
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING EVALUATION-TIME COMPUTE WITH
REASONING MODELS AS PROCESS EVALUATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Language model (LM) evaluators that generate chain-of-thought (CoT) reasoning
are widely used for the assessment of LM responses. Simultaneously, increasing
LMs’ “thinking” time through scaling test-time compute has proven to be an
effective technique for solving challenging problems in domains such as math and
code. This raises a natural question: can an LM’s evaluation capability also be
improved by scaling test-time compute? To answer this, we investigate employing
reasoning models – LMs that natively generate long CoT reasoning – as evaluators.
We explore scaling evaluation-time compute by using reasoning models to evaluate
both the overall candidate response (i.e., outcome evaluation) and the individual
reasoning steps within it (i.e., process evaluation). In our experiments, we observe
that evaluator performance improves monotonically with the number of reasoning
tokens generated, mirroring trends seen in LM reasoning. Furthermore, we use
these more accurate evaluators to rerank multiple generations, and demonstrate
that spending more compute at evaluation time can be as effective as increasing
compute during generation for improving an LM’s problem-solving performance.

Evaluation-Time Compute
81924096

55.0
38

40

42

44

46

48

57.5

60.0

62.5

65.0

67.5

70.0

72.5

32768 16384 32768

Enforcing the evaluator
to think longer

Evaluation-Time Compute

Direct Evaluators

Reasoning Evaluators

Ev
al

u
at

or
 P

er
fo

rm
an

ce

G
en

er
at

or
 P

er
fo

rm
an

ce

Problem

Problem

Response

Step 1 Step N...

...

0.33

[0.12, ..., 0.97]

Problem

Problem

Problem

Response CoT

CoT

CoT

Step 1

Step N

0.99

0.87

0.98

Figure 1: We investigate the effect of scaling test-time compute for evaluation (evaluation-time compute):
Enforcing the generation of additional reasoning tokens leads to improved evaluation performance (section 3).
This can, in turn, be utilized to further improve the generator’s problem-solving capabilities (section 4).

1 INTRODUCTION

Research on language models (LMs) involves an interplay between generation and evaluation: better
generators require better evaluators and better evaluators can further enhance generators. For instance,
an evaluator can verify the quality of the generator’s response (Liang et al., 2023; Zheng et al., 2024b;
Ye et al., 2024) or identify the parts of a generator’s response that contain mistakes (Lightman et al.,
2024; Zheng et al., 2024a; Zhang et al., 2025). Furthermore, the generator’s performance can be
improved by integrating the better evaluator into its inference-time algorithms (Cobbe et al., 2021;
Uesato et al., 2022; Lightman et al., 2024; Sun et al., 2024; Wu et al., 2024a).

Reasoning models have opened up a new paradigm for generation based on generating a long chain-of-
thought (CoT) (Jaech et al., 2024; Guo et al., 2025; Muennighoff et al., 2025; Aggarwal and Welleck,
2025). Prior works have found that generating long CoTs is an effective strategy for leveraging

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

test-time compute to solve difficult tasks that conventional instruction-tuned models cannot (Yeo
et al., 2025; Xu et al., 2025). However, it is unclear whether evaluators, like generators, can also
be improved by scaling test-time compute with long CoTs. In this paper, we ask and answer two
questions: (1) Can we replicate test-time scaling behavior observed in generators with evaluators?
And if so, (2) can this improved evaluation ability further improve generation results as well?

Our main contribution is an examination of generative evaluators that use long CoT reasoning, which
we refer to as reasoning evaluators. Reasoning evaluators are obtained by prompting reasoning models
– a class of models trained to produce long CoT either using RL or through distillation from the outputs
of such a model (Guo et al., 2025; Team, 2024b) – to act as evaluators. By generating long outputs
exhibiting complex reasoning patterns including self-verification and backtracking (Gandhi et al.,
2025b; Lu et al., 2025), reasoning models expend test-time compute to attain improved reasoning
capabilities, a trait that we hypothesize also makes them better evaluators. We contrast reasoning
evaluators with (1) direct evaluators, which predict scores without CoT reasoning (Lightman et al.,
2024; Cobbe et al., 2021), and (2) fine-tuned generative evaluators that produce shorter CoT lacking
the complex reasoning patterns found in reasoning model outputs (Zhang et al., 2024; Ankner et al.,
2024; Kim et al., 2024a). As shown in the left of Figure 1, we force reasoning evaluators to generate
more reasoning tokens by prompting them to evaluate both each step of an output individually as well
as the solution as a whole. This recipe unifies techniques from prior work on step-by-step evaluation
(process reward models; PRMs; (Lightman et al., 2024; Wang et al., 2024a; Zheng et al., 2024a)) and
outcome-based evaluation (outcome reward models; ORMs; (Cobbe et al., 2021; Liu et al., 2024)).

We demonstrate the effectiveness of our approach across two settings. First, as shown in the middle
plot of Figure 1, we show that the evaluator’s performance improves monotonically as it generates
more reasoning tokens. We further show that a 32B reasoning evaluator can outperform a 72B
state-of-the-art PRM by a 4.5% margin on ProcessBench (Zheng et al., 2024a), a benchmark that
measures whether an LM can identify the first occurring error within a given response. This is notable
because, while existing direct evaluators are trained on extensive process supervision, our reasoning
evaluators achieve strong performance through evaluation-time scaling alone, without training.

Second, as shown in the right plot of Figure 1, we find that evaluation-time scaling is an effective
method for further improving the generator’s performance. When integrating reasoning evaluators
into Best-of-N sampling, where an evaluator reranks multiple solutions sampled by a generator, our
reasoning evaluators using Best-of-8 outperform direct evaluators (e.g., ORMs, PRMs) using Best-of-
64 by a 4.30% to 6.63% margin given a fixed compute budget, highlighting the potential benefits of
spending more test-time compute for evaluation at the expense of sampling more responses.

2 METHODOLOGY

We describe our approach for scaling evaluation-time compute by assessing both overall responses
(subsection 2.1) and individual response segments (subsection 2.2) with reasoning evaluators. We
then explain how we combine process and outcome judgments (subsection 2.3) for further gains.

Reasoning Evaluators vs. Direct Evaluators We refer to conventional evaluators that are trained
to map a problem and a response (or steps) to a scalar value score as direct evaluators. Reasoning
evaluators differ from direct evaluators in two aspects. First, reasoning evaluators generate chain-of-
thought (CoT) reasoning before predicting the final judgment. Second, while direct evaluators with a
specialized reward modeling head must be fine-tuned, reasoning evaluators may either be specifically
trained for evaluation 1 or may be off-the-shelf LMs that are prompted to act as evaluators. In this
paper, we focus on the latter approach by prompting reasoning models to function as evaluators.

Given a problem xi and response yi, the evaluator is used to estimate the “goodness” of yi by
generating a score si. This score can be obtained using a trained reward modeling head (direct
evaluators) or from the logits of answer tokens (e.g., 0/1) (reasoning evaluators). The mapping
function of an outcome and process evaluator can be expressed as:

• Outcome Evaluator: (xi, yi) → si

1We also classify trained evaluators such as CLoud (Ankner et al., 2024) and Prometheus (Kim et al., 2024c)
as reasoning evaluators, although they produce relatively short CoTs that lack the versatile reasoning patterns
seen in reasoning models outputs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Branch the output into steps

while retaining the original result

steps

original

output

step-wise

CoTs & judgments

outcome

CoT & judgment

final

score

Evaluate each of the steps as well as the

whole output based on its correctness

Merge the step-wise judgments

and outcome judgments

+

+

Reasoning

process

evaluator

Reasoning

outcome

evaluator

Figure 2: We propose scaling evaluation-time compute by using the evaluator to assess both the overall output
(light red) and its constituent reasoning steps (light blue) and then combining the judgments into a final score.

• Process Evaluator: (xi, [yi1, yi2, ..., yiN]) → [si1, si2, ..., siN].

Process evaluators require a splitting function to divide yi into discrete steps [yi1, yi2, ..., yiN].
Furthermore, process evaluators can only be used for evaluation of the final outcome if provided
with an aggregation function that maps per-step scores [si1, si2, ..., siN] to an aggregated final score
si. Conventionally, a heuristic-based approach is used as the splitting function (e.g., splitting based
on “\n\n”) while the min function (si = min(si1, si2, ..., siN)) is often used as the aggregation
function (Lightman et al., 2024; Wang et al., 2024a; Sun et al., 2024). As discussed in the previous
paragraph, direct outcome and process evaluators predict these values through specially trained heads.
In the following subsections we discuss how to make these predictions with reasoning models.

2.1 REASONING OUTCOME EVALUATORS

Our reasoning outcome evaluators have at their core a function

(xi, yi) → (ci, ji), (1)

where ci denotes a CoT, and ji is the evaluator’s judgment, represented as the probability distribution
over tokens in the vocabulary: see the upper section of Figure 2 (colored light red). We prompt the
LM to output “1” if the response is deemed to be correct and “0” if not. To transform ji into a scalar
value score si, we use the logits ℓ of “1” and “0” tokens and perform a softmax operation:

si =
eℓ(ji=1)

eℓ(ji=0) + eℓ(ji=1)
. (2)

2.2 REASONING PROCESS EVALUATORS

We formulate the mapping function for assessing reasoning step k as

(xi, [yi1, ..., yik]) → (cik, jik) (1 ≤ k ≤ N), (3)

where cik denotes the CoT that examines yik for potential logical flaws or inconsistencies and ji
denotes the judgment for yik, which is also represented as a probability distribution: see the bottom
section of Figure 2 (colored light blue). Note that the previous steps [yi1, ..., yi(k−1)] are provided as
context for precise assessment of the current step yik. Then, to convert jik into sik, we use

[si1, ..., siN] =

[
eℓ(ji1=1)

eℓ(ji1=0) + eℓ(ji1=1)
, ...,

eℓ(jiN=1)

eℓ(jiN=0) + eℓ(jiN=1)

]
. (4)

Single- vs. multi-step process evaluation The formulation above forms the core of our proposed
method, but we also compare with an ablated single-step reasoning process evaluator proposed by
Zheng et al. (2024a) that generates a single CoT before making judgments of all N steps in yi as

(xi, [yi1, ..., yiN]) → (ci, [ji1, . . . , jiN]). (5)

Unless explicitly stated, reasoning process evaluation refers to our proposed multi-step variant.
Evaluating each step separately is our preferred method for two reasons: (1) evaluating all N steps at

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

once risks exceeding the context window of the reasoning models, and (2) stepwise evaluation forces
the evaluator to assess each step more thoroughly, thereby naturally scaling evaluation-time compute.

Choice of splitting function and aggregation function Additionally, we make the following
adjustments to the splitting and aggregation functions when using reasoning process evaluators:

• Model-based splitting: When splitting yi into [yi1, ..., yiN], conventional heuristic-based ap-
proaches may be ineffective for some cases (e.g., when yi does not include “\n\n” or is not written
in a structured format, as is the case for code). To deal with this, we adopt model-based splitting
where an LM Msplit is prompted to insert an indicator phrase “[SPLIT]” between steps:

Msplit : yi → [yi1 [SPLIT] yi2 [SPLIT] ... [SPLIT] yiN]. (6)

• Score aggregation: After acquiring [si1, ..., siN] as in Equation 4, we aggregate the N judgments
into a single scalar value score si. In our experiments, we find that the mean_logit function (Sun
et al., 2024) yields better results than min function. The mean_logit function is expressed as

si = mean_logit(sik) = σ

(
Σk

sik
1−sik

N

)
(1 ≤ k ≤ N). (7)

Note that these adjustments can be applied to direct process evaluators as well: see Appendix C.

2.3 COMBINING OUTCOME JUDGMENTS AND PROCESS SCORES

While the objective of outcome evaluation is to determine the correctness of the final answer, the
objective of process evaluation is to determine the correctness of each step. Both have their advantages
in identifying reasoning errors – outcome evaluation takes a more holistic approach while process
evaluation can potentially identify more fine-grained errors. Inspired by Uesato et al. (2022), we
consider combining both outcome and process evaluation scores through interpolation as follows

sfinal = α · soutcome + (1− α) · sprocess. (8)

Here, choosing α = 0 is identical to only using the process score and choosing α = 1 is identical to
using only the outcome score. We use α = 0.5 to avoid overfitting to either approach and refer to this
method as reasoning process + outcome evaluation. See Appendix I for analyses on varying α.

3 EVALUATION-TIME SCALING TRENDS FOR PROCESS EVALUATION

As discussed in section 2, our approach involves assessing output steps individually (multi-step
process evaluation) using reasoning evaluators. To examine the effectiveness of this choice, we
experiment on a response error detection task and compare our method against state-of-the-art PRMs.

3.1 EXPERIMENTAL SETTING

Benchmark We explore scaling evaluation-time compute with ProcessBench (Zheng et al., 2024a),
which includes diverse responses from different LMs and highly reliable human-annotated labels. In
ProcessBench, evaluators are tasked with identifying the first paragraph in the solution that contains
incorrect logic, if any. ProcessBench has 3,400 instances, with queries sampled from 4 different math
benchmarks and responses from 12 distinct LMs. Each response consists of 7.56 steps on average.

Metric The evaluator’s performance on ProcessBench is measured using the F1 score, computed
from the precision and recall of predicting the index of the first paragraph that contains a logical error:
evaluators are penalized for incorrectly identifying a paragraph as erroneous when no error exists,
misidentifying the index of the erroneous paragraph, or failing to detect an error when one is present.
If the evaluator predicts that one or more steps are incorrect, we use the earliest incorrect step (the
step with the smallest index) as the final prediction, following Zheng et al. (2024a).

Methods We consider the following evaluator baselines (see Appendix A.1 for the list of models):

• Direct process evaluator: We employ process reward models (PRMs) as direct process evaluators.
Note that these models do not generate CoTs but instead directly predict the correctness of all steps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Experimental results for ProcessBench experiments. We find that evaluation performance can be
improved by scaling evaluation-time compute using multi-step process evaluation and self-consistency. Notably,
we find that even LMs not specifically fine-tuned for evaluation can outperform specially trained PRMs. ∆
denotes gains associated with either applying (1) multi-step process evaluation or (2) self-consistency for the
same backbone LM. The best performance within each category is bolded. See Table 4 for additional results.

Model GSM8K MATH Olym. Bench Omni-MATH Avg. F1 ∆

Direct Process Evaluator (PRMs)

Qwen2.5-Math-7B-PRM800K 68.4 62.5 50.4 43.6 56.2 -
Qwen2.5-Math-PRM-7B 82.4 77.6 67.5 66.3 73.5 -
Qwen2.5-Math-PRM-72B 87.3 80.6 74.3 71.1 78.3 -

Single-step Reasoning Process Evaluator

Instruction-tuned Models
Llama-3.1-8B-Instruct 24.0 15.5 9.7 10.1 14.8 0.0
Qwen2.5-32B-Instruct 63.8 47.5 35.9 32.7 45.0 0.0
Qwen2.5-72B-Instruct 76.2 61.8 54.6 52.2 61.2 -
Reasoning Models
DeepSeek-R1-Distill-Qwen-7B 68.3 61.1 48.3 40.4 54.5 0.0
DeepSeek-R1-Distill-Qwen-32B 83.9 78.1 72.4 67.7 75.5 0.0
QwQ-32B-Preview 77.5 58.9 31.2 35.8 50.9 0.0
QwQ-32B 79.5 77.5 71.5 69.4 74.5 0.0
Reasoning Models (Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 69.3 67.9 54.8 51.5 60.9 +6.4
DeepSeek-R1-Distill-Qwen-32B 82.2 80.4 76.2 72.5 77.8 +2.3
QwQ-32B-Preview 88.0 78.7 57.8 61.3 71.5 +20.6
QwQ-32B 81.0 78.8 74.4 72.8 76.8 +2.3

Reasoning Process Evaluator (Ours)

Instruction-tuned Models (Multi-step Process Evaluation)
Llama-3.1-8B-Instruct 35.2 22.8 12.6 17.9 22.1 +7.3
Qwen2.5-32B-Instruct 70.1 61.7 54.2 53.9 60.0 +15.0
Reasoning Models (Multi-step Process Evaluation)
DeepSeek-R1-Distill-Qwen-7B 75.5 67.3 59.8 56.6 64.8 +10.3
DeepSeek-R1-Distill-Qwen-32B 80.3 82.2 77.0 75.0 78.6 +3.1
QwQ-32B-Preview 81.7 79.3 70.3 69.8 75.3 +24.4
QwQ-32B 81.5 83.6 76.8 75.1 79.3 +4.8
Reasoning Models (Multi-step Process Evaluation + Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 80.1 75.1 69.3 70.4 73.7 +19.2
DeepSeek-R1-Distill-Qwen-32B 86.6 85.4 78.9 80.3 82.8 +7.3
QwQ-32B-Preview 86.8 85.7 79.0 78.0 82.4 +31.5
QwQ-32B 85.0 85.6 79.4 78.0 82.0 +7.5

• Single-step reasoning process evaluator: We adopt the approach proposed by Zheng et al. (2024a)
and Zhang et al. (2025), where a language model is provided with the response and prompted to
produce a single CoT as well as the index of the first paragraph containing a logical error, if one
exists. This corresponds to the ablated “single-step” evaluator discussed in subsection 2.2.

• Reasoning process evaluator: We explore our approach for using reasoning models as process
evaluators. This involves assessing each segment individually and determining its correctness. Note
that for this experiment, we use a simplified version of the approach described in subsection 2.2: (1)
a splitting function is not required as segments are already provided and (2) an aggregation function
is not required as the goal of the benchmark is to predict the index of the segment containing the
first mistake, not to produce an outcome score to compare multiple responses.

Matching test-time budget across methods To ensure a fair comparison between single-step
evaluators and our method under similar test-time compute constraints, we also experiment with
self-consistency (Wang et al., 2023) for evaluation. Specifically, the evaluator generates M CoT
trajectories (e.g., if applied to our reasoning process evaluator, it assesses each of N steps M times,
resulting in a total of N ·M inference calls), with jik chosen based on a majority vote. Self-consistency
is inapplicable for PRMs since they produce identical scores across multiple inference calls.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 EXPERIMENTAL RESULTS

Our main results on ProcessBench are presented in Table 1. See Table 4 for additional results.

Finding 1: Reasoning models are better evaluators than instruction-tuned models. For example,
DeepSeek-R1-Distill-Qwen-32B achieves an average F1 score of 75.5 when employed as a reasoning
process evaluator, significantly outperforming the larger Qwen2.5-72B-Instruct model (61.2 F1)
despite having only 44% as many parameters. This suggests that reasoning capability is associated
with improved evaluation capability, even when the reasoning model is not trained as an evaluator.

Finding 2: Single-step methods fail to match the performance of direct process evaluators.
For example, DeepSeek-R1-Distill-Qwen-7B achieves an F1 score of 54.5, which is lower than
Qwen2.5-Math-7B-PRM800K (56.2) and Qwen2.5-Math-PRM-7B (73.5). Similarly, DeepSeek-R1-
Distill-Qwen-32B (75.5) and QwQ-32B (74.5) fall behind the Qwen2.5-Math-PRM-72B (78.3). This
indicates that single-step evaluation is not sufficient to identify errors in responses.

Finding 3: It is important to evaluate each step individually (multi-step process evaluation).
As detailed in the previous subsection, we compare two approaches for scaling evaluation-time
compute: (1) self-consistency, where the evaluator generates multiple CoTs for evaluation and the
final judgment is decided via majority vote and (2) multi-step process evaluation, where the evaluator
assesses each step in the solution individually. As ProcessBench has an average of 7.56 steps and we
generate 8 CoTs for the self-consistency baseline, the two approaches incur similar inference costs.

Our results indicate that prompting reasoning models to evaluate each step individually is more
effective than applying self-consistency given a fixed evaluation compute budget. Using multi-step
process evaluation, DeepSeek-R1-Distill-Qwen-7,32B, QwQ-32B-Preview, and QwQ-32B achieve
F1 scores of 64.8, 78.6, 75.3, and 79.3, respectively. In contrast, applying self-consistency yields
lower scores of 60.9, 77.8, 71.5, and 76.8. Notably, our multi-step process evaluation method
enables DeepSeek-R1-Distill-Qwen-32B (78.6) and QwQ-32B (79.3) to outperform Qwen2.5-Math-
PRM-72B (78.3) – a model nearly twice as big – without any additional training. Furthermore,
instruction-tuned models also achieve sizable gains when used for multi-step process evaluation, with
Llama-3.1-8B-Instruct and Qwen2.5-32B-Instruct demonstrating gains of +7.3 and +15.0 respectively.
These results indicate that our method can be applied to non-reasoning LMs as well.

Finding 4: Combining self-consistency and multi-step process evaluation can further enhance
performance. We also find that further scaling evaluation-time compute by applying multi-step
process evaluation and self-consistency together yields even more gains. For instance, DeepSeek-
R1-Distill-Qwen-7B (73.7) outperforms Qwen2.5-Math-PRM-7B (73.5). Similarly, DeepSeek-R1-
Distill-Qwen-32B (82.8) and QwQ-32B (82.0) surpass Qwen2.5-Math-PRM-72B (78.3), which was
the previous state-of-the-art (Zhang et al., 2025), suggesting that both self-consistency and multi-
step process evaluation can provide complementary benefits for scaling evaluation-time compute.
This is notable because the reasoning models are not explicitly trained as evaluators, yet increasing
evaluation-time compute consistently improves performance and achieves state-of-the-art results.

4 TRANSLATING IMPROVED EVALUATION TO PROBLEM-SOLVING

Building upon the previous section, we explore whether we can leverage evaluation-time scaling
to improve the generator’s performance. We investigate this with Best-of-N sampling, where test-
time scaling is conventionally achieved by generating more response candidates. In contrast, we
explore whether allocating more evaluation-time compute at the expense of sampling fewer candidate
responses can ultimately yield better performance given a fixed test-time compute budget.

4.1 EXPERIMENTAL SETTING

Benchmarks We follow the setting of Cui et al. (2025): we utilize three LMs as generators, namely
Eurus-2-SFT (Cui et al., 2025), Llama3.1-70B-Instruct (Llama Team, 2024), and Qwen2.5-7B-
Instruct (Yang et al., 2024). Using our generator LMs, we generate 64 responses per instance across
seven benchmarks (AIME24, AMC23, Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), MATH500 (Hendrycks et al., 2021), LeetCode (Guo et al., 2024), and GPQA (Rein et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Direct Outcome Evaluator

(SkyWork-Reward-Gemma-2-27B-v0.2)

Direct Process Evaluator

(Qwen2.5-Math-PRM-72B)

Reasoning Outcome Evaluator

(DeepSeek-R1-Distill-Qwen-32B) Reasoning Process+Outcome Evaluator

(DeepSeek-R1-Distill-Qwen-32B)
Reasoning Process Evaluator

(DeepSeek-R1-Distill-Qwen-32B)

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

O
ve

ra
ll

(7
 B

en
ch

m
ar

ks
)

Le
et

co
d

e
(C

d
oi

n
g

 b
en

ch
m

ar
k)

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

Best-of-N Sampling with Outcome Evaluator

Test-time Compute (FLOPs in log scale)

Test-time Compute (FLOPs in log scale) Test-time Compute (FLOPs in log scale)

52.03

50.19

48.89 48.89

50.29

51.07

Test-time Compute (FLOPs in log scale)
Combined Process Outcome

Combined Process Outcome

Best-of-N Sampling with Process Evaluator Combining Outcome and Process Scores (Bo8)

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

Figure 3: Best-of-N experimental results for 27B ∼ 72B scale evaluators. Test-time compute on the x axis
denotes the generator’s test-time compute added with evaluation-time compute. (left, middle) We compare
direct evaluators (using Best-of-64) against reasoning evaluators (using Best-of-8), with each dot representing a
doubling of the number of responses. We find that reasoning evaluators achieve better performance compared
to their direct counterparts given a fixed test-time compute budget: see Appendix E for details of our FLOPs
calculations and Table 2 for full results. (right) Combining outcome and process scores yields further gains.

2024)), covering a total of 4,680 instances and 299,520 responses. In Best-of-N setting, evaluators
assess and rank the N responses, with the highest-scoring response chosen as the final prediction.

Metrics For LeetCode, we report pass@1, which measures whether a response passes all test cases.
For the remaining 6 benchmarks, we report accuracy scores, which measures whether a response is
correct. We report the average score of the 3 generators across all 7 benchmarks (21 settings in total).

Methods We consider the following evaluator baselines (see Appendix A.2 for the list of models):

• Direct outcome evaluator: We employ outcome reward models (ORMs) as direct outcome
evaluators. Note that these models do not generate CoTs but instead directly predict the scores.

• Direct process evaluator: We employ process reward models (PRMs) as direct process evaluators.
We adopt the splitting functions and aggregation strategies accompanying each PRM’s official
implementation, as specified in their GitHub repositories or Hugging Face model cards. Note that
these models do not generate CoTs but instead directly predict the correctness of all steps.

• Reasoning outcome evaluator: We prompt reasoning models to act as reasoning outcome evalua-
tors. The evaluator first generates a CoT, followed by a judgment for the correctness of the overall
response. Details are included in subsection 2.1.

• Reasoning process evaluator: We prompt reasoning models to act as reasoning process evaluators.
The evaluator individually generates a CoT as a judgment for each step. We use our proposed
model-based splitting strategy and the mean_logits aggregation function (see subsection 2.2).

• Reasoning process + outcome evaluator: Using the judgments from a reasoning outcome evaluator
and a reasoning process evaluator, we combine scores to obtain the overall score for the response.
Details are included in subsection 2.3. We use α = 0.5 to avoid overfitting to the test set.

In Appendix A.2, we experiment with generative evaluators that were fine-tuned to function as
outcome evaluators, and also study the effects of applying model-based splitting and mean_logits
aggregation to direct process evaluators. Prompt templates can be found in Appendix K.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Matching evaluation-time budget across baselines We test direct outcome evaluators and direct
process evaluators in the Best-of-64 setting. To account for the higher per-instance inference cost of
reasoning evaluators, we evaluate them in the Best-of-8 setting instead, thereby ensuring a compute
budget comparable to that of direct evaluators. We use Qwen2.5-72B-Instruct to segment the
response into steps, yielding 10.07 steps per response on average across the 21 settings.

4.2 EXPERIMENTAL RESULTS

Finding 1: Scaling evaluation-time compute is more effective than generating additional candi-
date responses given a fixed compute budget. From the top left and top middle plots in Figure 3, we
observe that reasoning evaluators using Best-of-8 – including both process and outcome evaluators –
achieve performance equal to or better than direct evaluators using Best-of-64, while requiring similar
or less test-time compute. Looking at the overall scaling trends, we find that reasoning evaluators
suffer less from reward model over-optimization, a phenomenon where Best-of-N gains plateau or
diminish with increased N (Gao et al., 2023; Rafailov et al., 2024). Reward model over-optimization
arises from imperfections in the reward function’s approximation of the ground truth (Lambert and
Calandra, 2023); our results suggest that scaling evaluation-time compute can partially mitigate this
issue by providing more robust evaluation. Similar trends are also observed in smaller evaluators
(7B): see Figure 5 in Appendix C.

Finding 2: Combining scores from reasoning outcome and process evaluation can boost perfor-
mance. From the top right plot of Figure 3, we observe that combining outcome and process scores
can yield improved results. We hypothesize that the two evaluation approaches provide complemen-
tary signals that enable more accurate assessment. We investigate this hypothesis in Appendix H.2
and also further study the effects of altering α in Appendix I.

Finding 3: Reasoning evaluators are especially effective for assessing code outputs. From
the bottom left and bottom middle plot in Figure 3, we observe that reasoning evaluators not only
significantly outperform direct evaluators while using less test-time compute, they also exhibit
promising scaling trends when assessing code outputs. On the other hand, both the direct outcome
evaluator and direct process evaluator heavily suffer from reward model over-optimization. We
attribute these findings to two main causes. Firstly, direct process evaluators are often only trained on
math data (e.g., PRM800K (Lightman et al., 2024)), making them less effective on out-of-domain
tasks such as coding. Secondly, the heuristic-based splitting methods (e.g., splitting based on newline
characters) typically adopted for direct process evaluation may be suboptimal for code outputs.

Additional results in Appendix. In Appendix C, we discuss (1) the scaling trends of 7B-sized
evaluators, (2) how single-step process evaluators and fine-tuned reasoning evaluators (Ankner
et al., 2024; Kim et al., 2024a) compare to our baselines, and (3) the effects of applying model-
based splitting and different aggregation functions. Furthermore, we explore evaluating reasoning
model-generated traces using reasoning models (self-evaluation) in Appendix G.

5 ANALYSES ON WHY REASONING PROCESS EVALUATORS ARE EFFECTIVE

Why are reasoning evaluators effective? The top row of Figure 4 presents descriptions of
common patterns observed in the multi-step process evaluation outputs of reasoning evaluators,
accompanied by representative examples from evaluations on a LeetCode problem. It is known that
reasoning models use versatile reasoning patterns when solving problems (Gandhi et al., 2025a),
such as generating “Wait” tokens that encourage verification between solution steps; similar patterns
are also observed when reasoning models are prompted to function as evaluators. Some patterns
we observe in our example include (1) examining what implementation the given step contains, (2)
conducting a form of meta-verification by re-verifying their evaluation content, (3) exploring whether
there are edge cases that have yet to be identified, and (4) performing backtracking by reviewing the
initial problem conditions, the content of the response, and its own evaluation process. We speculate
that the ability to apply strategies used for problem-solving to the evaluation process is the key reason
why reasoning models show quantitatively good evaluation performance.

When is process evaluation effective? The confusion matrix in the bottom row of Figure 4 illustrates
the strengths and weaknesses of outcome evaluation and process evaluation. Across different model
sizes, we observe that reasoning process evaluators achieve higher precision but lower recall compared

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A
ct

ua
l +

A
ct

ua
l -

Pred + Pred -

A
ct

ua
l +

A
ct

ua
l -

Pred + Pred -
Reasoning Outcome Evaluators Reasoning Process Evaluators

7B 32B

A
ct

ua
l +

A
ct

ua
l -

Pred + Pred -

A
ct

ua
l +

A
ct

ua
l -

Pred + Pred -

7B 32B

56.1 % 58.5 % 37.0 % 28.7 %

3.8 % 30.5 %

44.8 % 21.4 %

3.5 % 30.4 %5.8 % 28.5 %

7.2 %

27.1 %7.2 %

9.6%

Analysis of the Step Verification Thinking for edge cases Backtracking
Looking at the current step,

. The
outer loop is for “i in range(1,
n-1)”, and the inner loop is for

“j in range(i+1, n)”. So for
each possible split point i and

j, where i is the end of the
first subarray and j is

the end of the second

(so the third starts at j).

it's a loop structure
Wait, but the cost is

calculated as nums[0] +
nums[i] + nums[j]. Hmm,

.
Because the first subarray

is from 0 to i-1, right?

that might be the issue

However, is there

?

For example, if the optimal
split requires the second

subarray to be of length 1,

or the third subarray

to be longer.

any case
where the code would

miss a possible split

But
, each

subarray must be

contiguous and disjoint. So
the code correctly handles
the split by choosing i and j
as the starting points of the
second and third subarrays,

respectively.

according to the
problem statement

Figure 4: (Top) A qualitative example of reasoning process evaluator-generated CoT, which includes diverse
reasoning patterns that contribute to improved evaluation performance. (Bottom) Reasoning process evaluators
judge correct responses as incorrect more frequently than outcome evaluators.

to reasoning outcome evaluators. Consequently, when a reasoning process evaluator predicts that all
steps are correct, the final answer is likely to be correct (false positive rates are 3.8% and 3.5%).

6 POINTERS TO EXPERIMENTS AND ANALYSES IN APPENDIX

Due to space constraints, we include additional explanations, experiments, and analyses in the
Appendix section and provide explicit pointers to relevant content for convenience of reviewers.

• What is the main difference between prior works on test-time scaling and the main focus of
this work? → In Appendix D, we include a brief overview of prior works on test-time scaling.
Also, we summarize the key differences between our work and prior works in Table 7.

• Why didn’t you include generative reward models in your experiments? → Experimental
results of Cloud-RM (Ankner et al., 2024) and Prometheus 2 (Kim et al., 2024c) in our Best-of-N
setting is at Appendix C (Table 2) which is an extended section of section 4. We do not include
results of Mahan et al. (2024) and Zhang et al. (2024) as they did not release their checkpoints.

• Does reasoning process evaluators work outside of math and code as well? → In subsec-
tion C.3, we include experimental results on law, engineering, and economics subsets from MMLU-
Pro (Wang et al., 2024b) in our Best-of-N setting, which is an extended section of section 4.

• Does your approach work well when a reasoning model is a generator? → In Appendix G, we
compare ORMs, PRMs, and reasoning models to evaluate responses from a reasoning model.

• What is a formal explanation for the effectiveness of reasoning process evaluators? → In
Appendix F, we explain how a better evaluator (observed in section 3) can alleviate reward model
overoptimization, and translate into enhanced performance of the generator (shown in section 4).

• Isn’t your method more expensive? → In Appendix E, we explain how we constrain the compute
cost of the generator and evaluator. Also, in Appendix I, we further propose a more efficient variant
of using a reasoning model as a evaluator while maintaining its superior performance.

7 CONCLUSION

We find that applying evaluation-time scaling can improve not only evaluator performance but also
the problem-solving capabilities of generators through Best-of-N sampling. We demonstrate that
prompting reasoning models to act as outcome or process evaluators are effective methods for scaling
evaluation-time compute. Additionally, we show that reasoning process evaluation tends to make
more conservative predictions than reasoning outcome evaluation, and that combining reasoning
process and reasoning outcome evaluation can result in further performance gains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We are committed to ensure the reproducibility of our results. We plan to release a link to the code
and artifacts (e.g., model generations) after the anonymity period.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/
2504.21318.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan Daniel Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. In Pluralistic Alignment Workshop at NeurIPS 2024, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dcjtMYkpXx.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025a.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025b.
URL https://arxiv.org/abs/2503.01307.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

10

https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://openreview.net/forum?id=dcjtMYkpXx
https://arxiv.org/abs/2503.01307

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
3828–3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
An empirical analysis of compute-optimal large language model training. Advances in neural
information processing systems, 35:30016–30030, 2022.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. The ICLR Blog Track 2023,
2022.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. A chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. arXiv preprint arXiv:2402.00559, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Nimit Kalra and Leonard Tang. Verdict: A library for scaling judge-time compute. arXiv preprint
arXiv:2502.18018, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Seungone Kim, Se Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo. The
cot collection: Improving zero-shot and few-shot learning of language models via chain-of-thought
fine-tuning. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 12685–12708, 2023a.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
uation capability in language models. In The Twelfth International Conference on Learning
Representations, 2023b.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing eval-
uation capability in language models. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=8euJaTveKw.

Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne Longpre, Chaeeun Kim, Dongkeun Yoon,
Guijin Son, Yejin Cho, Sheikh Shafayat, Jinheon Baek, et al. The biggen bench: A principled
benchmark for fine-grained evaluation of language models with language models. arXiv preprint
arXiv:2406.05761, 2024b.

11

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=8euJaTveKw

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024c.

Nathan Lambert and Roberto Calandra. The alignment ceiling: Objective mismatch in reinforcement
learning from human feedback. arXiv preprint arXiv:2311.00168, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey. arXiv preprint
arXiv:2502.12289, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024. URL
https://lmsys.org/blog/2024-04-19-arena-hard/.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re,
Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli,
Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li,
Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=iO4LZibEqW. Featured Certification, Expert Certification.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pages 22631–22648. PMLR,
2023.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retro-
search: Exploring untaken paths for deeper and efficient reasoning, 2025. URL https://
arxiv.org/abs/2504.04383.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

12

https://lmsys.org/blog/2024-04-19-arena-hard/
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2504.04383

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of
large language models - a survey. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=Lmjgl2n11u.

Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca
Dragan, and Stephen Marcus McAleer. Confronting reward model overoptimization with con-
strained RLHF. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gkfUvn0fLU.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Skywork o1 Team. Skywork-o1 open series. https://huggingface.co/Skywork, Novem-
ber 2024. URL https://huggingface.co/Skywork.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, W. Bradley Knox,
Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct
alignment algorithms. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=pf4OuJyn4Q.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Guijin Son, Jiwoo Hong, Hyunwoo Ko, and James Thorne. Linguistic generalizability of test-time
scaling in mathematical reasoning. arXiv preprint arXiv:2502.17407, 2025.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
and challenging benchmark for process-level reward models. arXiv preprint arXiv:2501.03124,
2025.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008–3021, 2020.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=qwgfh2fTtN.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,

13

https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=gkfUvn0fLU
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://openreview.net/forum?id=pf4OuJyn4Q
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar,
Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
2025. URL https://arxiv.org/abs/2503.19786.

Qwen Team. Qwen2.5: A party of foundation models, September 2024a. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024b. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? limits of LLM scaling based on human-generated data. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=ViZcgDQjyG.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 9426–9439, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yu Wang, Nan Yang, Liang Wang, and Furu Wei. Examining false positives under inference scaling
for mathematical reasoning. arXiv preprint arXiv:2502.06217, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems, 37:
95266–95290, 2024b.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms

14

https://arxiv.org/abs/2503.19786
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=ViZcgDQjyG
https://openreview.net/forum?id=ViZcgDQjyG
https://openreview.net/forum?id=1PL1NIMMrw

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

for large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=eskQMcIbMS. Survey Certification.

Ian Wu, Patrick Fernandes, Amanda Bertsch, Seungone Kim, Sina Pakazad, and Graham Neubig.
Better instruction-following through minimum bayes risk. arXiv preprint arXiv:2410.02902,
2024a.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference
computation: Compute-optimal inference for problem-solving with language models. In The
4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024b. URL https:
//openreview.net/forum?id=j7DZWSc8qu.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 27723–27730, 2025.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, Seungone Kim, Yongrae Jo, James
Thorne, Juho Kim, and Minjoon Seo. FLASK: Fine-grained language model evaluation based on
alignment skill sets. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=CYmF38ysDa.

Edward Yeo, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in LLMs. In Scaling Self-Improving Foundation Models without Human
Supervision, 2025. URL https://openreview.net/forum?id=6A861u4Crm.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun Jiang, and Jiaya Jia. Mr-gsm8k: A meta-
reasoning benchmark for large language model evaluation. arXiv preprint arXiv:2312.17080,
2023.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The 4th Workshop on Mathe-
matical Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/forum?
id=CxHRoTLmPX.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559, 2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024b.

15

https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://openreview.net/forum?id=CYmF38ysDa
https://openreview.net/forum?id=6A861u4Crm
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=CxHRoTLmPX

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

O
ve

ra
ll

(7
 B

en
ch

m
ar

ks
)

Le
et

co
d

e
(C

d
oi

n
g

 b
en

ch
m

ar
k)

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

Best-of-N Sampling with Outcome Evaluator

Test-time Compute (FLOPs in log scale)

Test-time Compute (FLOPs in log scale) Test-time Compute (FLOPs in log scale)

Test-time Compute (FLOPs in log scale)
Combined Process Outcome

Combined Process Outcome

Best-of-N Sampling with Process Evaluator Combining Outcome and Process Scores (Bo8)

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

G
en

er
at

or
 S

co
re

 A
ve

ra
ge

Direct Outcome Evaluator

(SkyWork-Reward-Llama-3.1-8B-v0.2)

Direct Process Evaluator

(Qwen2.5-Math-PRM-7B)

Reasoning Outcome Evaluator

(DeepSeek-R1-Distill-Qwen-7B) Reasoning Process+Outcome Evaluator

(DeepSeek-R1-Distill-Qwen-7B)
Reasoning Process Evaluator

(DeepSeek-R1-Distill-Qwen-7B)

50.11

43.33 43.33

40.56

48.33
48.73

Figure 5: Best-of-N experimental results for ∼ 7B scale evaluators. (left, middle) We compare direct evaluators
(using Best-of-64) against reasoning evaluators (using Best-of-8), with each dot representing a doubling of the
number of responses. We find that reasoning evaluators achieve better performance compared to their direct
counterparts given a fixed test-time compute budget: see Appendix E for details of our FLOPs calculations.
(right) Combining outcome and process scores yields further gains.

A EXTENDED: EXPERIMENTAL SETTINGS

A.1 MODEL LIST FOR PROCESSBENCH EXPERIMENTS (SECTION 3)

We examine three varieties of models in our ProcessBench experiments:

• Direct PRMs: We experiment with 10 different direct PRMs, representing the state-of-the-art
on ProcessBench, from families including math-shepherd-mistral (Wang et al., 2024a),
Skywork (o1 Team, 2024), RLHFlow (Xiong et al., 2024), EurusPRM (Cui et al., 2025), and
Qwen2.5-Math-PRM (Zhang et al., 2025).

• Instruction-tuned Models: These are models that have been trained using supervised fine tuning
and/or RLHF, but have not been explicitly trained for reasoning. We experiment with models from
the Llama-3.1 (Llama Team, 2024), Llama-3.3 (Llama Team, 2024), and Qwen2.5 (Team,
2024a) families. We also experiment with GPT-4-0806 as an outcome evaluator.

• Reasoning Models: These are models that have been explicitly trained to perform reasoning
using RL, or distilled from models trained to perform reasoning. We examine models from the
DeepSeek-R1-Distill-Qwen (Guo et al., 2025) and QwQ (Team, 2024b) families. We also
experiment with o1-mini as a reasoning evaluator.

We report results from a subset of these models in the main text: see Table 1. We include results from
all listed models in Table 4.

Note that we do not experiment with fine-tuned generative evaluators such as Prometheus (Kim
et al., 2023b; 2024a), CLoud-RM (Ankner et al., 2024) and GenRM (Zhang et al., 2024) as these are
trained outcome evaluators that cannot be readily employed to detect process errors, as is required by
ProcessBench.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Full results for Best-of-8 (reasoning evaluators) and Best-of-64 (all other evaluators) exper-
iments using direct outcome evaluators, direct process evaluators, non-reasoning generative evaluators,
reasoning outcome evaluators , single-step reasoning process evaluators , reasoning process evaluators , and
reasoning outcome + process evaluators . Results were obtained by averaging scores across all 7 evaluation
benchmarks and 3 generators as described in section 4.

Model N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

Direct Outcome Evaluators (ORMs)
Skywork-Reward-Llama-3.1-8B-v0.2 38.2 41.4 43.4 44.6 45.5 45.2 44.8
Skywork-Reward-Gemma-2-27B-v0.2 38.2 41.8 43.4 44.8 45.5 45.6 45.4

Direct Process Evaluators (PRMs)
math-shepherd-mistral-7b-prm 38.2 41.6 42.7 43.1 43.7 43.5 43.2
Skywork-o1-Open-PRM-Qwen-2.5-1.5B 38.2 42.8 44.2 45.9 46.5 46.5 46.7
Skywork-o1-Open-PRM-Qwen-2.5-7B 38.2 42.9 45.3 47.5 48.4 48.7 49.9
RLHFlow/Llama3.1-8B-PRM-Mistral 38.2 40.2 40.0 39.4 38.4 37.2 35.5
RLHFlow/Llama3.1-8B-PRM-Deepseek 38.2 40.5 40.4 40.4 40.0 38.8 37.8
Qwen2.5-Math-7B-PRM800K 38.2 41.6 43.4 45.1 45.2 45.0 44.6
Qwen2.5-Math-PRM-7B 38.2 42.3 44.0 45.8 47.8 48.2 48.7
Qwen2.5-Math-PRM-72B 38.2 42.9 45.4 48.2 48.9 49.8 50.6

Non-Reasoning Generative Evaluators
Llama3-8B-CLoud-RM 38.2 41.8 42.7 43.8 43.7 43.1 42.5
prometheus-7b-v2.0 38.2 40.4 41.3 41.7 41.5 40.7 39.7
prometheus-8x7b-v2.0 38.2 40.3 40.8 41.9 41.6 41.2 40.8
Qwen2.5-72B-Instruct 38.2 42.3 44.1 45.9 45.2 45.8 45.6

Reasoning Outcome Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 42.7 46.6 48.7 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 43.9 47.7 51.1 - - -

Single-step Reasoning Process Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 41.3 44.2 45.6 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 41.7 44.9 48.1 - - -

Reasoning Process Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 42.6 45.5 48.3 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 43.6 46.9 50.3 - - -

Reasoning Process + Outcome Evaluators
DeepSeek-R1-Distill-Qwen-7B 38.2 43.3 46.6 50.1 - - -
DeepSeek-R1-Distill-Qwen-32B 38.2 44.4 48.5 52.0 - - -

Table 3: Ablation results of applying different splitting and aggregation functions to direct process evaluators.

Model N = 1 N = 2 N = 4 N = 8

Splitting: Heuristic-based, Aggregation: min

Qwen2.5-Math-PRM-7B 38.2 42.3 44.0 45.8
Qwen2.5-Math-PRM-72B 38.2 42.9 45.4 48.2

Splitting: Heuristic-based, Aggregation: mean_logits

Qwen2.5-Math-PRM-7B 38.2 40.7 41.4 41.7
Qwen2.5-Math-PRM-72B 38.2 41.9 43.3 43.8

Splitting: Model-based, Aggregation: min

Qwen2.5-Math-PRM-7B 38.2 42.6 45.00 47.1
Qwen2.5-Math-PRM-72B 38.2 43.2 45.8 49.9

A.2 MODEL LIST FOR BEST-OF-N EXPERIMENTS (SECTION 4)

• Direct outcome evaluators: We experiment with Skywork-Reward-Llama-3.1-8B-v0.2 (Liu
et al., 2024) and Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024), which are the
state-of-the-art direct outcome evaluators on RewardBench (Lambert et al., 2024) (a widely used
benchmark to assess ORMs).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Direct process evaluators: We experiment with math-shepherd-mistral (Wang et al.,
2024a), Skywork (o1 Team, 2024), RLHFlow (Dong et al., 2024), EurusPRM (Cui et al., 2025),
and Qwen2.5-Math-PRM (Zhang et al., 2025).

• Fine-tuned generative evaluators: While, like reasoning models, these models also produce
CoT they, unlike reasoning models, produce short CoT that lack complex reasoning patterns
(e.g. self-verification, self-correction, backtracking) as they are not trained to reason using RL.
We experiment with Llama3-8B-CLoud-RM (Ankner et al., 2024) and the Prometheus 2
family (Kim et al., 2024c), which are generative models trained specifically for outcome evaluation,
as well as Qwen2.5-72B-Instruct (Team, 2024a), which we prompt to act as a generative
evaluator. We use these models as reasoning outcome evaluators.

• Reasoning outcome evaluators: We prompt reasoning models DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Qwen-32B to act as reasoning outcome evaluators.

• Reasoning process evaluator: We prompt reasoning models DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Qwen-32B to act as reasoning process evaluators.

• Reasoning process + outcome evaluator: We experiment with the reasoning models
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-32B, using
identical models for both the outcome and process evaluation components in each case.

B ADDITIONAL RESULTS FOR PROCESSBENCH EXPERIMENTS (SECTION 3)

We include the full experimental results for our ProcessBench experiments (section 3) in Table 4.

C ADDITIONAL RESULTS AND DISCUSSION FOR BEST-OF-N EXPERIMENTS
(SECTION 4)

We include the full experimental results for our Best-of-N experiments (section 4) in Table 2.

C.1 FINDINGS FROM EXPERIMENTS

Evaluation-time Scaling is effective with smaller-sized evaluators as well. Similar to Figure 3
with larger-sized evaluators, Figure 5 shows the results of employing smaller-sized evaluators in
the Best-of-N setting. The findings from section 4 maintain the same: (1) reasoning evaluators
(Best-of-8) outperform or match their direct evaluator counter parts (Best-of-64) while using less
amount of compute, (2) reasoning process + outcome evaluation can boost performance, and (3)
reasoning evaluators are especially effective for coding.

Multi-step process evaluation outperforms single-step process evaluation. Next, as shown in
Table 2, we compare reasoning process evaluators with single-step reasoning process evaluators (see
subsection 2.2 for a detailed explanation of the difference). Results show that even when employing
the same LM as the evaluator, evaluating each step individually is superior to evaluating all the steps
at once, supporting the strength of our approach and effectiveness of evaluation-time scaling.

Reasoning outcome evaluators outperform specially-trained outcome evaluators.. Then,
as shown in Table 2, we compare the effectiveness of employing reasoning models as outcome
evaluators over using specially-trained outcome evaluators such as CLoud-RM (Ankner et al., 2024)
and Prometheus 2 (Kim et al., 2024a). Results show that reasoning models are very effective in our
Best-of-N setting. This is notable because it hints that employing LMs with stronger problem-solving
capabilities as evaluators is more important than inducing evaluation capabilities through training.
Future work could explore recipes for training reasoning models as evaluators.

Model-based splitting is effective for direct process evaluators as well. Lastly, we ablate
the effect of applying model-based splitting and the mean_logits aggregation function to direct
process evaluators. Note that model-based splitting requires the usage of an LM (Msplit) to segment
the response into steps, it requires additional compute. Results in Table 3 show that (1) applying a
model-based splitting approach is effective and (2) using the mean_logits aggregation function is not.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Full experimental results for our ProcessBench experiments (section 3).

Model GSM8K MATH Olym. Bench Omni-MATH Avg. F1 ∆

Direct Process Evaluator (PRMs)
math-shepherd-mistral-7b-prm 47.9 29.5 24.8 23.8 31.5 -
Skywork-o1-Open-PRM-Qwen-2.5-1.5B 57.9 48.0 16.5 18.9 35.3 -
Skywork-o1-Open-PRM-Qwen-2.5-7B 70.8 53.6 22.9 21.0 42.1 -
RLHFlow/Llama3.1-8B-PRM-Mistral 50.4 33.4 13.8 15.8 28.4 -
RLHFlow/Llama3.1-8B-PRM-Deepseek 38.8 33.8 16.9 16.9 26.6 -
EurusPRM-Stage1 (7B) 44.3 35.6 21.7 23.1 31.2 -
EurusPRM-Stage2 (7B) 47.3 35.7 21.2 20.9 31.3 -
Qwen2.5-Math-7B-PRM800K 68.4 62.5 50.4 43.6 56.2 -
Qwen2.5-Math-PRM-7B 82.4 77.6 67.5 66.3 73.5 -
Qwen2.5-Math-PRM-72B 87.3 80.6 74.3 71.1 78.3 -

Single-step Reasoning Process Evaluator

Instruction-tuned Models
Llama-3.1-8B-Instruct 24.0 15.5 9.7 10.1 14.8 0.0
Llama-3.3-70B-Instruct† 82.9 59.4 46.7 43.0 58.0 -
Qwen2.5-32B-Instruct 63.8 47.5 35.9 32.7 45.0 0.0
Qwen2.5-Math-72B-Instruct† 65.8 52.1 32.5 31.7 45.5 -
Qwen2.5-72B-Instruct† 76.2 61.8 54.6 52.2 61.2 -
Reasoning Models
DeepSeek-R1-Distill-Qwen-7B 68.3 61.1 48.3 40.4 54.5 0.0
DeepSeek-R1-Distill-Qwen-32B 83.9 78.1 72.4 67.7 75.5 0.0
QwQ-32B-Preview 77.5 58.9 31.2 35.8 50.9 0.0
QwQ-32B 79.5 77.5 71.5 69.4 74.5 0.0
Reasoning Models (Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 69.3 67.9 54.8 51.5 60.9 +6.4
DeepSeek-R1-Distill-Qwen-32B 82.2 80.4 76.2 72.5 77.8 +2.3
QwQ-32B-Preview 88.0 78.7 57.8 61.3 71.5 +20.6
QwQ-32B 81.0 78.8 74.4 72.8 76.8 +2.3

GPT-4-0806† 79.2 63.6 51.4 53.5 61.9 -
o1-mini† 93.2 88.9 87.2 82.4 87.9 -

Reasoning Process Evaluator (Ours)

Instruction-tuned Models (Multi-step Process Evaluation)
Llama-3.1-8B-Instruct 35.2 22.8 12.6 17.9 22.1 +7.3
Qwen2.5-32B-Instruct 70.1 61.7 54.2 53.9 60.0 +15.0
Reasoning Models (Multi-step Process Evaluation)
DeepSeek-R1-Distill-Qwen-7B 75.5 67.3 59.8 56.6 64.8 +10.3
DeepSeek-R1-Distill-Qwen-32B 80.3 82.2 77.0 75.0 78.6 +3.1
QwQ-32B-Preview 81.7 79.3 70.3 69.8 75.3 +24.4
QwQ-32B 81.5 83.6 76.8 75.1 79.3 +4.8
Reasoning Models (Multi-step Process Evaluation + Self-Consistency)
DeepSeek-R1-Distill-Qwen-7B 80.1 75.1 69.3 70.4 73.7 +19.2
DeepSeek-R1-Distill-Qwen-32B 86.6 85.4 78.9 80.3 82.8 +7.3
QwQ-32B-Preview 86.8 85.7 79.0 78.0 82.4 +31.5
QwQ-32B 85.0 85.6 79.4 78.0 82.0 +7.5

Table 5: Statistical analysis of mean_logit scores for different sample sizes in Best-of-N evaluation

N Mean Score Std Dev 96% CI
1 38.14 1.712 (34.31, 41.96)
2 43.98 1.752 (40.06, 47.90)
4 47.90 1.783 (43.92, 51.89)
8 51.58 1.782 (47.60, 55.57)

C.2 CHECKING STATISTICAL SIGNIFICANCE OF RESULTS

We run the Best-of-8 experiment twice, with a reasoning evaluator (DeepSeek-R1-Distill-Qwen-32B)
calculating scores on 8 responses per instance. For N=8, there are 2 scores; for N=4, there are 4 scores

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Reasoning process evaluators are effective outside of math and code as well: Performance across
Economics, Engineering, and Law subsets from MMLU-Pro (Wang et al., 2024b) in Best-of-N experiment
setting using different evaluators. Our approach (DeepSeek-R1-Distill-Qwen-7B/32B with Process + Outcome
evaluation) outperforms other evaluators while using less number of responses from generators.

Evaluator # Generator Responses Llama-3.1-70B-Instruct DeepSeek-R1-Distill-Qwen-7B Total Avg

Economics Engineering Law Economics Engineering Law

Baselines

Greedy N=1 1 74.5 47.0 45.5 69.5 53.0 17.5 51.17
Skywork-8B (ORM) 64 78.0 47.0 50.0 76.5 55.5 23.5 55.08
Skywork-27B (ORM) 64 80.5 42.5 51.0 74.5 58.0 23.5 54.92
Qwen-PRM-7B 64 76.0 50.5 47.5 74.0 55.0 21.5 54.08
Qwen-PRM-72B 64 74.5 41.5 48.0 78.0 52.0 26.0 53.33

Ours

DeepSeek-R1-Distill-Qwen-7B (Process + Outcome) 8 79.0 51.5 47.0 75.0 52.0 28.5 55.33
DeepSeek-R1-Distill-Qwen-32B (Process + Outcome) 8 81.0 56.5 47.5 79.0 54.0 32.0 58.33

(index 0∼3 from first run, index 4∼7 from first run, index 0∼3 from second run, index 4∼7 from
second run); and so on. As shown in Table 5, all scores across N=1,2,4,8 are statistically significant
at the 96% confidence level.

C.3 TESTING ON DOMAINS OUTSIDE OF MATH AND CODE

Experimental setting To evaluate whether our reasoning process evaluator extends beyond math
and coding tasks, we conduct experiments on 500 samples from each of the economics, engineering,
and law subsets of MMLU-Pro (Wang et al., 2024b). To sample responses, we use both a reasoning
model (DeepSeek-R1-Distill-Qwen-7B) and a non-reasoning model (Llama-3.1-70B-Instruct). For
each question, we sample 64 candidate responses from both generators.

Experimental results The results are shown in Table 6. While baseline evaluators (ORMs and
PRMs) operate on all 64 candidates, our reasoning-based evaluator processes only 8 responses.
Despite this smaller candidate set, the results show that our 7B evaluator outperforms both the
8B ORM and the 7B PRM, and our 32B evaluator outperforms both the 27B ORM and the 32B
PRM. These findings, consistent with the trends observed in Figure 3 and Figure 5, demonstrate that
evaluation-time scaling with reasoning evaluators remains effective across diverse domains, including
economics, engineering, and law, thereby confirming that our methodology generalizes beyond math
and coding.

D RELATED WORK

D.1 SCALING TEST-TIME COMPUTE

Increasing compute by enlarging model size or expanding training data has long been one of the
key methods to improve LM performance during training time (Kaplan et al., 2020; Hoffmann et al.,
2022; Longpre et al., 2023; Kim et al., 2023a). However, as it becomes increasingly difficult to obtain
high-quality data sufficient for steady advancement of LM performance, a new paradigm has gained
attention: scaling compute at test-time instead of training-time (Villalobos et al., 2024; Welleck
et al., 2024; Wu et al., 2024b). This approach is attracting interest as a method that can enhance LM
performance in a way that complements training time compute. The main approaches to scaling
up test-time compute include, first, leveraging sufficient compute at test-time by training reasoning
models that generate longer and qualitatively different Chain-of-Thought (CoT) compared to existing
chat models (Guo et al., 2025; Yeo et al., 2025; Muennighoff et al., 2025), and second, using inference-
time algorithms such as Best-of-N sampling at test-time (Sun et al., 2024; Welleck et al., 2024).
Existing works on test-time compute have primarily focused on improving LM’s problem-solving
capability, whereas we focus on scaling compute for evaluation to enhance evaluators’ capabilities by
assessing each response step with process evaluation and generating long CoT for precise evaluation.

Table 7 summarizes the difference between representation works on test-time scaling (on the generator
side) versus our approach on scaling evaluation-time compute.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Test-time scaling on generator vs. evaluator: Summary of methods and trade-offs across prior work
and ours. Unlike prior work that mainly scales the generator while fixing the evaluator, we are the first to
explicitly study scaling evaluator test-time compute. We show that scaling evaluation-time strategies can directly
improve evaluator performance, opening new directions for test-time evaluation research. Generator-side variants
include (A) multiple responses (parallel), (B) beam/lookahead with a PRM (parallel), (C) sequential revision.
Evaluator-side variants include (X) a PRM, (Y) self-consistency on the evaluator (parallel), and (Z) a reasoning
model as a process evaluator (sequential).

Paper Method for Scaling Test-time
Compute on Generator side

Method for Scaling
Test-time Compute on
Evaluator side

Investigated Trade-off

Snell et al. (2024) (A) Generating Multiple
Responses (Parallel), (B)
Beam/Lookahead search using a
PRM (Parallel), (C) Sequential
Revision (Sequential)

(X) Using a PRM “A+X” vs “B+X”: Test-time scal-
ing for search with verifiers;
“A+X” vs “C+X”: Test-time scal-
ing with revisions.

Muennighoff et al.
(2025)

(A) Generating Multiple Re-
sponses (Parallel), (B) Budget
Forcing (Sequential)

(X) Using a PRM “A+X” vs “B+X”: Parallel vs se-
quential scaling.

Brown et al.
(2024)

(A) Generating Multiple Re-
sponses

(X) Using an ORM “A+X”: Scaling laws as the num-
ber of responses increases.

Ours (A) Generating Multiple Re-
sponses (Parallel)

(X) Using an ORM
or PRM; (Y) Apply-
ing self-consistency to
the evaluator (Parallel);
(Z) Utilizing a reasoning
model as a process eval-
uator (Sequential)

“X” vs “Y” vs “Z”: Evaluation-
time scaling (Sec. 3); “A+X”
vs “A+Z”: Translating improved
reasoning to problem solving
(Sec. 4).

D.2 LANGUAGE MODEL EVALUATORS

Accurately verifying the outputs generated by a language model (LM) is crucial for understanding
the types of errors it frequently makes and identifying its limitations (Liang et al., 2023; Mondorf
and Plank, 2024; Zheng et al., 2024a; Lee and Hockenmaier, 2025). Recently, evaluators—LMs
that assess the quality of a given response (also referred to as verifiers, reward models, or judges in
the literature)—have gained significant attention for their ability to provide precise assessments of
LM outputs (Zheng et al., 2024b; Ye et al., 2024; Kim et al., 2023b; Lambert et al., 2024; Gu et al.,
2024). Evaluators are not only used for benchmarking purposes but also for enhancing the LM’s
problem solving capabilities (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024; Wang
et al., 2024a; Sun et al., 2024; Wu et al., 2024a).

When an evaluator fails to assess accurately, it may result in unintended consequences for the
purpose it is serving (Gao et al., 2023; Coste et al., 2024; Moskovitz et al., 2024). For example, if
an evaluator fails to provide accurate judgments, even if a specific LM being evaluated performs
well, its true capabilities may be misrepresented due to the errors stemming from the evaluator’s
limitations (Dubois et al., 2024; Li et al., 2024; Kim et al., 2024b). Also, when integrating an evaluator
into an inference-time algorithm, the imperfection of the evaluator might result in diminishing returns
even when using more test-time compute (Gao et al., 2023; Rafailov et al., 2024). These limitations
highlight the need for more robust evaluators that can generalize in diverse contexts. While Kalra and
Tang (2025) has examined debate-based strategies and usage of larger models as evaluators to scale
up evaluation-time compute, our work specifically focuses on ‘using reasoning models as process
evaluators’ to demonstrate the effectiveness of evaluation-time scaling.

D.3 FUTURE DIRECTIONS

Looking ahead, we envision our research enabling advances in two areas. First, evaluation-time
scaling can provide better training signals. In particular, it is widely known that generators often
develop undesirable traits through reward model over-optimization when given imprecise rewards
during reinforcement learning (Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Huang et al.,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2022); investigating whether reasoning process evaluators can mitigate this represents a promising
direction. Second, future work could explore whether reasoning evaluators can be improved through
training. Existing trained evaluators do not leverage the long CoTs that have proven effective in
this work, yet we believe that training such models may be key to further enhancing LM evaluation
capabilities.

E APPROXIMATION OF TEST-TIME COMPUTE

For approximating inference-time compute as in Figure 3 and Figure 5, we follow Snell et al. (2024)
and Son et al. (2025). Specifically, inference compute cost can be asymptotically approximated by:

C ∈ O(N × L), (9)

where C is the computation cost, N is the number of parameters and L is the number of tokens.
Therefore, we use N × L as a relative inference compute for a single inference call.

For instance, consider a Best-of-8 case where the generator of size 70B generates total 1,000 tokens
in average (generation-time compute for response), and the reasoning outcome evaluator of size 7B
generates total 3,000 tokens in average (evaluation-time compute for CoT and judgment). In this
case, the approximate inference-time compute can be calculated as:

8× ((70× 109 × 1000) + (7× 109 × 3000)) = 7.28× 1017

On a high level, when we break down inference-time compute into generator-time compute and
evaluation-time compute, 70 × 109 × 1000 corresponds to the generation-time compute and 7 ×
109 × 3000 corresponds to the evaluation-time compute. Therefore, Best-of-8 with reasoning process
evaluators (that spends more evaluation-time compute than generation-time compute) requires similar
inference-time compute compared to Best-of-64 with direct evaluators (that spends more generation-
time compute than evaluation-time compute).

F FORMAL EXPLANATION OF WHY EVALUATION-TIME SCALING CAN
IMPROVE THE GENERATOR’S PERFORMANCE

We provide a more formal explanation for why evaluation-time scaling can be more effective than the
conventional approach of sampling a larger number of responses with a weaker evaluator. The key
intuition is that a stronger evaluator mitigates the phenomenon of reward model over-optimization,
where imperfect evaluators overvalue certain responses due to noise or bias.

Let u(x) denote the oracle quality of a candidate response x. An evaluator provides a surrogate score

E(x) = u(x) + δ(x), (10)

where δ(x) captures evaluation error (biases or noise). In Best-of-N , given N candidates Y =
{y1, . . . , yN}, the oracle-best candidate is

y∗N = argmax
yi∈Y

u(yi), (11)

while the candidate chosen by the evaluator is

arg max
yi∈Y

(
u(yi) + δ(yi)

)
. (12)

Because the evaluator is imperfect, the selected response may be suboptimal if it receives an erro-
neously high δ(yi). The probability of such mis-selection grows with N , since larger candidate sets
increase the chance of some yi having a large positive error. This effect, often referred to as reward
model over-optimization or reward hacking, undermines the benefits of scaling the generator alone.

Suppose we instead use an improved evaluator

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E′(x) = u(x) + δ′(x), (13)

where δ′(x) has lower variance or higher fidelity with respect to u(x). In this case, the probability of
correctly selecting the oracle-best candidate improves:

P
(
argmax

i
E′(yi) = y∗N

)
> P

(
argmax

i
E(yi) = y∗N

)
. (14)

Crucially, our results show that even with fewer candidates (n ≪ N), scaling evaluation-time
compute with a stronger evaluator can yield

P
(
argmax

i
E′(yi) = y∗n

)
> P

(
argmax

i
E(yi) = y∗N

)
. (15)

Thus, despite reducing the number of samples, improved evaluation quality can more than compensate
for the loss in oracle score.

This explanation aligns with our experimental results provided in section 4. First, in the low-
budget regime (e.g., 1–2 candidates), investing in evaluation compute provides little benefit, since
oracle quality is too low for the evaluator to meaningfully distinguish among responses. In this
regime, additional sampling dominates. Second, as the number of candidates grows (16–64), a
weaker evaluator (e.g., PRM) becomes increasingly vulnerable to mis-selection, while our approach
continues to benefit from reduced error. Finally, scaling evaluation-time compute produces smooth
gains in general: when moving from 1 to 8 responses, both the oracle quality improves and the
stronger evaluator reliably identifies the best candidate, leading to consistent upward scaling curves.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 8: Reasoning models can self-evaluate its response effectively when functioning as a reasoning
process evaluator: We prompt DeepSeek-R1-Distill-Qwen-7B to act as both a generator and its own Best-of-N
reasoning process + outcome evaluator (self-evaluation). We also report the improvements when using Eurus-2-
SFT, Llama3.1-70B-Instruct, and Qwen2.5-7B-Instruct as a generator and DeepSeek-R1-Distill-Qwen-7B as an
evaluator for relative comparison. We measure performance improvements (between Best-of-1 and Best-of-8) as
a percentage of the gap between Best-of-1 and oracle performance, denoted as Gap Recovered. We find that the
gains associated with this are comparable to or larger than the gains associated with Best-of-N using the same
evaluation strategy on the outputs of instruction-tuned generators.

Generator N = 1 N = 8 Oracle Gap Recovered (%)

AIME24

Eurus-2-SFT 13.3 20.0 20.0 100.0
Llama3.1-70B-Instruct 16.7 23.3 36.7 33.0
Qwen2.5-7B-Instruct 10.0 16.7 23.3 50.4

Self-Evaluation (Outcome Eval on CoT + Process Eval on summary) 50.0 73.3 83.3 70.0
Self-Evaluation (Outcome Eval on summary + Process Eval on summary) 50.0 66.7 83.3 50.2

AMC23

Eurus-2-SFT 31.1 45.3 62.7 44.9
Llama3.1-70B-Instruct 26.8 45.3 65.1 48.3
Qwen2.5-7B-Instruct 36.6 51.6 69.9 45.0

Self-Evaluation (Outcome Eval on CoT + Process Eval on summary) 85.5 88.0 92.8 34.2
Self-Evaluation (Outcome Eval on summary + Process Eval on summary) 85.5 89.2 92.8 50.7

Table 9: Reasoning models can self-evaluate its response more effectively than using direct evaluators:
Comparison of direct evaluators (ORMs and PRMs) with 64 candidate responses versus our reasoning process
evaluator with only 8 responses. We generate the responses with DeepSeek-R1-Distill-Qwen-7B and test
different evaluators in Best-of-N setting. Our approach achieves the highest accuracy on both benchmarks.

Evaluator # Candidate Responses AIME-2024 AMC-2023

Greedy 1 50.0 85.54
Skywork-8B (ORM) 64 60.0 77.10
Qwen-PRM-7B 64 40.0 73.50
Skywork-27B (ORM) 64 60.0 88.00
Qwen-PRM-72B 64 56.66 85.54
DeepSeek-R1-Distill-Qwen-7B (Ours; Process + Outcome) 8 66.7 89.2

G SELF-EVALUATION OF REASONING MODELS

In section 4, we study whether using reasoning models as Best-of-N evaluators improves the problem-
solving capabilities of instruction-tuned models. This naturally raises the question of whether similar
gains could be achieved if a reasoning model is used both as the generator and the evaluator (i.e.,
self-evaluation). To explore this, we conduct a preliminary experiment in which DeepSeek-R1-
Distill-Qwen-7B is used both to generate responses and to evaluate them. Due to computational
constraints, we only assess self-evaluation on AIME24 and AMC23 in the Best-of-8 setting.

The challenge of assessing long CoTs A notable characteristic of current reasoning models is that
their CoTs (bookended by “<think></think>” tokens) are often lengthy and include numerous
reasoning steps. This presents practical challenges for evaluation, as the evaluator must be able to
handle long contexts and accurately assess text that includes exploratory reasoning, backtracking, and
self-correction steps. However, rather than evaluating the entire CoT trace, we could instead evaluate
the reasoning summary that is automatically produced by the reasoning model after the CoT. This
reasoning summary condenses the exploratory CoT into a more concise form resembling the CoT of
instruction-tuned models: see Appendix G.1 for an illustrative example.

Experimental setting We first generate responses to the AIME24 and AMC23 datasets with
DeepSeek-R1-Distill-Qwen-7B, setting t = 0.6 and N = 8. We then perform Best-of-N by prompt-
ing DeepSeek-R1-Distill-Qwen-7B to act as a reasoning outcome + process evaluator, following the
method described in subsection 2.3. In addition to reporting Best-of-1 and Best-of-8 performance,
we also report the percentage of the performance gap between the Best-of-1 and oracle performances

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

recovered by Best-of-8 (denoted as Gap Recovered). For self-evaluation, we always perform reason-
ing process evaluation on the output summaries, whereas we experiment with reasoning outcome
evaluation on both the summaries and the entire CoT. We document our findings in Table 8.

Main Results Our results in Table 8 provide preliminary evidence that reasoning models can be
used to improve their own outputs through Best-of-N . Specifically, the gains associated with this (Gap
Recovered for DeepSeek-R1-Distill-Qwen-7B) is comparable to or larger than the gains associated
with Best-of-N on the outputs of the other generators (Eurus-2-SFT, Llama-3.1-70B-Instruct, and
Qwen2.5-7B-Instruct) when using the same evaluator (DeepSeek-R1-Distill-Qwen-7B).

Evaluating the summary is as effective as evaluating entire CoT We also find that performing the
outcome evaluation component of our reasoning process + outcome evaluation strategy on thoughts
improves over outcome evaluation on summaries for AIME, whereas the opposite is true for AMC,
although both strategies achieve notable gains over Best-of-1 on both datasets. We hope that our
results encourage further investigation into self-evaluation strategies for reasoning models.

Comparison with direct evaluators We further evaluate the performance of state-of-the-art ORMs
and PRMs under the same setting, fixing the generator to DeepSeek-R1-Distill-Qwen-7B and varying
only the evaluators. While baseline evaluators operate on 64 candidate responses, our reasoning-
based evaluator uses only 8 responses from the generator. The last row of Table 9 corresponds to
our proposed method, which follows the “Outcome Eval on summary + Process Eval on summary”
configuration reported in Table 8.

The results demonstrate that generating a moderate number of responses (N = 8) with a reasoning
model and evaluating them with a reasoning evaluator achieves higher accuracy than generating a
much larger set of responses (N = 64) evaluated with ORMs or PRMs. This finding highlights the
complementary role of reasoning: the reasoning model not only improves problem solving through its
longer chains of thought, but also enhances evaluation fidelity. Taken together, these results confirm
that using reasoning models for both generation and evaluation provides a synergistic effect that
surpasses conventional test-time scaling approaches.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G.1 EXAMPLE OF A REASONING MODEL’S OUTPUT

We provide an example of DeepSeek-R1-Distill-Qwen-7B’s response to an input from AMC23. The
pink box contains the chain-of-thought portion of the response, while the green box contains the
summary. The CoT and the summary are separated by a “</think>” token.

Problem. In the state of Coinland, coins have values 6, 10, and 15 cents. Suppose x is the value in
cents of the most expensive item in Coinland that cannot be purchased using these coins with exact
change. What is the sum of the digits of x?

Response

Chain-of-thoughts

Okay, so I have this problem about Coinland where the coins are 6, 10, and 15 cents. I need to
find the largest amount of money that can’t be made using these coins, and then find the sum of
the digits of that amount. Hmm, interesting.

First, I remember something about the Frobenius number, which is the largest number
that can’t be expressed as a combination of given coin denominations. But I think that’s mainly
for two coins. Since we have three here, it might be more complicated. Maybe I should try to see
if there’s a pattern or a way to approach it.

Let me list out some numbers and see which ones can be made with 6, 10, and 15.
Maybe I can find a point beyond which all numbers can be made, and then the largest one before
that would be the answer.

Starting from 1 cent and going upwards:

...

So, starting from 30, every number can be made. Therefore, 29 is indeed the largest
number that cannot be formed.

So, the answer is 29, and the sum of its digits is 2 + 9 = 11.

Final Answer
The sum of the digits of the largest non-makable amount is 11 .</think>

Summary

To determine the largest amount of money that cannot be made using coins of 6, 10, and 15
cents, we start by listing the numbers and checking if they can be formed using these coins.

We find that the numbers 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23, and 29 cannot
be formed. We then check numbers beyond 29 and find that all numbers from 30 onwards can be
formed using combinations of 6, 10, and 15 cents.

Thus, the largest number that cannot be formed is 29. The sum of the digits of 29 is 2 + 9 = 11.

11

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H ADDITIONAL ANALYSES (SECTION 5

H.1 WHEN DOES PROCESS EVALUATION FAIL?
Non-error

(reasoning)

Non-error

(segmentation)

Error

(explicitly

corrected)

23.3%

18.9%

13.3%
8.9%

35.6%

Error

(ignored)

Non-error

(planning/

restatement)

Figure 6: Error pattern analysis of false positive
cases from reasoning process evaluators. Please
see Appendix H.3 for more details.

When does process evaluation fail? We manually
analyze 90 false negative cases from the 7B reasoning
process evaluator on MATH-500, OlympiadBench,
and GPQA. We identify two common failure modes:
(1) the evaluators incorrectly flag correct steps as er-
rors, and (2) the solutions contain actual reasoning
errors despite reaching correct conclusions, a phe-
nomenon known as unfaithful reasoning (Lyu et al.,
2023; Wang et al., 2025). Our analysis reveals that
44.4% of flagged steps contain genuine errors (see
Figure 6), confirming that unfaithful reasoning sig-
nificantly contributes to the discrepancy between pro-
cess and outcome evaluation. Further analyses with
examples can be found in Table 10.

H.2 PRECISION-RECALL CURVE

DeepSeek-R1-Distill-Qwen-7B(a) DeepSeek-R1-Distill-Qwen-32B

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Outcome
Process

Process+Outcome

0.65

0.70

0.75

0.80

0.85

0.90

0.95

P
re

ci
si

o
n

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

Outcome
Process

Process+Outcome

Figure 7: P-R curve of reasoning outcome evaluators and process evaluators. While reasoning process evaluators
achieve higher precision in the low-recall region, reasoning outcome process evaluators achieve better perfor-
mance in the high-recall region. Combining both scores is an optimal strategy that achieves better precision than
outcome and process evaluation in any region.

Figure 4 (Bottom) displays the confusion matrix of reasoning outcome evaluators and process
evaluators using a constant classification threshold (0.5). However, one can also plot a precision-
recall curve (P-R curve) by varying the threshold. In this plot, recall=0 indicates that the threshold
is high (∼ 1.0) and all correct responses are classified as negative, and recall=1 indicates that the
threshold is small (∼ 0.0) and all correct responses are classified as positive.

The resulting P-R curve is shown in Figure 7. Aligned to the findings of section 5, the curves show
that reasoning process evaluators are more conservative classifiers than reasoning outcome evaluators.
The curve indicates that if the process evaluator assigned a high score, it is more likely that the
final answer is correct (high precision in low-recall region). However, outcome evaluators achieve
better overall accuracy (high precision in high-recall region), indicating that process evaluators are
more likely to assign relatively low scores to correct responses than outcome evaluators. Combining
outcome and process scores results in similar trends to process evaluators in the low-recall region and
to outcome evaluators in the high-recall region, achieving the best of both worlds.

H.3 QUALITATIVE ANALYSIS

In this section, we briefly present the criteria for manual analysis on steps that lead to a correct
answer but are predicted as incorrect by reasoning process evaluators.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

First, we randomly sample 90 responses from MATH500, OlympiadBench, and AMC generated
using Llama-3.1-70B-Instruct, where the response’s final answer is correct but the reasoning
process evaluator (DeepSeek-R1-Distill-7B) flag a step-level error. The three datasets were chosen
because (1) they cover a diverse range of problems including relatively easier (MATH500), medium-
level (AMC), and hardest problems (OlympiadBench)2, and (2) these three datasets demonstrate
the most significant gap between reasoning outcome evaluators and reasoning process evaluators in
Best-of-N setting.

The authors manually analyzed the first erroneous step flagged by the reasoning process evaluators.
The flagged steps are classified into errors and non-errors. Errors include clear logical or mathemati-
cal errors or unjustified falsifiable statements, whereas non-errors include correct reasoning steps,
assumptions, and text unrelated to reasoning. The taxonomy is displayed within Table 10.

Error Type Example
Error
(ignored)
35.6%

Problem. In the xy-plane, a circle of radius 4 with center on the positive x-axis is tangent to the y-axis at the
origin, and a circle with radius 10 with center on the positive y-axis is tangent to the x-axis at the origin. What
is the slope of the line passing through the two points at which these circles intersect? The final answer can be
written in the form m

n , where m and n are relatively prime positive integers. What is m + n?
...
Step 5. When y = 0, x = 0. This is the origin, which is not the intersection point of the two circles (cf. two
circles intersect at the origin), so we discard this solution. When y = 80

29 , x = 5y
2 = 5·80

2·29 = 200
29 . So, the

coordinates of the intersection point are (200
29 , 80

29).
Error
(explicitly corrected)
8.9%

Problem. Zach has three bags and a bunch of pencils to be placed into the bags. He is told to place the greatest
number of pencils possible into each of the three bags while also keeping the number of pencils in each bag the
same. What is the greatest number of pencils he could have left over?
...
Step 2. Since Zach has to distribute the pencils evenly among the three bags, the total number of pencils must be
a multiple of 3. However, to have the greatest number of pencils left over, we need to consider the scenario
where the total number of pencils is 1 more than a multiple of 3. (cf. corrected by Step 5)
Step 5. However, we are looking for the greatest number of pencils left over. Since 3x + 2 is the largest multiple
of 3 plus a remainder, the greatest number of pencils Zach could have left over is 2.

Non-error
(reasoning)
23.3%

Problem. What is the value of (3x − 2)(4x + 1) − (3x − 2)4x + 1 when x = 4?
...
Step 2. First, substitute x = 4 into the given expression: (3(4) − 2)(4(4) + 1) − (3(4) − 2)4(4) + 1

Non-error
(planning/restatement)
18.9%

Problem. There are two increasing sequences of five consecutive integers, each of which have the property that
the sum of the squares of the first three integers in the sequence equals the sum of the squares of the last two.
Determine these two sequences.
...
Step 1. To solve this problem, let’s break it down step by step. Let the first sequence be: a, a+1, a+2, a+3, a+4

Non-error
(segmentation)
13.3%

Problem. Suppose that f(a) = 2a2 − 3a + 1 for all real numbers a and g(b) = log1/2 b for all b > 0.
Determine all θ with 0 ≤ θ ≤ 2π for which f(g(sin θ)) = 0.
...
Step 9. This gives us two possible values for u: u = 1/2 and u = 1.
Step 10. Now, we substitute back in for u. log1/2(sin θ) = 1/2 log1/2(sin θ) = 1
(cf. log1/2(sin θ) = 1/2 \n log1/2(sin θ) = 1)

Table 10: Examples of steps flagged as an error by reasoning process evaluators.

2Despite that AIME is the hardest dataset with the lowest average scores, the small size (30 problems) makes
it insufficient for manual error analysis.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I ANALYSIS: HOW DO MIXING PROCESS AND OUTCOME EVALUATION LEAD
TO SUPERIOR PERFORMANCE?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (Outcome:Process Ratio)

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

B
e

st
-o

f-
8

 S
co

re

50.29

51.63
51.76 51.70

51.85
52.03 52.09 52.06 52.08 52.08

51.07

Figure 8: Optimal mixing rate between reasoning outcome
scores and process scores is skewed towards outcome eval-
uator. Increasing the proportion of process scores leads to
reduced scores.

Our reasoning process + outcome evalua-
tor baseline averages the scores from rea-
soning process evaluators and reasoning
outcome evaluators and has shown to be
effective in our Best-of-N experiments at
section 4. To better understand the reasons
behind this, we first analyze how the results
change when mixing with different ratios
(α values). We perform a grid search of
the α value from 0.0 to 1.0 with step size
0.1 and find that the optimal α is skewed
towards the outcome score, where weight-
ing process score more than 0.5 causes the
performance to decline. (Figure 8) 3

The optimal mixing rate highly (but not en-
tirely) skewed towards outcome evaluators
suggests that process evaluation serves as a tie-breaker for outcome evaluation when merged. Since
reasoning outcome evaluators output tokens 0/1 as the correctness label, the scores (token prob-
abilities of the label 1) are indistinguishable between responses labeled as correct or wrong. In
process+outcome evaluators, process scores can be applied to break ties in responses by penalizing
process errors, leading to improved Best-of-N accuracy.

Response 1

Response 2

Response 3

Reasoning

Outcome scores

0.993

0.994

0.001

Reasoning

Process scores

0.310

0.602

0.783

N responses

Response 1

Response 2 Response 2

Response 3

ORM-filtered

Best-of-N

choice

Out Proc 2-stage Out+
Proc

Out Proc 2-stage Out+
Proc

46

47

48

49

50

51

52

B
es

t-
of

-8
 s

co
re

 (
%

)

48.67
48.33

50.09 50.11

48

49

50

51

52

53

54

51.07

50.29

52.14 52.03

DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B

Figure 9: While reasoning outcome evaluators are generally better at
finding the correct answer due to high recall, reasoning process evaluators
can perform tie-breaking with high accuracy among outcome evaluator-
filtered samples, outcome scores, and even process+outcome scores. This
suggests that process evaluators can efficiently filter false positives, i.e.,
the responses that outcome evaluators classified as correct but contains
process-level errors.

To prove this intuition that
process evaluators can further
rerank responses indistinguish-
able by outcome evaluators, we
explore an alternative of α-
weighted average version of
process+outcome evaluators, 2-
stage prompting (Figure 9). In
this setting, responses are first
filtered using the outcome score.
Responses with outcome scores
higher than 0.99 were analyzed
by process evaluators, selecting
the top response. Therefore, re-
sponses with low outcome scores
but high process scores cannot be
chosen as the final candidate. In-
tuitively, the 2-stage prompting’s
performance is strictly bounded
by outcome evaluator’s recall
and process evaluator’s precision,
whereas the soft merging of the
process+outcome evaluator of-
fers more flexibility.

The results show that the perfor-
mance of the 2-stage prompting
is significantly higher than that
of outcome evaluator and is al-
most identical to that of process+outcome evaluator. As the difference between reasoning outcome
scores is extremely small, using only outcome scores might not entirely reflect the quality of the
responses and lead to a suboptimal Best-of-N performance. However, process evaluators can further

3Throughout this section, the reported scores are from DeepSeek-R1-Distill-Qwen-32B.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

rerank responses that outcome evaluators assign indistinguishable scores as shown in 2-stage prompt-
ing, which is the key aspect of the optimal Best-of-N performance of reasoning process+outcome
evaluator.

One benefit of 2-stage prompting is that it reduces the inference cost by only applying the reasoning
process evaluation to responses that passed the outcome evaluation. While different heuristics can be
applied to optimize the compute while retaining the Best-of-N performance (e.g. perform process
evaluation only if outcome evaluators classified responses with different final answers as correct), we
leave this direction as future work.

J ANALYSIS: HOW DOES PROBLEM DIFFICULTY AFFECT OUTCOME AND
PROCESS EVALUATION?

Another important factor regarding Best-of-N performance is the problem difficulty, often estimated
by the fraction of correct answers out of N responses. The fraction value is empirically important
because if there are more correct answers, there is a higher chance of selecting a response with a
correct answer. However, if there are only a few correct answers, it is generally challenging to rank
the correct answer at the top.

As seen in the relative performance (Figure 10), Reasoning outcome evaluators outperform process
evaluators in difficult problems, whereas process evaluators achieve higher Best-of-N accuracy in
relatively easier problems. This can be explained by the conclusion of Appendix I, that reasoning
process evaluators are conservative classifiers and often assigns low score to responses with correct
answers. However, if there is a sufficient amount of correct responses, the conservative nature of
process evaluators prevents choosing responses with incorrect steps, increasing the expected quality
of the top response.

The problem difficulty also affects the performance gap between reasoning process+outcome evalua-
tors and reasoning outcome evaluators. Fewer correct answers increase the chance of false positives
in outcome evaluators, where they assign high (>0.99) scores to responses with incorrect answers.
When using process scores together, such false positives can be effectively reranked and filtered as
shown in Appendix I, leading to improved performance in the Best-of-N setting.

12.5 25.0 37.5 50.0 62.5 75.0 87.5

−2

0

2

4

6

8

B
es

t-
of

-8
 s

co
re

 re
la

ti
ve

 to
 O

R
M

 (
%

)

-0.3

-2.9

-0.6

4.4

2.0

-0.3
0.4

5.8

7.7

4.4
5.3

3.3

0.9 0.9

Low recall

High precision

Tie-breaking

12.5 25.0 37.5 50.0 62.5 75.0 87.5

Correct answer (%)

−6

−4

−2

0

2

4

B
es

t-
of

-8
 s

co
re

 re
la

ti
ve

 to
 O

R
M

 (
%

)

-6.8
-7.4

-5.4

0.6

1.8

0.3
-0.3

4.1 4.0

1.9

4.0
3.0

1.5

-0.5

Low recall

Tie-breaking

DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B

High precision

PRM-ORM
BEAM-ORM

PRM-ORM
BEAM-ORM

Correct answer (%)
12.5 25.0 37.5 50.0 62.5 75.0 87.5

−2

0

2

4

6

8

B
es

t-
of

-8
 s

co
re

 re
l.

to
 O

u
tc

om
e

(%
)

-0.3

-2.9

-0.6

4.4

2.0

-0.3
0.4

5.8

7.7

4.4
5.3

3.3

0.9 0.9

Low recall

High precision

Tie-breaking

12.5 25.0 37.5 50.0 62.5 75.0 87.5

Correct answer (%)

−6

−4

−2

0

2

4

B
es

t-
of

-8
 s

co
re

 re
l.

to
 O

u
tc

om
e

(%
)

-6.8
-7.4

-5.4

0.6

1.8

0.3
-0.3

4.1 4.0

1.9

4.0
3.0

1.5

-0.5

Low recall

Tie-breaking

DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B

High precision

Process-Outcome
(Proc+Out)-Outcome

Process-Outcome
(Proc+Out)-Outcome

Correct answer (%)

Figure 10: While reasoning process evaluators achieve low Best-of-N score compared to reasoning outcome due
to low recall (section 5), Reasoning process+outcome evaluators outperform outcome evaluators by leveraging
the tie-breaking ability of process evaluators. Both effects are more significant in difficult problems, where the
response generator models are unlikely to find the correct answer.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

K PROMPTS FOR REASONING EVALUATORS

We include the prompts used to elicit reasoning models as process and outcome evaluators:

Reasoning process evaluator prompt:

The following is a math problem and a solution (split into paragraphs, enclosed with tags
and indexed from 0):

Problem
{problem}

Previous Paragraph(s)
{previous_paragraphs}

Current Paragraph
{current_paragraph}

Instructions
Your task is to decide whether the current paragraph is correct or not. If the current paragraph is
correct, return the index of 1 and if not, return the index of 0.

Don’t try to solve the problem. Your task is only to critique the current paragraph.

Please put your final prediction (i.e., the correctness, which must be 0 or 1) in boxed{{}}.
Every output must therefore contain either 1 or 0 .

You should only consider the logical correctness of the current paragraph, not whether it is
useful or has the potential to lead to the correct answer.

Reasoning outcome evaluator prompt:

The following is a math problem and a solution (split into paragraphs, enclosed with tags
and indexed from 0):

Problem
{problem}

Response
{response}

Instructions
Your task is to decide whether the solution is correct or not. If the solution is correct, return the index
of 1 and if not, return the index of 0.

Don’t try to solve the problem. Your task is only to critique the solution.

Please put your final answer (i.e., the index, which must be 0 or 1) in boxed{{}}. Every
output must therefore contain either 1 or 0 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

L LIMITATIONS

In this section, we provide rationales behind the datasets and models used in this study.

Dataset selection In section 3, we only use ProcessBench (Zheng et al., 2024a) for evaluating
different evaluator implementations (Table 1). ProcessBench provides high-quality human-annotated
labels obtained from diverse reasoning traces across 4 benchmarks (GSM8k, MATH, OlympiadBench,
and OmniMath) and 12 generators (Llama and Qwen family with varying sizes), suitable for testing
different evaluator implementations. While there are other datasets with similar purposes, we resort
to ProcessBench for the following reasons:

• Datasets like PRM800k (Lightman et al., 2024), MR-GSM8k (Zeng et al., 2023), and
MR-MATH (Xia et al., 2025) annotate errors from GSM8k and MATH, which is already
covered by ProcessBench.

• While PRMBench (Song et al., 2025) introduces diverse error types in the MATH dataset,
the dataset is generated by synthetically perturbing responses based on a manually developed
taxonomy of reasoning errors. Therefore, we make use of ProcessBench that annotates
naturally occurring errors in LLM-generated responses without any modification, which
better suits the research question "Can we leverage evaluation-time scaling to improve the
generator’s performance?".

• REVEAL (Jacovi et al., 2024) annotates errors in LLM responses in commonsense reason-
ing benchmarks, which are not covered by ProcessBench. However, the inter-annotator
agreement is significantly lower than ProcessBench (κ ∼ 0.5), indicating high variance in
the data label.

Model selection We provide the full list of models in subsection A.1 and subsection A.2. While
this paper includes results from a large variety of critic models and direct evaluators, we could not test
on other highly capable models due to their recency (Team et al., 2025; Abdin et al., 2025), excessive
hardware requirements (using ∼70B-sized models as reasoning evaluators), and limited budget for
closed-source APIs (e.g., OpenAI o1, Gemini 2.5, Claude 3).

Task Coverage Another limitation of our work is that we do not assess reasoning evaluators for
tasks outside math and code. We focus on math and code because (1) they are tasks that admit easy
verification and (2) they align with the main strengths of reasoning models. There nonetheless exist
other interesting and relevant tasks, including tasks with non-verifiable outputs such as creative and
scientific writing. We encourage the research community to extend our work to include such tasks.

M LICENSES

M.1 DATASETS

We disclose the licenses of the datasets used in this study, as indicated in their official HuggingFace
repository (if applicable).

• ProcessBench: Apache 2.0

• GSM8k: MIT

• MATH: MIT

• AIME24: CC0 1.0

• AMC23: License type not mentioned. Copyright © Mathematical Association of America.

• MinervaMath: MIT (LM-eval-harness)

• OlympiadBench: Apache 2.0

• LeetCode: MIT

• GPQA: MIT

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

M.2 MODELS

We disclose the licenses of the model used in this study, as indicated in their official HuggingFace
repository.

• Llama 3 family and their derivatives: Meta Llama 3 Community License. Copyright © Meta
Platforms, Inc. All Rights Reserved.

• Qwen family and their derivatives: Qwen License. Copyright © Alibaba Cloud. All Rights
Reserved.

• QwQ family: Apache 2.0
• DeepSeek-R1 family: MIT
• Skywork family: Skywork Community License
• Prometheus 2 family: Apache 2.0

N COMPUTE RESOURCES

To conduct our experiments with 7B and 32B models we used as reasoning evaluators, we used a
single node of A6000 GPUs (8 GPUs) where each GPU has 48GB of memory.

O BROADER IMPLICATIONS

One fundamental issue with language model evaluators is that they were developed to automate
human evaluation, which is expensive and time-consuming. However, verifying that these evaluators
function as intended, even partially, remains crucial. In our paper, we only tested benchmarks
related to mathematics and coding, but this verification becomes even more important when applying
reasoning evaluators to assess language model responses on socially sensitive real-world queries or
in safety-related domains. We hope that all researchers and practitioners using LM evaluators will
consider these points.

P USE OF LARGE LANGUAGE MODELS

We have used LLMs for writing this paper. Specifically, we have used it to fix grammar and enhance
fluency.

33

	Introduction
	Methodology
	Reasoning Outcome Evaluators
	Reasoning Process Evaluators
	Combining outcome judgments and process scores

	Evaluation-Time Scaling Trends for Process Evaluation
	Experimental setting
	Experimental results

	Translating Improved Evaluation to Problem-Solving
	Experimental setting
	Experimental results

	Analyses on why reasoning process evaluators are effective
	Pointers to experiments and analyses in Appendix
	Conclusion
	Reproducibility Statement
	Extended: Experimental Settings
	Model List for ProcessBench Experiments (section 3)
	Model List for Best-of-N Experiments (section 4)

	Additional Results for ProcessBench Experiments (section 3)
	Additional Results and Discussion for Best-of-N Experiments (section 4)
	Findings from Experiments
	Checking statistical significance of results
	Testing on domains outside of math and code

	Related work
	Scaling Test-time Compute
	Language Model Evaluators
	Future Directions

	Approximation of Test-Time Compute
	Formal explanation of why evaluation-time scaling can improve the generator's performance
	Self-Evaluation of Reasoning Models
	Example of a reasoning model's output

	Additional analyses (section 5
	When does process evaluation fail?
	Precision-recall curve
	Qualitative analysis

	Analysis: How do mixing process and outcome evaluation lead to superior performance?
	Analysis: How does problem difficulty affect outcome and process evaluation?
	Prompts for Reasoning Evaluators
	Limitations
	Licenses
	Datasets
	Models

	Compute Resources
	Broader Implications
	Use of Large Language Models

