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ABSTRACT

Language model (LM) evaluators that generate chain-of-thought (CoT) reasoning
are widely used for the assessment of LM responses. Simultaneously, increasing
LMs’ “thinking” time through scaling test-time compute has proven to be an
effective technique for solving challenging problems in domains such as math and
code. This raises a natural question: can an LM’s evaluation capability also be
improved by scaling test-time compute? To answer this, we investigate employing
reasoning models – LMs that natively generate long CoT reasoning – as evaluators.
We explore scaling evaluation-time compute by using reasoning models to evaluate
both the overall candidate response (i.e., outcome evaluation) and the individual
reasoning steps within it (i.e., process evaluation). In our experiments, we observe
that evaluator performance improves monotonically with the number of reasoning
tokens generated, mirroring trends seen in LM reasoning. Furthermore, we use
these more accurate evaluators to rerank multiple generations, and demonstrate
that spending more compute at evaluation time can be as effective as increasing
compute during generation for improving an LM’s problem-solving performance.
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Figure 1: We investigate the effect of scaling test-time compute for evaluation (evaluation-time compute):
Enforcing the generation of additional reasoning tokens leads to improved evaluation performance (section 3).
This can, in turn, be utilized to further improve the generator’s problem-solving capabilities (section 4).

1 INTRODUCTION

Research on language models (LMs) involves an interplay between generation and evaluation: better
generators require better evaluators and better evaluators can further enhance generators. For instance,
an evaluator can verify the quality of the generator’s response (Liang et al., 2023; Zheng et al., 2024b;
Ye et al., 2024) or identify the parts of a generator’s response that contain mistakes (Lightman et al.,
2024; Zheng et al., 2024a; Zhang et al., 2025). Furthermore, the generator’s performance can be
improved by integrating the better evaluator into its inference-time algorithms (Cobbe et al., 2021;
Uesato et al., 2022; Lightman et al., 2024; Sun et al., 2024; Wu et al., 2024a).

Reasoning models have opened up a new paradigm for generation based on generating a long chain-of-
thought (CoT) (Jaech et al., 2024; Guo et al., 2025; Muennighoff et al., 2025; Aggarwal and Welleck,
2025). Prior works have found that generating long CoTs is an effective strategy for leveraging
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test-time compute to solve difficult tasks that conventional instruction-tuned models cannot (Yeo
et al., 2025; Xu et al., 2025). However, it is unclear whether evaluators, like generators, can also
be improved by scaling test-time compute with long CoTs. In this paper, we ask and answer two
questions: (1) Can we replicate test-time scaling behavior observed in generators with evaluators?
And if so, (2) can this improved evaluation ability further improve generation results as well?

Our main contribution is an examination of generative evaluators that use long CoT reasoning, which
we refer to as reasoning evaluators. Reasoning evaluators are obtained by prompting reasoning models
– a class of models trained to produce long CoT either using RL or through distillation from the outputs
of such a model (Guo et al., 2025; Team, 2024b) – to act as evaluators. By generating long outputs
exhibiting complex reasoning patterns including self-verification and backtracking (Gandhi et al.,
2025b; Lu et al., 2025), reasoning models expend test-time compute to attain improved reasoning
capabilities, a trait that we hypothesize also makes them better evaluators. We contrast reasoning
evaluators with (1) direct evaluators, which predict scores without CoT reasoning (Lightman et al.,
2024; Cobbe et al., 2021), and (2) fine-tuned generative evaluators that produce shorter CoT lacking
the complex reasoning patterns found in reasoning model outputs (Zhang et al., 2024; Ankner et al.,
2024; Kim et al., 2024a). As shown in the left of Figure 1, we force reasoning evaluators to generate
more reasoning tokens by prompting them to evaluate both each step of an output individually as well
as the solution as a whole. This recipe unifies techniques from prior work on step-by-step evaluation
(process reward models; PRMs; (Lightman et al., 2024; Wang et al., 2024a; Zheng et al., 2024a)) and
outcome-based evaluation (outcome reward models; ORMs; (Cobbe et al., 2021; Liu et al., 2024)).

We demonstrate the effectiveness of our approach across two settings. First, as shown in the middle
plot of Figure 1, we show that the evaluator’s performance improves monotonically as it generates
more reasoning tokens. We further show that a 32B reasoning evaluator can outperform a 72B
state-of-the-art PRM by a 4.5% margin on ProcessBench (Zheng et al., 2024a), a benchmark that
measures whether an LM can identify the first occurring error within a given response. This is notable
because, while existing direct evaluators are trained on extensive process supervision, our reasoning
evaluators achieve strong performance through evaluation-time scaling alone, without training.

Second, as shown in the right plot of Figure 1, we find that evaluation-time scaling is an effective
method for further improving the generator’s performance. When integrating reasoning evaluators
into Best-of-N sampling, where an evaluator reranks multiple solutions sampled by a generator, our
reasoning evaluators using Best-of-8 outperform direct evaluators (e.g., ORMs, PRMs) using Best-of-
64 by a 4.30% to 6.63% margin given a fixed compute budget, highlighting the potential benefits of
spending more test-time compute for evaluation at the expense of sampling more responses.

2 METHODOLOGY

We describe our approach for scaling evaluation-time compute by assessing both overall responses
(subsection 2.1) and individual response segments (subsection 2.2) with reasoning evaluators. We
then explain how we combine process and outcome judgments (subsection 2.3) for further gains.

Reasoning Evaluators vs. Direct Evaluators We refer to conventional evaluators that are trained
to map a problem and a response (or steps) to a scalar value score as direct evaluators. Reasoning
evaluators differ from direct evaluators in two aspects. First, reasoning evaluators generate chain-of-
thought (CoT) reasoning before predicting the final judgment. Second, while direct evaluators with a
specialized reward modeling head must be fine-tuned, reasoning evaluators may either be specifically
trained for evaluation 1 or may be off-the-shelf LMs that are prompted to act as evaluators. In this
paper, we focus on the latter approach by prompting reasoning models to function as evaluators.

Given a problem xi and response yi, the evaluator is used to estimate the “goodness” of yi by
generating a score si. This score can be obtained using a trained reward modeling head (direct
evaluators) or from the logits of answer tokens (e.g., 0/1) (reasoning evaluators). The mapping
function of an outcome and process evaluator can be expressed as:

• Outcome Evaluator: (xi, yi) → si

1We also classify trained evaluators such as CLoud (Ankner et al., 2024) and Prometheus (Kim et al., 2024c)
as reasoning evaluators, although they produce relatively short CoTs that lack the versatile reasoning patterns
seen in reasoning models outputs.
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Figure 2: We propose scaling evaluation-time compute by using the evaluator to assess both the overall output
(light red) and its constituent reasoning steps (light blue) and then combining the judgments into a final score.

• Process Evaluator: (xi, [yi1, yi2, ..., yiN ]) → [si1, si2, ..., siN ].

Process evaluators require a splitting function to divide yi into discrete steps [yi1, yi2, ..., yiN ].
Furthermore, process evaluators can only be used for evaluation of the final outcome if provided
with an aggregation function that maps per-step scores [si1, si2, ..., siN ] to an aggregated final score
si. Conventionally, a heuristic-based approach is used as the splitting function (e.g., splitting based
on “\n\n”) while the min function (si = min(si1, si2, ..., siN )) is often used as the aggregation
function (Lightman et al., 2024; Wang et al., 2024a; Sun et al., 2024). As discussed in the previous
paragraph, direct outcome and process evaluators predict these values through specially trained heads.
In the following subsections we discuss how to make these predictions with reasoning models.

2.1 REASONING OUTCOME EVALUATORS

Our reasoning outcome evaluators have at their core a function

(xi, yi) → (ci, ji), (1)

where ci denotes a CoT, and ji is the evaluator’s judgment, represented as the probability distribution
over tokens in the vocabulary: see the upper section of Figure 2 (colored light red). We prompt the
LM to output “1” if the response is deemed to be correct and “0” if not. To transform ji into a scalar
value score si, we use the logits ℓ of “1” and “0” tokens and perform a softmax operation:

si =
eℓ(ji=1)

eℓ(ji=0) + eℓ(ji=1)
. (2)

2.2 REASONING PROCESS EVALUATORS

We formulate the mapping function for assessing reasoning step k as

(xi, [yi1, ..., yik]) → (cik, jik) (1 ≤ k ≤ N), (3)

where cik denotes the CoT that examines yik for potential logical flaws or inconsistencies and ji
denotes the judgment for yik, which is also represented as a probability distribution: see the bottom
section of Figure 2 (colored light blue). Note that the previous steps [yi1, ..., yi(k−1)] are provided as
context for precise assessment of the current step yik. Then, to convert jik into sik, we use

[si1, ..., siN ] =

[
eℓ(ji1=1)

eℓ(ji1=0) + eℓ(ji1=1)
, ...,

eℓ(jiN=1)

eℓ(jiN=0) + eℓ(jiN=1)

]
. (4)

Single- vs. multi-step process evaluation The formulation above forms the core of our proposed
method, but we also compare with an ablated single-step reasoning process evaluator proposed by
Zheng et al. (2024a) that generates a single CoT before making judgments of all N steps in yi as

(xi, [yi1, ..., yiN ]) → (ci, [ji1, . . . , jiN ]). (5)

Unless explicitly stated, reasoning process evaluation refers to our proposed multi-step variant.
Evaluating each step separately is our preferred method for two reasons: (1) evaluating all N steps at

3
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once risks exceeding the context window of the reasoning models, and (2) stepwise evaluation forces
the evaluator to assess each step more thoroughly, thereby naturally scaling evaluation-time compute.

Choice of splitting function and aggregation function Additionally, we make the following
adjustments to the splitting and aggregation functions when using reasoning process evaluators:

• Model-based splitting: When splitting yi into [yi1, ..., yiN ], conventional heuristic-based ap-
proaches may be ineffective for some cases (e.g., when yi does not include “\n\n” or is not written
in a structured format, as is the case for code). To deal with this, we adopt model-based splitting
where an LM Msplit is prompted to insert an indicator phrase “[SPLIT]” between steps:

Msplit : yi → [yi1 [SPLIT] yi2 [SPLIT] ... [SPLIT] yiN ]. (6)

• Score aggregation: After acquiring [si1, ..., siN ] as in Equation 4, we aggregate the N judgments
into a single scalar value score si. In our experiments, we find that the mean_logit function (Sun
et al., 2024) yields better results than min function. The mean_logit function is expressed as

si = mean_logit(sik) = σ

(
Σk

sik
1−sik

N

)
(1 ≤ k ≤ N). (7)

Note that these adjustments can be applied to direct process evaluators as well: see Appendix C.

2.3 COMBINING OUTCOME JUDGMENTS AND PROCESS SCORES

While the objective of outcome evaluation is to determine the correctness of the final answer, the
objective of process evaluation is to determine the correctness of each step. Both have their advantages
in identifying reasoning errors – outcome evaluation takes a more holistic approach while process
evaluation can potentially identify more fine-grained errors. Inspired by Uesato et al. (2022), we
consider combining both outcome and process evaluation scores through interpolation as follows

sfinal = α · soutcome + (1− α) · sprocess. (8)

Here, choosing α = 0 is identical to only using the process score and choosing α = 1 is identical to
using only the outcome score. We use α = 0.5 to avoid overfitting to either approach and refer to this
method as reasoning process + outcome evaluation. See Appendix I for analyses on varying α.

3 EVALUATION-TIME SCALING TRENDS FOR PROCESS EVALUATION

As discussed in section 2, our approach involves assessing output steps individually (multi-step
process evaluation) using reasoning evaluators. To examine the effectiveness of this choice, we
experiment on a response error detection task and compare our method against state-of-the-art PRMs.

3.1 EXPERIMENTAL SETTING

Benchmark We explore scaling evaluation-time compute with ProcessBench (Zheng et al., 2024a),
which includes diverse responses from different LMs and highly reliable human-annotated labels. In
ProcessBench, evaluators are tasked with identifying the first paragraph in the solution that contains
incorrect logic, if any. ProcessBench has 3,400 instances, with queries sampled from 4 different math
benchmarks and responses from 12 distinct LMs. Each response consists of 7.56 steps on average.

Metric The evaluator’s performance on ProcessBench is measured using the F1 score, computed
from the precision and recall of predicting the index of the first paragraph that contains a logical error:
evaluators are penalized for incorrectly identifying a paragraph as erroneous when no error exists,
misidentifying the index of the erroneous paragraph, or failing to detect an error when one is present.
If the evaluator predicts that one or more steps are incorrect, we use the earliest incorrect step (the
step with the smallest index) as the final prediction, following Zheng et al. (2024a).

Methods We consider the following evaluator baselines (see Appendix A.1 for the list of models):

• Direct process evaluator: We employ process reward models (PRMs) as direct process evaluators.
Note that these models do not generate CoTs but instead directly predict the correctness of all steps.

4
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Table 1: Experimental results for ProcessBench experiments. We find that evaluation performance can be
improved by scaling evaluation-time compute using multi-step process evaluation and self-consistency. Notably,
we find that even LMs not specifically fine-tuned for evaluation can outperform specially trained PRMs. ∆
denotes gains associated with either applying (1) multi-step process evaluation or (2) self-consistency for the
same backbone LM. The best performance within each category is bolded. See Table 4 for additional results.

Model GSM8K MATH Olym. Bench Omni-MATH Avg. F1 ∆

Direct Process Evaluator (PRMs)

Qwen2.5-Math-7B-PRM800K 68.4 62.5 50.4 43.6 56.2 -
Qwen2.5-Math-PRM-7B 82.4 77.6 67.5 66.3 73.5 -
Qwen2.5-Math-PRM-72B 87.3 80.6 74.3 71.1 78.3 -

Single-step Reasoning Process Evaluator

Instruction-tuned Models
Llama-3.1-8B-Instruct 24.0 15.5 9.7 10.1 14.8 0.0
Qwen2.5-32B-Instruct 63.8 47.5 35.9 32.7 45.0 0.0
Qwen2.5-72B-Instruct 76.2 61.8 54.6 52.2 61.2 -
Reasoning Models
DeepSeek-R1-Distill-Qwen-7B 68.3 61.1 48.3 40.4 54.5 0.0
DeepSeek-R1-Distill-Qwen-32B 83.9 78.1 72.4 67.7 75.5 0.0
QwQ-32B-Preview 77.5 58.9 31.2 35.8 50.9 0.0
QwQ-32B 79.5 77.5 71.5 69.4 74.5 0.0
Reasoning Models (Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 69.3 67.9 54.8 51.5 60.9 +6.4
DeepSeek-R1-Distill-Qwen-32B 82.2 80.4 76.2 72.5 77.8 +2.3
QwQ-32B-Preview 88.0 78.7 57.8 61.3 71.5 +20.6
QwQ-32B 81.0 78.8 74.4 72.8 76.8 +2.3

Reasoning Process Evaluator (Ours)

Instruction-tuned Models (Multi-step Process Evaluation)
Llama-3.1-8B-Instruct 35.2 22.8 12.6 17.9 22.1 +7.3
Qwen2.5-32B-Instruct 70.1 61.7 54.2 53.9 60.0 +15.0
Reasoning Models (Multi-step Process Evaluation)
DeepSeek-R1-Distill-Qwen-7B 75.5 67.3 59.8 56.6 64.8 +10.3
DeepSeek-R1-Distill-Qwen-32B 80.3 82.2 77.0 75.0 78.6 +3.1
QwQ-32B-Preview 81.7 79.3 70.3 69.8 75.3 +24.4
QwQ-32B 81.5 83.6 76.8 75.1 79.3 +4.8
Reasoning Models (Multi-step Process Evaluation + Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 80.1 75.1 69.3 70.4 73.7 +19.2
DeepSeek-R1-Distill-Qwen-32B 86.6 85.4 78.9 80.3 82.8 +7.3
QwQ-32B-Preview 86.8 85.7 79.0 78.0 82.4 +31.5
QwQ-32B 85.0 85.6 79.4 78.0 82.0 +7.5

• Single-step reasoning process evaluator: We adopt the approach proposed by Zheng et al. (2024a)
and Zhang et al. (2025), where a language model is provided with the response and prompted to
produce a single CoT as well as the index of the first paragraph containing a logical error, if one
exists. This corresponds to the ablated “single-step” evaluator discussed in subsection 2.2.

• Reasoning process evaluator: We explore our approach for using reasoning models as process
evaluators. This involves assessing each segment individually and determining its correctness. Note
that for this experiment, we use a simplified version of the approach described in subsection 2.2: (1)
a splitting function is not required as segments are already provided and (2) an aggregation function
is not required as the goal of the benchmark is to predict the index of the segment containing the
first mistake, not to produce an outcome score to compare multiple responses.

Matching test-time budget across methods To ensure a fair comparison between single-step
evaluators and our method under similar test-time compute constraints, we also experiment with
self-consistency (Wang et al., 2023) for evaluation. Specifically, the evaluator generates M CoT
trajectories (e.g., if applied to our reasoning process evaluator, it assesses each of N steps M times,
resulting in a total of N ·M inference calls), with jik chosen based on a majority vote. Self-consistency
is inapplicable for PRMs since they produce identical scores across multiple inference calls.
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3.2 EXPERIMENTAL RESULTS

Our main results on ProcessBench are presented in Table 1. See Table 4 for additional results.

Finding 1: Reasoning models are better evaluators than instruction-tuned models. For example,
DeepSeek-R1-Distill-Qwen-32B achieves an average F1 score of 75.5 when employed as a reasoning
process evaluator, significantly outperforming the larger Qwen2.5-72B-Instruct model (61.2 F1)
despite having only 44% as many parameters. This suggests that reasoning capability is associated
with improved evaluation capability, even when the reasoning model is not trained as an evaluator.

Finding 2: Single-step methods fail to match the performance of direct process evaluators.
For example, DeepSeek-R1-Distill-Qwen-7B achieves an F1 score of 54.5, which is lower than
Qwen2.5-Math-7B-PRM800K (56.2) and Qwen2.5-Math-PRM-7B (73.5). Similarly, DeepSeek-R1-
Distill-Qwen-32B (75.5) and QwQ-32B (74.5) fall behind the Qwen2.5-Math-PRM-72B (78.3). This
indicates that single-step evaluation is not sufficient to identify errors in responses.

Finding 3: It is important to evaluate each step individually (multi-step process evaluation).
As detailed in the previous subsection, we compare two approaches for scaling evaluation-time
compute: (1) self-consistency, where the evaluator generates multiple CoTs for evaluation and the
final judgment is decided via majority vote and (2) multi-step process evaluation, where the evaluator
assesses each step in the solution individually. As ProcessBench has an average of 7.56 steps and we
generate 8 CoTs for the self-consistency baseline, the two approaches incur similar inference costs.

Our results indicate that prompting reasoning models to evaluate each step individually is more
effective than applying self-consistency given a fixed evaluation compute budget. Using multi-step
process evaluation, DeepSeek-R1-Distill-Qwen-7,32B, QwQ-32B-Preview, and QwQ-32B achieve
F1 scores of 64.8, 78.6, 75.3, and 79.3, respectively. In contrast, applying self-consistency yields
lower scores of 60.9, 77.8, 71.5, and 76.8. Notably, our multi-step process evaluation method
enables DeepSeek-R1-Distill-Qwen-32B (78.6) and QwQ-32B (79.3) to outperform Qwen2.5-Math-
PRM-72B (78.3) – a model nearly twice as big – without any additional training. Furthermore,
instruction-tuned models also achieve sizable gains when used for multi-step process evaluation, with
Llama-3.1-8B-Instruct and Qwen2.5-32B-Instruct demonstrating gains of +7.3 and +15.0 respectively.
These results indicate that our method can be applied to non-reasoning LMs as well.

Finding 4: Combining self-consistency and multi-step process evaluation can further enhance
performance. We also find that further scaling evaluation-time compute by applying multi-step
process evaluation and self-consistency together yields even more gains. For instance, DeepSeek-
R1-Distill-Qwen-7B (73.7) outperforms Qwen2.5-Math-PRM-7B (73.5). Similarly, DeepSeek-R1-
Distill-Qwen-32B (82.8) and QwQ-32B (82.0) surpass Qwen2.5-Math-PRM-72B (78.3), which was
the previous state-of-the-art (Zhang et al., 2025), suggesting that both self-consistency and multi-
step process evaluation can provide complementary benefits for scaling evaluation-time compute.
This is notable because the reasoning models are not explicitly trained as evaluators, yet increasing
evaluation-time compute consistently improves performance and achieves state-of-the-art results.

4 TRANSLATING IMPROVED EVALUATION TO PROBLEM-SOLVING

Building upon the previous section, we explore whether we can leverage evaluation-time scaling
to improve the generator’s performance. We investigate this with Best-of-N sampling, where test-
time scaling is conventionally achieved by generating more response candidates. In contrast, we
explore whether allocating more evaluation-time compute at the expense of sampling fewer candidate
responses can ultimately yield better performance given a fixed test-time compute budget.

4.1 EXPERIMENTAL SETTING

Benchmarks We follow the setting of Cui et al. (2025): we utilize three LMs as generators, namely
Eurus-2-SFT (Cui et al., 2025), Llama3.1-70B-Instruct (Llama Team, 2024), and Qwen2.5-7B-
Instruct (Yang et al., 2024). Using our generator LMs, we generate 64 responses per instance across
seven benchmarks (AIME24, AMC23, Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), MATH500 (Hendrycks et al., 2021), LeetCode (Guo et al., 2024), and GPQA (Rein et al.,
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Figure 3: Best-of-N experimental results for 27B ∼ 72B scale evaluators. Test-time compute on the x axis
denotes the generator’s test-time compute added with evaluation-time compute. (left, middle) We compare
direct evaluators (using Best-of-64) against reasoning evaluators (using Best-of-8), with each dot representing a
doubling of the number of responses. We find that reasoning evaluators achieve better performance compared
to their direct counterparts given a fixed test-time compute budget: see Appendix E for details of our FLOPs
calculations and Table 2 for full results. (right) Combining outcome and process scores yields further gains.

2024)), covering a total of 4,680 instances and 299,520 responses. In Best-of-N setting, evaluators
assess and rank the N responses, with the highest-scoring response chosen as the final prediction.

Metrics For LeetCode, we report pass@1, which measures whether a response passes all test cases.
For the remaining 6 benchmarks, we report accuracy scores, which measures whether a response is
correct. We report the average score of the 3 generators across all 7 benchmarks (21 settings in total).

Methods We consider the following evaluator baselines (see Appendix A.2 for the list of models):

• Direct outcome evaluator: We employ outcome reward models (ORMs) as direct outcome
evaluators. Note that these models do not generate CoTs but instead directly predict the scores.

• Direct process evaluator: We employ process reward models (PRMs) as direct process evaluators.
We adopt the splitting functions and aggregation strategies accompanying each PRM’s official
implementation, as specified in their GitHub repositories or Hugging Face model cards. Note that
these models do not generate CoTs but instead directly predict the correctness of all steps.

• Reasoning outcome evaluator: We prompt reasoning models to act as reasoning outcome evalua-
tors. The evaluator first generates a CoT, followed by a judgment for the correctness of the overall
response. Details are included in subsection 2.1.

• Reasoning process evaluator: We prompt reasoning models to act as reasoning process evaluators.
The evaluator individually generates a CoT as a judgment for each step. We use our proposed
model-based splitting strategy and the mean_logits aggregation function (see subsection 2.2).

• Reasoning process + outcome evaluator: Using the judgments from a reasoning outcome evaluator
and a reasoning process evaluator, we combine scores to obtain the overall score for the response.
Details are included in subsection 2.3. We use α = 0.5 to avoid overfitting to the test set.

In Appendix A.2, we experiment with generative evaluators that were fine-tuned to function as
outcome evaluators, and also study the effects of applying model-based splitting and mean_logits
aggregation to direct process evaluators. Prompt templates can be found in Appendix K.
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Matching evaluation-time budget across baselines We test direct outcome evaluators and direct
process evaluators in the Best-of-64 setting. To account for the higher per-instance inference cost of
reasoning evaluators, we evaluate them in the Best-of-8 setting instead, thereby ensuring a compute
budget comparable to that of direct evaluators. We use Qwen2.5-72B-Instruct to segment the
response into steps, yielding 10.07 steps per response on average across the 21 settings.

4.2 EXPERIMENTAL RESULTS

Finding 1: Scaling evaluation-time compute is more effective than generating additional candi-
date responses given a fixed compute budget. From the top left and top middle plots in Figure 3, we
observe that reasoning evaluators using Best-of-8 – including both process and outcome evaluators –
achieve performance equal to or better than direct evaluators using Best-of-64, while requiring similar
or less test-time compute. Looking at the overall scaling trends, we find that reasoning evaluators
suffer less from reward model over-optimization, a phenomenon where Best-of-N gains plateau or
diminish with increased N (Gao et al., 2023; Rafailov et al., 2024). Reward model over-optimization
arises from imperfections in the reward function’s approximation of the ground truth (Lambert and
Calandra, 2023); our results suggest that scaling evaluation-time compute can partially mitigate this
issue by providing more robust evaluation. Similar trends are also observed in smaller evaluators
(7B): see Figure 5 in Appendix C.

Finding 2: Combining scores from reasoning outcome and process evaluation can boost perfor-
mance. From the top right plot of Figure 3, we observe that combining outcome and process scores
can yield improved results. We hypothesize that the two evaluation approaches provide complemen-
tary signals that enable more accurate assessment. We investigate this hypothesis in Appendix H.2
and also further study the effects of altering α in Appendix I.

Finding 3: Reasoning evaluators are especially effective for assessing code outputs. From
the bottom left and bottom middle plot in Figure 3, we observe that reasoning evaluators not only
significantly outperform direct evaluators while using less test-time compute, they also exhibit
promising scaling trends when assessing code outputs. On the other hand, both the direct outcome
evaluator and direct process evaluator heavily suffer from reward model over-optimization. We
attribute these findings to two main causes. Firstly, direct process evaluators are often only trained on
math data (e.g., PRM800K (Lightman et al., 2024)), making them less effective on out-of-domain
tasks such as coding. Secondly, the heuristic-based splitting methods (e.g., splitting based on newline
characters) typically adopted for direct process evaluation may be suboptimal for code outputs.

Additional results in Appendix. In Appendix C, we discuss (1) the scaling trends of 7B-sized
evaluators, (2) how single-step process evaluators and fine-tuned reasoning evaluators (Ankner
et al., 2024; Kim et al., 2024a) compare to our baselines, and (3) the effects of applying model-
based splitting and different aggregation functions. Furthermore, we explore evaluating reasoning
model-generated traces using reasoning models (self-evaluation) in Appendix G.

5 ANALYSES ON WHY REASONING PROCESS EVALUATORS ARE EFFECTIVE

Why are reasoning evaluators effective? The top row of Figure 4 presents descriptions of
common patterns observed in the multi-step process evaluation outputs of reasoning evaluators,
accompanied by representative examples from evaluations on a LeetCode problem. It is known that
reasoning models use versatile reasoning patterns when solving problems (Gandhi et al., 2025a),
such as generating “Wait” tokens that encourage verification between solution steps; similar patterns
are also observed when reasoning models are prompted to function as evaluators. Some patterns
we observe in our example include (1) examining what implementation the given step contains, (2)
conducting a form of meta-verification by re-verifying their evaluation content, (3) exploring whether
there are edge cases that have yet to be identified, and (4) performing backtracking by reviewing the
initial problem conditions, the content of the response, and its own evaluation process. We speculate
that the ability to apply strategies used for problem-solving to the evaluation process is the key reason
why reasoning models show quantitatively good evaluation performance.

When is process evaluation effective? The confusion matrix in the bottom row of Figure 4 illustrates
the strengths and weaknesses of outcome evaluation and process evaluation. Across different model
sizes, we observe that reasoning process evaluators achieve higher precision but lower recall compared
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Figure 4: (Top) A qualitative example of reasoning process evaluator-generated CoT, which includes diverse
reasoning patterns that contribute to improved evaluation performance. (Bottom) Reasoning process evaluators
judge correct responses as incorrect more frequently than outcome evaluators.

to reasoning outcome evaluators. Consequently, when a reasoning process evaluator predicts that all
steps are correct, the final answer is likely to be correct (false positive rates are 3.8% and 3.5%).

6 POINTERS TO EXPERIMENTS AND ANALYSES IN APPENDIX

Due to space constraints, we include additional explanations, experiments, and analyses in the
Appendix section and provide explicit pointers to relevant content for convenience of reviewers.

• What is the main difference between prior works on test-time scaling and the main focus of
this work? → In Appendix D, we include a brief overview of prior works on test-time scaling.
Also, we summarize the key differences between our work and prior works in Table 7.

• Why didn’t you include generative reward models in your experiments? → Experimental
results of Cloud-RM (Ankner et al., 2024) and Prometheus 2 (Kim et al., 2024c) in our Best-of-N
setting is at Appendix C (Table 2) which is an extended section of section 4. We do not include
results of Mahan et al. (2024) and Zhang et al. (2024) as they did not release their checkpoints.

• Does reasoning process evaluators work outside of math and code as well? → In subsec-
tion C.3, we include experimental results on law, engineering, and economics subsets from MMLU-
Pro (Wang et al., 2024b) in our Best-of-N setting, which is an extended section of section 4.

• Does your approach work well when a reasoning model is a generator? → In Appendix G, we
compare ORMs, PRMs, and reasoning models to evaluate responses from a reasoning model.

• What is a formal explanation for the effectiveness of reasoning process evaluators? → In
Appendix F, we explain how a better evaluator (observed in section 3) can alleviate reward model
overoptimization, and translate into enhanced performance of the generator (shown in section 4).

• Isn’t your method more expensive? → In Appendix E, we explain how we constrain the compute
cost of the generator and evaluator. Also, in Appendix I, we further propose a more efficient variant
of using a reasoning model as a evaluator while maintaining its superior performance.

7 CONCLUSION

We find that applying evaluation-time scaling can improve not only evaluator performance but also
the problem-solving capabilities of generators through Best-of-N sampling. We demonstrate that
prompting reasoning models to act as outcome or process evaluators are effective methods for scaling
evaluation-time compute. Additionally, we show that reasoning process evaluation tends to make
more conservative predictions than reasoning outcome evaluation, and that combining reasoning
process and reasoning outcome evaluation can result in further performance gains.
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8 REPRODUCIBILITY STATEMENT

We are committed to ensure the reproducibility of our results. We plan to release a link to the code
and artifacts (e.g., model generations) after the anonymity period.
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Figure 5: Best-of-N experimental results for ∼ 7B scale evaluators. (left, middle) We compare direct evaluators
(using Best-of-64) against reasoning evaluators (using Best-of-8), with each dot representing a doubling of the
number of responses. We find that reasoning evaluators achieve better performance compared to their direct
counterparts given a fixed test-time compute budget: see Appendix E for details of our FLOPs calculations.
(right) Combining outcome and process scores yields further gains.

A EXTENDED: EXPERIMENTAL SETTINGS

A.1 MODEL LIST FOR PROCESSBENCH EXPERIMENTS (SECTION 3)

We examine three varieties of models in our ProcessBench experiments:

• Direct PRMs: We experiment with 10 different direct PRMs, representing the state-of-the-art
on ProcessBench, from families including math-shepherd-mistral (Wang et al., 2024a),
Skywork (o1 Team, 2024), RLHFlow (Xiong et al., 2024), EurusPRM (Cui et al., 2025), and
Qwen2.5-Math-PRM (Zhang et al., 2025).

• Instruction-tuned Models: These are models that have been trained using supervised fine tuning
and/or RLHF, but have not been explicitly trained for reasoning. We experiment with models from
the Llama-3.1 (Llama Team, 2024), Llama-3.3 (Llama Team, 2024), and Qwen2.5 (Team,
2024a) families. We also experiment with GPT-4-0806 as an outcome evaluator.

• Reasoning Models: These are models that have been explicitly trained to perform reasoning
using RL, or distilled from models trained to perform reasoning. We examine models from the
DeepSeek-R1-Distill-Qwen (Guo et al., 2025) and QwQ (Team, 2024b) families. We also
experiment with o1-mini as a reasoning evaluator.

We report results from a subset of these models in the main text: see Table 1. We include results from
all listed models in Table 4.

Note that we do not experiment with fine-tuned generative evaluators such as Prometheus (Kim
et al., 2023b; 2024a), CLoud-RM (Ankner et al., 2024) and GenRM (Zhang et al., 2024) as these are
trained outcome evaluators that cannot be readily employed to detect process errors, as is required by
ProcessBench.
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Table 2: Full results for Best-of-8 (reasoning evaluators) and Best-of-64 (all other evaluators) exper-
iments using direct outcome evaluators, direct process evaluators, non-reasoning generative evaluators,
reasoning outcome evaluators , single-step reasoning process evaluators , reasoning process evaluators , and
reasoning outcome + process evaluators . Results were obtained by averaging scores across all 7 evaluation
benchmarks and 3 generators as described in section 4.

Model N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

Direct Outcome Evaluators (ORMs)
Skywork-Reward-Llama-3.1-8B-v0.2 38.2 41.4 43.4 44.6 45.5 45.2 44.8
Skywork-Reward-Gemma-2-27B-v0.2 38.2 41.8 43.4 44.8 45.5 45.6 45.4

Direct Process Evaluators (PRMs)
math-shepherd-mistral-7b-prm 38.2 41.6 42.7 43.1 43.7 43.5 43.2
Skywork-o1-Open-PRM-Qwen-2.5-1.5B 38.2 42.8 44.2 45.9 46.5 46.5 46.7
Skywork-o1-Open-PRM-Qwen-2.5-7B 38.2 42.9 45.3 47.5 48.4 48.7 49.9
RLHFlow/Llama3.1-8B-PRM-Mistral 38.2 40.2 40.0 39.4 38.4 37.2 35.5
RLHFlow/Llama3.1-8B-PRM-Deepseek 38.2 40.5 40.4 40.4 40.0 38.8 37.8
Qwen2.5-Math-7B-PRM800K 38.2 41.6 43.4 45.1 45.2 45.0 44.6
Qwen2.5-Math-PRM-7B 38.2 42.3 44.0 45.8 47.8 48.2 48.7
Qwen2.5-Math-PRM-72B 38.2 42.9 45.4 48.2 48.9 49.8 50.6

Non-Reasoning Generative Evaluators
Llama3-8B-CLoud-RM 38.2 41.8 42.7 43.8 43.7 43.1 42.5
prometheus-7b-v2.0 38.2 40.4 41.3 41.7 41.5 40.7 39.7
prometheus-8x7b-v2.0 38.2 40.3 40.8 41.9 41.6 41.2 40.8
Qwen2.5-72B-Instruct 38.2 42.3 44.1 45.9 45.2 45.8 45.6

Reasoning Outcome Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 42.7 46.6 48.7 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 43.9 47.7 51.1 - - -

Single-step Reasoning Process Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 41.3 44.2 45.6 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 41.7 44.9 48.1 - - -

Reasoning Process Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 42.6 45.5 48.3 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 43.6 46.9 50.3 - - -

Reasoning Process + Outcome Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 43.3 46.6 50.1 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 44.4 48.5 52.0 - - -

Table 3: Ablation results of applying different splitting and aggregation functions to direct process evaluators.

Model N = 1 N = 2 N = 4 N = 8

Splitting: Heuristic-based, Aggregation: min

Qwen2.5-Math-PRM-7B 38.2 42.3 44.0 45.8
Qwen2.5-Math-PRM-72B 38.2 42.9 45.4 48.2

Splitting: Heuristic-based, Aggregation: mean_logits

Qwen2.5-Math-PRM-7B 38.2 40.7 41.4 41.7
Qwen2.5-Math-PRM-72B 38.2 41.9 43.3 43.8

Splitting: Model-based, Aggregation: min

Qwen2.5-Math-PRM-7B 38.2 42.6 45.00 47.1
Qwen2.5-Math-PRM-72B 38.2 43.2 45.8 49.9

A.2 MODEL LIST FOR BEST-OF-N EXPERIMENTS (SECTION 4)

• Direct outcome evaluators: We experiment with Skywork-Reward-Llama-3.1-8B-v0.2 (Liu
et al., 2024) and Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024), which are the
state-of-the-art direct outcome evaluators on RewardBench (Lambert et al., 2024) (a widely used
benchmark to assess ORMs).
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• Direct process evaluators: We experiment with math-shepherd-mistral (Wang et al.,
2024a), Skywork (o1 Team, 2024), RLHFlow (Dong et al., 2024), EurusPRM (Cui et al., 2025),
and Qwen2.5-Math-PRM (Zhang et al., 2025).

• Fine-tuned generative evaluators: While, like reasoning models, these models also produce
CoT they, unlike reasoning models, produce short CoT that lack complex reasoning patterns
(e.g. self-verification, self-correction, backtracking) as they are not trained to reason using RL.
We experiment with Llama3-8B-CLoud-RM (Ankner et al., 2024) and the Prometheus 2
family (Kim et al., 2024c), which are generative models trained specifically for outcome evaluation,
as well as Qwen2.5-72B-Instruct (Team, 2024a), which we prompt to act as a generative
evaluator. We use these models as reasoning outcome evaluators.

• Reasoning outcome evaluators: We prompt reasoning models DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Qwen-32B to act as reasoning outcome evaluators.

• Reasoning process evaluator: We prompt reasoning models DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Qwen-32B to act as reasoning process evaluators.

• Reasoning process + outcome evaluator: We experiment with the reasoning models
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-32B, using
identical models for both the outcome and process evaluation components in each case.

B ADDITIONAL RESULTS FOR PROCESSBENCH EXPERIMENTS (SECTION 3)

We include the full experimental results for our ProcessBench experiments (section 3) in Table 4.

C ADDITIONAL RESULTS AND DISCUSSION FOR BEST-OF-N EXPERIMENTS
(SECTION 4)

We include the full experimental results for our Best-of-N experiments (section 4) in Table 2.

C.1 FINDINGS FROM EXPERIMENTS

Evaluation-time Scaling is effective with smaller-sized evaluators as well. Similar to Figure 3
with larger-sized evaluators, Figure 5 shows the results of employing smaller-sized evaluators in
the Best-of-N setting. The findings from section 4 maintain the same: (1) reasoning evaluators
(Best-of-8) outperform or match their direct evaluator counter parts (Best-of-64) while using less
amount of compute, (2) reasoning process + outcome evaluation can boost performance, and (3)
reasoning evaluators are especially effective for coding.

Multi-step process evaluation outperforms single-step process evaluation. Next, as shown in
Table 2, we compare reasoning process evaluators with single-step reasoning process evaluators (see
subsection 2.2 for a detailed explanation of the difference). Results show that even when employing
the same LM as the evaluator, evaluating each step individually is superior to evaluating all the steps
at once, supporting the strength of our approach and effectiveness of evaluation-time scaling.

Reasoning outcome evaluators outperform specially-trained outcome evaluators.. Then,
as shown in Table 2, we compare the effectiveness of employing reasoning models as outcome
evaluators over using specially-trained outcome evaluators such as CLoud-RM (Ankner et al., 2024)
and Prometheus 2 (Kim et al., 2024a). Results show that reasoning models are very effective in our
Best-of-N setting. This is notable because it hints that employing LMs with stronger problem-solving
capabilities as evaluators is more important than inducing evaluation capabilities through training.
Future work could explore recipes for training reasoning models as evaluators.

Model-based splitting is effective for direct process evaluators as well. Lastly, we ablate
the effect of applying model-based splitting and the mean_logits aggregation function to direct
process evaluators. Note that model-based splitting requires the usage of an LM (Msplit) to segment
the response into steps, it requires additional compute. Results in Table 3 show that (1) applying a
model-based splitting approach is effective and (2) using the mean_logits aggregation function is not.
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Table 4: Full experimental results for our ProcessBench experiments (section 3).

Model GSM8K MATH Olym. Bench Omni-MATH Avg. F1 ∆

Direct Process Evaluator (PRMs)
math-shepherd-mistral-7b-prm 47.9 29.5 24.8 23.8 31.5 -
Skywork-o1-Open-PRM-Qwen-2.5-1.5B 57.9 48.0 16.5 18.9 35.3 -
Skywork-o1-Open-PRM-Qwen-2.5-7B 70.8 53.6 22.9 21.0 42.1 -
RLHFlow/Llama3.1-8B-PRM-Mistral 50.4 33.4 13.8 15.8 28.4 -
RLHFlow/Llama3.1-8B-PRM-Deepseek 38.8 33.8 16.9 16.9 26.6 -
EurusPRM-Stage1 (7B) 44.3 35.6 21.7 23.1 31.2 -
EurusPRM-Stage2 (7B) 47.3 35.7 21.2 20.9 31.3 -
Qwen2.5-Math-7B-PRM800K 68.4 62.5 50.4 43.6 56.2 -
Qwen2.5-Math-PRM-7B 82.4 77.6 67.5 66.3 73.5 -
Qwen2.5-Math-PRM-72B 87.3 80.6 74.3 71.1 78.3 -

Single-step Reasoning Process Evaluator

Instruction-tuned Models
Llama-3.1-8B-Instruct 24.0 15.5 9.7 10.1 14.8 0.0
Llama-3.3-70B-Instruct† 82.9 59.4 46.7 43.0 58.0 -
Qwen2.5-32B-Instruct 63.8 47.5 35.9 32.7 45.0 0.0
Qwen2.5-Math-72B-Instruct† 65.8 52.1 32.5 31.7 45.5 -
Qwen2.5-72B-Instruct† 76.2 61.8 54.6 52.2 61.2 -
Reasoning Models
DeepSeek-R1-Distill-Qwen-7B 68.3 61.1 48.3 40.4 54.5 0.0
DeepSeek-R1-Distill-Qwen-32B 83.9 78.1 72.4 67.7 75.5 0.0
QwQ-32B-Preview 77.5 58.9 31.2 35.8 50.9 0.0
QwQ-32B 79.5 77.5 71.5 69.4 74.5 0.0
Reasoning Models (Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 69.3 67.9 54.8 51.5 60.9 +6.4
DeepSeek-R1-Distill-Qwen-32B 82.2 80.4 76.2 72.5 77.8 +2.3
QwQ-32B-Preview 88.0 78.7 57.8 61.3 71.5 +20.6
QwQ-32B 81.0 78.8 74.4 72.8 76.8 +2.3

GPT-4-0806† 79.2 63.6 51.4 53.5 61.9 -
o1-mini† 93.2 88.9 87.2 82.4 87.9 -

Reasoning Process Evaluator (Ours)

Instruction-tuned Models (Multi-step Process Evaluation)
Llama-3.1-8B-Instruct 35.2 22.8 12.6 17.9 22.1 +7.3
Qwen2.5-32B-Instruct 70.1 61.7 54.2 53.9 60.0 +15.0
Reasoning Models (Multi-step Process Evaluation)
DeepSeek-R1-Distill-Qwen-7B 75.5 67.3 59.8 56.6 64.8 +10.3
DeepSeek-R1-Distill-Qwen-32B 80.3 82.2 77.0 75.0 78.6 +3.1
QwQ-32B-Preview 81.7 79.3 70.3 69.8 75.3 +24.4
QwQ-32B 81.5 83.6 76.8 75.1 79.3 +4.8
Reasoning Models (Multi-step Process Evaluation + Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 80.1 75.1 69.3 70.4 73.7 +19.2
DeepSeek-R1-Distill-Qwen-32B 86.6 85.4 78.9 80.3 82.8 +7.3
QwQ-32B-Preview 86.8 85.7 79.0 78.0 82.4 +31.5
QwQ-32B 85.0 85.6 79.4 78.0 82.0 +7.5

Table 5: Statistical analysis of mean_logit scores for different sample sizes in Best-of-N evaluation

N Mean Score Std Dev 96% CI
1 38.14 1.712 (34.31, 41.96)
2 43.98 1.752 (40.06, 47.90)
4 47.90 1.783 (43.92, 51.89)
8 51.58 1.782 (47.60, 55.57)

C.2 CHECKING STATISTICAL SIGNIFICANCE OF RESULTS

We run the Best-of-8 experiment twice, with a reasoning evaluator (DeepSeek-R1-Distill-Qwen-32B)
calculating scores on 8 responses per instance. For N=8, there are 2 scores; for N=4, there are 4 scores
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Table 6: Reasoning process evaluators are effective outside of math and code as well: Performance across
Economics, Engineering, and Law subsets from MMLU-Pro (Wang et al., 2024b) in Best-of-N experiment
setting using different evaluators. Our approach (DeepSeek-R1-Distill-Qwen-7B/32B with Process + Outcome
evaluation) outperforms other evaluators while using less number of responses from generators.

Evaluator # Generator Responses Llama-3.1-70B-Instruct DeepSeek-R1-Distill-Qwen-7B Total Avg

Economics Engineering Law Economics Engineering Law

Baselines

Greedy N=1 1 74.5 47.0 45.5 69.5 53.0 17.5 51.17
Skywork-8B (ORM) 64 78.0 47.0 50.0 76.5 55.5 23.5 55.08
Skywork-27B (ORM) 64 80.5 42.5 51.0 74.5 58.0 23.5 54.92
Qwen-PRM-7B 64 76.0 50.5 47.5 74.0 55.0 21.5 54.08
Qwen-PRM-72B 64 74.5 41.5 48.0 78.0 52.0 26.0 53.33

Ours

DeepSeek-R1-Distill-Qwen-7B (Process + Outcome) 8 79.0 51.5 47.0 75.0 52.0 28.5 55.33
DeepSeek-R1-Distill-Qwen-32B (Process + Outcome) 8 81.0 56.5 47.5 79.0 54.0 32.0 58.33

(index 0∼3 from first run, index 4∼7 from first run, index 0∼3 from second run, index 4∼7 from
second run); and so on. As shown in Table 5, all scores across N=1,2,4,8 are statistically significant
at the 96% confidence level.

C.3 TESTING ON DOMAINS OUTSIDE OF MATH AND CODE

Experimental setting To evaluate whether our reasoning process evaluator extends beyond math
and coding tasks, we conduct experiments on 500 samples from each of the economics, engineering,
and law subsets of MMLU-Pro (Wang et al., 2024b). To sample responses, we use both a reasoning
model (DeepSeek-R1-Distill-Qwen-7B) and a non-reasoning model (Llama-3.1-70B-Instruct). For
each question, we sample 64 candidate responses from both generators.

Experimental results The results are shown in Table 6. While baseline evaluators (ORMs and
PRMs) operate on all 64 candidates, our reasoning-based evaluator processes only 8 responses.
Despite this smaller candidate set, the results show that our 7B evaluator outperforms both the
8B ORM and the 7B PRM, and our 32B evaluator outperforms both the 27B ORM and the 32B
PRM. These findings, consistent with the trends observed in Figure 3 and Figure 5, demonstrate that
evaluation-time scaling with reasoning evaluators remains effective across diverse domains, including
economics, engineering, and law, thereby confirming that our methodology generalizes beyond math
and coding.

D RELATED WORK

D.1 SCALING TEST-TIME COMPUTE

Increasing compute by enlarging model size or expanding training data has long been one of the
key methods to improve LM performance during training time (Kaplan et al., 2020; Hoffmann et al.,
2022; Longpre et al., 2023; Kim et al., 2023a). However, as it becomes increasingly difficult to obtain
high-quality data sufficient for steady advancement of LM performance, a new paradigm has gained
attention: scaling compute at test-time instead of training-time (Villalobos et al., 2024; Welleck
et al., 2024; Wu et al., 2024b). This approach is attracting interest as a method that can enhance LM
performance in a way that complements training time compute. The main approaches to scaling
up test-time compute include, first, leveraging sufficient compute at test-time by training reasoning
models that generate longer and qualitatively different Chain-of-Thought (CoT) compared to existing
chat models (Guo et al., 2025; Yeo et al., 2025; Muennighoff et al., 2025), and second, using inference-
time algorithms such as Best-of-N sampling at test-time (Sun et al., 2024; Welleck et al., 2024).
Existing works on test-time compute have primarily focused on improving LM’s problem-solving
capability, whereas we focus on scaling compute for evaluation to enhance evaluators’ capabilities by
assessing each response step with process evaluation and generating long CoT for precise evaluation.

Table 7 summarizes the difference between representation works on test-time scaling (on the generator
side) versus our approach on scaling evaluation-time compute.
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Table 7: Test-time scaling on generator vs. evaluator: Summary of methods and trade-offs across prior work
and ours. Unlike prior work that mainly scales the generator while fixing the evaluator, we are the first to
explicitly study scaling evaluator test-time compute. We show that scaling evaluation-time strategies can directly
improve evaluator performance, opening new directions for test-time evaluation research. Generator-side variants
include (A) multiple responses (parallel), (B) beam/lookahead with a PRM (parallel), (C) sequential revision.
Evaluator-side variants include (X) a PRM, (Y) self-consistency on the evaluator (parallel), and (Z) a reasoning
model as a process evaluator (sequential).

Paper Method for Scaling Test-time
Compute on Generator side

Method for Scaling
Test-time Compute on
Evaluator side

Investigated Trade-off

Snell et al. (2024) (A) Generating Multiple
Responses (Parallel), (B)
Beam/Lookahead search using a
PRM (Parallel), (C) Sequential
Revision (Sequential)

(X) Using a PRM “A+X” vs “B+X”: Test-time scal-
ing for search with verifiers;
“A+X” vs “C+X”: Test-time scal-
ing with revisions.

Muennighoff et al.
(2025)

(A) Generating Multiple Re-
sponses (Parallel), (B) Budget
Forcing (Sequential)

(X) Using a PRM “A+X” vs “B+X”: Parallel vs se-
quential scaling.

Brown et al.
(2024)

(A) Generating Multiple Re-
sponses

(X) Using an ORM “A+X”: Scaling laws as the num-
ber of responses increases.

Ours (A) Generating Multiple Re-
sponses (Parallel)

(X) Using an ORM
or PRM; (Y) Apply-
ing self-consistency to
the evaluator (Parallel);
(Z) Utilizing a reasoning
model as a process eval-
uator (Sequential)

“X” vs “Y” vs “Z”: Evaluation-
time scaling (Sec. 3); “A+X”
vs “A+Z”: Translating improved
reasoning to problem solving
(Sec. 4).

D.2 LANGUAGE MODEL EVALUATORS

Accurately verifying the outputs generated by a language model (LM) is crucial for understanding
the types of errors it frequently makes and identifying its limitations (Liang et al., 2023; Mondorf
and Plank, 2024; Zheng et al., 2024a; Lee and Hockenmaier, 2025). Recently, evaluators—LMs
that assess the quality of a given response (also referred to as verifiers, reward models, or judges in
the literature)—have gained significant attention for their ability to provide precise assessments of
LM outputs (Zheng et al., 2024b; Ye et al., 2024; Kim et al., 2023b; Lambert et al., 2024; Gu et al.,
2024). Evaluators are not only used for benchmarking purposes but also for enhancing the LM’s
problem solving capabilities (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024; Wang
et al., 2024a; Sun et al., 2024; Wu et al., 2024a).

When an evaluator fails to assess accurately, it may result in unintended consequences for the
purpose it is serving (Gao et al., 2023; Coste et al., 2024; Moskovitz et al., 2024). For example, if
an evaluator fails to provide accurate judgments, even if a specific LM being evaluated performs
well, its true capabilities may be misrepresented due to the errors stemming from the evaluator’s
limitations (Dubois et al., 2024; Li et al., 2024; Kim et al., 2024b). Also, when integrating an evaluator
into an inference-time algorithm, the imperfection of the evaluator might result in diminishing returns
even when using more test-time compute (Gao et al., 2023; Rafailov et al., 2024). These limitations
highlight the need for more robust evaluators that can generalize in diverse contexts. While Kalra and
Tang (2025) has examined debate-based strategies and usage of larger models as evaluators to scale
up evaluation-time compute, our work specifically focuses on ‘using reasoning models as process
evaluators’ to demonstrate the effectiveness of evaluation-time scaling.

D.3 FUTURE DIRECTIONS

Looking ahead, we envision our research enabling advances in two areas. First, evaluation-time
scaling can provide better training signals. In particular, it is widely known that generators often
develop undesirable traits through reward model over-optimization when given imprecise rewards
during reinforcement learning (Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Huang et al.,
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2022); investigating whether reasoning process evaluators can mitigate this represents a promising
direction. Second, future work could explore whether reasoning evaluators can be improved through
training. Existing trained evaluators do not leverage the long CoTs that have proven effective in
this work, yet we believe that training such models may be key to further enhancing LM evaluation
capabilities.

E APPROXIMATION OF TEST-TIME COMPUTE

For approximating inference-time compute as in Figure 3 and Figure 5, we follow Snell et al. (2024)
and Son et al. (2025). Specifically, inference compute cost can be asymptotically approximated by:

C ∈ O(N × L), (9)

where C is the computation cost, N is the number of parameters and L is the number of tokens.
Therefore, we use N × L as a relative inference compute for a single inference call.

For instance, consider a Best-of-8 case where the generator of size 70B generates total 1,000 tokens
in average (generation-time compute for response), and the reasoning outcome evaluator of size 7B
generates total 3,000 tokens in average (evaluation-time compute for CoT and judgment). In this
case, the approximate inference-time compute can be calculated as:

8× ((70× 109 × 1000) + (7× 109 × 3000)) = 7.28× 1017

On a high level, when we break down inference-time compute into generator-time compute and
evaluation-time compute, 70 × 109 × 1000 corresponds to the generation-time compute and 7 ×
109 × 3000 corresponds to the evaluation-time compute. Therefore, Best-of-8 with reasoning process
evaluators (that spends more evaluation-time compute than generation-time compute) requires similar
inference-time compute compared to Best-of-64 with direct evaluators (that spends more generation-
time compute than evaluation-time compute).

F FORMAL EXPLANATION OF WHY EVALUATION-TIME SCALING CAN
IMPROVE THE GENERATOR’S PERFORMANCE

We provide a more formal explanation for why evaluation-time scaling can be more effective than the
conventional approach of sampling a larger number of responses with a weaker evaluator. The key
intuition is that a stronger evaluator mitigates the phenomenon of reward model over-optimization,
where imperfect evaluators overvalue certain responses due to noise or bias.

Let u(x) denote the oracle quality of a candidate response x. An evaluator provides a surrogate score

E(x) = u(x) + δ(x), (10)

where δ(x) captures evaluation error (biases or noise). In Best-of-N , given N candidates Y =
{y1, . . . , yN}, the oracle-best candidate is

y∗N = argmax
yi∈Y

u(yi), (11)

while the candidate chosen by the evaluator is

arg max
yi∈Y

(
u(yi) + δ(yi)

)
. (12)

Because the evaluator is imperfect, the selected response may be suboptimal if it receives an erro-
neously high δ(yi). The probability of such mis-selection grows with N , since larger candidate sets
increase the chance of some yi having a large positive error. This effect, often referred to as reward
model over-optimization or reward hacking, undermines the benefits of scaling the generator alone.

Suppose we instead use an improved evaluator
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E′(x) = u(x) + δ′(x), (13)

where δ′(x) has lower variance or higher fidelity with respect to u(x). In this case, the probability of
correctly selecting the oracle-best candidate improves:

P
(
argmax

i
E′(yi) = y∗N

)
> P

(
argmax

i
E(yi) = y∗N

)
. (14)

Crucially, our results show that even with fewer candidates (n ≪ N ), scaling evaluation-time
compute with a stronger evaluator can yield

P
(
argmax

i
E′(yi) = y∗n

)
> P

(
argmax

i
E(yi) = y∗N

)
. (15)

Thus, despite reducing the number of samples, improved evaluation quality can more than compensate
for the loss in oracle score.

This explanation aligns with our experimental results provided in section 4. First, in the low-
budget regime (e.g., 1–2 candidates), investing in evaluation compute provides little benefit, since
oracle quality is too low for the evaluator to meaningfully distinguish among responses. In this
regime, additional sampling dominates. Second, as the number of candidates grows (16–64), a
weaker evaluator (e.g., PRM) becomes increasingly vulnerable to mis-selection, while our approach
continues to benefit from reduced error. Finally, scaling evaluation-time compute produces smooth
gains in general: when moving from 1 to 8 responses, both the oracle quality improves and the
stronger evaluator reliably identifies the best candidate, leading to consistent upward scaling curves.
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Table 8: Reasoning models can self-evaluate its response effectively when functioning as a reasoning
process evaluator: We prompt DeepSeek-R1-Distill-Qwen-7B to act as both a generator and its own Best-of-N
reasoning process + outcome evaluator (self-evaluation). We also report the improvements when using Eurus-2-
SFT, Llama3.1-70B-Instruct, and Qwen2.5-7B-Instruct as a generator and DeepSeek-R1-Distill-Qwen-7B as an
evaluator for relative comparison. We measure performance improvements (between Best-of-1 and Best-of-8) as
a percentage of the gap between Best-of-1 and oracle performance, denoted as Gap Recovered. We find that the
gains associated with this are comparable to or larger than the gains associated with Best-of-N using the same
evaluation strategy on the outputs of instruction-tuned generators.

Generator N = 1 N = 8 Oracle Gap Recovered (%)

AIME24

Eurus-2-SFT 13.3 20.0 20.0 100.0
Llama3.1-70B-Instruct 16.7 23.3 36.7 33.0
Qwen2.5-7B-Instruct 10.0 16.7 23.3 50.4

Self-Evaluation (Outcome Eval on CoT + Process Eval on summary) 50.0 73.3 83.3 70.0
Self-Evaluation (Outcome Eval on summary + Process Eval on summary) 50.0 66.7 83.3 50.2

AMC23

Eurus-2-SFT 31.1 45.3 62.7 44.9
Llama3.1-70B-Instruct 26.8 45.3 65.1 48.3
Qwen2.5-7B-Instruct 36.6 51.6 69.9 45.0

Self-Evaluation (Outcome Eval on CoT + Process Eval on summary) 85.5 88.0 92.8 34.2
Self-Evaluation (Outcome Eval on summary + Process Eval on summary) 85.5 89.2 92.8 50.7

Table 9: Reasoning models can self-evaluate its response more effectively than using direct evaluators:
Comparison of direct evaluators (ORMs and PRMs) with 64 candidate responses versus our reasoning process
evaluator with only 8 responses. We generate the responses with DeepSeek-R1-Distill-Qwen-7B and test
different evaluators in Best-of-N setting. Our approach achieves the highest accuracy on both benchmarks.

Evaluator # Candidate Responses AIME-2024 AMC-2023

Greedy 1 50.0 85.54
Skywork-8B (ORM) 64 60.0 77.10
Qwen-PRM-7B 64 40.0 73.50
Skywork-27B (ORM) 64 60.0 88.00
Qwen-PRM-72B 64 56.66 85.54
DeepSeek-R1-Distill-Qwen-7B (Ours; Process + Outcome) 8 66.7 89.2

G SELF-EVALUATION OF REASONING MODELS

In section 4, we study whether using reasoning models as Best-of-N evaluators improves the problem-
solving capabilities of instruction-tuned models. This naturally raises the question of whether similar
gains could be achieved if a reasoning model is used both as the generator and the evaluator (i.e.,
self-evaluation). To explore this, we conduct a preliminary experiment in which DeepSeek-R1-
Distill-Qwen-7B is used both to generate responses and to evaluate them. Due to computational
constraints, we only assess self-evaluation on AIME24 and AMC23 in the Best-of-8 setting.

The challenge of assessing long CoTs A notable characteristic of current reasoning models is that
their CoTs (bookended by “<think></think>” tokens) are often lengthy and include numerous
reasoning steps. This presents practical challenges for evaluation, as the evaluator must be able to
handle long contexts and accurately assess text that includes exploratory reasoning, backtracking, and
self-correction steps. However, rather than evaluating the entire CoT trace, we could instead evaluate
the reasoning summary that is automatically produced by the reasoning model after the CoT. This
reasoning summary condenses the exploratory CoT into a more concise form resembling the CoT of
instruction-tuned models: see Appendix G.1 for an illustrative example.

Experimental setting We first generate responses to the AIME24 and AMC23 datasets with
DeepSeek-R1-Distill-Qwen-7B, setting t = 0.6 and N = 8. We then perform Best-of-N by prompt-
ing DeepSeek-R1-Distill-Qwen-7B to act as a reasoning outcome + process evaluator, following the
method described in subsection 2.3. In addition to reporting Best-of-1 and Best-of-8 performance,
we also report the percentage of the performance gap between the Best-of-1 and oracle performances
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recovered by Best-of-8 (denoted as Gap Recovered). For self-evaluation, we always perform reason-
ing process evaluation on the output summaries, whereas we experiment with reasoning outcome
evaluation on both the summaries and the entire CoT. We document our findings in Table 8.

Main Results Our results in Table 8 provide preliminary evidence that reasoning models can be
used to improve their own outputs through Best-of-N . Specifically, the gains associated with this (Gap
Recovered for DeepSeek-R1-Distill-Qwen-7B) is comparable to or larger than the gains associated
with Best-of-N on the outputs of the other generators (Eurus-2-SFT, Llama-3.1-70B-Instruct, and
Qwen2.5-7B-Instruct) when using the same evaluator (DeepSeek-R1-Distill-Qwen-7B).

Evaluating the summary is as effective as evaluating entire CoT We also find that performing the
outcome evaluation component of our reasoning process + outcome evaluation strategy on thoughts
improves over outcome evaluation on summaries for AIME, whereas the opposite is true for AMC,
although both strategies achieve notable gains over Best-of-1 on both datasets. We hope that our
results encourage further investigation into self-evaluation strategies for reasoning models.

Comparison with direct evaluators We further evaluate the performance of state-of-the-art ORMs
and PRMs under the same setting, fixing the generator to DeepSeek-R1-Distill-Qwen-7B and varying
only the evaluators. While baseline evaluators operate on 64 candidate responses, our reasoning-
based evaluator uses only 8 responses from the generator. The last row of Table 9 corresponds to
our proposed method, which follows the “Outcome Eval on summary + Process Eval on summary”
configuration reported in Table 8.

The results demonstrate that generating a moderate number of responses (N = 8) with a reasoning
model and evaluating them with a reasoning evaluator achieves higher accuracy than generating a
much larger set of responses (N = 64) evaluated with ORMs or PRMs. This finding highlights the
complementary role of reasoning: the reasoning model not only improves problem solving through its
longer chains of thought, but also enhances evaluation fidelity. Taken together, these results confirm
that using reasoning models for both generation and evaluation provides a synergistic effect that
surpasses conventional test-time scaling approaches.
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G.1 EXAMPLE OF A REASONING MODEL’S OUTPUT

We provide an example of DeepSeek-R1-Distill-Qwen-7B’s response to an input from AMC23. The
pink box contains the chain-of-thought portion of the response, while the green box contains the
summary. The CoT and the summary are separated by a “</think>” token.

Problem. In the state of Coinland, coins have values 6, 10, and 15 cents. Suppose x is the value in
cents of the most expensive item in Coinland that cannot be purchased using these coins with exact
change. What is the sum of the digits of x?

Response

Chain-of-thoughts

Okay, so I have this problem about Coinland where the coins are 6, 10, and 15 cents. I need to
find the largest amount of money that can’t be made using these coins, and then find the sum of
the digits of that amount. Hmm, interesting.

First, I remember something about the Frobenius number, which is the largest number
that can’t be expressed as a combination of given coin denominations. But I think that’s mainly
for two coins. Since we have three here, it might be more complicated. Maybe I should try to see
if there’s a pattern or a way to approach it.

Let me list out some numbers and see which ones can be made with 6, 10, and 15.
Maybe I can find a point beyond which all numbers can be made, and then the largest one before
that would be the answer.

Starting from 1 cent and going upwards:

...

So, starting from 30, every number can be made. Therefore, 29 is indeed the largest
number that cannot be formed.

So, the answer is 29, and the sum of its digits is 2 + 9 = 11.

**Final Answer**
The sum of the digits of the largest non-makable amount is 11 .</think>

Summary

To determine the largest amount of money that cannot be made using coins of 6, 10, and 15
cents, we start by listing the numbers and checking if they can be formed using these coins.

We find that the numbers 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23, and 29 cannot
be formed. We then check numbers beyond 29 and find that all numbers from 30 onwards can be
formed using combinations of 6, 10, and 15 cents.

Thus, the largest number that cannot be formed is 29. The sum of the digits of 29 is 2 + 9 = 11.

11
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H ADDITIONAL ANALYSES (SECTION 5

H.1 WHEN DOES PROCESS EVALUATION FAIL?
Non-error

(reasoning)

Non-error

(segmentation)

Error

(explicitly

corrected)

23.3%

18.9%

13.3%
8.9%

35.6%

Error

(ignored)

Non-error

(planning/

restatement)

Figure 6: Error pattern analysis of false positive
cases from reasoning process evaluators. Please
see Appendix H.3 for more details.

When does process evaluation fail? We manually
analyze 90 false negative cases from the 7B reasoning
process evaluator on MATH-500, OlympiadBench,
and GPQA. We identify two common failure modes:
(1) the evaluators incorrectly flag correct steps as er-
rors, and (2) the solutions contain actual reasoning
errors despite reaching correct conclusions, a phe-
nomenon known as unfaithful reasoning (Lyu et al.,
2023; Wang et al., 2025). Our analysis reveals that
44.4% of flagged steps contain genuine errors (see
Figure 6), confirming that unfaithful reasoning sig-
nificantly contributes to the discrepancy between pro-
cess and outcome evaluation. Further analyses with
examples can be found in Table 10.

H.2 PRECISION-RECALL CURVE

DeepSeek-R1-Distill-Qwen-7B(a) DeepSeek-R1-Distill-Qwen-32B
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Figure 7: P-R curve of reasoning outcome evaluators and process evaluators. While reasoning process evaluators
achieve higher precision in the low-recall region, reasoning outcome process evaluators achieve better perfor-
mance in the high-recall region. Combining both scores is an optimal strategy that achieves better precision than
outcome and process evaluation in any region.

Figure 4 (Bottom) displays the confusion matrix of reasoning outcome evaluators and process
evaluators using a constant classification threshold (0.5). However, one can also plot a precision-
recall curve (P-R curve) by varying the threshold. In this plot, recall=0 indicates that the threshold
is high (∼ 1.0) and all correct responses are classified as negative, and recall=1 indicates that the
threshold is small (∼ 0.0) and all correct responses are classified as positive.

The resulting P-R curve is shown in Figure 7. Aligned to the findings of section 5, the curves show
that reasoning process evaluators are more conservative classifiers than reasoning outcome evaluators.
The curve indicates that if the process evaluator assigned a high score, it is more likely that the
final answer is correct (high precision in low-recall region). However, outcome evaluators achieve
better overall accuracy (high precision in high-recall region), indicating that process evaluators are
more likely to assign relatively low scores to correct responses than outcome evaluators. Combining
outcome and process scores results in similar trends to process evaluators in the low-recall region and
to outcome evaluators in the high-recall region, achieving the best of both worlds.

H.3 QUALITATIVE ANALYSIS

In this section, we briefly present the criteria for manual analysis on steps that lead to a correct
answer but are predicted as incorrect by reasoning process evaluators.
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First, we randomly sample 90 responses from MATH500, OlympiadBench, and AMC generated
using Llama-3.1-70B-Instruct, where the response’s final answer is correct but the reasoning
process evaluator (DeepSeek-R1-Distill-7B) flag a step-level error. The three datasets were chosen
because (1) they cover a diverse range of problems including relatively easier (MATH500), medium-
level (AMC), and hardest problems (OlympiadBench)2, and (2) these three datasets demonstrate
the most significant gap between reasoning outcome evaluators and reasoning process evaluators in
Best-of-N setting.

The authors manually analyzed the first erroneous step flagged by the reasoning process evaluators.
The flagged steps are classified into errors and non-errors. Errors include clear logical or mathemati-
cal errors or unjustified falsifiable statements, whereas non-errors include correct reasoning steps,
assumptions, and text unrelated to reasoning. The taxonomy is displayed within Table 10.

Error Type Example
Error
(ignored)
35.6%

Problem. In the xy-plane, a circle of radius 4 with center on the positive x-axis is tangent to the y-axis at the
origin, and a circle with radius 10 with center on the positive y-axis is tangent to the x-axis at the origin. What
is the slope of the line passing through the two points at which these circles intersect? The final answer can be
written in the form m

n , where m and n are relatively prime positive integers. What is m + n?
...
Step 5. When y = 0, x = 0. This is the origin, which is not the intersection point of the two circles (cf. two
circles intersect at the origin), so we discard this solution. When y = 80

29 , x = 5y
2 = 5·80

2·29 = 200
29 . So, the

coordinates of the intersection point are ( 200
29 , 80

29 ).
Error
(explicitly corrected)
8.9%

Problem. Zach has three bags and a bunch of pencils to be placed into the bags. He is told to place the greatest
number of pencils possible into each of the three bags while also keeping the number of pencils in each bag the
same. What is the greatest number of pencils he could have left over?
...
Step 2. Since Zach has to distribute the pencils evenly among the three bags, the total number of pencils must be
a multiple of 3. However, to have the greatest number of pencils left over, we need to consider the scenario
where the total number of pencils is 1 more than a multiple of 3. (cf. corrected by Step 5)
Step 5. However, we are looking for the greatest number of pencils left over. Since 3x + 2 is the largest multiple
of 3 plus a remainder, the greatest number of pencils Zach could have left over is 2.

Non-error
(reasoning)
23.3%

Problem. What is the value of (3x − 2)(4x + 1) − (3x − 2)4x + 1 when x = 4?
...
Step 2. First, substitute x = 4 into the given expression: (3(4) − 2)(4(4) + 1) − (3(4) − 2)4(4) + 1

Non-error
(planning/restatement)
18.9%

Problem. There are two increasing sequences of five consecutive integers, each of which have the property that
the sum of the squares of the first three integers in the sequence equals the sum of the squares of the last two.
Determine these two sequences.
...
Step 1. To solve this problem, let’s break it down step by step. Let the first sequence be: a, a+1, a+2, a+3, a+4

Non-error
(segmentation)
13.3%

Problem. Suppose that f(a) = 2a2 − 3a + 1 for all real numbers a and g(b) = log1/2 b for all b > 0.
Determine all θ with 0 ≤ θ ≤ 2π for which f(g(sin θ)) = 0.
...
Step 9. This gives us two possible values for u: u = 1/2 and u = 1.
Step 10. Now, we substitute back in for u. log1/2(sin θ) = 1/2 log1/2(sin θ) = 1
(cf. log1/2(sin θ) = 1/2 \n log1/2(sin θ) = 1)

Table 10: Examples of steps flagged as an error by reasoning process evaluators.

2Despite that AIME is the hardest dataset with the lowest average scores, the small size (30 problems) makes
it insufficient for manual error analysis.
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I ANALYSIS: HOW DO MIXING PROCESS AND OUTCOME EVALUATION LEAD
TO SUPERIOR PERFORMANCE?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (Outcome:Process Ratio)

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

B
e

st
-o

f-
8

 S
co

re

50.29

51.63
51.76 51.70

51.85
52.03 52.09 52.06 52.08 52.08

51.07

Figure 8: Optimal mixing rate between reasoning outcome
scores and process scores is skewed towards outcome eval-
uator. Increasing the proportion of process scores leads to
reduced scores.

Our reasoning process + outcome evalua-
tor baseline averages the scores from rea-
soning process evaluators and reasoning
outcome evaluators and has shown to be
effective in our Best-of-N experiments at
section 4. To better understand the reasons
behind this, we first analyze how the results
change when mixing with different ratios
(α values). We perform a grid search of
the α value from 0.0 to 1.0 with step size
0.1 and find that the optimal α is skewed
towards the outcome score, where weight-
ing process score more than 0.5 causes the
performance to decline. (Figure 8) 3

The optimal mixing rate highly (but not en-
tirely) skewed towards outcome evaluators
suggests that process evaluation serves as a tie-breaker for outcome evaluation when merged. Since
reasoning outcome evaluators output tokens 0/1 as the correctness label, the scores (token prob-
abilities of the label 1) are indistinguishable between responses labeled as correct or wrong. In
process+outcome evaluators, process scores can be applied to break ties in responses by penalizing
process errors, leading to improved Best-of-N accuracy.
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Figure 9: While reasoning outcome evaluators are generally better at
finding the correct answer due to high recall, reasoning process evaluators
can perform tie-breaking with high accuracy among outcome evaluator-
filtered samples, outcome scores, and even process+outcome scores. This
suggests that process evaluators can efficiently filter false positives, i.e.,
the responses that outcome evaluators classified as correct but contains
process-level errors.

To prove this intuition that
process evaluators can further
rerank responses indistinguish-
able by outcome evaluators, we
explore an alternative of α-
weighted average version of
process+outcome evaluators, 2-
stage prompting (Figure 9). In
this setting, responses are first
filtered using the outcome score.
Responses with outcome scores
higher than 0.99 were analyzed
by process evaluators, selecting
the top response. Therefore, re-
sponses with low outcome scores
but high process scores cannot be
chosen as the final candidate. In-
tuitively, the 2-stage prompting’s
performance is strictly bounded
by outcome evaluator’s recall
and process evaluator’s precision,
whereas the soft merging of the
process+outcome evaluator of-
fers more flexibility.

The results show that the perfor-
mance of the 2-stage prompting
is significantly higher than that
of outcome evaluator and is al-
most identical to that of process+outcome evaluator. As the difference between reasoning outcome
scores is extremely small, using only outcome scores might not entirely reflect the quality of the
responses and lead to a suboptimal Best-of-N performance. However, process evaluators can further

3Throughout this section, the reported scores are from DeepSeek-R1-Distill-Qwen-32B.
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rerank responses that outcome evaluators assign indistinguishable scores as shown in 2-stage prompt-
ing, which is the key aspect of the optimal Best-of-N performance of reasoning process+outcome
evaluator.

One benefit of 2-stage prompting is that it reduces the inference cost by only applying the reasoning
process evaluation to responses that passed the outcome evaluation. While different heuristics can be
applied to optimize the compute while retaining the Best-of-N performance (e.g. perform process
evaluation only if outcome evaluators classified responses with different final answers as correct), we
leave this direction as future work.

J ANALYSIS: HOW DOES PROBLEM DIFFICULTY AFFECT OUTCOME AND
PROCESS EVALUATION?

Another important factor regarding Best-of-N performance is the problem difficulty, often estimated
by the fraction of correct answers out of N responses. The fraction value is empirically important
because if there are more correct answers, there is a higher chance of selecting a response with a
correct answer. However, if there are only a few correct answers, it is generally challenging to rank
the correct answer at the top.

As seen in the relative performance (Figure 10), Reasoning outcome evaluators outperform process
evaluators in difficult problems, whereas process evaluators achieve higher Best-of-N accuracy in
relatively easier problems. This can be explained by the conclusion of Appendix I, that reasoning
process evaluators are conservative classifiers and often assigns low score to responses with correct
answers. However, if there is a sufficient amount of correct responses, the conservative nature of
process evaluators prevents choosing responses with incorrect steps, increasing the expected quality
of the top response.

The problem difficulty also affects the performance gap between reasoning process+outcome evalua-
tors and reasoning outcome evaluators. Fewer correct answers increase the chance of false positives
in outcome evaluators, where they assign high (>0.99) scores to responses with incorrect answers.
When using process scores together, such false positives can be effectively reranked and filtered as
shown in Appendix I, leading to improved performance in the Best-of-N setting.

12.5 25.0 37.5 50.0 62.5 75.0 87.5

−2

0

2

4

6

8

B
es

t-
of

-8
 s

co
re

 re
la

ti
ve

 to
 O

R
M

 (
%

)

-0.3

-2.9

-0.6

4.4

2.0

-0.3
0.4

5.8

7.7

4.4
5.3

3.3

0.9 0.9

Low recall

High precision

Tie-breaking

12.5 25.0 37.5 50.0 62.5 75.0 87.5

Correct answer (%)

−6

−4

−2

0

2

4

B
es

t-
of

-8
 s

co
re

 re
la

ti
ve

 to
 O

R
M

 (
%

)

-6.8
-7.4

-5.4

0.6

1.8

0.3
-0.3

4.1 4.0

1.9

4.0
3.0

1.5

-0.5

Low recall

Tie-breaking

DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B

High precision

PRM-ORM
BEAM-ORM

PRM-ORM
BEAM-ORM

Correct answer (%)
12.5 25.0 37.5 50.0 62.5 75.0 87.5

−2

0

2

4

6

8

B
es

t-
of

-8
 s

co
re

 re
l. 

to
 O

u
tc

om
e 

(%
)

-0.3

-2.9

-0.6

4.4

2.0

-0.3
0.4

5.8

7.7

4.4
5.3

3.3

0.9 0.9

Low recall

High precision

Tie-breaking

12.5 25.0 37.5 50.0 62.5 75.0 87.5

Correct answer (%)

−6

−4

−2

0

2

4

B
es

t-
of

-8
 s

co
re

 re
l. 

to
 O

u
tc

om
e 

(%
)

-6.8
-7.4

-5.4

0.6

1.8

0.3
-0.3

4.1 4.0

1.9

4.0
3.0

1.5

-0.5

Low recall

Tie-breaking

DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B

High precision

Process-Outcome
(Proc+Out)-Outcome

Process-Outcome
(Proc+Out)-Outcome

Correct answer (%)

Figure 10: While reasoning process evaluators achieve low Best-of-N score compared to reasoning outcome due
to low recall (section 5), Reasoning process+outcome evaluators outperform outcome evaluators by leveraging
the tie-breaking ability of process evaluators. Both effects are more significant in difficult problems, where the
response generator models are unlikely to find the correct answer.
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K PROMPTS FOR REASONING EVALUATORS

We include the prompts used to elicit reasoning models as process and outcome evaluators:

Reasoning process evaluator prompt:

The following is a math problem and a solution (split into paragraphs, enclosed with tags
and indexed from 0):

Problem
{problem}

Previous Paragraph(s)
{previous_paragraphs}

Current Paragraph
{current_paragraph}

Instructions
Your task is to decide whether the current paragraph is correct or not. If the current paragraph is
correct, return the index of 1 and if not, return the index of 0.

Don’t try to solve the problem. Your task is only to critique the current paragraph.

Please put your final prediction (i.e., the correctness, which must be 0 or 1) in boxed{{}}.
Every output must therefore contain either 1 or 0 .

You should only consider the logical correctness of the current paragraph, not whether it is
useful or has the potential to lead to the correct answer.

Reasoning outcome evaluator prompt:

The following is a math problem and a solution (split into paragraphs, enclosed with tags
and indexed from 0):

Problem
{problem}

Response
{response}

Instructions
Your task is to decide whether the solution is correct or not. If the solution is correct, return the index
of 1 and if not, return the index of 0.

Don’t try to solve the problem. Your task is only to critique the solution.

Please put your final answer (i.e., the index, which must be 0 or 1) in boxed{{}}. Every
output must therefore contain either 1 or 0 .

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

L LIMITATIONS

In this section, we provide rationales behind the datasets and models used in this study.

Dataset selection In section 3, we only use ProcessBench (Zheng et al., 2024a) for evaluating
different evaluator implementations (Table 1). ProcessBench provides high-quality human-annotated
labels obtained from diverse reasoning traces across 4 benchmarks (GSM8k, MATH, OlympiadBench,
and OmniMath) and 12 generators (Llama and Qwen family with varying sizes), suitable for testing
different evaluator implementations. While there are other datasets with similar purposes, we resort
to ProcessBench for the following reasons:

• Datasets like PRM800k (Lightman et al., 2024), MR-GSM8k (Zeng et al., 2023), and
MR-MATH (Xia et al., 2025) annotate errors from GSM8k and MATH, which is already
covered by ProcessBench.

• While PRMBench (Song et al., 2025) introduces diverse error types in the MATH dataset,
the dataset is generated by synthetically perturbing responses based on a manually developed
taxonomy of reasoning errors. Therefore, we make use of ProcessBench that annotates
naturally occurring errors in LLM-generated responses without any modification, which
better suits the research question "Can we leverage evaluation-time scaling to improve the
generator’s performance?".

• REVEAL (Jacovi et al., 2024) annotates errors in LLM responses in commonsense reason-
ing benchmarks, which are not covered by ProcessBench. However, the inter-annotator
agreement is significantly lower than ProcessBench (κ ∼ 0.5), indicating high variance in
the data label.

Model selection We provide the full list of models in subsection A.1 and subsection A.2. While
this paper includes results from a large variety of critic models and direct evaluators, we could not test
on other highly capable models due to their recency (Team et al., 2025; Abdin et al., 2025), excessive
hardware requirements (using ∼70B-sized models as reasoning evaluators), and limited budget for
closed-source APIs (e.g., OpenAI o1, Gemini 2.5, Claude 3).

Task Coverage Another limitation of our work is that we do not assess reasoning evaluators for
tasks outside math and code. We focus on math and code because (1) they are tasks that admit easy
verification and (2) they align with the main strengths of reasoning models. There nonetheless exist
other interesting and relevant tasks, including tasks with non-verifiable outputs such as creative and
scientific writing. We encourage the research community to extend our work to include such tasks.

M LICENSES

M.1 DATASETS

We disclose the licenses of the datasets used in this study, as indicated in their official HuggingFace
repository (if applicable).

• ProcessBench: Apache 2.0

• GSM8k: MIT

• MATH: MIT

• AIME24: CC0 1.0

• AMC23: License type not mentioned. Copyright © Mathematical Association of America.

• MinervaMath: MIT (LM-eval-harness)

• OlympiadBench: Apache 2.0

• LeetCode: MIT

• GPQA: MIT
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M.2 MODELS

We disclose the licenses of the model used in this study, as indicated in their official HuggingFace
repository.

• Llama 3 family and their derivatives: Meta Llama 3 Community License. Copyright © Meta
Platforms, Inc. All Rights Reserved.

• Qwen family and their derivatives: Qwen License. Copyright © Alibaba Cloud. All Rights
Reserved.

• QwQ family: Apache 2.0
• DeepSeek-R1 family: MIT
• Skywork family: Skywork Community License
• Prometheus 2 family: Apache 2.0

N COMPUTE RESOURCES

To conduct our experiments with 7B and 32B models we used as reasoning evaluators, we used a
single node of A6000 GPUs (8 GPUs) where each GPU has 48GB of memory.

O BROADER IMPLICATIONS

One fundamental issue with language model evaluators is that they were developed to automate
human evaluation, which is expensive and time-consuming. However, verifying that these evaluators
function as intended, even partially, remains crucial. In our paper, we only tested benchmarks
related to mathematics and coding, but this verification becomes even more important when applying
reasoning evaluators to assess language model responses on socially sensitive real-world queries or
in safety-related domains. We hope that all researchers and practitioners using LM evaluators will
consider these points.

P USE OF LARGE LANGUAGE MODELS

We have used LLMs for writing this paper. Specifically, we have used it to fix grammar and enhance
fluency.
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