
Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Navdeep Kumar 1 Kaixin Wang 1 Kfir Levy 1 Shie Mannor 1 2

Abstract

We focus on s-rectangular robust Markov de-
cision processes (MDPs), which capture inter-
connected uncertainties across different actions
within each state. This framework is more general
compared to sa-rectangular robust MDPs, where
uncertainties in each action are independent. How-
ever, the introduced interdependence significantly
amplifies the complexity of the problem. Existing
methods either have slow performance guaran-
tees or are inapplicable to even moderately large
state spaces. In this work, we derive optimal ro-
bust Bellman operators in explicit forms. This
leads to robust value iteration methods with signif-
icantly faster time complexities than existing ap-
proaches, which can be used in large state spaces.
Further, our findings reveal that the optimal poli-
cies demonstrate a novel threshold behavior, se-
lectively favoring a limited set of actions based on
their respective advantage functions. Additionally,
our study uncovers a noteworthy connection be-
tween the robustness of a policy and the variance
in its value function, highlighting that policies
with lower variance exhibit greater resilience.

1. Introduction
In Markov Decision Processes (MDPs), an agent interacts
with the environment and learns to behave optimally in it
(Sutton & Barto, 2018). However, the MDP solution can
be highly sensitive to even minor alterations in model pa-
rameters (Mannor et al., 2004). Consequently, caution is
warranted when applying MDP solutions in scenarios involv-
ing dynamic model changes or parameter uncertainties to
avoid catastrophic failures. On the other hand, robust MDPs
consider a possible set of environments (uncertainty sets)
instead of a single environment, and the goal is to obtain
a solution whose worst performance over the uncertainty

1Technion, Haifa, Israel 2Nvidia, Haifa, Israel. Correspondence
to: Navdeep Kumar <navdeepkumar@alum.iisc.ac.in>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

set is optimal. Hence, robust MDPs’ solutions are more
resilient in the face of model uncertainty (Hanasusanto &
Kuhn, 2013; Tamar et al., 2014; Iyengar, 2005). The study
of robust MDPs is further motivated by their potential to
yield superior generalization compared to non-robust solu-
tions (Xu & Mannor, 2010; Zhao et al., 2019; Packer et al.,
2018).

Unfortunately, solving robust MDPs is a complex prob-
lem in general. Consequently, most existing solutions ex-
ist for a special class of uncertainty sets, which are sa-
rectangular (Nilim & Ghaoui, 2005; Iyengar, 2005; Wang
& Zou, 2021; 2022). This setting models various problems,
where model uncertainty in one state-action is independent
from uncertainty in other state-actions. However, in many
cases, the model uncertainty in one action can be coupled
to the other actions in the same state, which are captured
by s-rectangular uncertainty sets (Wiesemann et al., 2013).
However, this coupling comes with additional complexities
and presents a great difficulty in obtaining the solutions,
and hence, only a handful of existing work exists on the
topic (Wiesemann et al., 2013; Ho et al., 2020; Derman
et al., 2021). Unfortunately, capturing the further coupling
in uncertainties across different states is proven to make the
problem strongly NP-hard (Wiesemann et al., 2013).

Related works. Most of the works in robust MDPs are
for sa-rectangular uncertainty sets (Iyengar, 2005; Nilim &
Ghaoui, 2005; Kaufman & Schaefer, 2013; Bagnell et al.,
2001; Hanasusanto & Kuhn, 2013; Abdullah et al., 2019).
Notably, for sa-rectangular R-contamination robust MDPs,
(Wang & Zou, 2021) derived robust Bellman operators,
which are equivalent to value-regularized-non-robust Bell-
man operators, enabling efficient robust value iteration.
Building upon this work, (Wang & Zou, 2022) derived a
robust policy gradient equivalent to a non-robust policy
gradient with regularizer and correction terms. Unfortu-
nately, these methods cannot be naturally generalized to
s-rectangular robust MDPs.

A naive LP (linear programming) can evaluate s-rectangular
optimal robust Bellman operators with uncertainty sets con-
strained by L1 norm, with time complexity O(S5.5A4.5),
where S,A is the cardinality of state space, and action space
respectively. This brute force method is prohibitively expen-
sive and restrictive to only polyhedral uncertainty sets.

1

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 1. Related Work: Computation of Optimal s-rectangular Lp constrained Robust Bellman Operator TUs
p
v

LP (Wiesemann
et al., 2013)

(Ho et al.,
2020)

(Derman
et al., 2021)

Ours Ours Ours

p 1 1, 2 1 p 1,∞ 2 p

Method LP SDP Bisection Gradient Close form Algorithm Binary Search

Solution Approx Approx Exact Approx Exact Exact Approx

Complexity Õ S
11
2 A

9
2 S

11
2 + S3A S3A NA S2A S2A S2A

Contraction factor γ γ γ γ(1+
√
Sβ∗) γ γ γ

Valid Kernels Yes Yes Yes No Yes Yes Yes

Optimal Policy
Characterization

No No No No Yes Yes Yes

SDP and LP stand for semi-definite programming and linear programming, respectively, β∗ = maxs∈S βs,
Õ hides logarithmic factors in S,A, ϵ.

In further generality, (Wiesemann et al., 2013) uses the SDP
(semi-definite programming) methods for uncertainty set
which are finite intersections of closed half-spaces and el-
lipsoids, as described in (3a) and (3b) of (Wiesemann et al.,
2013). This approach can approximately evaluate optimal
s-rectangular Bellman operator up to ϵ-accuracy, with time
complexity of O(m3l3/2S log ϵ−1+mS2A) (Corollary 1 of
(Wiesemann et al., 2013)), where m, l is degree of freedom
and number of constraints respectively. This framework can
describe s-rectangular L2 constrained uncertainty sets for
the degree of freedom m ≥ S, and number of constraints
l = S as a special case. This makes their worst case com-
plexity O(S5.5 log ϵ−1 + S3A) which is very expensive.

On the other hand, focusing only on L1 constrained s-
rectangular robust MDPs, (Ho et al., 2020) for the first
time, evaluated the optimal robust Bellman operator ex-
actly. The approach uses a combination of homotopy
and bisection methods which has the time complexity
of O(CSA log(SA) + A logCS logCSA) at each state,
where 0 ≤ C ≤ S is the number of states where uncer-
tainty is present. Hence, the worst-case time complexity
to evaluate robust optimal Bellman operator for all states
is O(S3A log(SA) + SA logS2 logS2A) which has a con-
siderable speedup over existing LP and SDP methods. How-
ever, how this method can be extended for other Lp norms
is unclear.

Additionally, some works have explored robust MDPs from
a regularization perspective (Derman et al., 2021; Derman
& Mannor, 2020; Husain et al., 2021; Eysenbach & Levine,
2021). Specifically, (Derman et al., 2021) showed that s-

rectangular Lp robust MDPs are equivalent to reward-value-
policy regularized MDPs, and proposed R2 Bellman opera-
tors. These optimal R2 Bellman operators are obtained via
gradient-based policy iteration methods. However, the work
has the following limitations: a) It makes unrealistic as-
sumptions on kernel noise (Corollary 4.1 of (Derman et al.,
2021)); b) It assumes an extra condition on the uncertainty
radius (assumption 5.1 of (Derman et al., 2021)), and; c) The
contraction factor of R2 Bellman operator is greater than
γ(1 +

√
|S|maxs∈S βs) where γ,S, βs is discount factor,

state space, and uncertainty radius in transition kernel in
state s respectively (Assumption 5.1 and Proposition 5.1 of
(Derman et al., 2021)). The above contraction factor quickly
grows to 1, making the R2 Bellman operators inapplicable
for even moderately large state-space problems.

As summarized in Table 1, the existing methods are either
slow or inapplicable for large state problems. Furthermore,
it is well established that the robust policies in s-rectangular
robust MDPs can be stochastic (Wiesemann et al., 2013).
Unfortunately, nothing is known about the nature of its
stochasticity.

We summarize our contributions as follows with a summary
in Table 1:

• Our work introduces a regularizer, providing a novel in-
sight that policies with lower variance in value function
are more robust to the change in transition kernels.

• We unveil the exact nature of optimal robust policies
in s-rectangular robust MDPs and show it as threshold
policies. It plays only the top few actions proportional

2

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

to their advantage functions and avoids playing very
bad actions. This policy class contrasts with the widely
used soft-max policies that play all the actions (Mai &
Jaillet, 2021; Grill et al., 2019; Yang et al., 2019).

• Our methods evaluate the optimal robust Bellman oper-
ators for s-rectangular uncertainty sets constrained
by Lp norms, with time complexity of O(S2A +
SA logA) for p = 1, 2 and O(S2A + SA log A

ϵ) for
general p, which is faster than existing methods by at
least a factor of S, which leads to efficient value itera-
tion which can be used in large state space problems.

Further, (Kumar et al., 2023; Gadot et al., 2023) build upon
our work to derive policy gradient methods for robust MDPs
with uncertainty set constrained by Lp norms, then (Zhou
et al., 2023; Wang et al., 2023) utilized the insights to de-
velop pessimistic sampling methods for robust MDPs. Ad-
ditionally, there exist different lines of work such as soft-
robust MDPs (Derman et al., 2018), k-rectangular robust
MDPs (Mannor et al., 2016), r-rectangular robust MDPs
(Goyal & Grand-Clément, 2018). However, this work fo-
cuses on s-rectangular uncertainty sets.

2. Preliminary
A Markov Decision Process (MDP) can be described as a
tuple (S,A, P,R, γ, µ), where S is the state space, A is
the action space, P is a transition kernel mapping S × A
to ∆S , R is a reward function mapping S × A to R, µ is
an initial distribution over states in S, and γ is a discount
factor in [0, 1) (Puterman, 1994; Sutton & Barto, 2018).
A policy π : S → ∆S is a decision rule that maps state
space to a probability distribution over action space. Further,
π(a|s), P (s′|s, a) denotes the probability of taking action
a in state s by policy π, and the probability of transition to
state s′ from state s under action a respectively. In addition,
we denote Pπ(s′|s) =

∑
a π(a|s)P (s′|s, a) and Rπ(s) =∑

a π(a|s)R(s, a) as short-hands. The return of a policy π,
is defined as ρπ(P,R) = ⟨µ, vπ(P,R)⟩ where vπ(P,R) := (I −
γPπ)−1Rπ is value function (Puterman, 1994).

A robust Markov Decision Process (MDP) is a tuple
(S,A,P,R, γ, µ) which generalizes the standard MDP, by
containing a set of transition kernels P and set of reward
functions R. Let uncertainty set U = P × R be a set of
tuples of transition kernels and reward functions (Iyengar,
2005; Nilim & Ghaoui, 2005). The robust return of a policy
π, is its performance over the uncertainty set U , defined
as ρπU = min(P,R)∈U ρπ(P,R). The objective is to find an
optimal robust policy π∗

U that achieves the optimal robust
performance ρ∗U , defined as

ρ∗U = max
π

ρπU . (1)

Unfortunately, a general solution to the robust objective (1),
is proven to be strongly NP-hard for both non-convex sets
and convex ones (Wiesemann et al., 2013). Hence, it is
common practice to take the sa-rectangular uncertainty sets
Usa, where ambiguity in each state and action are indepen-
dent (Iyengar, 2005; Nilim & Ghaoui, 2005; Wang & Zou,
2021; 2022). Formally defined as Usa = P ×R is decom-
posed over state-action-wise as R = ×(s,a)∈S×ARs,a and
P = ×(s,a)∈S×APs,a where Rs,a,Ps,a components sets.

However, many classes of uncertainty sets arise in practice,
where ambiguities in a given state are correlated. This type
of uncertainty sets are captured by s-rectangular uncertainty
sets Us, defined as Us = P × R, where R and P can be
decomposed state-wise as R = ×s∈SRs and P = ×s∈SPs

(Wiesemann et al., 2013). Note that its special case is sa-
rectangular uncertainty sets.

The robust value function vπU and optimal robust value func-
tion v∗U (Iyengar, 2005; Nilim & Ghaoui, 2005), for any
uncertainty set U can be defined state wise, for all π, as

vπU (s) = min
(P,R)∈U

vπ(P,R)(s), v∗U (s) = min
(P,R)∈U

vπU (s).

Fortunately, the decoupling structure in s-rectangular un-
certainty sets allows the existence of a kernel and a reward
function that minimizes the value function over the uncer-
tainty set for each state for any given policy. Similarly, it
allows the existence of an optimal optimal robust policy that
maximizes the robust value in each state (Wiesemann et al.,
2013). Mathematically, the robust value function is to be
rewritten as

v∗Us = max
π

vπUs , vπUs = min
(P,R)∈Us

vπ(P,R).

Hence, the robust return can be rewritten as ρπU =
⟨µ, vπU ⟩, and ρ∗U = ⟨µ, v∗U ⟩. Most importantly, this rect-
angularity implies the existence of contractive robust Bell-
man operators, which are pivotal same as non-robust MDPs
(Wiesemann et al., 2013). Specifically, the robust value
function vπU , and the optimal robust value function v∗U is the
fixed point of the robust Bellman operator T π

U and the opti-
mal robust Bellman operator T ∗

U respectively (Wiesemann
et al., 2013; Iyengar, 2005), defined as

T π
U v := min

(P,R)∈U
Tπ
(P,R)v, and T ∗

U v := max
π

T π
U v,

where Tπ
(P,R)v := Rπ+γPπv is non-robust Bellman opera-

tor (Puterman, 1994). Moreover, these robust Bellman oper-
ators are γ contraction maps (Wiesemann et al., 2013), that
is ∥T ∗

U v−T ∗
U u∥∞ ≤ γ∥u− v∥∞, and ∥T π

U v−T π
U u∥∞ ≤

γ∥u − v∥∞, ∀π, u, v. So for all initial values vπ0 , v
∗
0 ,

sequences defined as vπn+1 := T π
U vπn , v

∗
n+1 := T ∗

U v∗n
converge linearly to their respective fixed points, that is
vπn → vπU and v∗n → v∗U . Given this optimal robust value

3

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 2. p-variance

p κp(v) Remark

∞ maxs v(s)−mins v(s)
2 Semi-norm

2

√∑
s

(
v(s)−

∑
s v(s)

S

)2
Variance

1
∑⌊(S+1)/2⌋

i=1 v(si) -∑S
i=⌈(S+1)/2⌉ v(si) Top half - lower half

where v is sorted, i.e. v(si) ≥ v(si+1) ∀i.

function, the optimal robust policy can be computed as:
π∗
U ∈ argmaxπ T π

U v∗U (Wiesemann et al., 2013). This
makes the robust value iteration an attractive method for
solving s-rectangular robust MDPs.

3. Method
We consider uncertainty sets constrained by Lp norm around
the nominal values that occur naturally in practice (Derman
et al., 2021; Ho et al., 2020; Auer et al., 2008). We de-
rive robust Bellman operators in concrete forms for these
uncertainty sets, producing efficient robust value iteration
methods. Additionally, we explicitly obtain the exact nature
of the robust optimal policies.

We begin with a more straightforward case of sa-
rectangular robust MDPs as a warm-up to the more complex
s-rectangular counterpart.

Here, we make a few useful definitions that will be used
throughout the paper. We reserve q for Holder conjugate of
p, i.e. 1

p + 1
q = 1. Let p-variance function κp : S → R be

defined as

κp(v) := min
ω∈R

∥v − ω1∥p, (2)

where 1 is all-ones vector. For p = 1, 2,∞, the p-variance
function κp has intuitive closed forms as summarized in Ta-
ble 2. For general p, it can be calculated by binary search in
the range [mins v(s),maxs v(s)] (see appendix for proofs).

3.1. sa-rectangular Lp robust MDPs

Let P0, R0 be any valid transition kernel and reward func-
tion, which we call nominal values. In accordance with
(Derman et al., 2021), we define sa-rectangular Lp con-

strained uncertainty set Usa
p as

Usa
p := (P0 + P)× (R0 +R)

R =
{
R ∈ RS ×A | |R(s, a)| ≤ αs,a

}
, and

P = {P ∈ RS×A×S :
∑
s′

Ps,a(s
′) = 0︸ ︷︷ ︸

simplex condition

, ∥Ps,a∥p ≤ βs,a}

where P , R are noise sets around nominal kernel P0 and
nominal reward R0 respectively, component wise bounded
by radius vectors α, β. Note that the noise sets, by con-
struction, are sa-rectangular. To ensure, all the kernels in
(P0 + P) are valid, we assume the radius vector β is small
enough and further impose the ’simplex condition’. The
condition requires all the elements of P to have a sum of
zero across each row. Hence, it ensures each transition ker-
nel in (P0 +P) has the sum of each row equal to one, as P0

is a valid transition kernel that already has the sums to be
ones.

Our setting differs from (Derman et al., 2021) as they did
not impose this simplex condition on the kernel noise. It
renders their setting unrealistic because the probabilities
do not sum to one for some transition kernels in their un-
certainty set. Imposing the simplex condition makes our
reward regularizer dependent on the q-variance of the value
function κq(v), instead of the q-th norm of value function
∥v∥q in (Derman et al., 2021). Observing that the two regu-
larizers differ significantly can produce contrasting results
when applied in practice.

Note that noise in one action is independent of the noise
in other actions in any given state (Iyengar, 2005; Nilim &
Ghaoui, 2005). This independence allows us to evaluate the
robust Bellman operators comfortably using only nominal
values and regularizers, as shown in the result below.
Theorem 3.1. sa-rectangular Lp robust Bellman opera-
tors are equivalent to reward-value regularized (non-robust)
Bellman operators:

(T π
Usa

p
v)(s) =

∑
a

π(a|s)
[
−αs,a − γβs,aκq(v)+

R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)

]
,

(T ∗
Usa

p
v)(s) =max

a∈A

[
−αs,a − γβs,aκq(v)+

R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)

]
,

where q is Holder’s conjugate of p.

Proof. The proof is in the appendix, mainly consisting of
two parts: a) Separating the noise from nominal values. b)
The reward noise to yields the term −αs,a and noise in
kernel yields −γβs,aκq(v).

4

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

The reward penalty is proportional to the uncertainty ra-
diuses and a novel variance function κp(v).

The variance regularizer κp(v) penalizes the policy with
high variance in their value function. In other words, the
policies having low variance in their value functions are less
sensitive to the perturbation of the transition kernel, and
vice versa. The significant variance in value function makes
the adversary more powerful, as it can choose the kernel to
send the agent to relatively bad value states.

Further, we recover non-robust value iteration by putting
uncertainty radiuses (i.e., αs,a, βs,a) to zero in the above
results. Furthermore, the same is true for all subsequent
robust results in this paper.

Further discussion on Q-value iteration, etc, can be found in
the appendix. Now, we move to s-rectangular case, which
is the core contribution of the paper.

3.2. s-rectangular Lp robust MDPs

This subsection discusses the evaluation of robust Bellman
operators for the s-rectangular uncertainty set. We begin by
defining s-rectangular Lp constrained uncertainty set Us

p as

Us
p := (P0 + P)× (R0 +R)

where each component are bounded by Lp norm with radius
vectors α and small enough β as

R = {R ∈ RS ×A : ∥R(s, ·)∥p ≤ αs}, and

P = {P ∈ RS ×A×S : ∥Ps∥p ≤ βs,
∑
s′

Ps(s
′, a) = 0},

where Ps(s
′, a) is shorthand for P (s′|s, a). Note that this

setting allows the noise in one action to be coupled with
other actions in a given state (Wiesemann et al., 2013).
The result below shows that this coupling presents an extra
dependence on the policy term in the policy evaluation for
the s-rectangular robust Bellman operator compared to the
sa-rectangular counterpart.

Theorem 3.2. (Policy Evaluation) s-rectangular Lp ro-
bust Bellman operator is equivalent to reward-value-policy
regularized (non-robust) Bellman operator:

(T π
Us

p
v)(s) = −

[
αs + γβsκq(v)

]
∥πs∥q+∑

a

π(a|s)
[
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
,

where ∥πs∥q is q-norm of the vector π(·|s) ∈ ∆A.

Proof. The proof in the appendix: the techniques are similar
to its sa-rectangular counterpart.

In this case, the reward penalty has an additional depen-
dence on the q-norm of the policy (∥πs∥q). Note that ∥πs∥q

is maximum for deterministic policies and attains the mini-
mum value for uniform policies in state s. Hence, the policy
norm term ∥πs∥q is conceptually similar to entropy regu-
larization

∑
a π(a|s) ln(π(a|s)), which is widely studied in

the literature (Mai & Jaillet, 2021; Grill et al., 2019; Yang
et al., 2019; Haarnoja et al., 2017; Schulman et al., 2017).
As we can see, in the above result, the policy norm reg-
ularizer ∥πs∥q penalizes the deterministic policies, hence
encouraging the stochasticity in the policy.

Note: It is widely believed that the stochasticity in the policy
improves exploration during learning. In addition, the above
result shows another benefit of policy stochasticity: they
can improve robustness, leading to better generalization.

In summary, value variance and policy norm penalty terms
in policy evaluation indicate that the policies with more
stochasticity and low variance in their value function are
more robust to environmental perturbations and vice versa.

Now, we move to policy improvement, which is challenging
due to the policy regularizer term, thus presenting a richer
theory.

The result below states that the optimal robust Bellman
operator is the solution of a polynomial equation, which we
discuss next how to obtain it.

Theorem 3.3. (Policy improvement) For any vector v and
state s, (T ∗

Us
p
v)(s) is the minimum value of x that satisfies

[∑
a

(
Q(s, a)− x

)p

1
(
Q(s, a) ≥ x

)] 1
p

= σ, (3)

where 1 is indicator function, Q(s, a) = R0(s, a) +
γ
∑

s′ P0(s
′|s, a)v(s′), and σ = αs + γβsκq(v).

Proof. The proof is in the appendix. The main steps are:
From definition and Theorem 3.2, we have

(T ∗
Us

p
v)(s) = max

π
(T π

Us
p
v)(s)

=max
π

[
(T π

(P0,R0)
v)(s)−

[
αs + γβsκq(v)

]
∥πs∥q

]
= max

πs∈∆A
⟨πs, Qs⟩ − σ∥πs∥q (where Qs = Q(·|s)).

The solution to the above optimization problem is techni-
cally complex. Specifically, for p = 2, the solution is known
as the water filling/pouring lemma (Anava & Levy, 2016),
and we generalize it to the Lp case.

To better understand the nature of (3), we look at the ’sub-
optimality distance’ function g,

g(x) :=
[∑

a

(
Q(s, a)− x

)p

1
(
Q(s, a) ≥ x

)] 1
p

.

5

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 3. Optimal robust Bellman operator and optimal robust policy

U (T ∗
U v)(s) π∗

U (a|s) ∝

Us
p minx :

∥∥∥(Qs − x1
)
◦1

(
Qs ≥ x

)∥∥∥
p
= σq(v, s) A(s, a)1(A(s, a) ≥ 0)

Us
1 maxk

∑k
i=1 Q(s,ai)−σ∞(v,s)

k 1(A(s, a) ≥ 0)

Us
2 By algorithm 1 A(s, a)1(A(s, a) ≥ 0)

Us
∞ maxa∈A Q(s, a)− σ1(v, s) 1(A(s, a) = 0)

Usa
p maxa∈A

[
Q(s, a)− αsa − γβsaκq(v)

]
1(A(s, a) = maxa A(s, a))

(P0, R0) maxa Q(s, a) 1(A(s, a) = 0)

where Q(s, a) = R0(s, a) + γP0(·|s, a)v, sorted Q-value: Q(s, a1) ≥ · · · ≥ Q(s, aA),
σq(v, s) = αs + γβsκq(v), Qs = Q(s, ·), A(s, a) = Q(s, a)− v∗U (s), ◦ is Hadamard product.

Observe that g(x) captures the difference between x and the
Q-values, summed over actions whose Q-value is greater
than x. Note that the function g monotonically decreases
in x as each term in the sum decreases. Further, it at-
tains its lowest value of zero at x = maxa Q(s, a) as
no action can have a Q-value greater than the maximum.
On the other hand, the function value is at least σ for
x = maxa Q(s, a) − σ, as the term corresponding to the
best action alone makes enough contribution.

Since, (T ∗
Us

p
v)(s) is the value of x at which the ”sub-

optimality distance” g(x) is equal to the ”uncertainty
penalty” σ. Hence, (3) can be approximately solved using a
binary search between a narrow interval [maxa Q(s, a) −
σ, maxa Q(s, a)].

Now, we examine the following dependence of (T ∗
Us

p
v)(s)

on p, αs, and βs:

• For α = β = 0 then σ = 0, implying (T ∗
Us

p
v)(s) =

maxa Q(s, a), same as non-robust case.

• For p = ∞, we have, (T ∗
Us

p
v)(s) = maxa Q(s, a)− σ,

same as sa-rectangular case.

• For p = 1, (3) becomes linear, which can solved
in closed form as (T ∗

Us
p
v)(s) = maxk

∑k
i=1 Q(s,ai)−σ

k

where Q-values are sorted as Q(s, a1) ≥ Q(s, a2) · · · .

• For p = 2, (3) becomes quadratic, and (T ∗
Us

p
v)(s) can

be be obtained in at-most A steps by Algorithm 1.

• As αs and βs increase, σ increases, resulting in a
decrease in (T ∗

Us
p
v)(s) with a decaying rate. More-

over for sufficiently small σ, we have (T ∗
Us

p
v)(s) =

maxa Q(s, a)− σ.

Algorithm 1 s-rectangular L2 robust Bellman operator (see
algorithm 1 of (Anava & Levy, 2016)
Input: σ = αs+ γβsκq(v), k = 0, λ = Q(s, a1)−σ.
Output: λ = (T ∗

Us
2
v)(s).

1: Sort such that Q(s, a1) ≥ Q(s, a2), · · · ≥ Q(s, aA).
2: while k ≤ A− 1 and λ ≤ Q(s, ak); k = k + 1 do
3:

λ =−

√√√√σ2

k
+ (

k∑
i=1

Q(s, ai)2 − kQ(s, ai)

k2
)2

+

∑k
i=1 Q(s, ai)

k

4: end while

To summarize, (3) can be solved in the closed form p =
1,∞, by Algorithm 1 for p = 2, and approximately by
binary search for general p, as summarized in table 3 with
proofs in appendix.

In this section, we demonstrated that robust Bellman opera-
tors can be efficiently evaluated for both sa and s rectan-
gular Lp robust MDPs, thus enabling efficient robust value
iteration.

In the following sections, we discuss optimal policies’ na-
ture and robust value iteration’s time complexity. Finally,
we present experiments validating the time complexity of
robust value iteration.

6

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

4. Optimal Robust Policies Characterization
Here, we study the optimal policies in s-robust MDPs,
which are known to be stochastic, in contrast to determinis-
tic optimal policies in non-robust and sa-rectangular robust
MDPs (Wiesemann et al., 2013). Unfortunately, nothing
further is known about its stochastic nature.

In the above sections, we discussed computing the robust
optimal value functions. Using that robust value function,
the optimal robust policies can be derived by the following
relation

π∗
U ∈ argmax

π
T π
U v∗U , (Wiesemannet al., 2013).

This implies, the robust optimal policy π∗
U (·|s) at state s, is

the policy π that maximizes∑
a

π(a|s) min
(P,R)∈U

[
R(s, a) + γ

∑
s′

P (s′|s, a)v∗U (s′)
]
.

For sa-rectangular robust MDPs, from Theorem 3.1, it
is clear that a sa-rectangular Lp robust MDP admits a de-
terministic optimal robust policy just like non-robust MDPs.
This policy takes an action that maximizes the regular-
ized Q-value Q(s, a) = −αs,a − γβs,aκq(v) +R0(s, a) +
γ
∑

s′ P0(s
′|s, a)v∗Usa

p
(s′) in state s.

However, for s-rectangular robust MDPs, from Theorem
3.2, we get the optimal policy π∗

Us
p
(·|s) in state s is the

maximizer of −
[
αs + γβsκq(v)

]
∥πs∥q +

∑
a π(a|s)

[
R0(s, a) + γ

∑
s′ P0(s

′|s, a)v∗Us
p
(s′)

]
over πs. The result

below solves this maximization problem and provides the
first explicit characterization of robust optimal policies.

Theorem 4.1. The optimal robust policy π∗
Us

p
can be com-

puted using optimal robust value function as:

π∗
Us

p
(a|s) ∝ [Q(s, a)− v∗Us

p
(s)]p−11

(
Q(s, a) ≥ v∗Us

p
(s)

)
where Q(s, a) = R0(s, a) + γ

∑
s′ P0(s

′|s, a)v∗Us
p
(s).

Notice that the above optimal policy is a threshold policy,
exclusively selecting actions with a positive advantage func-
tion. The selection is proportionate to the advantage values,
assigning greater significance to actions with higher advan-
tages while avoiding actions that offer little utility. It is
worth highlighting that this policy diverges from the optimal
policy in soft-Q learning with entropy regularization. In the
latter, the policy follows a softmax distribution, expressed as
π(a|s) ∝ eη(Q(a|s)−v(s)), where actions are selected based
on a combination of the action’s Q-value and the state’s
value (Haarnoja et al., 2017; Mai & Jaillet, 2021; Schulman
et al., 2017).

Notably, the parameter p in the above robust optimal policy
acts similarly to temperature variable η in soft-max policy,

Algorithm 2 Online s-rectangular Lp robust value iteration
Input: Initialize Q, v randomly, s0 ∼ µ.
Output: v = v∗Us

p
.

1: while not converged; n = n+ 1 do
2: Estimate κp(v) using table 2. Then approximate

(T ∗
Us

p
v)(sn) using table 3 and update

v(sn) = v(sn) + ηn[(T ∗
Us

p
v)(sn)− v(sn)].

3: Play action an = a with probability proportional to

[Q(sn, a)− v(sn)]
p−11(Q(sn, a) ≥ v(sn)),

4: Get the next state sn+1 from the environment and
update Q-value:

Q(sn, an) =Q(sn, an) + η′n[R(sn, an)

+ γv(sn+1)−Q(sn, an)].

5: end while

Total cost O

(P,R) log(1/ϵ)S2A
Usa
1 log(1/ϵ)S2A

Usa
2 log(1/ϵ)S2A

Usa
∞ log(1/ϵ)S2A

Us
1 log(1/ϵ)(S2A+ SA log(A))

Us
2 log(1/ϵ)(S2A+ SA log(A))

Us
∞ log(1/ϵ)S2A

Usa
p log(1/ϵ)

(
S2A+ S log(S/ϵ)

)
Us
p log(1/ϵ)

(
S2A+ SA log(A/ϵ)

)
Uconvex Strongly NP-Hard

Table 4. Time Complexity of Robust Value Iteration

controlling skewness of the policy distribution over actions.
The robust optimal policy and the soft-max policy move
towards the best action deterministically as their tempera-
ture variables increase. For concreteness, the exceptional
cases of the above theorem for p = 1, 2,∞, and others are
summarized in table 3.

5. Complexity and Experiments
In this section, we examine the time complexity of ro-
bust value iteration: vn+1 := T ∗

U vn for different Lp ro-
bust MDPs assuming the knowledge of nominal values (P0,
R0). Since, the optimal robust Bellman operator T ∗

U is γ-
contraction operator (Wiesemann et al., 2013), meaning that
it requires only O(log(1ϵ)) iterations to obtain an ϵ-close
approximation of the optimal robust value. The main chal-
lenge is to calculate the cost of one iteration.

7

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Figure 1. Relative cost of value iteration w.r.t. non-robust MDP at
different S with fixed A = 10.

Table 5. Running cost (time) for value iteration relative w.r.t. non-
robust MDP

Linear Program Ours
S A Usa

1 Us
1 Usa

1 Usa
2 Us

1 Us
2

10 10 1438 72625 1.7 1.5 1.4 2.6
30 10 6616 629890 1.3 1.4 1.5 2.8
50 10 6622 4904004 1.5 1.9 1.2 2.4

100 20 16714 N/A 1.4 1.5 1.1 2.1

Evaluating the optimal robust Bellman operators in Theo-
rem 3.1 and Theorem 3.3 has three main components. A)
Computing κp(v), which can be done differently depend-
ing on the value of p, as shown in Table 2. B) Computing
the Q-value from v, which requires O(S2A) in all cases.
Finally, C) Evaluating optimal robust Bellman operators
from Q-values requires different operations, such as sorting
the Q-value, calculating the best action, and performing a
binary search, as shown in Table 3. The overall complexity
of the evaluation is presented in Table 4, with the proofs
provided in the Appendix M.

Table 4 and Figure 1 demonstrate the relative cost (time) of
robust value iteration compared to non-robust MDP for ran-
domly generated kernel and reward functions with varying
numbers of states S and actions A. The Appendix H shows
more results and details.

For large state spaces (S ≥ A log(Aϵ−1)), the computa-
tional complexities for each robust MDP in Table 4 is the
same as non-robust MDPs (O(S2A log ϵ−1)), which is also
confirmed empirically in Figure 1.

Further, Table 5 presents empirical relative time w.r.t. non-
robust MDPs for value iteration using our methods and
LP (linear programming). Our method scales very well
with state and action spaces, while LP methods become
primitively expensive in large state-action spaces.

All experiments are repeated 500 times, resulting in some
stochasticity in the results. However, the standard deviations
were found to be 1-10%, making the trend clear.

6. Discussion
We presented an efficient robust value iteration for s-
rectangular Lp-robust MDPs, which is not only faster than
existing methods but also can be easily adapted to an online
setting, as illustrated by Algorithm 2. Note that the algo-
rithm is a two-time-scale algorithm, where the Q-values are
approximated at a faster time scale, and the value function
is approximated from the Q-values at a slower time scale.
The p-variance function κp can be estimated online using
batches or other sophisticated methods. The algorithm’s
convergence can be guaranteed from (Borkar, 2022).

We also introduce a novel value regularizer (κp) and a novel
threshold policy, which may help obtain more robust and
generalizable policies.

We consider uncertainty sets constrained by the Lp norm,
which is an essential and natural family of norms to consider.
Moreover, adaptation to a general norm for sa-rectangular
case is trivial (only κ changes in Theorem 3.1) but challeng-
ing for s-rectangular case, as discussed in the appendix.

Finally, a take-home message is that the policies with low
variance in their value function are more robust, which can
be ensured by using a value-variance regularizer. Further,
the work reinforces the existing belief that stochastic poli-
cies are better.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
This research was partially supported by Israel PBC-VATAT,
by the Technion Artificial Intelligent Hub (Tech.AI) and by
the Israel Science Foundation (grant No. 447/20).

Additionally, this project has received funding from the
European Union’s Horizon Europe Programme under grant
agreement No.101070568.

References
Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V.,

Luo, R., Zhang, M., and Wang, J. Wasserstein robust
reinforcement learning, 2019. URL https://arxiv.
org/abs/1907.13196.

8

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Anava, O. and Levy, K. k*-nearest neighbors: From global
to local. Advances in neural information processing sys-
tems, 29, 2016.

Asadi, M., Talebi, M. S., Bourel, H., and Maillard, O.
Model-based reinforcement learning exploiting state-
action equivalence. CoRR, abs/1910.04077, 2019. URL
http://arxiv.org/abs/1910.04077.

Auer, P. and Ortner, R. Logarithmic online regret bounds
for undiscounted reinforcement learning. In Schölkopf,
B., Platt, J., and Hoffman, T. (eds.), Advances in Neural
Information Processing Systems, volume 19. MIT
Press, 2006. URL https://proceedings.
neurips.cc/paper/2006/file/
c1b70d965ca504aa751ddb62ad69c63f-Paper.
pdf.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal re-
gret bounds for reinforcement learning. In Koller,
D., Schuurmans, D., Bengio, Y., and Bottou,
L. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 21. Curran Associates,
Inc., 2008. URL https://proceedings.
neurips.cc/paper/2008/file/
e4a6222cdb5b34375400904f03d8e6a5-Paper.
pdf.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 263–272. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/azar17a.html.

Bagnell, J. A., Ng, A. Y., and Schneider, J. G. Solving
uncertain markov decision processes. Technical report,
Carnegie Mellon University, 2001.

Borkar, V. S. Stochastic Approximation: A Dynamical
Systems Viewpoint. Hindustan Book Agency, 2022.
doi: 10.1007/978-81-951961-1-1. URL https://
doi.org/10.1007\%2F978-81-951961-1-1.

Derman, E. and Mannor, S. Distributional robustness and
regularization in reinforcement learning, 2020. URL
https://arxiv.org/abs/2003.02894.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor, S.
Soft-robust actor-critic policy-gradient, 2018.

Derman, E., Geist, M., and Mannor, S. Twice regularized
mdps and the equivalence between robustness and regu-
larization, 2021.

Eysenbach, B. and Levine, S. Maximum entropy rl (prov-
ably) solves some robust rl problems, 2021. URL
https://arxiv.org/abs/2103.06257.

Gadot, U., Derman, E., Kumar, N., Elfatihi, M. M., Levy, K.,
and Mannor, S. Solving non-rectangular reward-robust
mdps via frequency regularization, 2023.

Goyal, V. and Grand-Clément, J. Robust markov decision
process: Beyond rectangularity, 2018. URL https:
//arxiv.org/abs/1811.00215.

Grill, J.-B., Darwiche Domingues, O., Menard, P., Munos,
R., and Valko, M. Planning in entropy-regularized
markov decision processes and games. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
50982fb2f2cfa186d335310461dfa2be-Paper.
pdf.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies, 2017.
URL https://arxiv.org/abs/1702.08165.

Hanasusanto, G. A. and Kuhn, D. Robust data-driven
dynamic programming. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger,
K. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/
ef575e8837d065a1683c022d2077d342-Paper.
pdf.

Ho, C. P., Petrik, M., and Wiesemann, W. Partial policy
iteration for l1-robust markov decision processes, 2020.
URL https://arxiv.org/abs/2006.09484.

Husain, H., Ciosek, K., and Tomioka, R. Regularized poli-
cies are reward robust, 2021. URL https://arxiv.
org/abs/2101.07012.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, May 2005. ISSN
1526-5471. doi: 10.1287/moor.1040.0129. URL http:
//dx.doi.org/10.1287/MOOR.1040.0129.

Kaufman, D. L. and Schaefer, A. J. Robust modified policy
iteration. INFORMS J. Comput., 25:396–410, 2013.

Kumar, N., Derman, E., Geist, M., Levy, K. Y., and Mannor,
S. Policy gradient for rectangular robust markov deci-
sion processes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=NLpXRrjpa6.

Mai, T. and Jaillet, P. Robust entropy-regularized markov de-
cision processes, 2021. URL https://arxiv.org/
abs/2112.15364.

9

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Mannor, S., Simester, D., Sun, P., and Tsitsiklis, J. N.
Bias and variance in value function estimation. In
Proceedings of the Twenty-First International Con-
ference on Machine Learning, ICML ’04, pp. 72,
New York, NY, USA, 2004. Association for Comput-
ing Machinery. ISBN 1581138385. doi: 10.1145/
1015330.1015402. URL https://doi.org/10.
1145/1015330.1015402.

Mannor, S., Mebel, O., and Xu, H. Robust mdps with
k-rectangular uncertainty. Math. Oper. Res., 41(4):
1484–1509, nov 2016. ISSN 0364-765X.

Nilim, A. and Ghaoui, L. E. Robust control of markov deci-
sion processes with uncertain transition matrices. Oper.
Res., 53:780–798, 2005.

Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., and
Song, D. Assessing generalization in deep reinforcement
learning, 2018. URL https://arxiv.org/abs/
1810.12282.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. In Wiley Series in
Probability and Statistics, 1994.

Schulman, J., Chen, X., and Abbeel, P. Equivalence between
policy gradients and soft q-learning, 2017. URL https:
//arxiv.org/abs/1704.06440.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Tamar, A., Mannor, S., and Xu, H. Scaling up robust mdps
using function approximation. In Proceedings of the 31th
International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, volume 32 of
JMLR Workshop and Conference Proceedings, pp. 181–
189. JMLR.org, 2014. URL http://proceedings.
mlr.press/v32/tamar14.html.

Wang, K., Gadot, U., Kumar, N., Levy, K., and Mannor,
S. Robust reinforcement learning via adversarial kernel
approximation, 2023.

Wang, Y. and Zou, S. Online robust reinforcement learning
with model uncertainty, 2021. URL https://arxiv.
org/abs/2109.14523.

Wang, Y. and Zou, S. Policy gradient method for robust
reinforcement learning, 2022.

Wiesemann, W., Kuhn, D., and Rustem, B. Robust markov
decision processes. Mathematics of Operations Research,
38(1):153–183, 2013. ISSN 0364765X, 15265471. URL
http://www.jstor.org/stable/23358653.

Xu, H. and Mannor, S. Robustness and generalization, 2010.
URL https://arxiv.org/abs/1005.2243.

Yang, W., Li, X., and Zhang, Z. A regularized approach
to sparse optimal policy in reinforcement learning. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 5938–5948, 2019.

Zhao, C., Sigaud, O., Stulp, F., and Hospedales, T. M. Inves-
tigating generalisation in continuous deep reinforcement
learning, 2019. URL https://arxiv.org/abs/
1902.07015.

Zhou, R., Liu, T., Cheng, M., Kalathil, D., Kumar, P., and
Tian, C. Natural actor-critic for robust reinforcement
learning with function approximation. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=wxkBdtDbmH.

10

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

A. How to read appendix
1. Section B contains additional properties that couldn’t be included in the main section for the sake of clarity and space.

2. Section C contains the discussion on zero transition kernel (forbidden transitions).

3. Section D contains a possible connection this work to UCRL.

4. Section H contains additional experimental results and a detailed discussion.

5. All the proofs of the main body of the paper is presented in the section L and M.

6. Section J contains helper results for section L. Particularly, it discusses p-mean function ωp and p-variance function κp.

7. Section K contains helper results for section L. Particularly, it discusses Lp water pouring lemma, necessary to evaluate
robust optimal Bellman operator (learning) for s-rectangular Lp robust MDPs.

8. Section M contains time complexity proof for model based algorithms.

9. Section E develops Q-learning machinery for (sa)-rectangular Lp robust MDPs based on the results in the main section.
It is not used in the main body or anywhere else, but this provides a good understanding for algorithms proposed in
section F for (sa)-rectangular case.

10. Section F contains model-based algorithms for s and (sa)-rectangular Lp robust MDPs. It also contains, remarks for
special cases for p = 1, 2,∞.

B. Revisiting S-rectangular Robust MDPs
Here we outline some intriguing properties of s-rectangular robust MDPs, particularly their Q-value and greedy policies.
We begin with some useful definitions in Table 6.

Table 6. Useful Definitions
Notation Definition Remark

Qv R0 + γP0v Q-value at value function v

Q∗
U R0 + γP0v

∗
U Optimal Q-value

πv
U argmaxπ T π

U v Greedy policy at value function v

χp(s)
∣∣∣ {a | π∗

Us
p
(a|s) ≥ 0}

∣∣∣ Number of active actions in state s of optimal policy
=
∣∣ {a | Q∗

Us
p
(s, a) ≥ v∗Us

p
(s)}

∣∣ (From Theorem 4.1)

χp(v, s)
∣∣∣ {a | πv

Us
p
(a|s) ≥ 0}

∣∣∣ Number of active actions in state s, of greedy policy at value function v

Q(s, ai) Q(s, a1) ≥ Q(s, a2) ≥, · · · ,≥ Q(s, aA) i-th best Q-value in state s.

B.1. Relation Between Optimal Q-value and Optimal Value function

The optimal value function and optimal Q-value, in non-robust MDPs, have a very straightforward relation,

v∗(P,R)(s) = max
a

Q∗
(P,R)(s, a), ∀s.

This relation simply extends to sa-rectangular case, where the value function is best regularized Q-value, that is,

v∗Usa
p
(s) = max

a
[αs,a − γβs,aκq(v

∗
Usa

p
)−Q∗

Usa
p
(s, a)]

11

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

However, in s-rectangular case, the value function is no longer given by the best action. Specifically, from Theorem 3.2, we
have the following relation,

v∗Us
p
(s) =

∑
a

π∗
Us

p
(a|s)

[
−

(
αs + γβsκq(v)

)
∥π∗

Us
p
(·|s)∥q +Q∗

Us
p
(s, a)

]
. (4)

From this relation, we get the value function sandwiched between the Q-value of lowest active action and highest inactive
Q-value, as stated by the property below.

Property B.1. (Optimal Value vs Q-value) v∗Us
p
(s) is bounded by the Q-value of χp(s)th and (χp(s) + 1)th actions, that is ,

Q∗
Us

p
(s, aχp(s)+1) < v∗Us

p
(s) ≤ Q∗

Us
p
(s, aχp(s)).

Proof. A special case of Property B.3.

The above sandwich property is surprising and novel. The relation of various robust Q-value and value functions is
summarized in the table 7.

Table 7. Optimal value function and Q-value

Q-value and value relation Remark

(P,R) v∗(P,R)(s) = maxa Q
∗
(P,R)(s, a) Best value

Usa
p v∗Usa

p
(s) = maxa[αs,a − γβs,aκq(v

∗
Usa

p
)−Q∗

Usa
p
(s, a)] Best regularized value

Us
p Q∗

Us
p
(s, aχp(s)+1) < v∗Us

p
(s) ≤ Q∗

Us
p
(s, aχp(s)) Sandwich between Q-value of best

inactive action and worst active action

where (P,R) denotes the kernel and reward function for non-robust MDP.

B.2. Greedy Policy and Q-value

The greedy policy has the same form as the optimal robust policy described in Theorem 4.1. We briefly present the results in
this subsection for the sake of completeness.

Theorem B.2. (Greedy policy) The greedy policy πv
Us

p
is a threshold policy, that is proportional to the advantage function,

that is

πv
Us

p
(a|s) ∝

(
Qv(s, a)− (T ∗

Us
p
v)(s)

)p−1
1
(
Qv(s, a) ≥ (T ∗

Us
p
v)(s)

)
.

Proof. Proof in section L.

Note that the Theorem 4.1 is a special case of the above theorem. The greedy policies for various robust MDPs are
summarized in Table 8.

12

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 8. Greedy policy at value function v

U πv
U (a|s) ∝ remark

Us
p (Qv(s, a)− (T ∗

U v)(s))p−11(Av
U (s, a) ≥ 0) top actions proportional to

(p− 1)th power of its advantage

Us
1

1(Av
U (s,a)≥0)∑

a 1(Av
U (s,a)≥0) top actions with uniform probability

Us
2

Av
U (s,a)1Av

U (s,a)≥0)∑
a Av

U (s,a)1(Av
U (s,a)≥0) top actions proportion to its advantage

Us
∞ argmaxa∈A Qv(s, a) best action

Usa
p argmaxa[−αsa − γβsaκq(v) +Qv(s, a)] best action

where Av
U (s, a) = Qv(s, a)− (T ∗

U v)(s) and Qv(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′).

The above result states that the greedy policy takes actions having a non-negative advantage, so we have.

χp(v, s) :=
∣∣∣{ a | πv

Us
p
(a|s) ≥ 0

}∣∣∣=∣∣∣{ a | Qv(s, a) ≥ (T ∗
Us

p
)v(s)

}∣∣∣ . (5)

The property below states that the T ∗
Uv is sandwiched between the lowest Q-value of active action and the highest Q-value

of inactive action.

Property B.3. (Greedy Value vs Q-value) (T ∗
Us

p
v)(s) is bounded by the Q-value of χp(v, s)th and (χp(v, s) + 1)th actions,

that is ,
Qv(s, aχp(v,s)+1) < (T ∗

Us
p
v)(s) ≤ Qv(s, aχp(v,s)).

Proof. Proof in section L.

Table 9. Greedy value function and Q-value

MDP Relation Remark

(P,R) (T ∗
(P,R)v)(s) = maxa Q

v(s, a) Best value

Us
p (T ∗

Usa
p
)v(s) = maxa[αs,a − γβs,aκq(v)−Qv(s, a)] Best regularized value

Us
p Qv(s, aχp(v,s)+1) < (T ∗

Us
p
)v(s) ≤ Qv(s, aχp(v,s)) Sandwich!

where Qv(s, a1) ≥, · · · ,≥ Qv(s, aA).

C. Revisiting kernel noise assumption
Until now, we implicitly assumed that the nominal kernel has support over all states in every state and action, that is
P0(s

′|s, a) > 0 for all s′, s ∈ S, a ∈ A. Now we relax this condition, and we focus on the cases where P0(s
′|s, a) = 0 for

some states s′, which we call forbidden transitions. This enables us to capture many practical situations where in a given
state, many transitions are impossible. For example, consider a grid world example where only single-step jumps (left, right,
up, down) are allowed, so in this case, the probability of making a multi-step jump is impossible. So upon adding noise
to the kernel, the system should not start making impossible transitions. Therefore, noise set P must satisfy additional
constraint: For any (s, a) if P0(s

′|s, a) = 0 then

P (s′|s, a) = 0, ∀P ∈ P.

Incorporating this constraint without much change in the theory is one of our novel contributions, and is discussed below.

13

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

C.1. Sa-Rectangular Uncertainty

Let Fs,a := {s′ | P0(s
′|s, a) = 0} be the set states where transition is impossible at state s under action a. Further, we want

to have the transition uncertainty set P respecting this constraint, that is

P (s′|s, a) = 0, ∀P ∈ P,∀s′ ∈ Fs,a. (6)

Formally, we define, the kernel noise set as

P = {P | ∥P (·|s, a)∥p = βs,a,
∑
s′

P (s′|s, a) = 0,︸ ︷︷ ︸
simplex condition

P (s”|s, a) = 0,∀s” ∈ Fs,a︸ ︷︷ ︸
forbidden state condition

}. (7)

In this case, our p-variance function is redefined as

κp(v, s, a) = min
∥P∥p=βs,a,

∑
s′ P (s′)=0, P (s”)=0, ∀s”∈Fs,a

⟨P, v⟩ (8)

=min
ω∈R

∥u− ω1∥p, where u(s) = v(s)1(s /∈ Fs,a). (9)

=κp(u) (10)

This says we consider the value of only those states that are allowed (not forbidden) in the calculation of p-variance. For
example, we have

κ∞(v, s, a) =
maxs/∈Fs,a

v(s)−mins/∈Fs,a
v(s)

2
. (11)

(12)

So theorem 1 of the main paper can be re-stated as

Theorem C.1. (Restated) (Sa)-rectangular Lp robust Bellman operator is equivalent to reward regularized (non-robust)
Bellman operator. That is, using κp above, we have

(T π
Usa

p
v)(s) =

∑
a

π(a|s)[−αs,a − γβs,aκq(v, s, a) +R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)],

(T ∗
Usa

p
v)(s) =max

a∈A
[−αs,a − γβs,aκq(v, s, a) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)].

C.2. S-Rectangular Uncertainty

This notion can also be applied to s-rectangular uncertainty, but with a little caution. Here, we define forbidden states in
state s to be Fs (state dependent) instead of state-action dependent in sa-rectangular case. Here, we define p-variance as

κp(v, s) = κp(u), where u(s) = v(s)1(s /∈ Fs). (13)

So Theorem 2 can be restated as

Theorem C.2. (restated) (Policy Evaluation) S-rectangular Lp robust Bellman operator is equivalent to reward regularized
(non-robust) Bellman operator, that is

(T π
Us

p
v)(s) = −

(
αs + γβsκq(v, s)

)
∥π(·|s)∥q +

∑
a

π(a|s)
(
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

)
where κp is defined above and ∥π(·|s)∥q is q-norm of the vector π(·|s) ∈ ∆A.

For all the other results (including theorem 4), we just need to replace the old p-variance function with the new p-variance
function appropriately.

14

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

D. Application to UCRL
Here, we show UCRL (upper confidence reinforcement learning) although very different in motivation than robust MDPs,
can benefit from our techniques developed so far.

Optimistic policies are sought that aids exploration in UCRL (Auer & Ortner, 2006; Auer et al., 2008; Asadi et al., 2019), in
contrast to robust MDPs that seek pessimistic policies to avoid the risk. Referring to step 3 of the UCRL algorithm (Auer &
Ortner, 2006), the objective is to find a policy

argmax
π

max
R,P∈U

⟨µ, vπP,R⟩, (14)

where
U = {(R,P) | |R(s, a)−R0(s, a)| ≤ αs,a, |P (s′|s, a)− P0(s

′|s, a)| ≤ βs,a,s′ , P ∈ (∆S)
S×A}

for current estimated kernel P0 and reward function R0. We refer to Section 3.1.1 and step 4 of the UCRL 2 algorithm of
(Auer et al., 2008), which seeks to find whose best performance is high, that is,

max
π

max
R,P∈U

⟨µ, vπP,R⟩, (15)

where
U = {(R,P) | |R(s, a)−R0(s, a)| ≤ αs,a, ∥P (·|s, a)− P0(·|s, a)∥1 ≤ βs,a, P ∈ (∆S)

S×A}

The uncertainty radius α, β depends on the number of samples of different transitions and observations of the reward. The
paper (Auer & Ortner, 2006) doesn’t explain any method to solve the above problem. UCRL 2 algorithm (Auer et al., 2008),
suggests solving it by linear programming that can be very slow. We show that it can be solved by our methods.

The above problem can be tackled as following

max
π

max
R,P∈Usa

p

⟨µ, vπP,R⟩. (16)

We can define, optimistic Bellman operators as

T̂ π
U v := max

R,P∈U
vπP,R, T̂ ∗

U v := max
π

max
R,P∈U

vπP,R. (17)

The well definition and contraction of the above optimistic operators may follow directly from their pessimistic (robust)
counterparts. We can evaluate the above optimistic operators as

(T̂ π
Usa

p
v)(s) =

∑
a

π(a|s)
[
R0(s, a) + αs,a + βs,aγκq(v) +

∑
s′

P0(s
′|s, a)v(s′)

]
, (18)

(T̂ ∗
Usa

p
v)(s) = max

a

[
R0(s, a) + αs,a + βs,aγκq(v) +

∑
s′

P0(s
′|s, a)v(s′)

]
. (19)

The uncertainty radiuses α, β and nominal values P0, R0 can be found by similar analysis by (Auer & Ortner, 2006; Auer
et al., 2008). We can get the Q-learning from the above results as

Q(s, a) → R0(s, a)− αs,a − γβs,aκq(v) + γ
∑
s′

P0(s
′|s, a)max

a′
Q(s′, a′), (20)

where v(s) = maxa Q(s, a). From the law of large numbers, we know that uncertainty radiuses αs,a, βs,a behaves as
O(1√

n
) asymptotically with number of iteration n. This resembles very closely to the UCB VI algorithm (Azar et al., 2017).

We emphasize that similar optimistic operators can be defined and evaluated for s-rectangular uncertainty sets too.

E. Q-Learning for (sa)-rectangular MDPs
Here we generalize our result and obtain Q-learning for sa-rectangular robust MDPs.

15

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

In view of Theorem 3.1, we can define Qπ
Usa

p
, the robust Q-values under policy π for (sa)-rectangular Lp constrained

uncertainty set Usa
p as

Qπ
Usa

p
(s, a) := −αs,a − γβs,aκq(v

π
Usa

p
) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′). (21)

This implies that we have the following relation between robust Q-values and robust value function, same as its non-robust
counterparts,

vπUsa
p
(s) =

∑
a

π(a|s)Qπ
Usa

p
(s, a). (22)

Let Q∗
Usa

p
denote the optimal robust Q-values associated with optimal robust value v∗Usa

p
, given as

Q∗
Usa

p
(s, a) := −αs,a − γβs,aκq(v

∗
Usa

p
) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v∗Usa

p
(s′). (23)

It is evident from Theorem 3.1 that optimal robust value and optimal robust Q-values satisfy the following relation, same as
its non-robust counterparts,

v∗Usa
p
(s′) = max

a∈A
Q∗

Usa
p
(s, a). (24)

Combining 24 and 23, we have optimal robust Q-value recursion as follows

Q∗
Usa

p
(s, a) = −αs,a − γβs,aκq(v

∗
Usa

p
) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)max

a∈A
Q∗

Usa
p
(s, a). (25)

The above robust Q-value recursion enjoys similar properties as its non-robust counterparts.

Corollary E.1. ((sa)-rectangular Lp regularized Q-learning) Let

Qn+1(s, a) = R0(s, a)− αsa − γβsaκq(vn) + γ
∑
s′

P0(s
′|s, a)max

a∈A
Qn(s

′, a),

where vn(s) = maxa∈A Qn(s, a), then Qn converges to Q∗
Usa

p
linearly.

Observe that the above Q-learning equation is the same as non-robust MDP except for the reward penalty. Recall that
κ1(v) = 0.5(maxs v(s) −mins v(s)) is difference between peak to peak values and κ2(v) is variance of v, that can be
easily estimated. Hence, model-free algorithms for (sa)-rectangular Lp robust MDPs for p = 1, 2, can be derived easily
from the above results. This implies that (sa)-rectangular L1 and L2 robust MDPs are as easy as non-robust MDPs.

F. Model Based Algorithms
In this section, we assume that we know the nominal transitional kernel and nominal reward function. Algorithm 3, algorithm
4 is model based algorithm for (sa)-rectangular and s rectangular Lp robust MDPs respectively. It is explained in the
algorithms, how to get deal with special cases (p = 1, 2,∞) in an easy way.

16

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Algorithm 3 Model Based Q-Learning Algorithm for sa-rectangular Lp Robust MDP
1: Input: αs,a, βs,a are uncertainty radius in reward and transition kernel respectively in state s and action a. Transition

kernel P and reward vector R. Take initial Q-values Q0 randomly and v0(s) = maxa Q0(s, a).
2: while not converged do
3: Do binary search in [mins vn(s),maxs vn(s)] to get q-mean ωn, such that∑

s

(vn(s)− ωn)

|vn(s)− ωn|
|vn(s)− ωn|

1
p−1 = 0. (26)

4: Compute q-variance: κn = ∥v − ωn∥q .
5: Note: For p = 1, 2,∞, we can compute κn exactly in closed from, see table 2.
6: for s ∈ S do
7: for a ∈ A do
8: Update Q-value as

Qn+1(s, a) = R0(s, a)− αsa − γβsaκn + γ
∑
s′

P0(s
′|s, a)max

a
Qn(s

′, a).

9: end for
10: Update value as

vn+1(s) = max
a

Qn+1(s, a).

11: end for
n → n+ 1

12: end while

17

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Algorithm 4 Model Based Algorithm for S rectangular Lp Robust MDP
1: Take initial Q-values Q0 and value function v0 randomly.
2: Input: αs, βs are uncertainty radius in reward and transition kernel respectively in state s.
3: while not converged do
4: Do binary search in [mins vn(s),maxs vn(s)] to get q-mean ωn, such that∑

s

(vn(s)− ωn)

|vn(s)− ωn|
|vn(s)− ωn|

1
p−1 = 0. (27)

5: Compute q-variance: κn = ∥v − ωn∥q .
6: Note: For p = 1, 2,∞, we can compute κn exactly in closed from, see table 2.
7: for s ∈ S do
8: for a ∈ A do
9: Update Q-value as

Qn+1(s, a) = R0(s, a) + γ
∑
s′

P0(s
′|s, a)vn+1(s

′). (28)

10: end for
11: Sort actions in decreasing order of the Q-value, that is

Qn+1(s, ai) ≥ Qn+1(s, ai+1). (29)

12: Value evaluation:

vn+1(s) = x such that (αs + γβsκn)
p =

∑
Qn+1(s,ai)≥x

|Qn+1(s, ai)− x|p. (30)

13: Note: We can compute vn+1(s) exactly in closed from for p = ∞ and for p = 1, 2, we can do the same using
algorithm 8,7 respectively, see table 3.

14: end for
n → n+ 1

15: end while

18

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Algorithm 5 Model based algorithm for s-rectangular L1 robust MDPs
1: Take initial value function v0 randomly and start the counter n = 0.
2: while not converged do
3: Calculate q-variance: κn = 1

2

[
maxs vn(s)−mins vn(s)

]
4: for s ∈ S do
5: for a ∈ A do
6: Update Q-value as

Qn(s, a) = R0(s, a) + γ
∑
s′

P0(s
′|s, a)vn(s′). (31)

7: end for
8: Sort actions in state s, in decreasing order of the Q-value, that is

Qn(s, a1) ≥ Qn(s, a2), · · · ≥ Qn(s, aA). (32)

9: Value evaluation:

vn+1(s) = max
m

∑m
i=1 Qn(s, ai)− αs − βsγκn

m
. (33)

10: Value evaluation can also be done using algorithm 8.
11: end for

n → n+ 1

12: end while

G. Generalization to General Norm
Until now, we studied uncertainty sets that are constrained by Lp norm. Here, we discuss how we can generalize our
techniques to any general norm.

Specifically, we consider sa-rectangular uncertainty set U = Usa
∥·∥ constrained by ∥·∥ norm, defined as

Usa
∥·∥ = (P0 + P)× (R0 +R), where (P,R) = (×s,aPsa,×s,aPsa),

R(s,a) = {r ∈ R | ∥r∥ ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥ ≤ βs,a

}
.

The robust Bellman operator T π
U and optimal robust Bellman operator T ∗

U can be evaluated as

(T π
U v)(s) =

∑
a

π(a|s)
[
R(s, a)− γβs,aκ∥·∥(v) + γ

∑
s′

P (s′|s, a)v(s′)
]
,

(T ∗
U v)(s) = max

a

[
R(s, a)− γβs,aκ∥·∥(v) + γ

∑
s′

P (s′|s, a)v(s′)
]
,

where variance function is defined as
κ∥·∥(v) := min

⟨u,1⟩S=0,∥u∥≤1
⟨u, vπU ⟩.

Since norms are convex functions, hence the variance function can be computed by convex optimization techniques as the
objective is linear and constraints are convex.

However, a similar generalization for s-rectangular case may not be possible. The structure of Lp norm was crucially used
to decompose s-rectangular into a bunch of sa-rectangular sets. We leave this to future work.

H. Experiments
Table 4 contains the relative cost (time) of robust value iteration w.r.t. non-robust MDP, for randomly generated kernel and
reward function with the number of states S and the number of action A.

Each experiments are repeated 500 times. The standard deviation of all experiments was less than 10%, and the typical
standard deviation is 1− 2%.

19

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 10. Relative running cost (time) for value iteration

U S=10 A=10 S=30 A=10 S=50 A=10 S=100 A=20 remark

non-robust 1 1 1 1

Usa
∞ by LP 1374 2282 2848 6930 scipy.optimize.linearprog

Usa
1 by LP 1438 6616 6622 16714 scipy.optimize.linearprog

Us
1 by LP 72625 629890 4904004 NA scipy.optimize.linearprog/minimize

Usa
1 1.77 1.38 1.54 1.45 closed form

Usa
2 1.51 1.43 1.91 1.59 closed form

Usa
∞ 1.58 1.48 1.37 1.58 closed form

Us
1 1.41 1.58 1.20 1.16 closed form

Us
2 2.63 2.82 2.49 2.18 closed form

Us
∞ 1.41 3.04 2.25 1.50 closed form

Usa
5 5.4 4.91 4.14 4.06 binary search

Usa
10 5.56 5.29 4.15 3.26 binary search

Us
5 33.30 89.23 40.22 41.22 binary search

Us
10 33.59 78.17 41.07 41.10 binary search

20

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Notations

S : number of states, A: number of actions, Usa
p LP: Sa rectangular Lp robust MPDs by Linear Programming, Us

p LP: S

rectangular Lp robust MPDs by Linear Programming and other numerical methods, Usa/s
p=1,2,∞: Sa/S rectangular L1/L2/L∞

robust MDPs by closed form method (see table 2, theorem 3) Usa/s
p=5,10 : Sa/S rectangular L5/L10 robust MDPs by binary

search (see table 2, theorem 3 of the paper)

Observations

1. Our method for s/sa rectangular L1/L2/L∞ robust MDPs takes almost the same (1-3 times) the time as non-robust MDP
for one iteration of value iteration. This confirms our complexity analysis (see table 4 of the paper) 2. Our binary search
method for sa rectangular L5/L10 robust MDPs takes around 4− 6 times more time than non-robust counterpart. This is
due to extra iterations required to find p-variance function κp(v) through binary search. 3. Our binary search method for
s rectangular L5/L10 robust MDPs takes around 30 − 100 times more time than non-robust counterpart. This is due to
extra iterations required to find p-variance function κp(v) through binary search and Bellman operator. 4. One common
feature of our method is that time complexity scales moderately as guaranteed through our complexity analysis. 5. Linear
programming methods for sa-rectangular L1/L∞ robust MDPs take at least 1000 times more than our methods for small
state-action space, and it scales up very fast. 6. Numerical methods (Linear programming for minimization over uncertainty
and ’scipy.optimize.minimize’ for maximization over policy) for s-rectangular L1 robust MDPs take 4-5 order more time
than our methods (and non-robust MDPs) for very small state-action space, and scales up too fast. The reason is obvious, as
it has to solve two optimizations, one minimization over uncertainty and the other maximization over policy, whereas, in the
sa-rectangular case, only minimization over uncertainty is required. This confirms that the s-rectangular uncertainty set is
much more challenging.

Rate of convergence

The rate of convergence for all was approximately the same as 0.9 = γ, as predicted by theory. It is well illustrated by the
relative rate of convergence w.r.t. non-robust by the Table 11.

In the above experiments, Bellman updates for sa/s rectangular L1/L2/L∞ were done in closed form, and for L5/L10 were
done by binary search as suggested by Table 2 and Theorem 3.

Note: The above experiments’ results are for a few runs, hence containing some stochasticity but the general trend is clear.
In the final version, we will do an averaging of many runs to minimize the stochastic nature. Results for many different runs
can be found at https://github.com/******.

Note that the above experiments were done without using too much parallelization. There is ample scope to fine-tune and
improve the performance of robust MDPs. The above experiments confirm the theoretical complexity provided in Table 4 of
the paper. The codes and results can be found at https://github.com/******.

Experiments parameters

Number of states S (variable), number of actions A (variable), transition kernel and reward function generated randomly,
discount factor 0.9, uncertainty radiuses =0.1 (for all states and action, just for convenience), number of iterations = 100,
tolerance for binary search = 0.00001

Hardware

The experiments are done on the following hardware: Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz 64 bits, memory
7862MiB Software: Experiments were done in Python, using numpy, scipy.optimize.linprog for Linear programming for
policy evaluation in s/sa rectangular robust MDPs, scipy.optimize.minize, and scipy.optimize.LinearConstraints for policy
improvement in s-rectangular L1 robust MDPs.

I. Extension to Model Free Settings
Extension of Q-learning (in section E) for sa-rectangular MDPs to model free setting can easily done similar to (Wang &
Zou, 2021), also policy gradient method can be obtained as (Wang & Zou, 2022). The only thing, we need to do, is to be

21

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 11. Relative observed rate of convergence

U S=10 A=10 S=100 A=20 remark

non-robust 1 1

Usa
1 0.999 0.999 closed form

Usa
2 0.999 0.999 closed form

Usa
∞ 1.000 0.998 closed form

Us
1 0.999 0.999 closed-form

Us
2 0.999 0.999 closed form

Us
∞ 1.000 0.998 closed form

Usa
5 0.999 0.995 binary search

Usa
10 1.000 0.999 binary search

Us
5 1.000 0.999 binary search

Us
10 1.000 0.995 binary search

able to compute/estimate κq online. It can be estimated using an ensemble (samples). Further, κ2 can be estimated by the
estimated mean and the estimated second moment. κ∞ can be estimated by tracking maximum and minimum values.

For s-rectangular case too, we can obtain model-free algorithms easily, by estimating κq online and keeping track of Q-
values and value functions. The convergence analysis may be similar to (Wang & Zou, 2021), especially for sa-rectangular
case, and for the other, it would be two-time scale, which can be dealt with techniques in (Borkar, 2022). We leave this for
future work. It would be interesting to obtain policy gradient methods for this case, which we believe can be obtained from
the policy evaluation theorem.

J. Variance Function and its Properties
In this section, we discuss the p-variance function κp which is omnipresent in the main text. Here, we outline its properties,
origin, and about its computation.

J.1. Closed-Form Expressions for Special Cases

Recall that κp is defined as follows

κp(v) = min
w

∥v − ω1∥p = ∥v − ωp(v)∥p,

22

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

where ωp(v) ∈ argminw∥v − ω1∥p. Since ∥v − ω1∥p is a convex function in ω and ωp(v) is the minimizer of the above
expression, hence it must satisfy the stationary condition. That is,

∂∥v − ω∥p
∂ω

∣∣∣
ω=ωp(v)

= 0

=⇒
∑
s

sign(v(s)− ωp(v))|v(s)− ωp(v)|p−1 = 0,

=⇒
∑
s

sign(v(s)− ωp(v))|v(s)− ωp(v)|p−1 = 0.

(34)

For p = 2, stationary condition (34) simplifies to∑
s

sign(v(s)− ω2(v))|v(s)− ωp(v)| =
∑
s

[v(s)− ω2(v)] = 0,

yielding ω2(v) =
∑

s v(s)

S . Putting back, we get

κ2(v) =∥v − ω21∥2

=∥v −
∑

s v(s)

S
1∥2,

=

√∑
s

(v(s)−
∑

s v(s)

S
)2.

(35)

For p = 1, stationary condition (34) simplifies to∑
s∈S

sign
(
v(s)− ω1(v)

)
= 0. (36)

Note that there may be more than one value of ω1(v) that satisfies the above equation and each solution does an equally
good job (as we will see later). So we will pick one (is median of v) according to our convenience as

ω1(v) =
v(s⌊(S+1)/2⌋) + v(s⌈(S+1)/2⌉)

2
where v(si) ≥ v(si+1) ∀i.

Putting it back, we get

κ1(v) =∥v − ω11∥1
=∥v −med(v)1∥1, (putting in value of ω0, see table 12)

=
∑
s

|v(s)−med(v)|

=

⌊(S+1)/2⌋∑
i=1

(v(s)−med(v)) +

S∑
⌈(S+1)/2⌉

(med(v)− v(s))

=

⌊(S+1)/2⌋∑
i=1

v(s)−
S∑

⌈(S+1)/2⌉

v(s)

(37)

where med(v) :=
v(s⌊(S+1)/2⌋)+v(s⌈(S+1)/2⌉)

2 where v(si) ≥ v(si+1) ∀i is median of v.

For the limiting case of p = ∞, it is clear that the expression ∥v − ω1∥∞ is minimized for ω = maxs v(s)+mins v(s)
2 ,

yielding ω∞(v) = maxs v(s)+mins v(s)
2 and κ∞(v) = maxs v(s)−mins v(s)

2 .

The results are summarized in table 2 and 12.

23

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Table 12. p-mean, where v(si) ≥ v(si+1) ∀i.
x ωx(v) remark

p
∑

s sign(v(s)− ωp(v))|v(s)− ωp(v)|
1

p−1 = 0 Solve by binary search

1
v(s⌊(S+1)/2⌋)+v(s⌈(S+1)/2⌉)

2 Median

2
∑

s v(s)

S Mean

∞ maxs v(s)+mins v(s)
2 Average of peaks

J.2. Origin: Variance function and Kernel Noise

This subsection is devoted to the origin of κ which is from noise in the kernel. Note that in policy evaluation step
(minimization over kernel noise) has the optimization of the form:

min
c

⟨c, v⟩, ∥c∥p ≤ ϵ,
∑
s

c(s) = 0.

The lemma below connects it to the variance function.

Lemma J.1. q-variance function κq is the solution of the following optimization problem (kernel noise),

κq(v) = −1

ϵ
min
c

⟨c, v⟩, ∥c∥p ≤ ϵ,
∑
s

c(s) = 0.

Proof. Writing Lagrangian L, as

L :=
∑
s

c(s)v(s) + λ
∑
s

c(s) + µ(
∑
s

|c(s)|p − ϵp),

where λ ∈ R is the multiplier for the constraint
∑

s c(s) = 0 and µ ≥ 0 is the multiplier for the inequality constraint
∥c∥q≤ ϵ. Taking its derivative, we have

∂L

∂c(s)
= v(s) + λ+ µp|c(s)|p−1 c(s)

|c(s)| (38)

From the KKT (stationarity) condition, the solution c∗ has zero derivative, that is

v(s) + λ+ µp|c∗(s)|p−1 c∗(s)

|c∗(s)|
= 0, ∀s ∈ S. (39)

Using Lagrangian derivative equation (39), we have

v(s) + λ+ µp|c∗(s)|p−1 c∗(s)

|c∗(s)|
= 0

=⇒
∑
s

c∗(s)[v(s) + λ+ µp|c∗(s)|p−1 c∗(s)

|c∗(s)|
] = 0, (multiply with c∗(s) and summing)

=⇒
∑
s

c∗(s)v(s) + λ
∑
s

c∗(s) + µp
∑
s

|c∗(s)|p−1 (c
∗(s))2

|c∗(s)|
= 0

=⇒ ⟨c∗, v⟩+ µp
∑
s

|c∗(s)|p = 0 (using
∑
s

c∗(s) = 0 and (c∗(s))2 = |c∗(s)|2)

=⇒ ⟨c∗, v⟩ = −µpϵp, (using
∑
s

|c∗(s)|p = ϵp).

(40)

24

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

It is easy to see that µ ≥ 0, as the minimum value of the objective, must not be positive (at c = 0, the objective value is
zero). Again we use Lagrangian derivative (39) and try to get the objective value (−µpϵp) in terms of λ, as

v(s) + λ+ µp|c∗(s)|p−1 c∗(s)

|c∗(s)|
= 0

=⇒ |c∗(s)|p−2c∗(s) = −v(s) + λ

µp
, (re-arranging terms)

=⇒
∑
s

|(|c∗(s)|p−2c∗(s))|
p

p−1 =
∑
s

| − v(s) + λ

µp
|

p
p−1 , (doing

∑
s

|·|
p

p−1)

=⇒ ∥c∗∥pp =
∑
s

| − v(s) + λ

µp
|

p
p−1 =

∑
s

|v(s) + λ

µp
|q =

∥v + λ∥qq
|µp|q

=⇒ |µp|q∥c∗∥pp = ∥v + λ∥qq, (re-arranging terms)

=⇒ |µp|qϵp = ∥v + λ∥qq, (using
∑
s

|c∗(s)|p = ϵp)

=⇒ ϵ(µpϵp/q) = ϵ∥v + λ∥q (taking
1

q
the power then multiplying with ϵ)

=⇒ µpϵp = ϵ∥v + λ∥q.

(41)

Again, using Lagrangian derivative (39) to solve for λ, we have

v(s) + λ+ µp|c∗(s)|p−1 c∗(s)

|c∗(s)|
= 0

=⇒ |c∗(s)|p−2c∗(s) = −v(s) + λ

µp
, (re-arranging terms)

=⇒ |c∗(s)| = |v(s) + λ

µp
|

1
p−1 , (looking at absolute value)

and
c∗(s)

|c∗(s)|
= − v(s) + λ

|v(s) + λ|
, (looking at sign: and note µ, p ≥ 0)

=⇒
∑
s

c∗(s)

|c∗(s)|
|c∗(s)| = −

∑
s

v(s) + λ

|v(s) + λ|
|v(s) + λ

µp
|

1
p−1 , (putting back)

=⇒
∑
s

c∗(s) = −
∑
s

v(s) + λ

|v(s) + λ|
|v(s) + λ

µp
|

1
p−1 ,

=⇒
∑
s

v(s) + λ

|v(s) + λ|
|v(s) + λ|

1
p−1 = 0, (using

∑
i

c∗(s) = 0)

(42)

Combining everything, we have

− 1

ϵ
min
c

⟨c, v⟩, ∥c∥p ≤ ϵ,
∑
s

c(s) = 0

=∥v − λ∥q, such that
∑
s

sign(v(s)− λ)|v(s)− λ|
1

p−1 = 0.
(43)

Now, observe that

∂∥v − λ∥q
∂λ

= 0

=⇒
∑
s

sign(v(s)− λ)|v(s)− λ|
1

p−1 = 0,

=⇒ κq(v) = ∥v − λ∥q, such that
∑
s

sign(v(s)− λ)|v(s)− λ|
1

p−1 = 0.

(44)

25

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

The last equality follows from the convexity of p-norm ∥·∥q , where every local minima is global minima.

For the sanity check, we re-derived things for p = 1 from scratch. For p = 1, we have

− 1

ϵ
min
c

⟨c, v⟩, ∥c∥1 ≤ ϵ,
∑
s

c(s) = 0.

=− 1

2
(min

s
v(s)−max

s
v(s))

=κ1(v).

(45)

It is easy to see the above result, just by inspection.

J.3. Computation: Binary search for mean and estimation of variance

If the function f : [−B/2, B/2] → R, B ∈ R is monotonic (WLOG let it be monotonically decreasing) in a bounded
domain, and it has a unique root x∗ s.t. f(x∗) = 0. Then we can find x that is an ϵ-approximation x∗ (i.e. ∥x− x∗∥ ≤ ϵ) in
O(B/ϵ) iterations. Why? Let x0 = 0 and

xn+1 :=


−B+xn

2 if f(xn) > 0
B+xn

2 if f(xn) < 0

xn if f(xn) = 0

.

It is easy to observe that ∥xn − x∗∥ ≤ B(1/2)n. This proves the above claim. This observation will be referred to many
times.
Now, we move to the main claims of the section.

Proposition J.2. The function
hp(λ) :=

∑
s

sign
(
v(s)− λ

)∣∣ v(s)− λ
∣∣p

is monotonically strictly decreasing and also has a root in the range [mins v(s),maxs v(s)].

Proof.

hp(λ) =
∑
s

v(s)− λ

|v(s)− λ|
|v(s)− λ|p

dhp

dλ
(λ) = −p

∑
s

|v(s)− λ|p−1 ≤ 0, ∀p ≥ 0.

(46)

Now, observe that hp(maxs v(s)) ≤ 0 and hp(mins v(s)) ≥ 0, hence by hp must have a root in the range
[mins v(s),maxs v(s)] as the function is continuous.

The above proposition ensures that a root ωp(v) can be easily found by binary search between [mins v(s),maxs v(s)].
Precisely, ϵ approximation of ωp(v) can be found in O(log(maxs v(s)−mins v(s)

ϵ)) number of iterations of binary search. And
one evaluation of the function hp requires O(S) iterations. And we have finite state-action space and bounded reward hence
WLOG we can assume |maxs v(s)|, |mins v(s)| are bounded by a constant. Hence, the complexity to approximate ωp is
O(S log(1ϵ)).

Let ω̂p(v) be an ϵ-approximation of ωp(v), that is ∣∣ ωp(v)− ω̂p(v)
∣∣≤ ϵ.

And let κ̂p(v) be approximation of κp(v) using approximated mean, that is,

κ̂p(v) := ∥v − ω̂p(v)1∥p.

26

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Now we will show that ϵ error in calculation of p-mean ωp, induces O(ϵ) error in estimation of p-variance κp. Precisely,∣∣∣ κp(v)− κ̂p(v)
∣∣∣= ∣∣∣∥∥ v − ωp(v)1

∥∥
p
−

∥∥ v − ω̂p(v)1
∥∥
p

∣∣∣
≤

∥∥ ωp(v)1− ω̂p(v)1
∥∥
p
, (reverse triangle inequality)

=
∥∥ 1

∥∥
p

∣∣ ωp(v)− ω̂p(v)
∣∣

≤
∥∥ 1

∥∥
p
ϵ

=S
1
p ϵ ≤ Sϵ.

(47)

For general p, an ϵ approximation of κp(v) can be calculated in O(S log(Sϵ) iterations. Why? We will estimate mean ωp to
an ϵ/S tolerance (with cost O(S log(Sϵ)) and then approximate the κp with this approximated mean (cost O(S)).

K. Lp Water Filling/Pouring lemma
In this section, we are going to discuss the following optimization problem,

max
c

−α∥c∥q + ⟨c, b⟩ such that
A∑
i=1

ci = 1, ci ≥ 0, ∀i

where α ≥ 0, referred as Lp-water pouring problem. We are going to assume WLOG that b is sorted component-wise, that
is b1 ≥ b2, · · · ≥ bA. The above problem for p = 2, is studied in (Anava & Levy, 2016). The approach we are going to
solve the problem is as follows: a) Write Lagrangian b) Since the problem is convex, any solution of KKT condition is
global maximum. c) Obtain conditions using KKT conditions.

Lemma K.1. Let b ∈ RA be such that its components are in decreasing order (i,e bi ≥ bi+1), α ≥ 0 be any non-negative
constant, and

ζp := max
c

−α∥c∥q + ⟨c, b⟩ such that
A∑
i=1

ci = 1, ci ≥ 0, ∀i, (48)

and let c∗ be a solution to the above problem. Then

1. Higher components of b, gets higher weight in c∗. In other words, c∗ is also sorted component-wise in descending
order, that is

c∗1 ≥ c∗2, · · · ,≥ c∗A.

2. The optimal value ζp satisfies the following equation

αp =
∑
bi≥ζp

(bi − ζp)
p.

3. The solution c of (48), is related to ζp as

ci =
(bi − ζp)

p−11(bi ≥ ζp)∑
s(bi − ζp)p−11(bi ≥ ζp)

.

4. Observe that the top χp := max{i|bi ≥ ζp} actions are active and rest are passive. The number of active actions can
be calculated as

{k|αp ≥
k∑

i=1

(bi − bk)
p} = {1, 2, · · · , χp}.

5. Things can be re-written as

ci ∝

{
(bi − ζp)

p−1 if i ≤ χp

0 else
and αp =

χp∑
i=1

(bi − ζp)
p

27

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

6. The function
∑

bi≥x(bi − x)p is monotonically decreasing in x, hence the root ζp can be calculated efficiently by
binary search between [b1 − α, b1].

7. Solution is sandwiched as follows
bχp+1 ≤ ζp ≤ bχp

8. k ≤ χp if and only if there exists the solution of the following,

k∑
i=1

(bi − x)p = αp and x ≤ bk.

9. If action k is active and there is greedy increment hope then action k + 1 is also active. That is

k ≤ χp and λk ≤ bk+1 =⇒ k + 1 ≤ χp,

where
k∑

i=1

(bi − λk)
p = αp and λk ≤ bk.

10. If action k is active, and there is no greedy hope then action k + 1 is not active. That is,

k ≤ χp and λk > bk+1 =⇒ k + 1 > χp,

where
k∑

i=1

(bi − λk)
p = αp and λk ≤ bk.

And this implies k = χp.

Proof. 1. Let
f(c) := −α∥c∥q + ⟨b, c⟩.

Let c be any vector, and c′ be rearrangement c in descending order. Precisely,

c′k := cik , where ci1 ≥ ci2 , · · · ,≥ ciA .

Then it is easy to see that f(c′) ≥ f(c). And the claim follows.

2. Writing Lagrangian of the optimization problem, and its derivative,

L = −α∥c∥q + ⟨c, b⟩+ λ(
∑
i

ci − 1) + θici

∂L

∂ci
= −α∥c∥1−q

q |ci|q−2ci + bi + λ+ θi,

(49)

λ ∈ R is multiplier for equality constraint
∑

i ci = 1 and θ1, · · · , θA ≥ 0 are multipliers for inequality constraints
ci ≥ 0, ∀i ∈ [A]. Using KKT (stationarity) condition, we have

−α∥c∗∥1−q
q |c∗i |q−2c∗i + bi + λ+ θi = 0 (50)

Let B := {i|c∗i > 0}, then∑
i∈B

c∗i [−α∥c∗∥1−q
q |c∗i |q−2c∗i + bi + λ] = 0

=⇒ − α∥c∗∥1−q
q ∥c∗∥qq + ⟨c∗, b⟩+ λ = 0, (using

∑
i

c∗i = 1 and (c∗i)
2 = |c∗i |2)

=⇒ − α∥c∗∥q + ⟨c∗, b⟩+ λ = 0

=⇒ − α∥c∗∥q + ⟨c∗, b⟩ = −λ, (re-arranging)

(51)

28

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Now again using (50), we have

− α∥c∗∥1−q
q |c∗i |q−2c∗i + bi + λ+ θi = 0

=⇒ α∥c∗∥1−q
q |c∗i |q−2c∗i = bi + λ+ θi, ∀i, (re-arranging)

(52)

Now, if i ∈ B then θi = 0 from complimentary slackness, so we have

α∥c∗∥1−q
q |c∗i |q−2c∗i = bi + λ > 0, ∀i ∈ B

by definition of B. Now, if for some i, bi + λ > 0 then bi + λ+ θi > 0 as θi ≥ 0, that implies

α∥c∗∥1−q
q |c∗i |q−2c∗i = bi + λ+ θi > 0

=⇒ c∗i > 0 =⇒ i ∈ B.

So, we have,
i ∈ B ⇐⇒ bi + λ > 0.

To summarize, we have
α∥c∗∥1−q

q |c∗i |q−2c∗i = (bi + λ)1(bi ≥ −λ), ∀i, (53)

=⇒
∑
i

α
q

q−1 ∥c∗∥−q
q (c∗i)

q =
∑
i

(bi + λ)
q

q−11(bi ≥ −λ), (taking q/(q − 1)th power and summming)

=⇒ αp =

A∑
i=1

(bi + λ)p1(bi ≥ −λ).

(54)

So, we have,

ζp = −λ such that αp =
∑
bi≥λ

(bi + λ)p.

=⇒ αp =
∑
bi≥ζp

(bi − ζp)
p

(55)

3. Furthermore, using (53), we have

α∥c∗∥1−q
q |c∗i |q−2c∗i = (bi + λ)1(bi ≥ −λ) = (bi − ζp)1(bi ≥ ζp) ∀i,

=⇒ c∗i ∝ (bi − ζp)
1

q−11(bi ≥ ζp) =
(bi − ζp)

p−11(bi ≥ ζp)∑
i(bi − ζp)p−11(bi ≥ ζp)

, (using
∑
i

c∗i = 1).
(56)

4. Now, we move on to calculate the number of active actions χp. Observe that the function

f(λ) :=

A∑
i=1

(bi − λ)p1(bi ≥ λ)− αp (57)

is monotonically decreasing in λ and ζp is a root of f . This implies

f(x) ≤ 0 ⇐⇒ x ≥ ζp

=⇒ f(bi) ≤ 0 ⇐⇒ bi ≥ ζp

=⇒ {i|bi ≥ ζp} = {i|f(bi) ≤ 0}
=⇒ χp = max{i|bi ≥ ζp} = max{i|f(bi) ≤ 0}.

(58)

Hence, things follow by putting back in the definition of f .

29

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

5. We have,

αp =

A∑
i=1

(bi − ζp)
p1(bi ≥ ζp), and χp = max{i|bi ≥ ζp}.

Combining both we have

αp =

χp∑
i=1

(bi − ζp)
p.

And the other part follows directly.

6. Continuity and montonocity of the function
∑

bi≥x(bi − x)p is trivial. Now observe that
∑

bi≥b1
(bi − b1)

p = 0 and∑
bi≥b1−α(bi − (b1 − α))p ≥ αp, so it implies that it is equal to αp in the range [b1 − α, b1].

7. Recall that the ζp is the solution to the following equation

αp =
∑
bi≥x

(bi − x)p.

And from the definition of χp, we have

αp <

χp+1∑
i=1

(bi − bχp+1)
p =

∑
bi≥bχp+1

(bi − bχp+1)
p, and

αp ≥
χp∑
i=1

(bi − bχp
)p =

∑
bi≥bχp

(bi − bχp
)p.

So from continuity, we infer the root ζp must lie between [bχp+1, bχ].

8. We prove the first direction, and assume we have

k ≤ χp

=⇒
k∑

i=1

(bi − bk)
p ≤ αp (from definition of χp).

(59)

Observe the function f(x) :=
∑k

i=1(bi − x)p is monotically decreasing in the range (−∞, bk]. Further, f(bk) ≤ αp

and limx→−∞ f(x) = ∞, so from the continuity argument there must exist a value y ∈ (−∞, bk] such that f(y) = αp.
This implies that

k∑
i=1

(bi − y)p ≤ αp, and y ≤ bk.

Hence, explicitly showed the existence of the solution. Now, we move on to the second direction and assume there
exists x such that

k∑
i=1

(bi − x)p = αp, and x ≤ bk.

=⇒
k∑

i=1

(bi − bk)
p ≤ αp, (as x ≤ bk ≤ bk−1 · · · ≤ b1)

=⇒ k ≤ χp.

30

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

9. We have k ≤ χp and λk such that

αp =

k∑
i=1

(bi − λk)
p, and λk ≤ bk, (from above item)

≥
k∑

i=1

(bi − bk+1)
p, (as λk ≤ bk+1 ≤ bk)

≥
k+1∑
i=1

(bi − bk+1)
p, (addition of 0).

(60)

From the definition of χp, we get k + 1 ≤ χp.

10. We are given
k∑

i=1

(bi − λk)
p = αp

=⇒
k∑

i=1

(bi − bk+1)
p > αp, (as λk > bk+1)

=⇒
k+1∑
i=1

(bi − bk+1)
p > αp, (addition of zero)

=⇒ k + 1 > χp.

K.1. Special case: p = 1

For p = 1, by definition, we have

ζ1 = max
c

−α∥c∥∞ + ⟨c, b⟩ such that
∑
a∈A

ca = 1, c ⪰ 0. (61)

And χ1 is the optimal number of actions, that is

α =

χ1∑
i=1

(bi − ζ1)

=⇒ ζ1 =

∑χ1

i=1 bi − α

χ1
.

Let λk be the such that

α =

k∑
i=1

(bi − λk)

=⇒ λk =

∑k
i=1 bi − α

k
.

Proposition K.2.
ζ1 = max

k
λk

Proof. From lemma K.1, we have
λ1 ≤ λ2 · · · ≤ λχ1 .

31

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Now, we have

λk − λk+m =

∑k
i=1 bi − α

k
−

∑k+m
i=1 bi − α

k +m

=

∑k
i=1 bi − α

k
−

∑k
i=1 bi − α

k +m
−

∑m
i=1 bk+i

k +m

=
m(

∑k
i=1 bi − α

k(k +m))
−

∑m
i=1 bk+i

k +m

=
m

k +m
(

∑k
i=1 bi − α

k
−

∑m
i=1 bk+i

m
)

=
m

k +m
(λk −

∑m
i=1 bk+i

m
)

(62)

From lemma K.1, we also know the stopping criteria for χ1, that is

λχ1 > bχ1+1

=⇒ λχ1
> bχ1+i, i ≥ 1, (as bi are in descending order)

=⇒ λχ1 >

∑m
i=1 bχ1+i

m
, ∀m ≥ 1.

Combining it with the (62), for all m ≥ 0 , we get

λχ1 − λχ1+m =
m

χ1 +m
(λχ1 −

∑m
i=1 bχ1+i

m
)

≥ 0

=⇒ λχ1 ≥ λχ1+m

(63)

Hence, we get the desired result,

ζ1 = λχ1
= max

k
λk.

K.2. Special case: p = ∞

For p = ∞, by definition, we have

ζ∞(b) = max
c

−α∥c∥1 + ⟨c, b⟩ such that
∑
a∈A

ca = 1, c ⪰ 0.

=max
c

−α+ ⟨c, b⟩ such that
∑
a∈A

ca = 1, c ⪰ 0.

=− α+max
i

bi

(64)

K.3. Special case: p = 2

The problem is discussed in great detail in (Anava & Levy, 2016), here we outline the proof. For p = 2, we have

ζ2 = max
c

−α∥c∥2 + ⟨c, b⟩ such that
∑
a∈A

ca = 1, c ⪰ 0. (65)

32

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Let λk be the solution of the following equation

α2 =

k∑
i=1

(bi − λ)2, λ ≤ bk

= kλ2 − 2

k∑
i=1

λbi.+

k∑
i=1

(bi)
2, λ ≤ bk

=⇒ λk =

∑k
i=1 bi ±

√
(
∑k

i=1 bi)
2 − k(

∑k
i=1(bi)

2 − α2)

k
, and λk ≤ bk

=

∑k
i=1 bi −

√
(
∑k

i=1 bi)
2 − k(

∑k
i=1(bi)

2 − α2)

k

=

∑k
i=1 bi
k

−

√√√√α2 −
k∑

i=1

(bi −
∑k

i=1 bi
k

)2

(66)

From lemma K.1, we know
λ1 ≤ λ2 · · · ≤ λχ2

= ζ2

where χ2 calculated in two ways: a)

χ2 = max
m

{m|
m∑
i=1

(bi − bm)2 ≤ α2}

b)
χ2 = min

m
{m|λm ≤ bm+1}

We proceed greedily until the stopping condition is met in lemma K.1. Concretely, it is illustrated in algorithm 7.

K.4. L1 Water Pouring lemma

In this section, we re-derive the above water pouring lemma for p = 1 from scratch, just for sanity check. As in the above
proof, there is a possibility of some breakdown, as we had to take limits q → ∞. We will see that all the above results for
p = 1 too.

Let b ∈ RA be such that its components are in decreasing order, i,e bi ≥ bi+1 and

ζ1 := max
c

−α∥c∥∞ + ⟨c, b⟩ such that
A∑
i=1

ci = 1, ci ≥ 0, ∀i. (67)

Lets fix any vector c ∈ RA, and let k1 := ⌊ 1
maxi ci

⌋ and let

c1i =


maxi ci if i ≤ k1

1− k1 maxi ci if i = k1 + 1

0 else

Then we have,

−α∥c∥∞ + ⟨c, b⟩ =− αmax
i

ci +

A∑
i=1

cibi

≤− αmax
i

ci +

A∑
i=1

c1i bi, (recall bi is in decreasing order)

=− α∥c1∥∞ + ⟨c1, b⟩

(68)

33

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Now, let’s define c2 ∈ RA. Let

k2 =

{
k1 + 1 if

∑k1
i=1 bi−α

k1
≤ bk+1

k1 else

and let c2i = 1(i≤k2)
k2

. Then we have,

−α∥c1∥∞ + ⟨c1, b⟩ =− αmax
i

ci +

A∑
i=1

c1i bi

=− αmax
i

ci +

k1∑
i=1

max
i

cibi + (1− k1 max
i

ci)bk1+1, (by definition of c1)

=(
−α+

∑k1

i=1 bi
k1

)k1 max
i

ci + bk1+1(1− k1 max
i

ci), (re-arranging)

≤
−α+

∑k2

i=1 bi
k2

=− α∥c2∥∞ + ⟨c2, b⟩

(69)

The last inequality comes from the definitions of k2 and c2. So we conclude that an optimal solution is uniform over some
actions, that is

ζ1 =max
c∈C

−α∥c∥∞ + ⟨c, b⟩

=max
k

(−α+
∑k

i=1 bi
k

) (70)

where C := {ck ∈ RA|cki = 1(i≤k)
k } is set of uniform actions. Rest all the properties follow the same as Lp water pouring

lemma.

L. Robust Value Iteration (Main)
In this section, we will discuss the main results from the paper except for time complexity results. It contains the proofs of
the results presented in the main body and also some other corollaries/special cases.

L.1. (sa)-rectangular robust policy evaluation and improvement

Theorem L.1. (sa)-rectangular Lp robust Bellman operator is equivalent to reward regularized (non-robust) Bellman
operator, that is

(T π
Usa

p
v)(s) =

∑
a

π(a|s)[−αs,a − γβs,aκq(v) +R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)], and

(T ∗
Usa

p
v)(s) =max

a∈A
[−αs,a − γβs,aκq(v) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)],

where κp is defined in (2).

34

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Proof. From definition robust Bellman operator and Usa
p = (R0 +R)× (P0 + P), we have,

(T π
Usa

p
v)(s) = min

R,P∈Usa
p

∑
a

π(a|s)
[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

=
∑
a

π(a|s)
[
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
+

min
p∈P,r∈R

∑
a

π(a|s)
[
r(s, a) + γ

∑
s′

p(s′|s, a)v(s′)
]
,

(from (sa)-rectangularity, we get)

=
∑
a

π(a|s)
[
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
+

∑
a

π(a|s) min
ps,a∈Psa,rs,a∈Rs,a

[
rs,a + γ

∑
s′

ps,a(s
′)v(s′)

]
︸ ︷︷ ︸

:=Ωsa(v)

(71)

Now we focus on regularizer function Ω, as follows

Ωsa(v) = min
ps,a∈Ps,a,rs,a∈Rs,a

[
rs,a + γ

∑
s′

ps,a(s
′)v(s′)

]
= min

rs,a∈Rs,a

rs,a + γ min
ps,a∈Psa

∑
s′

ps,a(s
′)v(s′)

= −αs,a + γ min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

⟨ps,a, v⟩,

=− αs,a − γβs,aκq(v), (from lemma J.1).

(72)

Putting back, we have

(T π
Usa

p
v)(s) =

∑
a

π(a|s)
[
−αs,a − γβs,aκq(v) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
Again, reusing the above results in optimal robust operator, we have

(T ∗
Usa

p
v)(s) = max

πs∈∆A
min

R,P∈Usa
p

∑
a

πs(a)
[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

= max
πs∈∆A

∑
a

πs(a)
[
−αs,a − γβs,aκp(v) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
= max

a∈A

[
−αs,a − γβs,aκq(v) +R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

] (73)

The claim is proved.

L.2. S-rectangular robust policy evaluation

Policy improvement in the s-rectangular case is more involved, hence we begin with policy evaluation.

Theorem L.2. S-rectangular Lp robust Bellman operator is equivalent to reward regularized (non-robust) Bellman operator,
that is

(T π
Us

p
v)(s) = −

(
αs + γβsκq(v)

)
∥π(·|s)∥q +

∑
a

π(a|s)
(
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

)
where κp is defined in (2) and ∥π(·|s)∥q is q-norm of the vector π(·|s) ∈ ∆A.

35

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Proof. From definition of robust Bellman operator and Us
p = (R0 +R)× (P0 + P), we have

(T π
Us

p
v)(s) = min

R,P∈Us
p

∑
a

π(a|s)
[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

=
∑
a

π(a|s)
[
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)︸ ︷︷ ︸

nominal values

]

+ min
p∈P,r∈R

∑
a

π(a|s)
[
r(s, a) + γ

∑
s′

p(s′|s, a)v(s′)
]

(from s-rectangularity we have)

=
∑
a

π(a|s)
[
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

]
+ min

ps∈Ps,rs∈Rs

∑
a

π(a|s)
[
rs(a) + γ

∑
s′

ps(s
′|a)v(s′)

]
︸ ︷︷ ︸

:=Ωs(πs,v)

(74)

where we denote πs(a) = π(a|s) as a shorthand. Now we calculate the regularizer function as follows

Ωs(πs, v) := min
rs∈Rs,ps∈Ps

⟨rs + γvT ps, πs⟩ = min
rs∈Rs

⟨rs, πs⟩+ γ min
ps∈Ps

vT psπs

= −αs∥πs∥q + γ min
ps∈Ps

vT psπs, (using Holders inequality, where
1

p
+

1

q
= 1)

=− αs∥πs∥q + γ min
ps∈Ps

∑
a

πs(a)⟨ps,a, v⟩

=− αs∥πs∥q + γ min∑
a(βs,a)p≤(βs)p

min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

∑
a

πs(a)⟨ps,a, v⟩

=− αs∥πs∥q + γ min∑
a(βs,a)p≤(βs)p

∑
a

πs(a) min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

⟨ps,a, v⟩

=− αs∥πs∥q + γ min∑
a(βsa)p≤(βs)p

∑
a

πs(a)(−βsaκp(v)) (from lemma J.1)

=− αs∥πs∥q − γκq(v) max∑
a(βsa)p≤(βs)p

∑
a

πs(a)βsa

=− αs∥πs∥q − γκp(v)∥πs∥qβs (using Holders)
=− (αs + γβsκq(v))∥πs∥q.

(75)

Now putting the above values in robust operator, we have

(T π
Us

p
v)(s) = −

(
αs + γβsκq(v)

)
∥π(·|s)∥q +

∑
a

π(a|s)
(
R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

)
.

L.3. s-rectangular robust policy improvement

Reusing robust policy evaluation results in section L.2, we have

(T ∗
Us

p
v)(s) = max

πs∈∆A
min

R,P∈Usa
p

∑
a

πs(a)
[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

= max
πs∈∆A

[
−(αs + γβsκq(v))∥πs∥q +

∑
a

πs(a)(R(s, a) + γ
∑
s′

P (s′|s, a)v(s′))
]
.

(76)

36

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Observe that, we have the following form

(T ∗
Us

p
v)(s) = max

c
−α∥c∥q + ⟨c, b⟩ such that

A∑
i=1

ci = 1, c ⪰ 0, (77)

where α = αs + γβsκq(v) and bi = R(s, ai) + γ
∑

s′ P (s′|s, ai)v(s′). Now all the results below follow from the water
pouring lemma (lemma K.1).

Algorithm 6 Algorithm to compute s-rectangular Lp robust optimal Bellman Operator
1: Input: σ = αs + γβsκq(v), Q(s, a) = R0(s, a) + γ

∑
s′ P0(s

′|s, a)v(s′).
2: Output (T ∗

Us
p
v)(s), χp(v, s)

3: Sort Q(s, ·) and label actions such that Q(s, a1) ≥ Q(s, a2), · · · .
4: Set initial value guess λ1 = Q(s, a1)− σ and counter k = 1.
5: while k ≤ A− 1 and λk ≤ Q(s, ak) do
6: Increment counter: k = k + 1
7: Take λk to be a solution of the following

k∑
i=1

(
Q(s, ai)− x

)p
= σp, and x ≤ Q(s, ak). (78)

8: end while
9: Return: λk, k

Theorem L.3. (Policy improvement) The optimal robust Bellman operator can be evaluated in the following ways.

1. (T ∗
Us

p
v)(s) is the solution of the following equation that can be found using binary search between

[
maxa Q(s, a)−

σ,maxa Q(s, a)
]
, ∑

a

(
Q(s, a)− x

)p
1
(
Q(s, a) ≥ x

)
= σp. (79)

2. (T ∗
Us

p
v)(s) and χp(v, s) can also be computed through algorithm 6.

where σ = αs + γβsκq(v), and Q(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′).

Proof. The first part follows from lemma K.1, point 2. The second part follows from lemma K.1, point 9 (greedy inclusion)
and point 10 (stopping condition).

Theorem L.4. (Go To Policy) The greedy policy π w.r.t. value function v, defined as T ∗
Us

p
v = T π

Us
p
v is a threshold policy. It

takes only those actions that have a positive advantage, with probability proportional to (p− 1)th power of its advantage.
That is

π(a|s) ∝ (A(s, a))p−11(A(s, a) ≥ 0),

where A(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′)− (T ∗

Us
p
v)(s).

Proof. Follows from lemma K.1, point 3.

Property L.5. χp(v, s) is the number of actions that have a positive advantage, that is

χp(v, s) =
∣∣∣{ a | (T ∗

Us
p
v)(s) ≤ R0(s, a) + γ

∑
s′

P0(s
′|s, a)v(s′)

}∣∣∣ .
Proof. Follows from lemma K.1, point 4.

37

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Property L.6. (Value vs Q-value) (T ∗
Us

p
v)(s) is bounded by the Q-value of χth and (χ+ 1)th actions. That is

Q(s, aχ+1) < (T ∗
Us

p
v)(s) ≤ Q(s, aχ), where χ = χp(v, s),

Q(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′), and Q(s, a1) ≥ Q(s, a2), · · ·Q(s, aA).

Proof. Follows from lemma K.1, point 7.

Corollary L.7. For p = 1, the optimal policy π1 w.r.t. value function v and uncertainty set Us
1 , can be computed directly

using χ1(s) without calculating advantage function. That is

π1(a
s
i |s) =

1(i ≤ χ1(s))

χ1(s)
.

Proof. Follows from Theorem L.4 by putting p = 1. Note that it can be directly obtained using L1 water pouring lemma
(see section K.4)

Corollary L.8. (For p = ∞) The optimal policy π w.r.t. value function v and uncertainty set Us
∞ (precisely T ∗

Us
∞
v = T π

Us
∞
v),

is to play the best response, that is

π(a|s) = 1(a ∈ argmaxa Q(s, a))∣∣ argmaxa Q(s, a)
∣∣ .

In case of tie-in the best response, it is optimal to play any of the best responses with any probability.

Proof. Follows from Theorem L.4 by taking limit p → ∞.

Corollary L.9. For p = ∞, T ∗
Us

p
v, the robust optimal Bellman operator evaluation can be obtained in closed form. That is

(T ∗
Us

∞
v)(s) = max

a
Q(s, a)− σ,

where σ = αs + γβsκ1(v), Q(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′).

Proof. Let π be such that
T ∗
Us

∞
v = T π

Us
∞
v.

This implies

(T ∗
Us

p
v)(s) = min

R,P∈Usa
p

∑
a

π(a|s)
[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

= −(αs + γβsκp(v))∥π(·|s)∥q +
∑
a

π(a|s)(R(s, a) + γ
∑
s′

P (s′|s, a)v(s′)).
(80)

From corollary L.8, we know that π is a deterministic best response policy. Putting this we get the desired result.
There is another way of proving this, using Theorem 3.3 by taking limit p → ∞ carefully as

lim
p→∞

∑
a

(
Q(s, a)− T ∗

Us
p
v)(s)

)p

1
(
Q(s, a) ≥ T ∗

Us
p
v)(s)

)
)

1
p = σ, (81)

where σ = αs + γβsκ1(v).

Corollary L.10. For p = 1, the robust optimal Bellman operator T ∗
Us

p
, can be computed in closed form. That is

(T ∗
Us

p
v)(s) = max

k

∑k
i=1 Q(s, ai)− σ

k
,

where σ = αs + γβsκ∞(v), Q(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)v(s′), and Q(s, a1) ≥ Q(s, a2),≥ · · · ≥ Q(s, aA).

Proof. Follows from section K.1.

38

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Corollary L.11. The s rectangular Lp robust Bellman operator can be evaluated for p = 1, 2 by algorithm 8 and algorithm
7 respectively.

Proof. It follows from the algorithm 6, where we solve the linear equation and quadratic equation for p = 1, 2 respectively.
For p = 2, it can be found in (Anava & Levy, 2016).

Algorithm 7 Algorithm to compute S-rectangular L2 robust optimal Bellman Operator
1: Input: σ = αs + γβsκ2(v), Q(s, a) = R0(s, a) + γ

∑
s′ P0(s

′|s, a)v(s′).
2: Output (T ∗

Us
2
v)(s), χ2(v, s)

3: Sort Q(s, ·) and label actions such that Q(s, a1) ≥ Q(s, a2), · · · .
4: Set initial value guess λ1 = Q(s, a1)− σ and counter k = 1.
5: while k ≤ A− 1 and λk ≤ Q(s, ak) do
6: Increment counter: k = k + 1
7: Update value estimate:

λk =
1

k

[k∑
i=1

Q(s, ai)−

√√√√kσ2 + (

k∑
i=1

Q(s, ai))2 − k

k∑
i=1

(Q(s, ai))2
]

8: end while
9: Return: λk, k

Algorithm 8 Algorithm to compute S-rectangular L1 robust optimal Bellman Operator
1: Input: σ = αs + γβsκ∞(v), Q(s, a) = R0(s, a) + γ

∑
s′ P0(s

′|s, a)v(s′).
2: Output (T ∗

Us
1
v)(s), χ1(v, s)

3: Sort Q(s, ·) and label actions such that Q(s, a1) ≥ Q(s, a2), · · · .
4: Set initial value guess λ1 = Q(s, a1)− σ and counter k = 1.
5: while k ≤ A− 1 and λk ≤ Q(s, ak) do
6: Increment counter: k = k + 1
7: Update value estimate:

λk =
1

k

[k∑
i=1

Q(s, ai)− σ
]

8: end while
9: Return: λk, k

M. Time Complexity
In this section, we will discuss the time complexity of various robust MDPs and compare it with the time complexity of
non-robust MDPs. We assume that we have the knowledge of the nominal transition kernel and nominal reward function for
robust MDPs, and in the case of non-robust MDPs, we assume the knowledge of the transition kernel and reward function.
We divide the discussion into various parts depending on their similarity.

M.1. Exact Value Iteration: Best Response

In this section, we will discuss non-robust MDPs, (sa)-rectangular L1/L2/L∞ robust MDPs and s-rectangular L∞ robust
MDPs. They all have a common theme for value iteration as follows, for the value function v, their Bellman operator (T)
evaluation is done as

(T v)(s) = max
a︸︷︷︸

action cost

[
R(s, a) + αs,a κ(v)︸︷︷︸

reward penalty/cost

+γ
∑
s′

P (s′|s, a)v(s′)︸ ︷︷ ︸
sweep

]
.

(82)

39

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

’Sweep’ requires O(S) iterations and ’action cost’ requires O(A) iterations. Note that the reward penalty κ(v) doesn’t
depend on state and action. It is calculated only once for value iteration for all states. The above value update has to be done
for each states, so one full update requires

O
(
S(action cost)(sweep cost

)
+reward cost

)
= O

(
S2A+ reward cost

)
Since the value iteration is a contraction map, to get ϵ-close to the optimal value, it requires O(log(1ϵ)) full value update, so
the complexity is

O
(
log(

1

ϵ
)
(
S2A+ reward cost

))
.

1. Non-robust MDPs: The cost of ’reward is zero as there is no regularizer to compute. The total complexity is

O
(
log(

1

ϵ
)
(
S2A+ 0

))
= O

(
log(

1

ϵ
)S2A

)
.

2. (sa)-rectangular L1/L2/L∞ and s-rectangular L∞ robust MDPs: We need to calculate the reward penalty
(κ1(v)/κ2(v)/κ∞) that takes O(S) iterations. As calculation of mean, variance, and median, all are linear time
compute. Hence the complexity is

O
(
log(

1

ϵ
)
(
S2A+ S

))
= O

(
log(

1

ϵ
)S2A

)
.

M.2. Exact Value iteration: Top k response

In this section, we discuss the time complexity of s-rectangular L1/L2 robust MDPs as in algorithm 4. We need to calculate
the reward penalty (κ∞(v)/κ2(v) in (26)) that takes O(S) iterations. Then for each state we do: sorting of Q-values in (29),
value evaluation in (30), update Q-value in (28) that takes O(A log(A)), O(A), O(SA) iterations respectively. Hence the
complexity is

= total iteration(reward cost (26) + S(sorting (29) + value evaluation (30) +Q-value(28))

= log(
1

ϵ
)(S + S(A log(A) +A+ SA)

O
(
log(

1

ϵ
)
(
S2A+ SA log(A)

))
.

For general p, we need little caution as kp(v) can’t be calculated exactly but approximately by binary search. It is the subject
of discussion for the next sections.

M.3. Inexact Value Iteration: (sa)-rectangular Lp robust MDPs (Usa
p)

In this section, we will study the time complexity for robust value iteration for (sa)-rectangular Lp robust MDPs for general
p. Recall, that value iteration takes the best-penalized action, which is easy to compute. But reward penalization depends on
p-variance measure κp(v), which we will estimate by κ̂p(v) through binary search. We have inexact value iterations as

vn+1(s) := max
a∈A

[αsa − γβsaκ̂q(vn) +R0(s, a) + γ
∑
s′

P0(s
′|s, a)vn(s′)]

where κ̂q(vn) is a ϵ1 approximation of κq(vn), that is |κ̂q(vn)− κq(vn)| ≤ ϵ1. Then it is easy to see that we have bounded
error in robust value iteration, that is

∥vn+1 − T ∗
Usa

p
vn∥∞ ≤ γβmaxϵ1

where βmax := maxs,a βs,a

40

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Proposition M.1. Let T ∗
U be a γ contraction map, and v∗ be its fixed point. And let {vn, n ≥ 0} be approximate value

iteration, that is
∥vn+1 − T ∗

U vn∥∞ ≤ ϵ

then
lim

n→∞
∥vn − v∗∥∞ ≤ ϵ

1− γ

moreover, it converges to the ϵ
1−γ radius ball linearly, that is

∥vn − v∗∥∞ − ϵ

1− γ
≤ cγn

where c = 1
1−γ ϵ+ ∥v0 − v∗∥∞.

Proof.
∥vn+1 − v∗∥∞ =∥vn+1 − T ∗

U v∗∥∞
=∥vn+1 − T ∗

U vn + T ∗
U vn − T ∗

U v∗∥∞
≤∥vn+1 − T ∗

U vn∥∞ + ∥T ∗
U vn − T ∗

U v∗∥∞
≤∥vn+1 − T ∗

U vn∥∞ + γ∥vn − v∗∥∞, (contraction)
≤ϵ+ γ∥vn − v∗∥∞, (approximate value iteration)

=⇒ ∥vn − v∗∥∞ =

n−1∑
k=0

γkϵ+ γn∥v0 − v∗∥∞, (unrolling above recursion)

=
1− γn

1− γ
ϵ+ γn∥v0 − v∗∥∞

=γn[
1

1− γ
ϵ+ ∥v0 − v∗∥∞] +

ϵ

1− γ

(83)

Taking limit n → ∞ both sides, we get
lim
n→∞

∥vn − v∗∥∞ ≤ ϵ

1− γ
.

Lemma M.2. For Usa
p , the total iteration cost is log(1ϵ)S

2A+ (log(1ϵ))
2 to get ϵ close to the optimal robust value function.

Proof. We calculate κq(v) with ϵ1 = (1−γ)ϵ
3 tolerance that takes O(S log(S

ϵ1
)) using binary search (see section J.3). Now,

we do approximate value iteration for n = log(3∥v0−v∗∥∞
ϵ). Using the above lemma, we have

∥vn − v∗Usa
p
∥∞ =γn[

1

1− γ
ϵ1 + ∥v0 − v∗Usa

p
∥∞] +

ϵ1
1− γ

≤γn[
ϵ

3
+ ∥v0 − v∗Usa

p
∥∞] +

ϵ

3

≤γn ϵ

3
+

ϵ

3
+

ϵ

3
≤ ϵ.

(84)

In summary, we have action cost O(A), reward cost O(S log(Sϵ)), sweep cost O(S) and total number of iterations O(log(1ϵ)).
So the complexity is

(number of iterations)
(
S(actions cost) (sweep cost) + reward cost

)
= log(

1

ϵ
)
(
S2A+ S log(

S

ϵ
)
)
= log(

1

ϵ
)(S2A+ S log(

1

ϵ
) + S log(S))

= log(
1

ϵ
)S2A+ S(log(

1

ϵ
))2

41

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

M.4. Inexact Value Iteration: s-rectangular Lp robust MDPs (Us
p)

In this section, we study the time complexity for robust value iteration for s-rectangular Lp robust MDPs for general p (
algorithm 3). Recall, that value iteration takes regularized actions and penalized rewards. And reward penalization depends
on q-variance measure κq(v), that we will estimate by κ̂q(v) through binary search, then again we will calculate T ∗

Usa
p

by
binary search with approximated κq(v). Here, we have two error sources ((26), (30)) as a contrast to (sa)-rectangular cases,
where there was only one error source from the estimation of κq .

First, we account for the error caused by the first source (κq). Here we do value iteration with approximated q-variance κ̂q ,
and exact action regularizer. We have

vn+1(s) := λ s.t. αs + γβsκ̂q(v) = (
∑

Q(s,a)≥λ

(Q(s, a)− λ)p)
1
p

where Q(s, a) = R0(s, a) + γ
∑

s′ P0(s
′|s, a)vn(s′), and |κ̂q(vn)− κq(vn)| ≤ ϵ1. Then from the next result (proposition

M.3), we get
∥vn+1 − T ∗

Usa
p
vn∥∞ ≤ γβmaxϵ1

where βmax := maxs,a βs,a

Proposition M.3. Let κ̂ be an an ϵ-approximation of κ, that is |κ̂− κ| ≤ ϵ, and let b ∈ RA be sorted component wise, that
is, b1 ≥, · · · ,≥ bA. Let λ be the solution to the following equation with exact parameter κ,

α+ γβκ = (
∑
bi≥λ

|bi − λ|p)
1
p

and let λ̂ be the solution of the following equation with approximated parameter κ̂,

α+ γβκ̂ = (
∑
bi≥λ̂

|bi − λ̂|p)
1
p ,

then λ̂ is an O(ϵ)-approximation of λ, that is
|λ− λ̂| ≤ γβϵ.

Proof. Let the function f : [bA, b1] → R be defined as

f(x) := (
∑
bi≥x

|bi − x|p)
1
p .

We will show that the derivative of f is bounded, implying its inverse is bounded, and hence Lipschitz, that will prove the
claim. Let proceed

df(x)

dx
= −(

∑
bi≥x

|bi − x|p)
1
p−1

∑
bi≥x

|bi − x|p−1

= −
∑

bi≥x |bi − x|p−1

(
∑

bi≥x |bi − x|p)
p−1
p

= −
[(

∑
bi≥x |bi − x|p−1)

1
p−1

(
∑

bi≥x |bi − x|p)
1
p

]p−1

≤ −1.

(85)

The inequality follows from the following relation between Lp norm,

∥x∥a ≥ ∥x∥b, ∀0 ≤ a ≤ b.

42

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

It is easy to see that the function f is strictly monotone in the range bA, b1], so its inverse is well defined in the same range.
Then derivative of the inverse of the function f is bounded as

0 ≥ d

dx
f−(x) ≥ −1.

Now, observe that λ = f−(α+ γβκ) and λ̂ = f−(α+ γβκ̂), then by Lipschitzcity, we have

|λ− λ̂| = |f−(α+ γβκ)− f−(α+ γβκ̂)| ≤ γβ| − κ− κ̂)| ≤ γβϵ.

Lemma M.4. For Us
p , the total iteration cost is O

(
log(1ϵ)

(
S2A+ SA log(Aϵ)

))
to get ϵ close to the optimal robust

value function.

Proof. We calculate κq(v) in (26) with ϵ1 = (1−γ)ϵ
6 tolerance that takes O(S log(S

ϵ1
)) iterations using binary search (see

section J.3). Then for every state, we sort the Q values (as in (29)) that cost O(A log(A)) iterations. In each state, to
update value, we do again binary search with approximate κq(v) up to ϵ2 := (1−γ)ϵ

6 tolerance, that takes O(log(1
ϵ2
)) search

iterations and each iteration cost O(A), altogether it costs O(A log(1
ϵ2
)) iterations. Sorting of actions and binary search

adds up to O(A log(Aϵ)) iterations (action cost). So we have (doubly) approximated value iteration as follows,

|vn+1(s)− λ̂| ≤ ϵ1 (86)

where
(αs + γβsκ̂q(vn))

p =
∑

Qn(s,a)≥λ̂

(Qn(s, a)− λ̂)p

and
Qn(s, a) = R0(s, a) + γ

∑
s′

P0(s
′|s, a)vn(s′), |κ̂q(vn)− κq(vn)| ≤ ϵ1.

And we do this approximate value iteration for n = log(3∥v0−v∗∥∞
ϵ). Now, we do error analysis. By accumulating error, we

have
|vn+1(s)− (T ∗

Us
p
vn)(s)| ≤|vn+1(s)− λ̂|+ |λ̂− (T ∗

Us
p
vn)(s)|

≤ϵ1 + |λ̂− (T ∗
Us

p
vn)(s)|, (by definition)

≤ϵ1 + γβmaxϵ1, (from proposition M.3)
≤2ϵ1.

(87)

where βmax := maxs βs, γ ≤ 1.

Now, we do approximate value iteration, and from proposition M.1, we get

∥vn − v∗Us
p
∥ ≤ 2ϵ1

1− γ
+ γn[

1

1− γ
2ϵ1 + ∥v0 − v∗Us

p
∥∞] (88)

Now, putting the value of n, we have

∥vn − v∗Us
p
∥∞ =γn[

2ϵ1
1− γ

+ ∥v0 − v∗Us
p
∥∞] +

2ϵ1
1− γ

≤γn[
ϵ

3
+ ∥v0 − v∗Us

p
∥∞] +

ϵ

3

≤γn ϵ

3
+

ϵ

3
+

ϵ

3
≤ ϵ.

(89)

To summarize, we do O(log(1ϵ)) full value iterations. Cost of evaluating reward penalty is O(S log(Sϵ)). For each state:
evaluation of Q-value from value function requires O(SA) iterations, sorting the actions according Q-values requires
O(A log(A)) iterations, and binary search for evaluation of value requires O(A log(1/ϵ). So the complexity is

O((total iterations)(reward cost + S(Q-value + sorting + binary search for value)))

43

Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

= O
(
log(

1

ϵ
)
(
S log(

S

ϵ
) + S(SA+A log(A) +A log(

1

ϵ
))

))
= O

(
log(

1

ϵ
)
(
S log(

1

ϵ
) + S log(S) + S2A+ SA log(A) + SA log(

1

ϵ
)
))

= O
(
log(

1

ϵ
)
(
S2A+ SA log(A) + SA log(

1

ϵ
)
))

= O
(
log(

1

ϵ
)
(
S2A+ SA log(

A

ϵ
)
))

44

