

contradicts the underlying assumption that event E1 holds.

Now, we analyze a non-trivial case where the algorithm performs a cluster update, potentially altering client model indices.
For the trivial scenario where no cluster update occurs, as indicated by line 12 of Algorithm 2, we omit the proof since the
condition M(k, t) =M(k, t+ 1) for all k naturally holds, assuming stable client assignments across iterations.

Recall the spectral clustering subroutine in Algorithm 3, which generates sets of clients {Q(t+1)
z }Kz=1 where

Q(t+1)
z = {c|ẑ′(t+1)

c = z}. (25)

In other words, the set Q(t+1)
z consists of clients whose cluster identity is designated as z. As previously discussed in B.1,

the clients in the set Q(t+1)
z do not necessarily participate in the update for the z-th model or z-th distribution Dz . For all

z ∈ [K], Q(t+1)
z represents the collection of clients assigned to the z-th group, and no permutation or cluster-index matching

has been applied to the clusters.

For the clients sets {Q(t+1)
1 , . . . ,Q(t+1)

K }, consider a mapping M̃(·, ·) : [K] × N 7→ [K] such that for a given k and t
M̃(k, t) ∈ argmaxm∈[K] |S∗

k ∩Q(t)
m |. Consequently, the characteristics of {S(t)

1 , . . .S(t)
K } as described in Propositions 3

and 4 hold for {Q(t+1)
1 , . . . ,Q(t+1)

K } as follows.
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Proposition 5. Consider any k ∈ [K], t, and z = M̃(k, t). Then, |S∗
k ∩Q(t+1)

z | ≥ 0.75Cρ. In addition, consider any two
distinct distribution indices k1 and k2 such that k1, k2 ∈ [K] and k1 ̸= k2. Then, it holds that M̃(k1, t) ̸= M̃(k2, t).

Now, our focus shifts to the permutation ψ̂ utilized in Algorithm 3. This permutation function establishes a one-to-one
mapping between the K disjoint clusters, {Q(t+1)

z }Kz=1 and {S(t)
m }Km=1. Notably, it aims to maximize the number of clients

who retain their assigned model index. We argue that the permutation function ψ̂ can be obtained through a process in which
each client cluster Q(t+1)

z selects a cluster from {S(t)
m }Km=1, in a greedy fashion, opting for the one with the most significant

client intersection. This argument is elaborated in the subsequent Lemma 4.

Lemma 4. For a given client c ∈ [C], the model index obtained by the permutation function ψ̂, k(t+1)
c = ψ̂(ẑ′

(t+1)
c ), is

equal to argmaxm∈[K] |S
(t)
m ∩ {c′ ∈ [C]|ẑ′(t+1)

c′ = ẑ′
(t+1)
c }|.

Proof. Given any two distinct model indices m1 and m2 such that m1 ̸= m2, and corresponding sets of clients S(t)
m1 and

S(t)
m2 , we define z1 and z2 as follows.

z1 = argmax
z∈[K]

|S(t)
m1

∩Q(t+1)
z |, z2 = argmax

z∈[K]

|S(t)
m2

∩Q(t+1)
z |. (26)

We assert that

z1 ̸= z2. (27)

Moreover, we have

m1 = argmax
m∈[K]

|S(t)
m ∩Q(t+1)

z1 |,m2 = argmax
m∈[K]

|S(t)
m ∩Q(t+1)

z2 |. (28)

We note that this fact completes the proof since there exists a one-to-one mapping between {S(t)
m }Km=1 and {Q(t+1)

z }Kz=1

with the maximum intersection operation.

To validate the assertion (27), we refer to Propositions 3 and 5, implying that for each m ∈ [K], there exists a unique
distribution index k such that M(k, t) = m and a corresponding cluster index z∗ such that M̃(k, t+ 1) = z∗. This leads us
to the following proposition.

Proposition 6. For a given model index m ∈ [K] and corresponding distribution index k such that M(k, t) = m, consider
a unique cluster index z∗ = M̃(k, t+ 1). Then, it holds that

z∗ = argmax
z∈[K]

|S(t)
m ∩Q(t+1)

z |. (29)

Proof of Proposition 6 is straightforward as follows. Recall that S(t)
m comprises more than 0.75Cρ clients with distribution

identity k and fewer than 0.25Cρ clients with other distribution identities. Similarly, Q(t+1)
z∗ contains more than 0.75Cρ

clients of identity k. The intersection of these client sets must exceed 0.5Cρ. If Q(t+1)
z∗ had fewer than 0.5Cρ clients

of identity k from S(t)
m , it would imply a misallocation exceeding 0.25Cρ clients, which contradicts to the underlying

assumption that event E1, indicating the number of incorrectly clustered clients is less than 0.25Cρ, holds.

Note that for any other cluster index z̄ ∈ [K] such that z̄ ̸= z∗, |S(t)
m ∩ Q(t+1)

z̄ | ≤ 0.25Cρ which completes the proof of
Proposition 6.

Further, consider the two distinct distribution indices k1 and k2 such that M(k1, t) = m1 and M(k2, t) = m2. Thus,
z1 = M̃(k1, t+1) and z2 = M̃(k2, t+1), confirming z1 ̸= z2 and completing the proof. Similarly, as shown in Proposition
6, Equation (28) holds trivially.

Lemma 4 suggests that the result of establishing a one-to-one correspondence between newly formed and prior client
clusters can also be achieved by a greedy matching strategy. This strategy involves each {Q(t+1)

z }Kz=1 selecting one of
{S(t)

m }Km=1 which it has the most significant overlap. In the c-th client’s perspective, the new model index will be given as
k
(t+1)
c = argmaxm∈[K] |S

(t)
m ∩ {c′ ∈ [C]|ẑ′(t+1)

c′ = ẑ′
(t+1)
c }|.
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Finally, based on Lemma 4, we have

S(t+1)
m = argmax

{Q(t+1)
z }K

z=1

|S(t)
m ∩Q(t+1)

z |,∀m ∈ [K]. (30)

It also indicates that for any distribution index k ∈ [K], M(k, t) = M(k, t+ 1) (See Proof of Lemma 4). Consequently,
this denotes that clients characterized by the distribution index k are highly likely to adhere to the same model M(k, t)
across the consecutive steps, thereby indicating the stability of the client-model ties.

B.2.3. CLUSTER-DRIVEN MODEL UPDATE

In this subsection, we demonstrate that model convergence towards the optimal models for the respective K distributions
occurs, with the error rate dependent on specific system parameters. Specifically, we show the contractive property of the
gap between the client-plurality models and their corresponding optimal models. Our goal is to illustrate that the model
chosen by the majority of clients associated with a particular distribution index k is updated towards its respective optimal
model θ∗

k.

For a given model index m ∈ [K] and its associated client set S(t)
m , there exists a unique distribution index k such that

M(k, t) = m. To enhance notation clarity, we introduce Ŝ(t)
k to represent the set of clients whose plurality distribution

index is k, satisfying Ŝ(t)
k = S(t)

M(k,t).

Our analysis focuses on the contractive property of the k-th client plurality model θ̂(t)
k associated with Ŝ(t)

k . CFL-GP updates
the model based on the gradients from the corresponding client set Ŝ(t)

k . After the update, the plurality of clients associated
with the k-th distribution is assigned to the same model with high probability, as shown in the previous subsections. Based
on this, we analyze the gap between the k-th client plurality model and the optimal model after the update.

We adopt the proof structure and methodology from Lemma 3 in (Ghosh et al., 2020), which analyzes the gradient update
for a given model by decomposing it into contributions from correctly clustered clients and those from incorrectly clustered
clients. The logic of the proof has been rephrased for clarity and readability. For the first step, we extend the term of the
gradient update (31) as follows.

∥θ̂(t+1)
k − θ∗

k∥ =

∥∥∥∥∥∥∥θ̂(t)
k − θ∗

k −
α

C

∑
c∈Ŝ(t)

k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ (31)

≤

∥∥∥∥∥∥∥θ̂(t)
k − θ∗

k −
α

C

∑
c∈S∗

k∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k ) +∇F (Dk∗c , θ̂

(t)
k )−∇F (Dk∗c , θ̂

(t)
k )
)∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥
α

C

∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ (32)

where γ = α/C is a learning rate for the gradient descent update and S̄∗
k is a set of clients whose true cluster identity is not

k. We omit the notation t and the model index k for γ as in this analysis, as γ(t)k is fixed for all t and k. The relation in
equation (31) arises directly from the definition of the CFL-GP update mechanism. The subset of clients identified by their
plurality distribution index of k contributes to the update of a corresponding model, which we refer to as the client plurality
model for distribution index k, denoted by θ̂

(t)
k . Consequently, the model updated at step t persists as the client plurality

model for the subsequent step t+ 1, adhering to distribution k’s client plurality model as θ̂(t+1)
k . This continuity is assured

with high probability under the assumptions given for Theorem 1, as substantiated by the proofs presented in the preceding
section.
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Using the triangle inequality of the norm, we have

∥θ̂(t+1)
k − θ∗

k∥ ≤

∥∥∥∥∥θ̂(t)
k − θ∗

k −
|S∗
k ∩ Ŝ(t)

k |α
C

∇F (Dk∗c , θ̂
(t)
k )

∥∥∥∥∥ (33)

+
|S∗
k ∩ Ŝ(t)

k |α
C

∥∥∥∥∥∥∥∇F (Dk∗c , θ̂(t)
k )− 1

|S∗
k ∩ Ŝ(t)

k |

∑
c∈S∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ (34)

+

∥∥∥∥∥∥∥
α

C

∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ . (35)

Leveraging the properties of L-smoothness and the µ-strong convexity, we first establish an upper bound for the term on the
right-hand side of inequality (33) as follows.∥∥∥∥∥θ̂(t)

k − θ∗
k −

|S∗
k ∩ Ŝ(t)

k |α
C

∇F (Dk∗c , θ̂
(t)
k )

∥∥∥∥∥
2

(36)

= ∥θ̂(t)
k − θ∗

k∥2 − 2
|S∗
k ∩ Ŝ(t)

k |α
C

⟨θ̂(t)
k − θ∗

k,∇F (Dk∗c , θ̂
(t)
k )⟩+

(
|S∗
k ∩ Ŝ(t)

k |α
C

)2

∥∇F (Dk∗c , θ̂
(t)
k )∥2 (37)

≤

(
1− 2

|S∗
k ∩ Ŝ(t)

k |α
C

µL

µ+ L

)
∥θ̂(t)

k − θ∗
k∥2 +

|S∗
k ∩ Ŝ(t)

k |α
C

(
|S∗
k ∩ Ŝ(t)

k |α
C

− 2

µ+ L

)
∥∇F (Dk∗c , θ̂

(t)
k )∥2. (38)

By selecting α = 2
µ+L , we have |S∗

k∩Ŝ(t)
k |α

C < 2
µ+L and∥∥∥∥∥θ̂(t)

k − θ∗
k −

|S∗
k ∩ Ŝ(t)

k |α
C

∇F (Dk∗c , θ̂
(t)
k )

∥∥∥∥∥
2

≤

(
1− 4

|S∗
k ∩ Ŝ(t)

k |µL
C(µ+ L)2

)
∥θ̂(t)

k − θ∗
k∥2

≤
(
1− 3ρµL

(µ+ L)2

)
∥θ̂(t)

k − θ∗
k∥2 (39)

where the last inequality of (39) holds by (24) which indicates that for a given distribution index k, at least 0.75Cρ clients
are correctly clustered.

Next, our objective is to establish an upper bound for the expectation of (34). It is important to note that all x instances within
X (t)
c that satisfy c ∈ S∗

k ∩ Ŝ(t)
k are data samples drawn from the distribution Dk. As a result, owing to the independence

among the minibatch samples and the bounded variance assumptions, we have the following.

E

∥∥∥∥∥∇F (Dk∗c , θ̂(t)
k )− 1

|S∗
k ∩ Ŝ(t)

k |

∑
c∈S∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥
2

≤ v2

b|S∗
k ∩ Ŝ(t)

k |
. (40)

Now, consider any δ1 such that δ1 ∈ (0, 1). By applying Lemma 1, the Markov inequality, and taking into account that

|S∗
k ∩ Ŝ(t)

k | ≥ Cρ− 128K∥E(t−1)∥2

∆2
g

, we can establish the following inequality with probability at least 1− δ1.

|S∗
k ∩ Ŝ(t)

k |α
C

∥∥∥∥∥∥∥∇F (Dk∗c , θ̂(t)
k )− 1

|S∗
k ∩ Ŝ(t)

k |

∑
c∈S∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ (41)

≤ 2v

δ1(µ+ L)
√
b(Cρ− 128K∥E(t−1)∥2

∆2
g

)
. (42)
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As a next step, we aim to derive an upper bound for (35), ∥ αC
∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )∥. It is important to note that∑

c∈S̄∗
k∩Ŝ(t)

k

∇f(X (t)
c , θ̂

(t)
k ) is a sum of gradients with respect to θ̂

(t)
k where X (t)

c comprises multiple data samples that do
not adhere to the distribution Dk. We can then proceed as follows.

α

C

∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k ) =

α

C

∑
k′ ̸=k

∑
c∈S∗

k′∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k ). (43)

Following the same logic outlined in Lemma 3 in (Ghosh et al., 2020), for any k′ ∈ [K] such that k′ ̸= k, we decompose∑
c∈S∗

k′∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k ) into two distinct terms as follows.

∑
c∈S∗

k′∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k ) = |S∗

k′ ∩ Ŝ(t)
k |∇F (Dk∗

c′
, θ̂

(t)
k ) +

∑
c∈S∗

k′∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)
. (44)

We can establish an upper bound for the l2 norm of (44) as follows.

∥∥∥∥∥∥∥|S∗
k′ ∩ Ŝ(t)

k |∇F (Dk∗
c′
, θ̂

(t)
k ) +

∑
c∈S∗

k′∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)∥∥∥∥∥∥∥ (45)

≤ |S∗
k′ ∩ Ŝ(t)

k |
∥∥∥∇F (Dk∗

c′
, θ̂

(t)
k )
∥∥∥+

∥∥∥∥∥∥∥
∑

c∈S∗
k′∩Ŝ(t)

k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)∥∥∥∥∥∥∥ (46)

≤ |S∗
k′ ∩ Ŝ(t)

k |L
∥∥∥θ̂(t)

k − θ∗
c′

∥∥∥+
∥∥∥∥∥∥∥

∑
c∈S∗

k′∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)∥∥∥∥∥∥∥ (47)

where the inequality between (45) and (46) is satisfied by the triangle inequality of the norm and the inequality between (46)
and (47) is satisfied by the L-smoothness of the population loss function.

Furthermore, leveraging the bounded variance assumption 2 and the independence of minibatch sampling, we can establish
that

E

∥∥∥∥∥ ∑
c∈S∗

k′∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)∥∥∥∥∥

2

≤ |S∗
k′ ∩ Ŝ(t)

k |v
2

b
. (48)

Let us consider any δ2 ∈ (0, 1). Utilizing the Markov inequality, we can establish an upper bound for (47) with probability
at least 1− δ2, as follows.

|S∗
k′ ∩ Ŝ(t)

k |L
∥∥∥θ̂(t)

k − θ∗
c′

∥∥∥+
∥∥∥∥∥∥∥

∑
c∈S∗

k′∩Ŝ(t)
k

(
∇f(X (t)

c , θ̂
(t)
k )−∇F (Dk∗

c′
, θ̂

(t)
k )
)∥∥∥∥∥∥∥ (49)

≤ |S∗
k′ ∩ Ŝ(t)

k |L∥θ̂(t)
k − θ∗

c′∥+

√
|S∗
k′ ∩ Ŝ(t)

k |v
δ2
√
b

≤ |S∗
k′ ∩ Ŝ(t)

k |2Lω +

√
|S∗
k′ ∩ Ŝ(t)

k |v
δ2
√
b

. (50)

25



Clustered Federated Learning via Gradient-based Partitioning

Now we describe the upper bound of the l2 norm of (43) by using (50). With probability at least 1− (K − 1)δ2, we have

∥∥∥∥∥∥∥
α

C

∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ ≤ α

C

∑
k′ ̸=k

∥∥∥∥∥∥∥
∑

c∈S∗
k′∩Ŝ(t)

k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ (51)

≤ α

C

∑
k′ ̸=k

[
|S∗
k′ ∩ Ŝ(t)

k |2Lω +

√
|S∗
k′ ∩ Ŝ(t)

k |v
δ2
√
b

]
(52)

=
2Lωα

C

∑
k′ ̸=k

|S∗
k′ ∩ Ŝ(t)

k |+ vα

Cδ2
√
b

∑
k′ ̸=k

√
|S∗
k′ ∩ Ŝ(t)

k |. (53)

By using (18), for any k′, we have
∑
k′ ̸=k |S∗

k′ ∩ Ŝ(t)
k | ≤ |W(t)| ≤ 128K∥E(t−1)∥2

∆2
g

. In addition,
∑
k′ ̸=k

√
|S∗
k′ ∩ Ŝ(t)

k | ≤√
(K − 1) 128K∥E(t−1)∥2

∆2
g

from the Cauchy-Schwarz inequality. With this, we can establish an upper bound for (53) as
follows.

∥∥∥∥∥∥∥
α

C

∑
c∈S̄∗

k∩Ŝ(t)
k

∇f(X (t)
c , θ̂

(t)
k )

∥∥∥∥∥∥∥ ≤ 256LωαK∥E(t−1)∥2

C∆2
g

+
vα

Cδ2
√
b

√
(K − 1)

128K∥E(t−1)∥2
∆2
g

. (54)

Recall that we have assumed that E1 holds with probability at least 1 − δ
3 . Consider any δ1, δ2, δ3 ∈ (0, 1) such that

δ1 + (K − 1)δ2 +
δ
3 ∈ (0, 1). Combining (36), (41), and (54), it is a fact that the following inequality holds with probability

at least 1− δ1 − (K − 1)δ2 − δ
3 .

∥θ̂(t+1)
k − θ∗

k∥ ≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+

2v

δ1(µ+ L)
√
b(Cρ− 128K∥E(t−1)∥2

∆2
g

)
(55)

+
256LωαK∥E(t−1)∥2

C∆2
g

+
vα

Cδ2
√
b

√
(K − 1)

128K∥E(t−1)∥2
∆2
g

. (56)

By substituting α = 2
µ+L and K − 1 ≤ K, we have

∥θ̂(t+1)
k − θ∗

k∥ ≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+

2v

δ1(µ+ L)
√
b(Cρ− 128K∥E(t−1)∥2

∆2
g

)

+
512LωK∥E(t−1)∥2

(µ+ L)C∆2
g

+
Kv∥E(t−1)∥2

√
128

(µ+ L)∆gCδ2
√
b
. (57)

By (76) in Lemma 3, we have an upper bound for the spectral norm of the SGN matrix as ∥E(t−1)∥ ≤ 6ζ′C
δ

(
v2

Tab

) 1
2

.
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Substituting it to (57), we have

∥θ̂(t+1)
k − θ∗

k∥ ≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+

2v

δ1(µ+ L)

√
bCρ(1− (48

√
2ζ′)2KCv2

ρ∆2
gδ

2Tab
)

+
(96

√
2ζ ′)2LwKCv2

(µ+ L)∆2
gδ

2Tab
+

96
√
2ζ ′Kv2

(µ+ L)δ2δ∆g

√
Tab

(58)

≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+

2v

δ1(µ+ L)
√
bCρ(1− λKCv2

4ρ∆2
gδ

2Tab
)

+
λLwKCv2

(µ+ L)∆2
gδ

2Tab
+

√
λKv2

(µ+ L)δ2δ∆g

√
Tab

. (59)

To further simplify the notations, we set δ = δ1 + (K − 1)δ2 + δ3 ∈ (0, 1) such that δ1 = δ
3 , δ2 = δ

3(K−1) , and δ3 = δ
3 .

Finally, we have

∥θ̂(t+1)
k − θ∗

k∥ ≤

√
1− 3ρµL

(µ+ L)2
∥θ̂(t)

k − θ∗
k∥+ ϵ(t) (60)

where per-iteration contraction error rate ϵ(t) as specified in (60) can be expressed as follows.

ϵ(t) =
6v

δ(µ+ L)
√
bCρ(1− λKCv2

4ρ∆2
gδ

2Tab
)
+

λLwKCv2

(µ+ L)∆2
gδ

2Tab
+

3
√
λK2v2

(µ+ L)δ2∆g

√
Tab

. (61)

Through Lemma 3, we have shown that as t increases, CFL-GP can more accurately cluster a larger number of clients.
Consistently, (61) demonstrates that the error rate in updating the client-plurality model towards the desired optimal model
decreases with increasing t. This indicates a reduction in the noise introduced by incorrect clustering during model updates
as t grows. Notably, in (Ghosh et al., 2020), it has been established that the optimal achievable error rate order in the CFL
framework is Õ(1/

√
bC) when the central unit (CU) has complete knowledge of the true distribution identities of all clients.

This aligns with our result from Equation (61), as t→ ∞ (Ta → ∞), all clients will eventually be correctly clustered, and
the order of ϵ becomes Õ(1/

√
bC).

B.3. Proof of Lemma 3

When t ≥ TaKP , where Ta is a natural number, each k-th block row of the gradient profile matrix G has undergone a
minimum of Ta updates. Specifically, this condition ensures that the set Tk(t), which represents the set of times at which the
k-th block row is updated, satisfies |Tk(t)| ≥ Ta. To maintain clarity in our exposition, let us recall the decomposition of G,
G = A(t−1) +E(t−1), as follows.
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A(t−1) =



∑
t1∈T1(t)

∇F (Dk∗1 ,θ
(t1)
1 )

|T1(t)|
· · ·

∑
t1∈T1(t)

∇F (Dk∗C ,θ
(t1)
1 )

|T1(t)|
...

. . .
...∑

tK∈TK(t)

∇F (Dk∗1 ,θ
(tK)
C )

|TK(t)|
· · ·

∑
tK∈TK(t)

∇F (Dk∗C ,θ
(tK)
C )

|TK(t)|


(62)

E(t−1) =



∑
t1∈T1(t)

e1(θ
(t1)
1 )

|T1(t)|
· · ·

∑
t1∈T1(t)

eC(θ
(t1)
1 )

|T1(t)|
...

. . .
...∑

tK∈TK(t)

e1(θ
(tK)
K )

|TK(t)|
· · ·

∑
tK∈TK(t)

eC(θ
(tK)
K )

|TK(t)|


. (63)

Consider the c-th column of the matrix E(t−1) as E(t−1)
:,c , which is a Kd-sized vector. We denote the covariance matrix of

the random vector E(t−1)
:,c as Σ

E
(t−1)
:,c

, which can be represented as follows.

Σ
E

(t−1)
:,c

=


Σ(c,1) 0 · · · 0

0 Σ(c,2)

...
...

. . . 0
0 · · · 0 Σ(c,K)

 , (64)

where k-th diagonal block Σ(c,k) indicates the covariance matrix of the random vector
∑
tk∈Tk(t)

ec(θ
(tk)

k )

|Tk(t)| . Note that the
covariance matrix Σ

E
(t−1)
:,c

is a block diagonal matrix, as the K vectors comprising the c-th column of the noise matrix are
independent of each other.

To obtain an upper bound on E[∥E(t−1)∥], we employ a recent result by Bandeira et al. (Bandeira et al., 2021) on
non-asymptotic matrix concentration inequalities.
Lemma 5 (Application of Lemma 3.8 in (Bandeira et al., 2021)). Assume that the columns of a given random matrix E(t−1)

are independent centered Gaussian random vectors. Then, for any ϵ > 0, the expected spectral norm of the matrix E(t−1) is
upper bounded as follows.

E[∥E(t−1)∥] ≤ (1 + ϵ)

(∥∥∥∥∥
C∑
c=1

Σ
E

(t−1)
:,c

∥∥∥∥∥
1
2

+max
c

[Tr(Σ
E

(t−1)
:,c

)]
1
2

)
+
ζ

ϵ
max
c

∥Σ
E

(t−1)
:,c

∥ 1
2 (logKd)

3
2 , (65)

where Σ
E

(t−1)
:,c

is the covariance matrix of the c-th column of E(t−1) and ζ is a universal constant.

To provide an upper bound of (65), we first explore an upper bound of the spectral norm of Σ
E

(t−1)
:,c

. We have the following
inequalities. ∥∥∥ΣE

(t−1)
:,c

∥∥∥ = maxk
∥∥Σ(c,k)

∥∥ ≤ maxk
∥∥Σ(c,k)

∥∥
∞ . (66)

The equality of (66) holds since Σ
E

(t−1)
:,c

is a block diagonal matrix and the inequality holds due to the symmetricity of the

covariance matrix as
∥∥Σ(c,k)

∥∥2 ≤
∥∥Σ(c,k)

∥∥
1

∥∥Σ(c,k)

∥∥
∞ and

∥∥Σ(c,k)

∥∥
1
=
∥∥Σ(c,k)

∥∥
∞.

Furthermore,
∥∥Σ(c,k)

∥∥
∞ is upper bounded as follows.

∥∥Σ(c,k)

∥∥
∞ ≤ 1

|Tk(t)|2

∥∥∥∥∥∥
∑

tk∈Tk(t)

Σc(θ
(tk)
k )

∥∥∥∥∥∥
∞

≤
maxtk

∥∥∥Σc(θ
(tk)
k )

∥∥∥
∞

|Tk(t)|
≤

maxtkTr
(
Σc(θ

(tk)
k )

)
|Tk(t)|

, (67)
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where the first inequality holds because the covariance matrix of the sum of independent random vectors can be expressed as
the sum of their individual covariance matrices. The second inequality holds due to the sub-additive property of the matrix
infinity norm, and the third inequality holds due to the assumption of the SGN variance. Since the trace of the covariance
matrix is upper bounded by v2

b , we finally have

∥∥∥ΣE
(t−1)
:,c

∥∥∥ ≤ v2

|Tk(t)|b
≤ v2

Tab
. (68)

Secondly, we analyze the cumulative spectral norm of the covariance matrices. Leveraging the sub-additivity property of the
matrix norm, it follows that ∥∥∥∥∥

C∑
c=1

Σ
E

(t−1)
:,c

∥∥∥∥∥ ≤
C∑
c=1

∥∥∥ΣE
(t−1)
:,c

∥∥∥ ≤ Cmaxc
∥∥∥ΣE

(t−1)
:,c

∥∥∥ ≤ Cv2

Tab
(69)

where the last inequality holds by (68).

The trace of the given covariance matrix Σ
E

(t−1)
:,c

can be represented as follows.

Tr
(
Σ

E
(t−1)
:,c

)
=

K∑
k=1

Tr(Σ(c,k)) =

K∑
k=1

Tr

 1

|Tk(t)|2
∑

tk∈Tk(t)

Σc(θ
(tk)
k )

 . (70)

Moreover, we have

K∑
k=1

 1

|Tk(t)|2
∑

tk∈Tk(t)

Tr
(
Σc(θ

(tk)
k )

) ≤
K∑
k=1

(
v2

|Tk(t)|b

)
≤ Kv2

Tab
, (71)

where the first inequality is established under the assumption of bounded variance. Based on (70) and (71), we have

Tr
(
Σ

E
(t−1)
:,c

)
≤ Kv2

Tab
. (72)

Combining (68), (69), and (72) for (65) with choosing ϵ = 1, we have

E∥E(t−1)∥ ≤ 2

(
Cv2

Tab

) 1
2

+ 2

(
Kv2

Tab

) 1
2

+ ζ

(
v2

Tab

) 1
2

(logKd)
3
2 . (73)

Consider any δ ∈ (0, 1). Then by the Markov inequality, we have P (∥E(t−1)∥ ≤ E∥E(t−1)∥/(δ)) ≥ 1 − δ. It indicates
that the following inequalities hold with probability at least 1− δ.

∥E(t−1)∥ ≤ E∥E(t−1)∥
δ

≤ 1

δ

(
2

(
Cv2

Tab

) 1
2

+ 2

(
Kv2

Tab

) 1
2

+ ζ

(
v2

Tab

) 1
2

(logKd)
3
2

)
(74)

=
1

δ

(
v2

Tab

) 1
2 (

2
√
C + 2

√
K + ζ(logKd)

3
2

)
(75)

≤ ζ ′C

δ

(
v2

Tab

) 1
2

(76)

where ζ ′ = 4 + ζ. The first inequality in (74) holds due to the Markov inequality, and the second inequality holds by the
upper bound provided in (73). The inequality between (75) and (76) holds by (logKd)

3
2 ≤ C and K ≤ C.
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B.4. Proof of Proposition 1

Let δ ∈ (0, 1) and δ1 = 2
3δ. Under the assumptions outlined in Proposition 1, with probability at least 1− δ1, the number of

incorrectly clustered clients, W (Tcl), is upper bounded as follows.

W (Tcl) ≤
128K(ζ ′Cv)2

∆2
g(

2
3δ)

2Tab
(77)

where Ta = ⌊Tcl−1
KP ⌋ and ζ ′ is the universal constant given in Section B.3. We have Ta = ⌊Tcl−1

KP ⌋ = ⌊λKC
2v2

δ2∆2
gb

+ 1⌋ which

implies Ta ≥ λKC2v2

δ2∆2
gb

. Substituting this into (77), we obtain W (Tcl) < 1. This indicates that for any T , where T is greater
than the clustering threshold Tcl, the algorithm achieves the optimal clustering with probability at least 1− δ1.

For clarity in subsequent discussions, we define an event E3 as E3 = {|W (Tcl)| < 1} representing the scenario where the
number of incorrectly clustered clients is less than one, effectively indicating correct clustering of all clients. According to
the conditions outlined in Proposition 1, the likelihood of E3 occurring is at least 1− δ1.

This leads to the following interpretation of our analysis: CFL-GP ensures a consistent decrease in the upper bound of
incorrectly clustered clients. Therefore, after a substantial number of learning iterations t, CFL-GP achieves the optimal
clustering with high probability, especially for t ≥ Tcl. This scenario permits the direct use of established high-probability
convergence results from stochastic gradient descent methodologies.

Building upon this, we adopt the high-probability bound for stochastic gradient descent from (Rakhlin et al., 2012). For
the given assumptions for Proposition 1, we can readily observe that ∥ 1

|S∗
k |
∑
c∈S∗

k
∇f(X (t)

c , θ̂
(t)
k )∥2 ≤ (H2/(Cρ)) almost

surely. Then, we state the following proposition.

Proposition 7 (Application of Proposition 1 in (Rakhlin et al., 2012)). Let δ2 ∈ (0, 1/e). Under the assumptions given for
Proposition 1 and suppose the event E3 holds. Then the following inequality holds with probability at least 1− δ2.

∥θ̂(t̂+Tcl)
k − θ∗

k∥ ≤ (624 log(log(t̂)/δ2) + 1)(H2/(Cρ))

µ2t̂
(78)

where t̂ ∈ N and t̂ + Tcl = T . We define an event E4 as E4 = {∥θ̂(T )
k − θ∗

k∥ ≤ (624 log(log(T−Tcl)/δ2)+1)(H2/(Cρ))
µ2(T−Tcl)

}. The
probability that event E3 occurs is at least 1− δ1, and conditional on E3, event E4 holds with probability at least 1− δ2.

Then we can conclude that under the assumptions given for Proposition 1, P (E4) ≥ P (E4 ∩ E3) = P (E4|E3)P (E3) and
P (E4|E3)P (E3) ≥ 1 − δ1 − δ2. By choosing δ2 = δ/3 < 1/e, we can conclude that, with probability at least 1 − δ, E4
holds.

C. Extensions for Improving Communication Efficiency
In the main text, we explored a learning protocol where local clients update a model in a single step and then transmit the
corresponding gradient to a central unit, often referred to as the gradient-averaging protocol. We can extend CFL-GP to
incorporate the model averaging approach, as detailed in Algorithm 4, to enhance communication efficiency. This protocol,
originally proposed by (McMahan et al., 2017), has been widely adopted in a variety of federated learning (FL) algorithms
(McMahan et al., 2017; Ghosh et al., 2020; Sattler et al., 2020). Within this framework, each client executes multiple local
updates on the model received from the central unit (CU) using their own local dataset before transmitting the updated
model back to the CU.

Algorithm 4 diverges from Algorithm 1 by adopting a model-averaging strategy for local updates at time step t. In this
approach, the k-th model is transmitted to the clients within the specified k-th cluster, whereupon these clients undertake
local updates by progressing through mini-batches from their own datasets over TL(c) iterations. This process follows
the LOCALUPDATE protocol as specified in Algorithm 5, with the learning rate for the c-th client denoted by γc. After
completing the updates, the discrepancy between the locally enhanced model and the initial model from the CU, the model
gap ∆θ, is transmitted back to the CU.

When updating the gradient profile matrix at a time step t satisfying t,mod, P = 1 and t < Tcl, the k̄(t)-th model is
broadcasted, and model gaps related to this model are aggregated from the clients. These model gaps are then utilized to
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Algorithm 4 CFL-GP with Model Averaging protocol

Input: K initial models {θ(0)
k }Kk=1, K initial clusters {S(0)

k }Kk=1, clustering period P , learning rate γ, gradient features
initialized as g(−1)

c = 0 ∀c ∈ [C], feature moving average factor {βt}Tt=1, initial broadcast model index k̄(0) = 0.

Output: K trained models {θ(T )
k }Kk=1 and K updated clusters {S(T )

k }Kk=1

1: for t = 0 to T do
2: for k = 1 to K in parallel do ——————————————————- ▷ Model Update
3: CU transmits θ(t)

k to the clients in S(t)
k and

4: Clients feedback ∆θ
(t)
k,c = LOCALUPDATE(θ

(t)
k , c) ∀c ∈ S(t)

k

5: CU updates θ(t+1)
k := θ

(t)
k + 1

|S(t)
k |

∑
c∈S(t)

k

∆θ
(t)
k,c

6: if tmodP = 1 and t < Tcl then—————————————————————– ▷ Cluster Update
7: Update k̄(t) := (k̄(t−1) modK) + 1 ▷ round-robin manner
8: CU broadcasts θ(t)

k̄(t)
and receives ∆θ

(t)

k̄(t),c
∀c ∈ [C]

9: CU updates g(t)

c,k̄(t)
:= (1− βt)g

(t−1)

c,k̄(t)
+ βt∆θ

(t)

k̄(t),c
∀c ∈ [C]

10: g
(t)
c,k′ := g

(t−1)
c,k′ ∀c ∈ [C], k′ ∈ [K]s.t.k ̸= k̄(t)

11: {S(t+1)
k }Kk=1 := SPECTRALCLUSTERING({g(t)

c }Cc=1, {S
(t)
k }Kk=1)

12: else
13: S(t+1)

k := S(t)
k ∀k ∈ [K] and g

(t)
c := g

(t−1)
c ∀c ∈ [C]

Algorithm 5 LOCALUPDATE

Input: Model θ, client c
Output: Model gap ∆θ

1: θ′ = θ

2: for Xc in {X (1)
c , ...,X (TL(c))

c } do ▷ TL(c) times local update
3: θ′ := θ′ − γc∇f(Xc,θ′)
4: ∆θ = θ′ − θ

update the client features instead of the single-step gradients. This methodology enables the implementation of the CFL-GP
using a model averaging protocol without necessitating additional changes to its fundamental logic.

D. Computation and Communication Cost
To examine the computation and communication costs associated with CFL algorithms, it is crucial to acknowledge that
these algorithms introduce additional clustering operations within the Federated Learning (FL) framework. These operations
require gradient information, model performance evaluation, or computations beyond what is traditionally necessary for
the FL framework. Thus, the overall costs of CFL algorithms are often significantly affected by the speed of successful
clustering as once clustering is deemed successful, those resources can be saved without the need for any further clustering
steps. For instance, if the client clusters remain unchanged for several iterations, we can conclude that the clustering solution
has converged, and focus solely on model updates. Therefore, evaluating the convergence speed of client clustering is
crucial, in addition to assessing clustering accuracy.

One of CFL-GP’s primary advantages is its capability to ensure fast convergence towards accurate clustering. In the following
subsection, we explore the convergence speed of client clustering of CFL algorithms in detail. We will demonstrate that CFL-
GP exhibits exceptional performance in achieving optimal clustering and accelerating the speed of clustering convergence.

D.1. Convergence speed towards optimal clustering

Through this subsection, the clustering convergence speed of the CFL algorithms is examined based on the series of
experiments described in Appendix F. CFL-GP demonstrates outstanding performance in multiple aspects, notably in
clustering speed and accuracy. We have incorporated the following metrics to comprehensively evaluate the clustering
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convergence performance of the algorithms.

Metrics.

• The number of communication rounds a CFL algorithm requires to reach the peak ARI (Adjusted Rand Index) observed
during the training phase.

• The number of communication rounds needed to attain the ideal ARI score of 1.0.

For instances where a CFL algorithm achieves a specific ARI value but does not realize optimal clustering, we label this
outcome as "-," indicating the inability to attain optimal clustering. We measure performance using 5 to 20 distinct random
seeds per experiment. In scenarios where a CFL algorithm repeatedly fails to achieve optimal clustering across multiple
trials but manages it at least once, we record numerical values rather than "-." Here, we estimate the communication rounds
necessary for optimal clustering by considering the highest count of rounds where the CFL algorithm falls short of finding
the optimal clustering. Moreover, situations where a CFL algorithm fails to detect any clusters are marked as "Clustering
Fail."

Instances of a CFL algorithm achieving the optimal ARI are emphasized in bold. Additionally, in cases where several CFL
algorithms reach the optimal ARI, we underscore the one that does so in the least number of communication rounds.

Table 3. Convergence speed of clustering towards maximum ARI and optimal clustering. CFL-GP demonstrates convergence that is up to
more than 100× faster with a 100% success rate.

[Exp in F.5] t of Achieving Maximum ARI / t of Achieving Optimal ARI

Algorithm C=8 C=16 C=32 C=64 C=128

CFL-GP 3.67±5.73 / 3.67±5.73 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00
IFCA 7.00±3.62 / - 12.56±6.06 / 137.22±90.20 12.00±4.71 / 73.67±90.06 15.33±7.57 / 76.56±88.21 13.22±4.80 / 55.56±77.88
MADMO 82.11±75.43 / - 134.67±28.87 / - 135.56±31.67 / - 125.89±32.32 / - 99.78±7.94 / -

[Exp in F.5] t of Achieving Maximum ARI / t of Achieving Optimal ARI

Algorithm b=32 b=64 b=128 b=256

CFL-GP 65.67±11.70 / 65.67±11.70 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00
IFCA 24.22±8.34 / - 12.00±4.71 / 73.67±90.06 10.44±3.20 / 74.22±89.69 9.78±5.61 / 115.44±95.71
MADMO 73.33±28.89 / - 135.56±31.67 / - Clustering Fail Clustering Fail

[Exp in F.7] t of Achieving Maximum ARI / t of Achieving Optimal ARI

Algorithm C=20 C=40 C=80

CFL-GP 3.00±1.41 / 3.00±1.41 3.40±1.74 / 3.40±1.74 5.30±2.78 / 5.30±2.78
IFCA 2.95±0.50 / 2.95±0.50 3.75±0.62 / 3.75±0.62 4.60±0.49 / 4.60±0.49
MADMO 126.95±96.00 / - 106.55±102.12 / - Clustering Fail

[Exp in F.8] t of Achieving Maximum ARI / t of Achieving Optimal ARI

Algorithm C=10 C=80 C=160

CFL-GP 1.00±0.00 / 1.00±0.00 2.71±0.45 / 2.71±0.45 7.43±1.84 / 7.43±1.84
IFCA 2.43±0.90 / 31.00±44.27 5.86±2.23 / 20.14±33.03 11.43±1.76 / 11.43±1.76
MADMO 22.00±21.51 / 64.86±33.34 8.14±1.64 / 20.86±32.72 14.00±6.23 / -

Table 4. Convergence speed of clustering towards maximum ARI and optimal clustering on the wireless Channel compression problems,
CD1 and CD2. CFL-GP achieves the optimal clustering much faster.

[Exp in F.6] t of Achieving Maximum ARI / t of Achieving Optimal ARI

Algorithm CD1 C=16 CD1 C=32 CD2 C=10 CD2 C=20 CD2 C=40

CFL-GP 1.00±0.00 / 1.00±0.00 1.00±0.00 / 1.00±0.00 120.33±8.38 / 120.33±8.38 195.00±46.68 / 195.00±46.68 267.00±12.96 / 267.00±12.96
IFCA Clustering Fail Clustering Fail Clustering Fail Clustering Fail Clustering Fail
MADMO 890.50±889.50 / 1890.50±110.50 1651.00±2.00 / - 111.00±17.11 / - 453.33±207.36 / - 429.00±310.32 / -

Clustering performance and convergence speed. As demonstrated in Table 3, CFL-GP exhibits remarkable efficiency in
achieving optimal clustering, sometimes requiring only a single round of spectral clustering in specific experiments (see
[Exp in F.5] with C = 16 to 128 and b = 64 to 256). This efficiency highlights CFL-GP’s capability to accurately identify
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the true cluster identity of clients through a single spectral clustering step, in stark contrast to other CFL algorithms. The
baseline algorithms often fail to reach optimal clustering even after 100 communication rounds and take significantly longer
to achieve their highest ARI without ever attaining the ideal value of 1.0.

CFL-GP’s consistency in achieving strong clustering convergence is further evidenced in datasets involving models with
over a million parameters, as indicated in Table 4. Its performance in client clustering tasks using the wireless channel
model datasets, achieving optimal clustering in just one round, is especially notable. In experiments on CD2 for C=10, 20,
and 40 (shown in Table 4), CFL-GP identified optimal clusters first within 270 communication rounds, in contrast to other
CFL algorithms which failed to achieve a 1.0 ARI.

CFL-GP’s rapid convergence speed thus reduces computation and communication costs in many experiments, thereby
substantially lightening the client clustering burden. Additional analysis of ARI values and task performance relative to
communication rounds is provided in Section F.

D.2. Communication and computation cost before clustering convergence

We discuss three main cost types: communication costs, gradient/loss computation costs, and spectral clustering costs,
especially for CFL-GP.

Communication cost. Table 5 details the communication costs incurred before the completion of clustering. These
costs are quantified by d, denoting the number of model parameters that must be exchanged between the CU and a client.
Downlink describes the transmission of models from the CU to clients, and uplink signifies the transmission from clients to
the CU. Specifically, within the interval from t = nP to (n+ 1)P − 1, the communication complexity experienced by each
client/CU is illustrated in Table 5.

Table 5. Communication cost before clustering convergence
Algorithm Downlink (CU to client) Uplink (client to CU)

CFL-GP Y (< P + 1) Y (< P + 1)
IFCA KP P
MADMO P P
FedAvg P P

We denote the communication complexity of CFL-GP as Y . Note that Y cannot be defined as a closed form since CFL-GP’s
complexity varies over iteration and the clients’ estimated cluster identities. However, we can obtain an upper bound of the
CFL-GP’s communication complexity as P + 1. At each interval of P , the CU selects one model and broadcasts it to the
clients. As a result, the downlink communication complexity becomes, at most, P + 1. However, if there are clients with
estimated cluster identities corresponding to the index of the broadcast model, we do not need to re-transmit the broadcast
model to them. Therefore, the overall average downlink communication cost for a given client is less than P + 1. Although
Y may vary for each iteration, its upper bound is P + 1.

Gradient and loss computation cost. Table 6 displays the frequency of gradient/loss computations performed by each
CFL algorithm over P communication rounds. For CFL-GP, this gradient computation cost is represented by Y . In each
P cycle, clients are sent one or two models from the central unit, on which they compute gradients using their local data.
Consequently, they may conduct up to P + 1 gradient computations in each P interval. However, if a client’s estimated
cluster identity matches the index of the model sent by the central unit, they only need to perform P gradient computations,
as no additional models are received. This sets the maximum gradient computation cost for CFL-GP at P + 1. Clients over
IFCA are required to receive all models from the central unit to perform clustering and evaluate the performance achievable
with these models, involving model forward propagation. CFL-GP, MADMO, and the Global model approach (FedAvg)
eliminate the need for such additional procedures.

Table 6. Gradient and loss computation cost before clustering convergence
Algorithm Gradient computation Loss computation

CFL-GP Y (< P + 1) 0
IFCA P C
MADMO P 0
FedAvg P 0
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CFL-GP distinguishes itself by achieving clustering convergence significantly faster than alternative approaches. This rapid
convergence allows for a substantial reduction in computation and communication costs, as the clustering updates can be
terminated once clustering convergence is observed.

Computation cost of spectral clustering. The spectral clustering process of CFL-GP is performed on the gradient profile
matrix G(t) = [g

(t)
1 , · · · , g(t)

C ] ∈ RKd×C . This process consists of two main steps. The first step is to recover K leading
singular vectors Û ∈ RKd×K , and the second step is to perform K-means clustering on the reduced feature matrix using
those leading singular vectors. Recent advances in principal component analysis and leading singular vector recovery
techniques, such as those presented in (Shamir, 2015), have enabled rapid solutions to this process. Additional iterations are
performed to achieve the required accuracy, with the runtime being logarithmic in the required accuracy (Shamir, 2016).
Furthermore, when dealing with large d (the number of parameters in a model), gradient compression can be successfully
employed, as discussed in Section E, due to the low intrinsic dimensionality of neural networks. K-means clustering
problem is an NP-hard problem. However, for a given fixed number of iterations tk for K-means clustering, the complexity
is O(tkCK

2) with an initialization technique (Arthur & Vassilvitskii, 2007) which is negligible as K is the total number of
clusters.

Discussion. CFL-GP has consistently demonstrated lower costs in comparison to other CFL algorithms across various
experiments. This efficiency primarily stems from the fact that the major costs associated with CFL algorithms are due
to the pursuit of optimal clustering. CFL-GP excels by reaching this optimal clustering markedly faster—often 100 times
quicker—than its counterparts. Consequently, CFL-GP can reduce the resources expended on clustering.

CFL-GP also offers theoretical assurances for attaining optimal clustering with a high probability, setting it apart from
other CFL algorithms. Experimental evidence further corroborates its high success rate in achieving optimal clustering,
underscoring CFL-GP’s effective resource utilization by promptly reaching optimal clustering and permitting an early halt
to the clustering updates, thereby dedicating resources primarily to model updates.

Moreover, as detailed in Appendix E, the computational burden of spectral clustering can be substantially alleviated through
the use of compressed gradients for constructing the gradient profile matrix. Remarkably, CFL-GP maintains high clustering
performance even with compression ratios up to 104, outperforming baseline algorithms in some scenarios where the
baselines struggle to achieve effective clustering. This adaptability highlights CFL-GP’s suitability for large parameterized
models, including neural networks, as further elaborated in the scalability section of Appendix E.

E. Compressed or selected gradient information
We demonstrate that CFL-GP achieves optimal clustering performance even with significantly compressed or selectively
chosen gradient information in some scenarios. Supporting evidence from recent studies suggests that neural network
models and their gradients exhibit low intrinsic dimensionality across numerous tasks. Consequently, techniques such as
random sampling and projection applied to models or gradients have been leveraged for diverse objectives, as highlighted by
(Li et al., 2018; Aghajanyan et al., 2020; Hu et al., 2021a; Vogels et al., 2019).

E.1. Compressed gradient information

In this subsection, we demonstrate that CFL-GP retains optimal clustering performance across certain scenarios, even
when limited to a subset of the gradient information. Notably, CFL-GP’s efficacy remains uncompromised with a gradient
compression ratio as high as 103.

Recall the gradient feature update process in Algorithm 1:

gc,k̄ := (1− βt)gc,k̄ + βt∇f(X (t)
c ,θk̄) ∀c ∈ [C]. (79)

Suppose that we aim to reduce the size of the gradient from d to d̂, where d̂ < d. We define a set of random indices
I = {i1, · · · , id̂} , with each element selected randomly from [d] without replacement. We then denote the partial gradient
information obtained by selecting only the elements whose indices i ∈ I as ∇̂f(X (t)

c ,θk̄).

Based on this, we have a smaller gradient profile matrix with a size of Kd̂× C, and we can update it through

gc,k̄ := (1− βt)gc,k̄ + βt∇̂f(X (t)
c ,θk̄) ∀c ∈ [C] (80)
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Figure 4. ARI with respect to the gradient compression ratio. (Left): ARI vs. compression ratio on MNIST experiments. Despite utilizing
just 1/1,000 of the gradient information (when gradient compression ratio equals to 103), the clustering approach of CFL-GP achieves
an optimal ARI of 1.0, as shown on the plot with a logarithmic horizontal axis. (Right): ARI vs. compression ratio on COST2100
experiments. Even when using only 1/10,000 of the gradient information, CFL-GP outperforms both IFCA and MADMO. This indicates
that the gradients are highly informative and reliable for client clustering.

where gc,k̄ is now a d̂-dimensional vector. We note that we reuse the notation g here for readability, although it is now
representing a placeholder for the compressed gradient object than the original full-dimensional gradient profile matrix
column. Compression Ratio (CR) can be represented as d

d′ .

To investigate the impact of compression ratio on the clustering performance of CFL-GP, we use two experimental setups,
which are outlined below.

The first experimental setup, detailed in Appendix F.5.1, involves models with over 150,000 parameters. In this setup, our
objective is to cluster 80 clients into four distinct groups, with each group assigned to a specific model. The clustering is
based on the rotation transformation applied to the MNIST dataset, resulting in four different clusters representing rotations
of 0, 90, 180, and 270 degrees.

In the second experimental setup, our focus is on clustering 32 data centers into two clusters based on the heterogeneity of
channel distribution in the context of training deep autoencoder models. Further details of the experiment can be found in
Section F.6. In this experiment, the model averaging protocol specified in Algorithm 4 is employed for CFL-GP.

We performed experiments with varying compression ratios ranging from 1 to 105 for three different gradient profile matrices
obtained at t = 1, 10, 20. The results for the two experimental setups are depicted in Figure 4. The left subplot presents
the results for the first experimental setting, while the right subplot displays the results for the second experimental setting.
Each subplot demonstrates the change in clustering performance as the gradient compression ratio is modified. A higher
compression ratio indicates a more significant compression of the gradients. The size of the plot marker corresponds to the
value of t, with larger markers representing higher values.

Impact of gradient compression ratio on clustering performance. The results depicted in Figure 4 illustrate the impact
of varying gradient compression ratios on the clustering performance. The left subplot shows that CFL-GP maintains
optimal clustering performance up to a compression ratio of 103, indicating that the compressed gradients still contain highly
informative features. When the compression ratio exceeds 104, CFL-GP starts to lose its clustering optimality. Nevertheless,
for higher values of t (specifically, t = 10 and t = 20) where more gradient information is accumulated, CFL-GP surpasses
the maximum achieved Adjusted Rand Index (ARI) by the IFCA, demonstrating its superiority in clustering performance.

In the right side subplot of Figure 4, CFL-GP is observed to maintain an ARI of 0.99 even with a gradient compression ratio
of up to 104. This result is particularly remarkable as it stands in contrast to the performance of the others, which do not
perform optimally to identify proper clusters in this experiment.

These simulation results serve as compelling evidence for the highly informative nature of gradient information. In order to
further enhance our intuitive understanding of the effectiveness of gradients in client clustering, we present visualizations
of the (reduced) gradient profile matrix constructed by CFL-GP when utilizing compressed gradient information through
Figure 5.

Figure 5 illustrates plots obtained from the Rotated MNIST simulation environment, where the four distinct markers
represent distribution identities based on rotation transformations (0, 90, 180, and 270 degrees) of the MNIST dataset. Each
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Figure 5. Visualization of the reduced gradient profile matrix, Û⊤G. Each data point in the subplots represents the reduced gradient
feature of each client based on the given gradient Compression Ratios (CR). These features, g′

c = Û⊤gc, are obtained through the
spectral clustering from the compressed gradient profile matrix. The rotation transformations (RT) at angles of 0, 90, 180, and 270 degrees
introduce four distinct distributions in the dataset. As the compression ratio increases, client features within the same group become
more dispersed. Nevertheless, even at a high compression ratio of 104, the clustering performance remains robust. For instance, at
t = 10, where a significant amount of gradient information is accumulated in the gradient profile matrix, the four clusters are still easily
distinguishable, resulting in an ARI of 0.9.

subplot comprises 80 data points, representing the feature vectors of 80 clients. CFL-GP employs spectral clustering with
the gradient profile matrix. During this process, the feature vector dimensionality of the c-th client is reduced as g′

c = Û⊤gc,
and each data point corresponds to g′

c (the reduces feature vectors are further randomly projected to 3-dimension space
for the visualization purpose). We extract the reduced feature vectors from various gradient profile matrices based on the
compression ratio (CR) and t. The first row displays features extracted from the gradient profile matrix at t = 1, while the
second row corresponds to features extracted at t = 10.

Visualization of Gradient profile matrix according to compression ratio. Figure 5 demonstrates that the gradient
profile matrix operated by CFL-GP can accurately construct feature vectors capable of distinguishing four clusters within a
single clustering period, as shown in the top-left subplot. In contrast, IFCA and MADMO achieve ARI scores of 0.9 and 0.3,
respectively. This highlights the reliability and robustness of CFL-GP’s clustering criteria.

It is observed that as the gradient compression ratio increases, the scattering of each cluster becomes more pronounced.
However, even with a compression ratio of 103, the four clusters in the dataset can still be easily distinguished, as depicted
in the third row of Figure 5. As the compression ratio is further increased to 104, it becomes challenging to achieve optimal
clustering solely based on the gradient information obtained within a single clustering period (t = 1). Nevertheless, when
a greater amount of gradient information is accumulated in the gradient profile matrix (t = 10), CFL-GP outperforms
IFCA even under the high compression ratio of 104. It is clearly observed in the bottom-right plot of the figure, where the
gradient profile matrix obtained at t = 10, CR = 104 exhibits more compact clusters compared to the one obtained at t = 1,
CR = 104, resulting in a higher ARI score of 0.9.

Decimal point quantization. To further examine the impact of different types of gradient compression, we implement
decimal point quantization, where gradient magnitudes predominantly range from 0 to 1. This quantization strategy preserves
a specified number of digits (nd) beyond the decimal point, zeroing out all others. We use the simulation environment using
the MNIST dataset previously described, involving models with over 150,000 parameters. The objective is to train multiple
models for a classification task on the MNIST dataset. Gradient magnitudes observed during training ranged between -0.22
and 0.13.

Table 7 details the ARI and ACC performance metrics for CFL-GP at varying levels of quantization, alongside the metrics
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Table 7. ACC (%) and ARI across varying levels of decimal point quantization
CFL-GP nd=0 nd=1 nd=2 nd=3 nd=4 IFCA MADMO Global

ARI 0.00 0.034 1.00 1.00 1.00 0.89 0.31 0.00
ACC 10.0 16.8 87.3 88.7 88.7 85.5 80.0 58.4

for baseline algorithms without quantization

As shown in Table 7, with quantization up to two digits, CFL-GP maintains the highest accuracy compared to baselines
without quantization, indeed highlighting our algorithm’s robustness to gradient noise. We note that preserving the gradient
direction with two digits does not compromise client clustering optimality with 1.0 ARI. Reducing to a single digit after
the decimal significantly diminishes gradient information, leading to lower ARI and accuracy. Eliminating all decimal
information drops accuracy to 10%, indicating random classification across the ten classes in the environment.

E.2. Selected gradient information

In this subsection, we explore the effectiveness of CFL-GP in clustering clients when it utilizes a gradient profile matrix
composed of gradients corresponding to selected parameters, which form a subset of the overall model being trained.

There is often a need to customize specific parts of the model for different clusters while maintaining a shared structure
across other parts that can benefit all clients. This approach is commonly employed when it is believed that the local datasets
owned by the clients have a shared representation. For instance, in the case of clients working with image datasets, they may
choose to train a large neural network like ResNet18 and share the deep convolutional layers, which are critical for capturing
image features in various applications (Montavon et al., 2018; Yosinski et al., 2014; Goodfellow et al., 2016; LeCun et al.,
2015). Simultaneously, they may aim to develop customized classifiers for different client clusters by modifying the last
few layers of the model. Such structures, characterized by shared weights and customized outputs, are commonly found
in neural network architectures for multi-task learning problems (Ruder, 2017; Collobert & Weston, 2008). The idea of a
multi-output architecture in the context of CFL problems was first introduced in (Ghosh et al., 2020).

We consider the scenario in F.7 with 80 clients utilizing ResNet18 models (He et al., 2016) and partial CIFAR-10 data.
Notably, half of these clients have permuted labels (for a more detailed setup, see Section F.7). The objective of this task
is to cluster the clients while enabling them to share the weights of the feature extraction layers of the ResNet18 model.
Simultaneously, the clients should also learn customized last fully connected layers through clustering, which is essential for
addressing the challenges posed by permuted labels within each group. CFL-GP constructs the gradient profile matrix using
only the gradients corresponding to the last layer of the model.

Figure 6. The data points in the subplots correspond to the compressed gradient features of each client, represented as g′
c = Û⊤gc. These

features are derived from the gradient information obtained from the last layer of ResNet18. The clients with local datasets containing
label permutations exhibit distinct feature vectors compared to clients with pure subsets of CIFAR-10. This observation emphasizes
that even partial gradients can effectively capture the distribution identities of the clients. As the accumulation of gradient information
progresses (with increasing t), the gap between the clusters becomes more prominent. In this simulation environment, MADMO yields
ARI scores close to 0.0, while CFL-GP achieves a perfect ARI score of 1.0.

Figure 6 visualizes the reduced features of each client at different time steps (t) in the CIFAR-10 experiment. As the
gradient profile matrix accumulates more gradient information (i.e., with increasing t), the distance between the two data
groups becomes more pronounced. CFL-GP achieves optimal clustering within an average of 5.3 rounds. The results
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consistently exhibit an ARI score of 1.0 starting from t = 5. In contrast, MADMO could not achieve a positive ARI
score, indicating challenges in identifying meaningful clusters under these conditions. This demonstrates the robustness of
CFL-GP’s gradient-based clustering criteria in detecting clusters, even when only part of the gradient information is utilized.
For additional simulation details pertaining to this setup, please refer to Section F.7.

F. Experiment Results
Outline. The detailed experimental setup and configurations are outlined at the beginning of Section F. We delve into an
ablation study focusing on the feature update parameter of CFL-GP in Section F.1, showcasing its role in ensuring better
Adjusted Rand Index (ARI) outcomes through gradient time-averaging. Section F.2 presents a comparative analysis of
CFL-GP’s clustering efficacy against the PFL algorithm, as described in (Marfoq et al., 2021), which undertakes implicit
clustering. Furthermore, we compare the algorithms’ performance with that of a recent CFL algorithm (Vahidian et al.,
2023) based on a distinct communication protocol, detailed in Appendix F.3.

We employ a wide range of datasets and experimental settings. The synthetic datasets (F.4) and the MNIST dataset with
challenging extensions (F.5) are used to thoroughly analyze the algorithms’ sensitivity to factors such as the number of
clients, batch size, and distribution similarity.

In Section F.6, we investigate the applicability and scalability of CFL-GP in practical scenarios by conducting experiments
using autoencoders and wireless channel datasets characterized by high sample variance. In these challenging environments,
CFL-GP achieves optimal clustering and exhibits the highest task performance.

Furthermore, in Section F.7, we demonstrate CFL-GP’s ability to achieve optimal clustering even when utilizing selected
gradient information in large-scale models like ResNet18 (He et al., 2016). In the additional benchmark experiments using
EMNIST (F.8), CFL-GP consistently achieves optimal clustering and high task performance, highlighting its robustness
compared to existing CFL algorithms.

The proposed algorithm consistently achieved the highest ARI values among all CFL algorithms in all the experiments,
thereby demonstrating superior task performance. In addition to the quantitative results, we provide visualizations of the
clients’ gradient features obtained through CFL-GP’s spectral clustering process in specific experiments. It serves to validate
the highly informative nature of gradients and provide additional evidence supporting the robustness of CFL-GP.

Configurations and Fairness. For each experiment, we fix the total number of training communication rounds, denoted
as T , and apply it consistently to all CFL algorithms. This ensures fairness, as all CFL algorithms update their models T
times. However, it is important to note that each CFL algorithm incurs different communication and computation loads
per communication round. Additionally, the required resources vary depending on how quickly they converge to optimal
clustering, suggesting that a fixed T might not uniformly represent fairness across all factors.

Empirically, we have observed that CFL-GP demonstrates fast convergence, which leads to reduced computation load
for clustering and model updates within the given T communication rounds. Consequently, CFL-GP often incurs lower
costs to achieve comparable levels of task performance. For a broader understanding of the performance improvements
per iteration, we present a comprehensive comparison of these costs in Section D with detailed performance metrics in
subsequent subsections.

We set βt = 1
⌊t/(KP )⌋+1 for all cases. For a given fixed number of total training communication rounds T , if the clustering

remains unchanged for a continuous period of T/10 rounds, we halt the clustering update process of CFL-GP and perform
model updates using the final clustering results.

One of the key advantages of CFL-GP lies in its robustness across diverse settings without necessitating cluster-branching
sensitivity-related hyperparameters, unlike other CFL algorithms such as MADMO and PACFL that depend on such
hyperparameters. Instead, CFL-GP, along with IFCA, requires specifying the number of models to be learned, a decision
that falls to the system engineer. In simulations, the number of clusters K is given and fixed for CFL-GP and IFCA, which
may or may not be equal to the number of distinct distributions D. Interestingly, we found that CFL-GP’s gradient profile
matrix can be exploited to empirically determine D, which in principle could be used to choose the number of models
K, e.g., K ≈ D if desired. Therefore, in the absence of prior knowledge or a definitive value for K, we recommend
employing the methodology outlined in Appendix G to determine the optimal number of models. For algorithms that require
cluster-branching sensitivity-related hyperparameters, we use the hyperparameters specified for MADMO in (Sattler, 2020)
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Figure 7. ARI with respect to the communication round for different numbers of clients and batch sizes, C = 32, 64, 128 on the top
row, and b = 64, 128, 256 on the bottom row. CFL-GP (default setup, βt = 1

⌊t/(KP )⌋+1
, blue solid line) shows the optimal clustering

performance for all the tasks with 1.0 ARI. The dashed line represents CFL-GP with βt = 1, which relies solely on the temporal gradient
gap and may exhibit clustering results that are potentially noisy.

and assess PACFL’s performance using a variety of hyperparameters as detailed in Appendix F.3.

F.1. Ablation studies for feature moving average factor β

In this subsection, we show that setting the βt to 1
⌊t/(KP )⌋+1 , thereby taking a cumulative average of the gradient information,

enables CFL-GP to achieve improved clustering performance. We consider the simulation environment in Section 5.2, where
multiple distributions are generated for the MNIST dataset using eight different rotation transformations (0, 15, 90, 105,
180, 195, 270, 285 degrees). The given dataset is equally divided among the clients, and the CFL algorithm aims to cluster
the clients into four distinct models. In evaluating the ARI, we consider optimal clustering as grouping together the closest
rotation transformations to form the four clusters.

We conduct experiments with different numbers of clients and batch sizes, setting βt = 1, and present the results in Figure 7.
The first row of Figure 7 compares the ARI scores of different algorithms for a fixed batch size of b = 128 while varying
the number of clients from 32 to 128. The second row illustrates the performance for a fixed number of 32 clients while
increasing the batch size from 64 to 256.

Unlike the original setup with βt = 1
⌊t/(KP )⌋+1 , which consistently achieved an ARI score of 1.0 using time averaging,

setting βt = 1 introduces noise. Depending on the number of clients, specific noise patterns may not be evident. For
smaller batch sizes, setting βt = 1 leads to more noticeable noise. However, when a sufficiently large batch size is provided
(b = 256), the noise in ARI performance becomes minimal.

Setting βt = 1 makes CFL-GP rely solely on instantaneous gradient gaps for cluster discrimination. Consequently, if
noisy gradients occur at specific time steps, they can interfere with clustering due to the inability to accumulate gradient
information over extended periods. In contrast, the default setting of CFL-GP, which employs time averaging, enables the
accumulation of gradient information over multiple time steps. This approach results in denoised gradient profiles, ensuring
stable clustering performance.

F.2. Comparison with Personalized Federated Learning utilizing implicit clustering

One of the key differences between CFL and conventional Personalized Federated Learning (PFL) lies in the explicit client
clustering performed by CFL. As mentioned in Section 1 and A, CFL proves to be highly beneficial in scenarios where the
assumption of clients sharing a common representation, often presumed in the setups of PFL, is invalid or when the desired
models have limited representation capability. Furthermore, CFL algorithms effectively address the challenges posed by
noisy or limited client data by grouping clients together for training a single model. This approach helps prevent a decline in
generalization performance that may arise from individual client fine-tuning.

Similar to CFL, certain PFL algorithms have the ability to implicitly measure client similarity and facilitate the learning of
similar models among clients with comparable datasets. One of the notable and well-founded PFL algorithms in this context
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is FedEM (Marfoq et al., 2021), which leverages multiple models for a given task. Each client can customize the utilization
of these models based on their own weight factors. Theoretically, under certain conditions, classification problems under
CFL setup can be recovered by the PFL setup defined in (Marfoq et al., 2021) (See Section 2.3 in (Marfoq et al., 2021)). In
this subsection, we conduct a performance comparison between CFL and the PFL algorithm FedEM, while also evaluating
the clustering performance of FedEM.

We utilize the experiment setup described in Section F.5.1, where four different rotation transformations (0, 90, 180, and 270
degrees) are applied to the MNIST datasets, resulting in distinct distribution identities. The dataset is equally divided into C
clients, and each client has a heterogeneous local dataset due to the disjoint dataset division and rotation transformations
(see Section F.5.1-Extensions for more details).

In this experiment, we set the number of models as four for all the algorithms. Each client in FedEM has its own model
based on a weight factor with the same dimension as the number of models, indicating the extent to which they rely on
each model for the classification task (See (Marfoq et al., 2021) for details). It should be noted that in this setup, FedEM
ideally can recover the performance of the CFL algorithm if it adequately clusters the clients. To measure the clustering
performance of FedEM, we observe the weight factors assigned to each client. If two clients have the same local data
distribution, they should have the same weight factors. We consider two clients to be in the same cluster if they exhibit
the highest weight for the same model. For example, Table 8 shows the weight factors of the clients after 200 rounds of
learning with 20 clients in the experiment. We consider the clients c1 and c2 are in the same cluster as their weight factors
show the largest value for the third model. In Table 9, we present the classification performance and ARI with their standard
deviations for 5 different random seeds for a given number of communication rounds T = 200.

Table 8. Clients weight factors in FedEM (C = 20, K = 4, T = 200)
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Weight factor 1 7.88e-3 1.53e-3 6.26e-9 3.10e-10 2.43e-3 0.00e+0 3.40e-3 2.38e-5 1.65e-8 1.70e-3
Weight factor 2 5.23e-3 1.15e-2 1.43e-10 1.65e-2 1.33e-2 0.00e+0 4.67e-3 1.35e-2 2.70e-2 1.02e-2
Weight factor 3 9.87e-1 9.84e-1 1.00e+0 9.83e-1 9.84e-1 4.13e-21 9.92e-1 9.86e-1 9.73e-1 9.88e-1
Weight factor 4 6.95e-8 3.31e-3 3.84e-31 4.15e-32 5.70e-32 1.00e+0 1.00e-4 4.21e-22 9.76e-24 1.94e-23

c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

Weight factor 1 5.97e-3 8.70e-9 2.85e-39 1.26e-44 4.27e-13 2.25e-15 1.16e-3 0.00e+0 0.00e+0 6.00e-3
Weight factor 2 5.95e-3 1.98e-2 0.00e+0 1.15e-31 1.69e-2 1.66e-2 1.97e-2 0.00e+0 0.00e+0 7.92e-3
Weight factor 3 9.87e-1 9.80e-1 5.10e-18 3.70e-20 9.83e-1 9.83e-1 9.79e-1 8.70e-21 2.25e-18 9.86e-1
Weight factor 4 9.28e-4 8.94e-21 1.00e+0 1.00e+0 1.70e-25 5.87e-36 5.11e-27 1.00e+0 1.00e+0 2.69e-4

In this setup, the results presented in Table 8 and Table 9 indicate that FedEM may not capture the explicit distribution
identities of the clients. This is from the observation that clients c1 to c5, c6 to c10, c11 to c15, and c16 to c20, which possess
the same rotation transformation-based local datasets, do not exhibit similar weight factors as expected. The discrepancy in
weight factors suggests a failure to capture the inherent similarity among clients with identical data distributions.

Furthermore, when ARI is measured using the aforementioned approach, Table 9 demonstrates that FedEM yields ARI
values close to 0.0 for varying numbers of clients. Consequently, it shows lower performance compared to CFL-GP and
IFCA, which achieve significantly higher ARI scores (1.0 and about 0.86, respectively), but outperforms MADMO, which
fails to attain high ARI, and the Global scheme that employs a single model. Note that CFL-GP consistently shows 1.0 ARI
with zero variance in all the experiments, resulting in the highest performance among the FL algorithms.

Table 9. Performance comparison between the CFL and PFL algorithms. (Classification accuracy (%) / ARI)
Algorithm C = 20 C = 40 C = 80 C = 160

CFL-GP 88.81±0.10/1.00±0.00 88.75±0.16/1.00±0.00 88.67±0.20/1.00±0.00 88.78±0.16/1.00±0.00
IFCA 86.44±2.79/0.87±0.16 86.38±2.84/0.88±0.15 86.16±3.17/0.88±0.14 84.29±2.27/0.77±0.12
MADMO 61.90±1.42/0.02±0.07 65.64±5.23/0.20±0.27 67.41±6.54/0.30±0.26 71.53±8.01/0.50±0.28
Global 61.20±0.29/0.00±0.00 61.48±0.09/0.00±0.00 61.23±0.36/0.00±0.00 61.37±0.37/0.00±0.00
FedEM 76.94±3.47/0.00±0.01 76.57±3.49/0.00±0.01 76.42±3.21/0.00±0.00 76.14±3.30/0.00±0.01

F.3. Comparison with recent CFL algorithms from different communication protocols

In traditional Federated Learning (FL) systems, the standard communication protocol involves transmitting gradient
information from multiple clients to a central unit without sharing the raw local data. This method provides a moderate level
of data privacy protection. CFL-GP, IFCA, MADMO, and the Global Model (FedAvg) follow a comparable communication
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protocol, where clients transmit gradient information related to a set of models (CFL-GP, IFCA, MADMO, and the Global
Model) or model evaluation results (IFCA).

Principal Angles analysis for Clustered Federated Learning (PACFL). Recently, Vahidian et al. (Vahidian et al., 2023)
proposed a CFL algorithm with a communication protocol that permits clients to send principal vectors of their local datasets
to a central unit for clustering. Such an approach expands the algorithm’s design scope for clustering, as it allows the central
unit to access a wider array of information. This includes both the transformed data (in the form of principal vectors) and
traditional gradient information. The incorporation of this additional data type endows PACFL with an enhanced level of
flexibility in feature design, and in certain scenarios, PACFL outperforms ICFA and MADMO (Vahidian et al., 2023).

For cases with the potential heightened privacy concerns inherent in transmitting the principal vectors of local datasets, the
authors recommend the integration of additional privacy safeguards in privacy-sensitive scenarios, e.g., the use of encryption
methods and differential privacy techniques.

An additional key aspect of PACFL is its utilization of a clustering threshold parameter, ν (corresponding to β in (Vahidian
et al., 2023)). A higher value of ν results in reduced clustering sensitivity, thereby favoring the generation of more globalized
models with fewer distinct models. Conversely, a lower ν increases clustering sensitivity, leading to the creation of more
individualized models for each client. This parameter plays a role in balancing the need for model specificity against the
desire for broader applicability across various clients.

We implemented PACFL with various ν and compared its performance on the same simulation environment used in
Appendix F.2. In Figure 8, we present the achieved accuracy and ARI of PACFL relative to the number of clients, alongside

Figure 8. Achieved accuracy and ARI according to the number of clients.

performance measures for CFL-GP, IFCA, MADMO, Global Model, and FedEM, adopted from Appendix F.2. The results
demonstrate that PACFL achieves optimal performance with fewer than 50 clients, particularly when ν is set to 4 or
5. However, as the number of clients increases, PACFL’s ARI decreases, indicating reduced effectiveness of principal
angle-based clustering with sparse client data. The simulation involves equally partitioning the dataset among clients and
applying rotational transformations, leading to fewer samples per client as the number of clients increases. This trend
underscores the consistent performance of CFL-GP, which, relying solely on gradient information, achieves a stable ARI of
1.0. This highlights the critical role of gradient data in effective clustering.

CFL-GP operates independently of hyperparameters that affect clustering sensitivity, thereby matching the peak performance
of PACFL. While PACFL may require hyperparameter adjustments to achieve an ARI of 1.0, CFL-GP consistently delivers
comparable outcomes without such tuning. Instead, CFL-GP relies on a predetermined number of models. This number can
be determined through a gradient-based method, detailed in Appendix G, which accurately estimates the appropriate model
count.

F.4. Experiments on Multiple Linear Regression Tasks

Through this subsection, we provide a more detailed configuration for the experiments in Section 5.1.
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We consider a CFL problem where the objective is to learn three linear models for regression tasks. We have three different
data distributions, D = 3, and set three models for the problem, K = 3. For a given k ∈ [3] and ϕk, we generate data
pairs x = (x, y) as y = xtan(ϕk) + n where n ∼ N (0, 0.22) and x follows U(0,cos(ϕk)), a uniform distribution over
[0,cos(ϕk)] as shown in Figure 9. We consider three angles (ϕ1, ϕ2, ϕ3) = (∆ϕ, 0, −∆ϕ) for vaious ∆ϕs.

Figure 9. Multiple linear regressions. The data distributions depicted in the subplots of Figure 9 correspond to multiple linear regression
tasks with ∆ϕ values of 10, 20, and 40 degrees, from left to right. The dashed lines in each subplot represent the output of the optimal
models for the respective data distributions in the regression tasks.

The first (left) subplot in Figure 9 depicts the scenario where ∆ϕ = 10◦. The blue circular markers correspond to the first
data distribution D1 of ϕ1 = ∆ϕ, the green square data markers represent the second distribution D2 of ϕ1 = 0, and the
diamond-shaped data markers denote the third distribution D3 of ϕ1 = −∆ϕ . Each client is assigned a specific distribution
identity from this set. As the value of the cluster gap ∆ϕ decreases, the CFL algorithms may face a growing challenge in
distinguishing between similar data distributions. This is because the distance between the optimal models becomes smaller,
and the gradients from different distributions tend to become more similar.

The k-th linear model is characterized by its parameters θk,1 and θk,2. For a given data point x, the model’s output,
denoted as ŷ, is computed as ŷ = θk,1x + θk,2 For each k, the weights are initialized using one of two methods: (i)
θ
(0)
k,1 ∼ U(−0.8, 0.8), or (ii) θ(0)

k,1 ∼ U(−1.6, 1.6). In both cases, the bias term θ
(0)
k,2 is set to 0.

The dashed line plots shown in the three subplots of Figure 9 depict the output of the optimal models that can minimize
the Mean Squared Error (MSE) for each respective distribution. Introducing a label standard deviation of 0.2, the CFL
algorithm would achieve an optimal performance MSE of 0.04 if it could attain an optimal clustering.

Configuration. CFL-GP and IFCA require a number of models prior to learning. We set K = 3, T = 200, and learning
rate to 0.1. MADMO requires branching parameters, EPS_1 and EPS_2, that lead to recursive bipartitioning of the client
sets. We use EPS_1 and EPS_2 as 0.02 and 0.6, respectively (See (Sattler, 2020)).

F.5. Experiments on MNIST Dataset

For the simulations in Section 5.2, we adopt a CFL problem setup from (Ghosh et al., 2020). In this setup, the MNIST
dataset is partitioned among multiple clients, with each subset undergoing a rotation transformation. This configuration
allows us to evaluate the clustering accuracy of CFL algorithms by assessing their ability to group clients based on these
transformations.

To enhance the complexity of the experiments, we extend the simulation environment by introducing eight different rotation
angles: 0, 15, 90, 105, 180, 185, 270, and 285 degrees. A subset of the results from this simulation is presented in Section 5.
Here, we provide a comprehensive description of the experimental details.

The MNIST dataset is divided into eight disjoint parts, with each part being subjected to one of the rotation transformations
mentioned above. These transformed datasets are then equally distributed among a total of C clients, with each client
receiving a local dataset that corresponds to one of the eight rotational transformations. Therefore, each group of C/8 clients
has the same rotation transformation, but they also exhibit heterogeneity as the MNIST dataset is divided disjointly among
the clients. The 70% of each local dataset is used as a training dataset for the corresponding client, and the remaining 30% is
used as a test dataset.

The parameterized model consists of two dense layers: the first layer receives a 28× 28 dimension with the 1-channel image
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as an input and has a hidden dimension size of 200. The second dense layer receives the output from the first layer, which is
a vector of size 10, where 10 is the number of distinct labels in the MNIST dataset. The output from the second layer is then
used to predict labels through the log softmax activation. The cross-entropy loss is used.

To assess the robustness of the algorithms, performance measurements are carried out across a range of environments with
varying numbers of clients, starting from 8 and increasing to 128. For all the algorithms, we have a default setup as b = 64,
C = 32, and we set the learning rate to 0.1, P = 2, and T = 200.

Configuration. MADMO primarily employs a model averaging protocol. However, to ensure fairness with other
algorithms, we implement a gradient averaging protocol by limiting the number of local updates per communication round to
one. We follow the hyperparameter configuration of MADMO as described in (Sattler et al., 2020). For IFCA, the gradient
averaging version algorithm [Algorithm 1, option I](Ghosh et al., 2020) is used. The Global Model scheme is implemented
by setting K = 1 in CFL-GP, which means that the learning agent will train a single global model, and no client partitioning
is performed.

F.5.1. ADDITIONAL SIMULATION RESULTS

Classification accuracy and ARI vs. communication round. We present additional plots illustrating the ARI and
Accuracy according to the communication round t. Each subplot in Figure 10 is labeled with the specific batch size b and
the number of clients C used in the experiments. The shaded region in the plots represents the standard deviation of the
performance, calculated based on 10 repeated experiments, with the average performance serving as the line plots.

Among the CFL algorithms, CFL-GP achieves optimal clustering in a single round, except when the number of clients is 8.
As a result, CFL-GP demonstrates enhanced capability to update the models for each distribution accurately, leading to
higher classification accuracy. This stands in stark contrast to the competing algorithms, which often fail to converge or
achieve optimal clustering even after 200 rounds. These competing algorithms exhibit suboptimal performance throughout
the simulation.

Moreover, baseline algorithms display distinct ARI performance depending on the number of clients, consequently
influencing the task performance. In contrast, CFL-GP exhibits robustness even in scenarios with a small number of clients
(C = 8), achieving optimal clustering within just 20 rounds.

Figure 11 presents the results obtained when considering various batch sizes with a fixed number of 32 clients. Except
for the batch size of 32, CFL-GP consistently achieves optimal clustering in just one round. Even with a batch size of 32,
optimal clustering is achieved after approximately 80 rounds. On the other hand, IFCA and MADMO fail to achieve optimal
clustering in these experiments. Additionally, MADMO fails to detect any clusters when the batch sizes are set to 128 and
256, performing equivalently to using a global model. CFL-GP consistently attains the highest ARI in all experiments,
resulting in superior classification accuracy.

Performance comparison with a different number of models. Based on the main results provided in Section 5.2, we
run CFL-GP and IFCA on the different number of models K ∈ {4, 8}. Note that the number of initial models is obtained by
using the method that we propose in Appendix G, which is the singular vector analysis utilizing a gradient profile matrix.

Table 10. Performance comparison: Classification accuracy (%)
Algorithm C = 8 C = 16 C = 32 C = 64 C = 128

CFL-GP (K=4) 86.8±0.35 87.2±0.21 87.2±0.18 87.2±0.28 87.3±0.24
CFL-GP (K=8) 87.7±0.22 87.6±0.33 86.7±1.22 87.2±0.26 87.1±0.19
IFCA (K=4) 79.3±2.62 82.8±3.18 85.2±2.85 85.4±2.58 86.0±2.28
IFCA (K=8) 84.1±3.45 82.0±3.57 85.0±3.17 87.2±0.06 87.3±0.10
MADMO 63.7±4.02 69.6±2.76 72.5±2.17 76.4±2.42 81.8±2.20
Global 58.0±0.45 58.3±0.45 58.3±0.37 58.3±0.51 58.4±0.38

Table 10 outlines the classification accuracy results across various client counts, ranging from 8 to 128. The results indicate
that with the number of models K = 4 and K = 8, determined using the method described in Appendix G, CFL-GP can
appropriately cluster the clients and achieve high performance. Similarly, IFCA, which requires a predefined number of
models, also demonstrates high performance, surpassing other baseline methodologies when using the estimated number of
models.
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Figure 10. Classification accuracy and ARI according to communication round. CFL-GP achieved optimal clustering within 20 rounds
in all experiments. In contrast, other CFL algorithms failed to achieve optimal clustering within 200 rounds, exhibiting varied ARI
performance depending on the number of clients.
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Figure 11. Classification accuracy and ARI trends across communication rounds. CFL-GP achieved optimal clustering within 90 rounds
in all experiments. In contrast, other CFL algorithms failed to achieve optimal clustering, exhibiting varied ARI performance depending
on the batch size.

Visualization of Gradient Profile Matrix. In Figure 12, we visualize the projected features of each client, g′
c ∈ RK

obtained during the spectral clustering based on the gradient profile matrix. The first row displays results for a batch size of
64 with 64 clients, while the second row shows results for 128 clients. Each column corresponds to a specific time step,
specifically t = 1, 5, 9, and 13.

All the features are further randomly projected into a 3-dimensional space for visualization purposes. Figure 12 illustrates
that as t increases, accumulating more gradient information, the distances between the sets of reduced features for each
cluster become larger. Notably, the scatter of each set (e.g., the clients with Rotation Transformation (RT) 0 and 15 degrees)
at t = 1 decreases progressively with increasing t. CFL-GP leverages these features for clustering, effectively identifying the
four clusters. In these experiments, CFL-GP achieves optimal ARI in just one round, contrasting with IFCA and MADMO,
which attain ARI scores of approximately 0.9 and below 0.5, respectively.

Additional simulation environments. In addition to the results presented in the main text, we adopt the same experimental
configuration from (Ghosh et al., 2020) where the MNIST dataset is divided into four disjoint parts instead of eight, each
undergoing rotational transformations at angles of 0, 90, 180, and 270 degrees. In this environment, the default batch size is
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Figure 12. The visualization of reduced client features obtained at different t, t = 1, 5, 9, and 13 for two scenarios, where the number of
clients is 64 and 128, respectively. Each data point represents a reduced client feature, g′

c. Notably, CFL-GP achieves optimal clustering
(ARI of 1.0) within a single clustering round t = 1 using these features.

Figure 13. Rotated MNIST setup with the four different rotation transformations, 0, 90, 180, and 270 degrees. Accuracy and ARI are
plotted against batch size and number of clients in subplots (a)-(d), respectively. CFL-GP achieves 1.0 ARI in all the environments,
resulting in the highest classification accuracy.

set to b = 100, and the number of clients is set to C = 40.

Figure 13 depicts the classification accuracy and ARI based on different batch sizes and numbers of clients. CFL-GP
consistently achieves an ARI of 1.0 for all batch sizes and client numbers, indicating optimal clustering performance.
Consequently, CFL-GP also consistently exhibits the highest accuracy values among the FL algorithms. In contrast, other
CFL algorithms exhibit sensitivity to batch sizes and the number of clients, leading to significant variations in ARI and task
performance. The global model, which utilizes a single model for all experiments, consistently shows the lowest accuracy
across all scenarios.

F.5.2. CONFIGURATION FOR EXPERIMENTS ON THE MIXTURE OF DISTRIBUTIONS

We detail the simulation setup for the results in Figure 3. To evaluate the robustness of CFL algorithms against distribution
similarity, the MNIST dataset is partitioned into three distinct subsets. The first subset undergoes a rotation transformation
of 0 degrees, while the second subset undergoes a rotation transformation of 180 degrees. For the third subset, we randomly
assign each sample to one of the two rotation transformations, with probabilities κ and 1 − κ, respectively, creating a
mixture distribution. Each subset is then equally divided among four clients. We set T = 400 and κ ∈ {0.1, , 0.2, . . . , 0.9}.
Throughout the training, the clustering process is active, with Tcl = T .

F.5.3. EXTENSION: INTEGRATION WITH A DIFFERENT DATASET

To evaluate the effectiveness of CFL algorithms in distinguishing between datasets, we created a hybrid dataset by merging
MNIST and Fashion-MNIST. This dataset was distributed among clients, with configurations of 32, 64, and 128 clients.
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Following the primary simulation parameters detailed in Appendix F.5, we maintained consistent learning hyperparameters
and CFL baseline settings. Our experimental protocol included a batch size of 256 and spanned 200 communication rounds.
Clients assigned portions of the MNIST dataset underwent eight distinct rotational transformations, as outlined in Appendix
F.5. We assessed performance using classification accuracy (ACC) and the Adjusted Rand Index (ARI), conducting five
rounds of simulation with different random seeds. The results, summarized in Table 11, present the average ACC/ARI
metrics and their respective standard deviations.

Table 11. Performance Comparison: Accuracy (%) and ARI for MNIST + Fashion-MNIST Dataset
Algorithm C = 32 (ACC/ARI) C = 64 (ACC/ARI) C = 128 (ACC/ARI)

CFL-GP 82.4±0.03/1.00±0.00 82.8±0.30/1.00±0.00 82.8±0.18/1.00±0.00
IFCA 80.4±1.12/0.95±0.04 78.2±1.80/0.84±0.12 81.1±1.15/0.95±0.04
MADMO 61.5±1.68/0.07±0.10 67.9±5.17/0.36±0.28 68.8±5.43/0.59±0.16
Global Model 60.5±0.27/0.00±0.00 60.8±0.23/0.00±0.00 60.6±0.20/0.00±0.00

CFL-GP consistently outperformed baseline models, showcasing superior task performance and achieving up to a 21%
increase in accuracy. IFCA also displayed comparable performance to CFL-GP. The Global Model approach significantly
underperformed in this scenario, as it is unable to separate the two distinct data distributions and the limited capability of the
multi-layer perceptron models to achieve high accuracy across combined datasets. Similarly, MADMO exhibited lower
performance, with its ARI lagging behind CFL-GP and IFCA.

F.6. Experiments on Wireless Channel Datasets

In this section, we provide a detailed description of the simulation setup corresponding to [Exp 1: Deep AE, COST2100] in
Table 1 and offer additional analysis based on the results.

We consider a wireless Channel State Information (CSI) compression problem, which is a crucial challenge in wireless
communication, particularly for enhancing efficiency in next-generation systems (Lin, 2022; Wen et al., 2018; Wang et al.,
2018). This problem parallels the well-studied field of neural network-based image compression (Jiang, 1999; Ma et al.,
2019; Hu et al., 2021b). Below, we outline the setup for this problem.

Channel State Information and Deep Autoencoder-based compression. In wireless communications, channel state
information (CSI) refers to various types of information regarding a communication link between a transmitter (Tx) and a
receiver (Rx), and CSI not only changes in real-time but also varies depending mainly on the location of the Tx and Rx. If
the Rx compresses CSI more efficiently and sends it to the Tx, the Tx can design a more robust signal and achieve higher
data transmission efficiency.

Autoencoder-based CSI compression methods (Wen et al., 2018; Wang et al., 2018) have consistently outperformed
traditional compression techniques, including compressive sensing methods. This approach is regarded as a promising
technology with vast potential for application beyond 5G and next-generation communication systems by effectively
mitigating signal interference and optimizing communication efficiency (Lin, 2022).

Application of CFL to wireless communication systems. Despite the potential of autoencoder-based CSI compressors,
several critical challenges need to be addressed for practical deployment: (a) Channel Distribution Heterogeneity: This
challenge arises due to varying channel distributions across clients, where a client is defined as a data center and a set
of terminal devices (or a base station - a set of mobile users pair). Environmental factors significantly influence the
communication link between terminal devices and the base station. (b) Limited Representation Capability: The autoencoder
structure compresses original data into a codeword, i.e., a latent vector having a limited size. Due to the heterogeneity of the
channels, using a single model for all distributions may not be effective, as representing diverse heterogeneous distributions
within a fixed-size latent vector leads to higher distortion between input and recovered output.

To address these challenges, we employ a CFL scenario where algorithms are encouraged to cluster clients based on channel
heterogeneity or similarity, and train a distinct deep autoencoder for each cluster. This method allows each cluster to use
a tailored autoencoder, resulting in more efficient compression compared to a single autoencoder handling all channel
distributions within a limited latent space. This approach effectively mitigates the identified issues and facilitates the
practical deployment of tailored models.
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Datasets and Autoencoder Models. We utilize the COST2100 (Wen et al., 2018) channel model dataset, which is one of
the most widely used benchmark datasets for deep learning-based CSI compression tasks. The COST2100 dataset includes
two classes of CSI; the first class is an indoor type CSI D1, characterized by a weak scattering pattern and a small delay
component, and the second class is an outdoor type CSI, characterized by a severe scattering pattern and a relatively high
delay component, D2. Each CSI sample is a 32× 32 size matrix, and each element is a complex value. Each sample can
then be expressed by 2,048 floating point numbers. The entire dataset contains 200,000 samples, and we divide them into C
clients. Then, half of the C clients possess local datasets corresponding to the COST2100 indoor dataset, and the other half
comprises COST2100 outdoor datasets. The CFL algorithms are encouraged to group clients according to their dataset
identities and, ideally, learn two distinct autoencoders that share an encoder. We denote this simulation environment as CD1
(Channel Dataset 1).

In addition, we create an additional channel model dataset by utilizing the channel model generator (Jaeckel et al., 2021).
This dataset adheres to the established industrial standard model, specifically the 3GPP 38.901 channel model. We generate
five distinct wireless channel distributions, denoted as D1, ...,D5, and extract 20,000 instances of CSI from each distribution
as detailed in (Kim, 2024). Similar to the COST2100 dataset, each CSI sample in the dataset is represented as a 32× 32
matrix of complex values, resulting in a representation of 2,048 floating-point numbers. This dataset with the simulation
setup is referred to as CD2.

We adopt Inception block (Szegedy et al., 2015) and residual connection (He et al., 2016) to build deep autoencoders, which
are widely used for CSI compression (Wen et al., 2018; Lu et al., 2020).

The encoder module comprises three blocks, each with specific convolution layers and associated parameter sets. In the first
block, there are three convolution layers with parameter sets (2,2,3,3), (2,2,1,9), and (2,2,9,1), respectively. Here, the first
input represents the input data channel dimensions, and the second input represents the output data channel dimensions.
The third and fourth inputs specify the width and height of the kernel, respectively. All convolution layers in this block
are connected with batch normalization and leaky ReLU activation. The second block consists of a single convolution
layer with a parameter set of (2,2,3,3). It is also connected with a batch normalization layer. The third block contains three
convolution layers with parameter sets (2,2,3,3), (2,2,1,3), and (2,2,3,1), respectively. Similar to the previous blocks, these
convolution layers are connected with batch normalization and leaky ReLU activation. The outputs from these blocks are
combined based on the channel dimension. Subsequently, an additional refinement step is performed using a convolution
layer with a parameter set of (6,2,1,1). The resulting output is then vectorized. Finally, a dense layer is utilized to generate
the compressed output, which is determined by the desired compression ratio.

The compression ratios are set to 2 and 128 for the CD1 and CD2, respectively. The autoencoder models have approximately
4.2M and 72K parameters. The latent vector sizes, Ncl, are Ncl = 1024 and Ncl = 16 for the two models, respectively.

The decoder module in the system takes a vector of size Ncl and performs a series of operations to reconstruct the image.
First, the vector is passed through a dense layer with 2048 outputs. The resulting output is then reshaped to match the
original image shape. After reshaping, a convolution layer with a parameter set (2,2,5,5) is applied to process the data, along
with batch normalization and a leaky ReLU activation layer.

To reconstruct the image, a set of residual blocks is repeated. Each block consists of convolution layers with channel
dimensions related to a given parameter Ndc. The input to the blocks is split into two sub-blocks. The first sub-block consists
of three convolution layers with parameter sets (2,Ndc,3,3), (Ndc,Ndc,1,9), and (Ndc,9,1). The second sub-block consists of
two convolution layers with parameter sets (2,Ndc,1,5) and (Ndc,Ndc,5,1). The outputs from these sub-blocks are combined
along the channel dimension and passed through a convolution layer with a parameter set (2Ndc,2,1,1).

The processing of each block is completed by adding its unprocessed input to the output. This block processing is repeated
three times, with Ndc values of 9, 7, and 5, respectively. Finally, the original input is estimated using a leaky ReLU activation
function.

All the leaky ReLU activations have a slope of 0.3. Xavier initialization is applied to all the weights in the model. For the
batch normalization layer, the weight parameter is initialized as one, and the bias parameter is initialized as zero.

Configuration. The model averaging protocol is used for all the algorithms. Specifically, for CFL-GP, we employ the
model averaging procedure described in Algorithm 4. Each client performs a local update for one epoch during each
communication round. This means that each client divides its local dataset into multiple mini-batches of size 200 and uses
them to update the model received from the central unit (CU). If the number of clients is smaller, each client performs a
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larger number of local updates during each communication round since they possess a larger amount of data. The branching
parameters for MADMO are set to the values specified in the MADMO codebase (Sattler, 2020). The implementation of
FEDAVG follows the methodology described in (McMahan et al., 2017).

In the simulation corresponding to CD1, CFL-GP employs gradient compression with a ratio of 100 to manage the gradient
profile matrix, i.e., d/100 components are randomly selected from a gradient vector to update the gradient profile matrix.
This gradient compression enables CFL-GP to achieve effective clustering with the compressed information while preserving
clustering optimality. For more detailed information, see Appendix E.

We use the MSE loss, the Adam optimizer (Kingma & Ba, 2015) for the local update process of the clients with a 0.002
learning rate and 200-size minibatch. We also use cosine annealing with warm restarts (Loshchilov & Hutter, 2016) for
scheduling the learning rate during training. Specifically, the learning rate is reset to its original value after every 125,000
mini-batch updates by each client. Each client conducts a local update of 1 epoch during each communication round as in
F.8. We use T =2000, P =5 and T =1000, P =2 for CD1 and CD2, respectively.

During the model update process, all clients share the weights of the encoder part of the autoencoder. After updating the
models, we collect the encoder weights from each model and compute their average. Specifically, after Line 5 in Algorithm
4, the computation is performed as follows: θ(t+1)

k,ENC = 1
C

∑
c∈Cθ

(t+1)

k
(t)
c ,ENC

. Here, θ(t)
k,ENC represents the set of weights in the

encoder of model θ(t)
k . This weight averaging ensures that the encoder weights of all models have the same values after each

update.

F.6.1. ADDITIONAL SIMULATION RESULTS

In this subsection, we observe the compression performance and clustering performance. The compression performance
is measured using the normalized mean square error, which is calculated by dividing the squared Frobenius norm of the
difference between the input and output data instances by the squared Frobenius norm of the original input data instance. A
lower normalized mean square error indicates a better compression performance, as it means the input and output are more
similar element-wise. The clustering performance is measured using the ARI.

Robustness of CFL-GP over practical scenarios. In Figure 14, the results from the simulation with COST2100 dataset
are shown for 16 and 32 clients (data centers). The vertical axis on the left represents the normalized MSE in dB scale. In
Figure 14, the right column demonstrates that CFL-GP achieves optimal clustering in the first round itself. As a result,
CFL-GP efficiently trains autoencoders by grouping clients with similar channel distributions into one cluster, leading to the
lowest MSE values, as observed in the left column. Notably, when comparing the point at which optimal ARI is achieved,
it is in stark contrast that MADMO takes over 1000 rounds to achieve meaningful ARI. MADMO requires significant
computational resources for bipartitioning parameter calculation until clustering is completed. In contrast, CFL-GP saves
considerable resources by converging to optimal clustering in practical scenarios. In particular, it is observed that IFCA may
not discover any effective clusters.

In Figure 15, the results obtained from the simulation environment CD2 are provided. In this experimental setup, CFL-GP
required 130, 250, and 750 rounds to achieve ARI of 1.0 for 10, 20, and 40 clients, respectively. Other algorithms failed to
achieve ARI greater than 0.55. In this scenario, CFL-GP requires a relatively high number of communication rounds to
achieve a stable optimal ARI compared to other experiments, which may result in higher computation and communication
costs than the baselines. However, CFL-GP ultimately achieves a high ARI, and the results demonstrate a compression
performance improvement of up to 2dB compared to competing CFL algorithms.

In Figure 16, we present the client features obtained from the simulation with CD2 when C = 40. The four subplots represent
the results at t = 1, 160, 320, and 480, respectively, where each subplot shows the reduced feature vectors of the clients,
g′
c ∈ RK . Given the presence of five distinct distribution identities, the reduced feature vectors are 5-dimensional. For

visualization, we randomly projected these vectors onto a 3-dimensional space.

Initially, in the first round, the differences between the feature vector sets of each cluster are not clearly discernible, except
for the sets corresponding to the blue and green clusters (D1 and D3). However, as CFL-GP accumulates more gradient
information, by t = 480, the feature vectors begin to form distinct sets based on distribution identity, achieving an ARI of
1.0. In contrast, IFCA and MADMO exhibit lower performance compared to CFL-GP, with correspondingly lower ARI.
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Figure 14. [Deep autoencoder, COST2100 dataset (CD1)] Normalized MSE and ARI achieved by each CFL algorithm according to
communication round. CFL-GP achieves optimal clustering in the first round, resulting in the lowest normalized MSE.

F.7. Experiments on CIFAR10 and Resnet18

In this subsection, we provide a detailed description of the simulation setup for [Exp 2: ResNet18, CIFAR-10] in Table 1
and offer an additional analysis of the results obtained.

Our simulations utilize the CIFAR-10 dataset (Krizhevsky et al., 2009), which comprises 60,000 32x32 3-channel images
across 10 classes. The dataset is randomly partitioned among the clients, denoted as C. Each client is assigned a ResNet18
model (He et al., 2016), a widely used convolutional neural network architecture.

To introduce label heterogeneity, we permute the labels for half of the C clients. Specifically, for these clients, we modify
the label values by adding 5 and taking the modulus 10, resulting in a permutation of the original labels. This creates a
scenario where the same class of images has different label values among clients. Consequently, CFL algorithms must
detect and cluster clients based on label heterogeneity, thereby enabling the learning of distinct classification models for
each cluster.

To facilitate efficient sharing of feature extraction capabilities among clients, we employ a technique known as weight
sharing. Specifically, we customize only the final dense layer of the ResNet18 model while the remaining layers are shared
across all clusters. This approach allows clients to train the shared feature extraction modules while using distinct classifiers
to process these features. The shared weights are updated using gradient information aggregated from all clients. The
concept of weight sharing with CFL, introduced in (Ghosh et al., 2020), has demonstrated effectiveness across various tasks.
Neural network updates are performed using the cross-entropy loss function.

Configuration. As mentioned, client features gc are constructed based solely on the gradients of the last layer of ResNet18
for CFL-GP. We utilize the model averaging protocol, maintaining the same configuration for local updates as in F.6. Each
client performs one epoch of training during each communication round, using the Adam optimizer with a learning rate of
0.01 for the local updates. T = 300, b = 100 and P = 2, with varying values of C = 20, 40, and 80.

F.7.1. ADDITIONAL SIMULATION RESULTS

We observe the classification accuracy and ARI trends across communication rounds corresponding to Table 1. Figure 17
presents the accuracy and ARI achieved by each CFL algorithm under the specified conditions.
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Figure 15. [Deep autoencoder, CD2] Normalized MSE (NMSE) and ARI achieved by each CFL algorithm according to communication
round. CFL-GP achieves optimal ARI much faster than the baselines. Despite the highly noisy gradients in this experiment, CFL-GP
accumulates gradient information and eventually achieved a perfect ARI of 1.0. In contrast, other algorithms consistently show ARI
values below 0.6, resulting in greater distortion (NMSE) compared to the achieved NMSE by CFL-GP.

Figure 16. The variations of the client’s reduced feature vectors with respect to t (CD2, C=40) are depicted. Each data point represents
the reduced feature vector of a client, g′

c. It is observed that as t increases, the set of feature vectors from clients corresponding to each
distribution identity exhibits a gradual increase in distances between them. As a result, CFL-GP achieves an ARI of 1.0 at t = 480.

51



Clustered Federated Learning via Gradient-based Partitioning

0 50 100 150 200 250 300
Communication round

0

2

4

6

8

A
cc

ur
ac

y

1e 1 Number of clients 20

CFL-GP
IFCA
MADMO
FedAvg

0 100 200 300
Communication round

0.0

0.5

1.0

A
R

I

Number of clients 20

0 50 100 150 200 250 300
Communication round

0

2

4

6

A
cc

ur
ac

y

1e 1 Number of clients 40

CFL-GP
IFCA
MADMO
FedAvg

0 100 200 300
Communication round

0.25

0.00

0.25

0.50

0.75

1.00

A
R

I

Number of clients 40

0 50 100 150 200 250 300
Communication round

0

2

4

6

A
cc

ur
ac

y

1e 1 Number of clients 80

CFL-GP
IFCA
MADMO
FedAvg

0 100 200 300
Communication round

0.00

0.25

0.50

0.75

1.00

A
R

I

Number of clients 80

Figure 17. [ResNet18, CIFAR-10] Classification accuracy and ARI over communication rounds. CFL-GP consistently achieves optimal
clustering within 50 rounds in all experiments. Notably, CFL-GP achieves a classification accuracy of 60% in less than 30 rounds, while
MADMO requires over 140 rounds.

Accuracy, clustering performance, and convergence. In this simulation environment, CFL-GP and IFCA consistently
achieve an ARI of 1.0, regardless of the number of clients. This indicates that the loss-based clustering criteria of IFCA,
which clusters clients by assigning them to the best-performing model, is effective in this task. MADMO exhibits a slight
increase in ARI after 100 rounds but falls short of achieving optimal clustering. When the number of clients is 20, CFL-GP
achieves a classification accuracy of 70 or higher in less than 50 iterations. In contrast, MADMO requires more than 250
iterations to reach similar values. These observations also hold true when the number of clients is 40 or 80.

The fast and stable convergence of CFL-GP is primarily due to its ability to achieve optimal clustering quickly. Specifically,
CFL-GP attains a maximum ARI of 1.0 within 50 rounds, whereas MADMO requires approximately 200 rounds to reach its
peak ARI. By achieving optimal clustering early and updating models for each client cluster, CFL-GP minimizes the noise
introduced by gradients from incorrectly clustered clients. This results in more effective model updates, with reduced noise
compared to CFL algorithms that struggle with clustering accuracy or FedAvg, which employs a single global model.

F.8. Experiments on EMNIST Dataset

In this subsection, we provide a detailed description of the experiment setup corresponding to [Exp 3: CNN, EMNIST] in
Table 1 and offer additional analysis corresponding to the results.

We adopt a CFL problem setup in (Sattler, 2020), utilizing the EMNIST dataset (Cohen et al., 2017). The EMNIST dataset
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consists of handwritten digits and alphabets, resulting in a total of 62 classes. We randomly sample 200,000 data points
for our experiments. The goal of this task is to divide clients with different local datasets based on label heterogeneity and
rotation transformations into two distinct groups and train models for each group. The label distributions of the clients vary
according to a Dirichlet distribution with a concentration parameter of 1.0. However, the main differentiation for clustering
is the rotation transformation. Half of the C clients have datasets subjected to a rotation transformation of 0 degrees, while
the remaining clients have datasets subjected to a rotation transformation of 180 degrees. We utilize the convolutional neural
network architecture from (Sattler, 2020) and optimize using the cross-entropy loss.

Configuration. We set the number of communication rounds T to 100 and the batch size b to 200. To evaluate performance,
we vary the number of clients C to 10, 80, and 160. All algorithms use the model averaging protocol. Local updates are
performed with a learning rate of 0.1. The remaining configuration settings follow those specified in Section F.5.

F.8.1. ADDITIONAL SIMULATION RESULTS

In this subsection, we investigate the classification performance, and ARI changes with respect to the communication rounds.
The first, second, and third rows in Figure 18 correspond to the performance for different numbers of clients: 10, 80, and
160, respectively. The left column shows the classification accuracy over the communication rounds, while the right column
depicts the ARI changes over the communication rounds.

From Figure 18, we observe that CFL-GP achieves an ARI of 1.0 in all cases. Particularly, when the number of clients
is small, CFL-GP achieves 1.0 ARI within a single clustering period. In other cases, CFL-GP achieves 1.0 ARI within
approximately 10 rounds. As a result, CFL-GP also achieves the highest accuracy at T = 100. IFCA successfully achieves
higher ARI as the number of clients increases. However, when a small number of clients is assumed, IFCA exhibits ARI
below 0.75. MADMO consistently shows ARI below 0.75 in all experiments.

F.9. Summary of experiment results

Our extensive experimental investigations aimed to thoroughly assess the performance of CFL-GP with various CFL
algorithms, focusing on aspects such as robustness, task performance, convergence speed, and clustering efficacy.

In Appendix D, we presented a detailed analysis of the clustering convergence speed. Additionally, in Appendix E, we
demonstrated the robustness of CFL-GP’s clustering performance based on compressed or selected gradients. Comparative
analyses with the PFL algorithm, FedEM, and PACFL were presented in Appendices F.2 and F.3, respectively. To thoroughly
evaluate the algorithms’ robustness, we conducted experiments using synthetic datasets, examining their sensitivity to factors
such as cluster gaps, batch sizes, and the number of clients. This analysis can be found in Appendix F.4 and Section 5.1.
Furthermore, we investigated the clustering capability and convergence of the algorithms on widely used CFL benchmarks,
including the MNIST and EMNIST datasets. Our examination encompassed variations in the number of clients, batch sizes,
and mixture distribution setups, which can be found in Section 5 and Appendix F.5, F.8. We also explored the applicability
of CFL algorithms in scenarios where weight sharing was required for a portion of the parameterized models, as detailed in
Appendix F.7. Moreover, we observed the performance of CFL algorithms on industry-standard channel model datasets
with deep autoencoders in Appendix F.6.

Throughout our experiments, CFL-GP consistently exhibited optimal clustering performance, surpassing other algorithms in
terms of task performance. A particularly significant finding was that CFL-GP is capable of achieving optimal clustering
even with just a single round of spectral clustering in many experimental environments. This empirical evidence strongly
supports the notion that the gradients obtained from clients contain highly informative knowledge for determining cluster
identities. Moreover, our experiments demonstrated that CFL-GP maintains its optimality in some scenarios even when
gradients are compressed up to a compression ratio of 104, providing further evidence of the rich information it captures.

Our extensive experiments highlight CFL-GP as an effective and practical approach for addressing real-world scenarios
requiring optimal clustering, particularly in scenarios that often involve a limited number of clients or data quantities and
heterogeneous distributions that are inherently difficult to distinguish.

G. Dealing with Unknown Number of Clusters
Estimating the number of clusters in a dataset without direct access to raw data instances is an open problem that has not
been extensively investigated. However, our research has yielded an interesting finding: using the gradient profile matrix of
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Figure 18. [CNN, EMNIST] Classification accuracy and ARI over communication rounds. CFL-GP consistently achieves optimal
clustering within 10 rounds across all experiments, resulting in the highest accuracy performance. However, the other CFL algorithms do
not attain optimal clustering within 100 rounds when the number of clients is 10 and 80. When C=160, both CFL-GP and IFCA achieve
the optimal clustering, where CFL-GP shows faster convergence toward the optimal clustering compared to IFCA.
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Figure 19. The line plots depict the singular values of the gradient profile matrix at different time points. The intensity of the color, with a
deeper shade of red, indicates the results obtained at higher values of t. From left to right and top to bottom, the plots represent the cases
where the number of clients is 16, 32, 64, and 128, respectively. In all scenarios, it is evident that the largest gap between consecutive
singular values consistently appears between the fourth and fifth singular values.

CFL-GP, we could infer a reasonable number of clusters based on the gradient information in some scenarios.

In this section, we propose a method where we select the s largest singular values from the gradient profile matrix, reduce
the client feature to s dimension, and utilize the reduced features to determine the appropriate number of clusters effectively.
Note that this approach differs from CFL-GP’s dimension reduction of each client’s feature vector to a vector of size K,
where K is a given number. Instead, it reduces each client’s feature to s dimensions, leveraging the leading singular values
(or largest spectral gap).

Proposed method. We outline the following steps to deduce the number of clusters: (1) Initially, we arbitrarily select K
models and run CFL-GP for a sufficient number of iterations. With each iteration, the gradient profile matrix accumulates
more informative data. (2) After a certain number of iterations, we compute the singular values of the gradient profile
matrix. By observing the singular values in descending order, we pick the dominant s leading singular vectors. One possible
approach is to select the value of s corresponding to the largest singular values beyond which we have a significant spectral
gap. (3) Subsequently, we compress the gradient profile matrix G by employing the s leading singular vectors of G,
resulting in dimensionality reduction. Consequently, each client feature vector is reduced to a s-dimensional vector. We can
then apply conventional techniques such as the Elbow method or Gap statistic methods on the reduced features to determine
the optimal number of clusters.

If the largest s singular values significantly surpass the remaining singular values, it signifies that the gradient directions
manifested by C clients within a specific model set can be effectively represented using s dominant directions.

Experiment setup. We used the experiment setup in Appendix F.5, to validate the aforementioned approach to estimating
the number of clusters. In the experiment, the MNIST dataset is divided into 8 subsets, each subjected to a specific rotational
transformation (0, 15, 90, 105, 180, 185, 270, and 285 degrees), resulting in 8 distinct distribution identities. These subsets
are evenly distributed among C clients. We may anticipate two possible results for this setup: (1) we should observe a clear
distinction among the eight distribution identities. (2) Alternatively, we can expect to see a clustering that groups together
clients with similar rotation transformations (0, 15), (90,105), (180,185), and (270, 285).

Selecting s largest singular values. To empirically determine the number of clusters, we compute the full singular value
decomposition (SVD) of the gradient profile matrix of CFL-GP (although the original CFL-GP does not necessarily require
a full SVD computation). The resulting singular values are then presented in descending order in Figure 19.

Each subplot in Figure 19 displays the singular values of the gradient profile matrix in descending order, for C=16, 32, 64,
and 128 (left to right, top to bottom). The color intensity of the line plots, with a deeper shade of red, indicates results
obtained at a greater number of iterations t. By considering the maximum singular gap as the criterion for determining the
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Figure 20. The five subplots display the data points of each client’s reduced feature vector g′
c,s, by s leading left singular vectors. From

left to right, the subplots represent the cases where s is 1, 2, 4, 8, and 16, respectively. The distribution identities, based on Rotation
Transformations (RTs), are distinguished by different markers. Although the client features are in s dimensions as g′

c,s ∈ Rs, for
visualization purposes, they have been randomly projected onto a 3-dimensional space.

number of leading singular vectors, we easily observe that all four subplots exhibit s = 4. In other words, the gap between
the fourth and fifth singular values is larger than the gaps between other consecutive singular values. If we aim to preserve
more information, the observation suggests s = 8 as a preferable choice since the next significant gap occurs between the
eighth and ninth singular values.

It is important to note that the number of dominant singular values indicates the number of dominant basis vectors to
effectively represent the gradient information of clients but does not directly determine the number of clusters. By using the
obtained values, s = 4 or s = 8, we will further reduce the dimensionality of the gradient profile matrix to 4 or 8 dimensions.
For comparative analysis, we also arbitrarily select different values of s (s=1, 2, 16) to compare the results.

Let us denote the gradient profile matrix we are dealing with as G = G(t) = (g
(t)
1 , · · · , g(t)

C ). We can reduce each client
feature to s dimensions using the left singular vector matrix of G. Consider a SVD for the matrix G as follows.

G =

C∑
i=1

σ̂iûiv̂
⊤
i (81)

where σ̂i represents the i-th largest singular value of G, ûi and v̂i denote the left and right singular vectors corresponding to
σ̂i, respectively. We then define Ûs = (û1, · · · , ûs) for s ≤ C. By using this matrix, we reduce the dimensionality of the
client feature vectors as g′

c,s = Û⊤
s gc ∈ Rs.

Results and Analysis. Figure 20 represents the dimension-reduced client feature vectors g′
c,s based on different values of

s when t = 20 and C = 64. The five subplots show the results for s=1, 2, 4, 8, and 16, respectively, from left to right. The
data points in each subplot represent the reduced client feature vectors, denoted as g′

c,s. The s-dimensional client feature
vectors are randomly projected onto a 3-dimensional space for visualization. Different markers are applied to indicate the
distribution identity of each client.

From Figure 20, we can infer reasonable cluster results based on s = 4, 8 obtained from the previous Figure 19. When
setting s = 8, we can observe that different sets of clients corresponding to the eight distribution identities are accurately
distinguished (subplot s = 8). This is because the distances between reduced feature vectors of clients with the same
distribution identity are smaller compared to the distances between feature vectors of clients with different distribution
identities. In other words, when compressing the feature vectors using only the dominant eight basis vectors of the column
space of G corresponding to the leading eight singular values, all eight distinct distribution identities can be fully recovered,
as depicted in the fourth subplot.

If we consider only the four dominant directions from the gradient profile matrix, we obtain the third subplot (s = 4). This
result provides a clustering outcome where clients with the most similar rotation transformations are grouped together.

However, if we set s = 1 or s = 2 (i.e., if we lose some of the dominant directions in the column space of the gradient
profile matrix), as seen in the first two subplots, we may fail to accurately estimate the cluster identities. Indeed setting
s = 1, we may not be able to cluster the data points belonging to RT 270 and 285. Similarly, when setting s = 2, the clients
corresponding to RT 90 to 195 are grouped together, leading to an undesirable clustering result.
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In the final scenario, when we choose s = 16 to incorporate a larger number of basis vectors from the gradient profile
matrix and examine the scattered pattern of the reduced feature vectors, it becomes challenging to observe a clear distinction
between the distribution identities. The high dimensionality of the feature vectors may lead to overlapping clusters, making
it difficult to determine a definite number of clusters based on this analysis.

According to this empirical analysis, if a learning system engineer wishes to determine the number of models based on
estimated values rather than a pre-determined value of K, it is expected that by running CFL-GP for a certain duration with
an arbitrary K and subsequently conducting the singular value analysis described earlier, a reasonable estimate of the value
D can be obtained.
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