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Abstract

Process Reward Models (PRMs) aim to iden-001
tify and mitigate intermediate errors in the rea-002
soning processes in mathematical reasoning of003
Large Language Models (LLMs). However,004
the development of effective PRMs faces sig-005
nificant challenges, particularly in data annota-006
tion and evaluation methodologies. In this pa-007
per, through extensive experiments, we demon-008
strate that commonly used Monte Carlo (MC)009
estimation-based data synthesis for PRMs typi-010
cally yields inferior performance and general-011
ization compared to LLM-as-a-judge and hu-012
man annotation methods. Furthermore, we013
identify potential biases in conventional Best-014
of-N (BoN) evaluation strategies for PRMs. To015
address these challenges, we develop a con-016
sensus filtering mechanism that effectively in-017
tegrates MC estimation with LLM-as-a-judge018
and advocates a more comprehensive evalua-019
tion framework that combines response-level020
and step-level metrics. Based on the mecha-021
nisms, we significantly improve both model022
performance and data efficiency in the BoN023
evaluation and the step-wise error identification024
task. Finally, we release a new state-of-the-art025
PRM that outperforms existing open-source al-026
ternatives and provides practical guidelines for027
future research.028

1 Introduction029

In recent years, Large Language Models (LLMs)030

have made remarkable advances in mathematical031

reasoning (OpenAI, 2023; Dubey et al., 2024; Shao032

et al., 2024; Zhu et al., 2024; Yang et al., 2024a,c,b),033

yet they can make mistakes, leading to wrong con-034

clusions. Moreover, even when achieving correct035

final answers, these powerful models can still regu-036

larly use flawed reasoning steps, which undermine037

the reliability and trustworthiness of LLMs’ rea-038

soning processes. To address these challenges, Pro-039

cess Reward Models (PRMs; Lightman et al. 2023;040

Wang et al. 2024b) are proposed to identify and mit- 041

igate process errors, thereby enabling finer-grained 042

supervision on the reasoning process. 043

One critical challenge of developing PRMs lies 044

in the data annotation for the correctness of rea- 045

soning processes, which is typically expensive and 046

time-consuming. While Lightman et al. (2023) re- 047

cruited human annotators with detailed instructions 048

and elaborate procedures to achieve satisfactory 049

annotation quality, the prohibitive cost pushes re- 050

searchers to explore automated annotation meth- 051

ods. Among them, one commonly used approach 052

is to assess process correctness by estimating the 053

empirical probability of leading to the correct fi- 054

nal answers through Monte Carlo (MC) methods, 055

which has attracted great research interests and has 056

also been commonly employed in practice (Xiong 057

et al., 2024; Wang et al., 2024b; Luo et al., 2024). 058

Another challenge lies in evaluating PRM perfor- 059

mance, as previous studies (Lightman et al., 2023; 060

Wang et al., 2024b; Luo et al., 2024) have predom- 061

inantly relied on the Best-of-N (BoN) evaluation, 062

which selects the highest-scored response from N 063

candidates according to a PRM. Recently, PRO- 064

CESSBENCH (Zheng et al., 2024) have emerged 065

to evaluate the capability of PRMs in identifying 066

step-wise correctness. 067

Nevertheless, during the training of our own 068

PRM following conventional principles to con- 069

struct data using MC estimation and evaluate on 070

BoN, we gain several crucial lessons. In terms 071

of MC estimation, (1) we observe that the PRM 072

trained via MC estimation demonstrated signifi- 073

cantly inferior performance and generalization ca- 074

pabilities compared to LLM-as-a-judge (Zheng 075

et al., 2023) and human annotation. (2) We attribute 076

the suboptimal performance of MC estimation to 077

its fundamental limitation, which attempts to eval- 078

uate deterministic current-step correctness based 079

on potential future outcomes. It significantly re- 080

lies on the performance of the completion model, 081
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Figure 1: Overview of evaluation results on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct
and the benchmark PROCESSBENCH (Zheng et al., 2024) across multiple PRMs (see Table 4 and Table 5 for details).

which may generate correct answers based on in-082

correct steps, or incorrect answers based on correct083

steps, introducing substantial noise and inaccuracy084

verification into step-wise correctness estimation.085

Regarding the BoN evaluation, (1) the unreli-086

able policy models generate responses with cor-087

rect answers but flawed processes, leading to a088

misalignment between the outcome evaluation cri-089

teria of BoN and the PRM objectives of process090

verification. (2) The PRMs with limited process091

verification capability demonstrate tolerance for092

these cases, resulting in inflated BoN performance.093

(3) We find that in the step scores distribution of094

existing PRMs, a significant proportion of mini-095

mum scores are concentrated on the final answer096

steps, indicating PRMs have shifted from process097

to outcome-based assessment in BoN.098

To address these challenges, we propose a con-099

sensus filtering mechanism that combines MC es-100

timation with LLM-as-a-judge, retaining only in-101

stances where both agree on error locations in the102

solution. Our approach improves both data effi-103

ciency and performance over existing PRMs in the104

conventional BoN evaluation. Furthermore, we105

advocate for complementing response-level BoN106

with step-wise evaluation methods. We employ107

the step-wise benchmark PROCESSBENCH (Zheng108

et al., 2024) to measure the ability to identify pro-109

cess errors. Our trained PRMs exhibit impressively110

stronger error identification performance than other111

open-source models, from PRMs to general lan-112

guage models, confirming that our training ap-113

proach genuinely teaches PRMs to assess the cor- 114

rectness of intermediate reasoning steps. 115

2 Preliminary Trials 116

We initially explored training PRMs through MC 117

estimation-based reasoning step annotation, follow- 118

ing the methodology established in Math-Shepherd 119

(Wang et al., 2024b). We collected a large-scale 120

dataset of approximately 500,000 queries with 121

golden answers. For each query, we generate 6- 122

8 diverse responses and split them into individual 123

reasoning steps using the delimiter “\n\n”. To as- 124

sess the correctness of each step, we conduct 8 125

independent completions starting from this step, 126

estimating the step labels based on the empirical 127

probabilities yielding the correct final answer. We 128

trained PRMs with either hard labels or soft labels. 129

For hard labels, we treat a step as correct if any 130

one of the 8 completions yields the correct final 131

answer, and negative otherwise. For soft labels, 132

we determined the value (between 0 and 1) as the 133

proportion of 8 completions leading to the correct 134

final answers. 135

However, when we evaluate our trained PRMs 136

on Best-of-8 and PROCESSBENCH, we found that 137

the MC estimation-based PRMs do not possess no- 138

ticeable advantages. As shown in Table 1, it reveal 139

two critical limitations: (1) In the average Best-of- 140

8 evaluations across diverse mathematical bench- 141

marks, our trained models could not surpass the 142

performance of simple majority voting, i.e., maj@8. 143

(2) When evaluate on PROCESSBENCH for identi- 144
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Setting Best-of-8 PROCESSBENCH

maj@8 66.2 -
PRM800K 64.9 56.5
MC estimated hard labels 65.5 40.2
MC estimated soft labels 64.4 40.2

Table 1: Preliminary trials results on Best-of-8 and PRO-
CESSBENCH using PRMs trained with MC estimated
hard labels and soft labels, human-annotated PRM800K.
maj@8 represents the majority voting of 8 responses.

fying erroneous reasoning steps, our trained mod-145

els perform significantly worse than their counter-146

parts trained on human-annotated data PRM800K147

(Lightman et al., 2023). The detailed experimen-148

tal configurations and comprehensive results are149

demonstrated in Appendix A.150

These undesirable evaluation performances push151

us to reflect on the currently prevalent data synthe-152

sis approach and evaluation strategy. Through the153

subsequent optimization process, we have indeed154

gained several observations and lessons learned.155

3 The Lessons156

In this section, we present the critical lessons157

gained during the PRM training comprising two158

main aspects: (1) the limitations of commonly159

adopted MC estimation approaches in PRMs train-160

ing, and (2) the bias in using BoN as the sole eval-161

uation metric for optimizing PRMs.162

3.1 Limitations of MC Estimation163

Distinguishing PRMs from Value Models164

PRMs provide fine-grained supervision by eval-165

uating the correctness of intermediate reasoning166

steps. In contrast, value models estimate the po-167

tential of reaching the correct final answer from168

the current step in the future. The key difference169

between PRM and value model lies in that PRMs170

function as deterministic evaluators of current step171

correctness, while value models operate as predic-172

tive estimators of future solution potential.173

MC estimation attempts to estimate the potential174

of reaching the correct final answer in the future175

from the current step. When we follow this ap-176

proach to construct data and train the PRMs, the177

value model principles are incorporated into PRMs178

training essentially. This methodology potentially179

introduces performance and generalization limita-180

tions which we discuss in subsequent sections.181

Setting # samples Avg.

MC Estimation (Math-Shepherd) 440k 64.3
MC Estimation (our data) 860k 65.9
LLM-as-a-judge (our data) 860k 65.3
Human Annotation (PRM800K) 264k 64.9

Table 2: PRMs performance comparison on the Best-of-
8 strategy. The models are trained on the different data
construction methods including MC estimation, LLM-
as-a-judge, and human annotation.

Method # samples GSM8K MATH Olympiad
Bench

Omni-
MATH Avg.F1

MC Estimation (Math-Shepherd) 440k 62.5 31.6 13.7 7.7 28.9
MC Estimation (our data) 860k 74.0 47.3 19.4 19.8 40.1
LLM-as-a-judge (our data) 860k 60.9 49.5 39.4 36.1 46.5
Human Annotation (PRM800K) 264k 68.2 62.6 50.7 44.3 56.5

Table 3: PRMs performance comparison on PROCESS-
BENCH. The models are trained on the different data
construction methods including MC estimation, LLM-
as-a-judge, and human annotation.

MC Estimation vs. LLM-as-a-judge vs. Human 182

Annotation Since the observation of MC estima- 183

tion’s limitations of identifying erroneous steps in 184

Section 2, we conducted a comprehensive compari- 185

son of three distinct data construction approaches: 186

MC estimation, LLM-as-a-judge, and human an- 187

notation. For the MC estimation approach, we 188

respectively train the PRM on 445k open-source 189

datasets Math-shepherd (Wang et al., 2024b) and 190

our 860k similarly constructed dataset. For the 191

LLM-as-a-judge approach, we use the same 860k 192

dataset and employ Qwen2.5-72B-Instruct (Yang 193

et al., 2024b) to verify the correctness of each step 194

in the responses. For the human annotation ap- 195

proach, we use the open-source dataset PRM800K 196

(Lightman et al., 2023) which consists of approx- 197

imately 265k samples after deduplication against 198

the test set. 199

The experimental results of Best-of-8 and PRO- 200

CESSBENCH are shown in Table 2 and 3, respec- 201

tively. In general, for Best-of-8, the PRM trained 202

on our MC estimated data achieves the best accu- 203

racy and human annotation shows substantially in- 204

ferior performance. For PROCESSBENCH, human 205

annotation achieves the best performance with the 206

least amount of data, followed by LLM-as-a-judge, 207

while MC estimation performs the worst despite 208

having the largest dataset overall. The contrasting 209

trend in the two evaluation catches our attention 210

and is thoroughly investigated in Section 3.2. 211

In terms of the ability of identifying the cor- 212

rectness of reasoning steps evaluated in PROCESS- 213
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BENCH, it can be found that: (1) human annota-214

tion, despite being only performed on the MATH215

dataset, exhibited superior generalization capabil-216

ities on more complex tasks, such as Olympiad-217

Bench and Omni-MATH. (2) Given identical data218

with different annotation approaches, LLM-as-a-219

judge demonstrates better generalization perfor-220

mance on challenging problems than MC estima-221

tion. (3) For MC estimation, a comparison between222

our 860k dataset and Math-Shepherd 440k data in-223

dicates that performance improvements can still be224

achieved through data scaling.225

Stringent Data Filtering Mechanisms Required226

in MC Estimation We attribute the inferior per-227

formance of MC estimation compared to LLM-as-228

a-judge and human annotation to its high noise in229

reasoning step correctness estimation and inaccu-230

rate error position identification due to its heavy231

dependence on the policy model. For instance, the232

policy model may generate correct final answers233

but incorrect reasoning steps, or incorrect answers234

based on correct steps.235

Motivated by LLM-as-a-judge’s encouraging re-236

sults in Best-of-8 and PROCESSBENCH, we natu-237

rally propose a simple yet efficient consensus fil-238

tering mechanism that integrates LLM-as-a-judge239

with MC estimation. Based on the aforementioned240

860K samples, the instances are only retained when241

both LLM-as-a-judge and MC estimation show con-242

sensus on the error reasoning step locations in the243

solution. As demonstrated in Figure 2, it can be244

found that only approximately 40% of the data are245

preserved after consensus filtering. For evaluation246

on PROCESSBENCH, the results reveal that the re-247

duced dataset after consensus filtering significantly248

outperforms MC estimation, and notably, achieves249

comparable performance to LLM-as-a-judge while250

using only 40% of the data. Regarding the BoN251

evaluation, the performance variations among these252

three models are marginal.253

Hard Label vs. Soft Label in MC Estimation254

Although we have previously demonstrated that255

MC estimation is not as effective as LLM-as-a-256

judge and human annotation, there remains a note-257

worthy point of MC estimation to be discussed, i.e.,258

whether to train with soft label or hard label. We259

construct 3 million training data using MC esti-260

mation and apply the consensus filtering strategy261

subsequently, which reduces the dataset to 1.5 mil-262

lion samples. We respectively train PRMs using263

both soft labels and hard labels on 3 million and264
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1.5 million data. 265

The performance of trained PRMs on Best-of- 266

8 and PROCESSBENCH are illustrated in Figure 267

4 and 5 separately. Before data filtering, the per- 268

formance difference between soft and hard labels 269

is not significant, which we attribute to the high 270

noise level masking their distinctions. However, 271

this difference becomes much more pronounced 272

after data filtering, with hard labels substantially 273

outperforming soft labels on both Best-of-8 and 274

PROCESSBENCH. We consider the limitations of 275

soft labels are: (1) As discussed in Section 3.1, 276

the correctness of steps (i.e., rewards) should be 277

deterministic. Training PRMs with soft labels that 278

represent future possibilities introduces additional 279

noise. For instance, when numerous completely 280

correct steps are assigned with soft labels lower 281

than 1, it actually reduces the model’s ability to dis- 282

criminate between positive and negative labels. (2) 283

Only 8 completions for step correctness estimation 284

exhibit high variance and are relatively crude. Al- 285

though we can achieve better estimation accuracy 286

by increasing the number of completions, the asso- 287

ciated costs may outweigh the incremental benefits. 288

Moreover, the experimental results indicate that 289

the consensus filtering strategy yields performance 290

benefits across both soft and hard label schemes. 291
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Last but not least, we investigate the threshold se-292

lection for distinguishing between positive and neg-293

ative labels based on the MC estimation result of 8294

completions. Following our previous experimental295

setup, we conduct a series of experiments on the296

3 million with threshold values from 1/8 to 7/8 at297

1/8 intervals, with results shown in Figure 3. It can298

be easily observed that as the threshold increases,299

the performance deteriorates on both Best-of-8 and300

PROCESSBENCH, indicating that using an MC esti-301

mated value of 0 as the negative label and all others302

as positive labels yields the best results. In other303

words, we suggest a step is considered correct if304

any completion reaches the correct final answer305

in MC estimation. This threshold has also been306

employed throughout our all experimental studies.307

3.2 Bias in BoN Evaluation308

Although BoN evaluations are commonly used in309

previous PRM optimization, their effectiveness as a310

sole optimization criterion is worth careful consid-311

eration due to potential limitations in performance312

assessment.313

Unreliable Policy Models Cause BoN-PRMs314

Misalignment In an ideal scenario, the responses315

generated by the policy model would exhibit both316

correct answers and accurate solution steps or con-317

versely, flawed processes would correspond to in-318

correct answers. However, existing policy models319

are prone to generating responses with correct an-320

swers but flawed processes, while BoN inherently321

only focuses on answers, leading to a misalignment322

between the evaluation criteria of BoN and the323

PRM objectives of process verification. To provide324

empirical evidence for this phenomenon, we sam-325

ple 8 responses from GSM8K, MATH, Olympiad-326

Bench, and Omni-MATH using the policy model327

Qwen2.5-Math-7B-Instruct. Then we randomly328

choose correct-answer responses from them and 329

conduct thorough manual annotations. As detailed 330

in Figure 6, a substantial percentage of responses 331

contain process errors while maintaining correct 332

answers. Notably, comparing easy task GSM8K 333

and hard task Omni-MATH, this phenomenon be- 334

comes more pronounced as the problem’s complex- 335

ity increases. This implies that an effective PRM 336

might assign low scores to responses with correct 337

answers but flawed processes, resulting in overall 338

lower performance on the BoN evaluation. 339

Limited Process Verification Capability in 340

PRMs Lead to BoN Scores Inflation When the 341

PRM cannot distinguish responses that have correct 342

answers but flawed processes and assign them high 343

scores, this leads to overestimated performance in 344

the BoN evaluation, thereby creating an overly op- 345

timistic and potentially misleading assessment of 346

PRM capabilities. To investigate the discriminative 347

capability of PRMs for such cases, we extract in- 348

stances from PROCESSBENCH where answers are 349

correct but processes are erroneous and analysis the 350

detection accuracy rates of PRMs for these cases. 351

As shown in Figure 7, the PRMs trained on our MC 352

estimated data, LLM-as-a-judge and PRM800K 353

demonstrate opposite performance trends in BoN 354

and extracted PROCESSBENCH evaluation. The 355

model trained on our MC estimated data shows 356

limited process verification capability but inflated 357

results on the BoN. This limited discriminative 358

capability indicates that PRMs struggle to differ- 359

entiate between genuinely correct responses and 360

those with merely superficial answer correctness 361

in BoN evaluations. Consequently, this implies 362

that beyond BoN evaluation, supplementary bench- 363

marks are necessary to assess the actual capability 364

of PRMs, especially in detecting process errors. 365

Process-to-Outcome Shift in BoN Optimized 366

PRMs The majority of current PRMs are opti- 367

mized towards BoN. However, the bias of BoN 368

leads PRMs process-to-outcome shift. During the 369

BoN selection process based on PRM-predicted 370

scores following the scoring method for responses 371

in (Lightman et al., 2023), it can be found that re- 372

gardless of whether we employ the minimum score 373

or the product of scores to evaluate the full solution, 374

the lowest step score acts as the key limiting factor 375

that affects the selection criteria of PRMs. 376

As shown in Figure 8, we analyze the distribu- 377

tion of minimum step scores assigned by multi- 378

ple open-sourced PRMs, specifically focusing on 379
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cases where the lowest score occurred at the fi-380

nal step, which typically contains the final answer.381

The results show that models EurusPRM-Stage1,382

EurusPRM-Stage2, Math-Shepherd-PRM-7B and383

Skywork-PRM-7B exhibit notably high propor-384

tions in this category, which exceed 40%.385

This analysis reveals that some PRMs’ perfor-386

mance in BoN evaluation is predominantly deter-387

mined by final answer scores rather than interme-388

diate reasoning steps. In other words, optimizing389

solely for the BoN evaluation has made current390

PRMs perform more like Outcome Reward Mod-391

els (ORMs) in practice. Hence, it is essential to392

supplement response-level evaluation BoN with393

step-level assessment methods to avoid the process-394

to-outcome shift. In this paper, we employ process395

error localization tasks PROCESSBENCH.396

Different PRMs, Different Optimal Scoring397

Strategies In BoN, the overall solution score is398

derived by combining individual step scores. When399

each step’s score represents the probability of that400

specific step being correct, it’s generally accept-401

able to combine these step-level scores (through402

methods like product or minimum) to calculate the403

overall solution score. However, in MC estimation,404

each step’s score actually estimates the probabil-405

ity of reaching the correct final answer in the fu-406

ture from the current position. Given this forward-407

looking nature of MC estimation, we should neither408

multiply the estimated probabilities across steps (as409

these estimates are dependent on each other), nor410

simply take the minimum estimated value from a411

particular step as the overall score. Instead, the412

estimated value from the final step naturally inte-413

grates information from the entire solution process,414

making it more suitable as the final score for the415

complete solution.416

To validate that, we evaluate BoN in different417

scoring strategies for the PRMs trained on MC es-418

timation, LLM-as-a-judge, and human annotation419

data, as shown in Figure 9. We found that in MC 420

estimation, using the last score shows significantly 421

better performance than product and minimum ap- 422

proaches across multiple PRMs. And the product 423

and minimum scores are better than the last for 424

human annotation and LLM-as-a-judge. 425

4 Our Approach 426

This section presents our methodology for over- 427

coming the previously discussed limitations and 428

the details of our trained PRM achieving state-of- 429

the-art performance. 430

4.1 Training Details 431

Based on the lessons learned, we implement a sim- 432

ple yet efficient consensus filtering mechanism by 433

filtering out instances where there is a discrepancy 434

between the LLM-annotated and MC-estimated 435

process labels. This ensures the retained data main- 436

tains high quality and consistency in the reasoning 437

process annotation. Specically, we use MC estima- 438

tion to construct hard label, where a response is 439

classified as negative only if none of the 8 comple- 440

tions achieves the correct final answer. Then, the 441

LLM instantiated by Qwen2.5-Instruct-72B (Yang 442

et al., 2024b) serves as a critic to verify the rea- 443

soning process for all responses step by step, i.e., 444

LLM-as-a-judge. We employ cross-entropy loss 445

on the tokens at the end of each step to train the 446

binary classification task. We train the PRMs with 447

7B and 72B parameter, initialized with Qwen2.5- 448

Math-7B-Instruct and Qwen2.5-Math-72B-Instruct 449

respectively. 450

4.2 Experimental Setup 451

To validate the effectiveness of our trained PRMs, 452

we respectively conduct the response-level BoN 453

evaluation and the step-level process errors identifi- 454

cation task PROCESSBENCH (Zheng et al., 2024). 455

Best-of-N We follow the experimental setting in 456

Appendix A.2. In rm@8, we evaluate Outcome Re- 457

ward Models (ORMs) and Process Reward Models 458

(PRMs). For ORMs, we introduce Qwen2.5-Math- 459

RM-72B (Yang et al., 2024c), which assigns a sin- 460

gle score to each complete response. For PRMs, 461

we compute the product of each step score as the 462

final response score. 463

We compare with the following PRMs: (1) Math- 464

Shepherd-PRM-7B (Wang et al., 2024b): deter- 465

mining process labels for each step by estimating 466

the empirical probability of reaching the correct 467

6



Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 (Upper Bound) 98.1 92 49.3 80.5 59.6 52.6 90.5 74.7
maj@8 96.7 87.1 41.2 72.5 44.4 47.8 73.8 66.2

1.5B
Skywork-PRM-1.5B 96.9 86.7 37.9 70.1 42.1 47.9 67.9 64.2

7B+
Math-Shepherd-PRM-7B 97.3 85.4 37.9 70.6 40.4 47.2 70.5 64.2
RLHFlow-PRM-Mistral-8B 97.0 86.1 37.1 70.6 41.2 47.6 69.5 64.2
RLHFlow-PRM-Deepseek-8B 97.3 86.3 40.8 70.9 42.2 47.2 69.3 64.9
Skywork-PRM-7B 97.3 87.3 38.2 71.9 43.7 47.8 67.7 64.8
EurusPRM-Stage1 95.6 83.0 35.7 66.2 38.2 46.2 66.6 61.6
EurusPRM-Stage2 95.4 83.4 34.9 67.3 39.1 46.3 67.3 62.0
Qwen2.5-Math-7B-Math-Shepherd 96.9 86.5 36.8 71.4 41.6 47.7 69.3 64.3
Qwen2.5-Math-7B-PRM800K 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9
⋆ Our PRM-7B 97.1 88.0 42.6 74.5 47.6 48.7 74.5 67.6

72B
Qwen2.5-Math-RM-72B 97.9 88.5 42.6 75.1 49.9 49.6 78.7 68.9
⋆ Our PRM-72B 97.6 88.7 46.0 74.3 48.1 49.3 81.1 69.3

Table 4: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math- 7B-Instruct. ⋆
represents the models we trained.

final answer. (2) RLHFlow-PRM-Mistral-8B &468

RLHFlow-PRM-Deepseek-8B (Xiong et al., 2024):469

two LLaMA-3.1-based PRMs that adopt Math-470

Shepherd’s training methodology while implement-471

ing different solution generation models and op-472

timization objectives. (3) Skywork-PRM-1.5B &473

Skywork-PRM-7B (Skywork, 2024): two recently474

released Qwen2.5-Math-based PRMs by Skywork.475

(4) EurusPRM-Stage1 & EurusPRM-Stage2 (Cui476

et al., 2025): two PRMs trained using Implicit477

PRM approach (Yuan et al., 2024) with 7B param-478

eters, which obtains process rewards replying on479

the ORM trained on the response-level labels. (5)480

Qwen2.5-Math-7B-Math-Shepherd & Qwen2.5-481

Math-7B-PRM800K: two additional PRMs our de-482

veloped by fine-tuning Qwen2.5-Math-7B-Instruct483

separately on the PRM800K (Lightman et al., 2023)484

and Math-Shepherd (Wang et al., 2024b) open-485

source datasets.486

PROCESSBENCH The compared PRMs are con-487

sistent with the previously mentioned PRMs. For488

the LLM prompted as Critic Models, i.e., LLM-489

as-a-judge, we compare with proprietary language490

models GPT-4o-0806 (Hurst et al., 2024) and o1-491

mini (OpenAI, 2024), open-source language mod-492

els Llama-3.3-70B-Instruct (Dubey et al., 2024),493

Qwen2.5-Math-72B-Instruct (Yang et al., 2024c),494

Qwen2.5-72B-Instruct (Yang et al., 2024b) and495

QwQ-32B-Preview (Qwen, 2024). We also decom-496

pose the N-step response trajectory into N separate 497

instances to enable individual scoring by the ORM 498

Qwen2.5-Math-RM-72B. 499

4.3 Experimental Results 500

Best-of-N The evaluation on policy model 501

Qwen2.5-Math-7b-Instruct is shown in Table 4. 502

Our PRM-7B demonstrates superior performance 503

compared to other PRMs of equivalent model 504

scale. Notably, it outperforms maj@8 across all 7 505

tasks, achieving an average improvement of 1.4%. 506

Furthermore, our PRM-72B exhibits slightly bet- 507

ter overall performance than Qwen2.5-Math-RM- 508

72B, with particularly significant improvements 509

observed in the Minerva Math and MMLU STEM 510

tasks. Detailed experimental results, including 511

BoN performance on Policy model Qwen2.5-Math- 512

72b-Instruct, alternative scoring strategies, and 513

evaluations on Chinese benchmarks, are compre- 514

hensively documented in the Appendix D. 515

PROCESSBENCH The evaluation results on PRO- 516

CESSBENCH are presented in Table 5. When com- 517

pared with LLM-as-judge, our PRM-7B in smaller 518

model size demonstrates superior performance over 519

all open-source models. For proprietary language 520

models, our PRM-7B outperforms GPT-4o-0806, 521

while there remains a performance gap compared to 522

o1-mini. Furthermore, in comparison with existing 523

PRMs, both our PRM-7B and 72B exhibit substan- 524
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Model GSM8K MATH OlympiadBench Omni-MATH Avg. F1
error correct F1 error correct F1 error correct F1 error correct F1

LLM-as-judge, Proprietary language models
GPT-4-0806 70.0 91.2 79.2 54.4 76.6 63.6 45.8 58.4 51.4 45.2 65.6 53.5 61.9
o1-mini 88.9 97.9 93.2 83.5 95.1 88.9 80.2 95.6 87.2 74.8 91.7 82.4 87.9

LLM-as-judge, Open-source language models
Llama-3.3-70B-Instruct 72.5 96.9 82.9 43.3 83.2 59.4 31.0 94.1 46.7 28.2 90.5 43.0 58.0
Qwen2.5-Math-72B-Instruct 49.8 96.9 65.8 36.0 94.3 52.1 19.5 97.3 32.5 19.0 96.3 31.7 45.5
Qwen2.5-72B-Instruct 62.8 96.9 76.2 46.3 93.1 61.8 38.7 92.6 54.6 36.6 90.9 52.2 61.2
QwQ-32B-Preview 81.6 95.3 88.0 78.1 79.3 78.7 61.4 54.6 57.8 55.7 68.0 61.3 71.5

PRMs

1.5B
Skywork-PRM-1.5B 50.2 71.5 59.0 37.9 65.2 48.0 15.4 26.0 19.3 13.6 32.8 19.2 36.4

7B+
Math-Shepherd-PRM-7B 32.4 91.7 47.9 18.0 82.0 29.5 15.0 71.1 24.8 14.2 73.0 23.8 31.5
RLHFlow-PRM-Mistral-8B 33.8 99.0 50.4 21.7 72.2 33.4 8.2 43.1 13.8 9.6 45.2 15.8 28.4
RLHFlow-PRM-Deepseek-8B 24.2 98.4 38.8 21.4 80.0 33.8 10.1 51.0 16.9 10.9 51.9 16.9 26.6
Skywork-PRM-7B 61.8 82.9 70.8 43.8 62.2 53.6 17.9 31.9 22.9 14.0 41.9 21.0 42.1
EurusPRM-Stage1 46.9 42.0 44.3 33.3 38.2 35.6 23.9 19.8 21.7 21.9 24.5 23.1 31.2
EurusPRM-Stage2 51.2 44.0 47.3 36.4 35.0 35.7 25.7 18.0 21.2 23.1 19.1 20.9 31.3
Qwen2.5-Math-7B-Math-Shepherd 46.4 95.9 62.5 18.9 96.6 31.6 7.4 93.8 13.7 4.0 95.0 7.7 28.9
Qwen2.5-Math-7B-PRM800K 53.1 95.3 68.2 48.0 90.1 62.6 35.7 87.3 50.7 29.8 86.1 44.3 56.5
⋆ Our PRM-7B 72.0 96.4 82.4 68.0 90.4 77.6 55.7 85.5 67.5 55.2 83.0 66.3 73.5

72B
Qwen2.5-Math-RM-72B 41.1 46.1 43.5 39.7 58.1 47.2 28.1 56.6 37.6 18.8 50.2 27.4 38.9
⋆ Our PRM-72B 78.7 97.9 87.3 74.2 88.2 80.6 67.9 82.0 74.3 64.8 78.8 71.1 78.3

Table 5: Performance comparison on PROCESSBENCH. ⋆ represents the models we trained. We report the results
in the same calculation method with PROCESSBENCH.

tial advantages over their counterparts. An inter-525

esting observation worth noting is that the ORM526

Qwen2.5-Math-RM-72B exhibits considerable ca-527

pability in identifying step errors, even surpassing528

some open-source PRMs.529

5 Related Work530

Reward Model in Mathematical Reasoning531

Mathematical reasoning reward models primarily532

fall into two categories: Outcome Reward Models533

(ORMs) that evaluate final answers, and Process534

Reward Models (PRMs) (Uesato et al., 2022; Light-535

man et al., 2023) that assess individual reasoning536

steps. Though PRMs show greater potential than537

ORMs (Lightman et al., 2023; Wang et al., 2024b),538

they rely on high-quality training data.539

Mathematical Reasoning Step Verification540

Step verification methods usually include human541

annotation (Lightman et al., 2023) and automated542

approaches. Automated methods comprise: (1)543

backward-propagation based methods that infer544

step correctness from solution outcomes, includ-545

ing MC estimation (Wang et al., 2024b; Luo et al.,546

2024; Chen et al., 2024), progressive ORM label-547

ing (Xi et al., 2024), credit assignment (Wang et al.,548

2024a; Cui et al., 2025; Yuan et al., 2024) tech-549

niques and so on; (2) prompting-based methods 550

that leverage LLMs serve as critic, i.e., LLM-as- 551

a-judge (Zhang et al., 2024; Gao et al., 2024; Xia 552

et al., 2024) to assess step correctness directly. In 553

this work, we integrate both MC estimation and 554

LLM-as-a-judge methods. 555

6 Conclusion 556

In this paper, we present the critical lessons gained 557

during developing PRMs and release a new state- 558

of-the-art PRM. Firstly, we identify critical limita- 559

tions in current data construction approaches for 560

PRMs, demonstrating that MC estimation-based 561

data construction yields inferior performance and 562

generalization compared to LLM-as-a-judge and 563

human annotation. Then we reveal the poten- 564

tial bias in using response-level BoN evaluation 565

alone for PRMs and advocate for combining both 566

response-level and step-level metrics. To address 567

these issues, we propose an effective consensus 568

filtering strategy combining MC estimation with 569

LLM-as-a-judge. Our evaluation, incorporating 570

both response-level BoN and identifying step-wise 571

correctness task PROCESSBENCH, demonstrates 572

significant improvements in data efficiency and 573

model performance. 574
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Limitation There are several limitations re-575

mained in our current work. Firstly, there exists a576

considerable performance gap between our PRMs577

and the BoN upper bound (pass@8), suggesting578

substantial optimization potential. Then the best579

practices for utilizing PRMs in reinforcement learn-580

ing remain unexplored. Finally, although our ap-581

proach combines LLM-as-a-judge with MC estima-582

tion for consensus filtering, the efficient utilization583

of existing high-quality human annotation data is584

still largely under-explored. For instance, gradually585

expanding high-quality datasets through weakly su-586

pervised methods can be investigated as a promis-587

ing direction for future exploration.588
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A Details of Preliminary Trials 762

A.1 Training Setup 763

Training Data Synthesis We followed the commonly used MC estimation approach, Math-Shepherd 764

(Wang et al., 2024b), to construct the PRM training data. Specifically, we collected a large-scale dataset of 765

approximately 500,000 queries with golden answers. For each query, we generate 6-8 diverse responses 766

by mixing outputs from the Qwen2-Math-Instruct and Qwen2.5-Math-Instruct series models (Yang et al., 767

2024c), spanning the model sizes of 7B and 72B parameters. These responses are systematically split into 768

individual steps using the delimiter “\n\n”. To assess the correctness of each step, we conduct 8 independent 769

completions starting from this step using Qwen2.5-Math-Instruct series with the corresponding model 770

size, estimating the step labels based on the empirical probabilities of each step yielding the correct final 771

answer. 772

Training Details Our trained PRMs were initialized from the supervised fine-tuned Qwen2.5-Math- 773

7B/72B-Instruct models (Yang et al., 2024c), where we replace the original language modeling head 774

(used for next token prediction) with a scalar-value head, consisting of two linear layers. We trained 775

PRMs with either hard labels or soft labels. For hard labels, we treat a step as correct if any one of the 776

8 completions yields the correct final answer, and negative otherwise. For soft labels, we determined 777

the value (between 0 and 1) as the proportion of completions leading to the correct final answers. We 778

calculated the cross-entropy (CE) loss and mean squared error (MSE) loss on the last tokens of each step 779

for the binary classification task using hard labels and for the regression task using soft labels, respectively. 780

Note that we eliminated all steps subsequent to those labeled as incorrect (label 0), as their validity 781

becomes irrelevant after an error occurs. This removal was implemented to prevent potential model 782

confusion during training. 783

A.2 Evaluation Setup 784

Best-of-N Consistent with previous work (Lightman et al., 2023; Wang et al., 2024b; Luo et al., 2024; 785

Cobbe et al., 2021; Yang et al., 2024c), we employed the BoN evaluation, which selects the highest- 786

scored response from N candidates according to a PRM. We denote the evaluation metric as “prm@N”. 787

Following Yang et al. (2024c), we sampled eight responses (i.e., N = 8) from Qwen2.5-Math-7B- 788

Instruct across multiple mathematical benchmarks, including GSM8K (Cobbe et al., 2021), MATH 789

(Hendrycks et al., 2021b), Minerva Math (Lewkowycz et al., 2022), GaoKao 2023 En (Liao et al., 2024), 790

OlympiadBench (He et al., 2024), College Math (Tang et al., 2024), and MMLU STEM (Hendrycks et al., 791

2021a). Each candidate response is scored using the product of all the individual scores of each step 792

within the response, as computed in Lightman et al. (2023). We also report the result of majority voting 793

among eight samplings (maj@8) as the baseline, and pass@8 (i.e., the proportion of test samples where 794

any of the 8 samplings lead to the correct final answers) as the upper bound. 795

PROCESSBENCH We also evaluated on PROCESSBENCH (Zheng et al., 2024) as a complement which 796

measures the capability of models to identify erroneous steps in mathematical reasoning. Models are 797

required to identify the first step that contains an error or conclude that all steps are correct. Following the 798

evaluation methods for PRMs in PROCESSBENCH, we locate the first erroneous step from predict scores 799

yielded by PRMs. 800

A.3 Evaluation Results 801

As shown in Table 6 and Table 7, we denote the models trained on our MC estimated dataset as Qwen2.5- 802

Math-7B-PRM-MC-hard (trained with hard labels) and Qwen2.5-Math-7B-PRM-MC-soft (trained with 803

soft labels), respectively, and compare them with a baseline model trained exclusively on the PRM800K 804

(Lightman et al., 2023) dataset named Qwen2.5-Math-7B-PRM-PRM800K. The experimental results 805

demonstrate that on the Best-of-8 evaluation, none of the PRMs achieved prm@8 scores superior to 806

maj@8. Furthermore, on the PROCESSBENCH, Both Qwen2.5-Math-7B-PRM-MC-hard and Qwen2.5- 807

Math-7B-PRM-MC-soft exhibit significantly inferior erroneous step localization capabilities compared to 808

Qwen2.5-Math-7B-PRM-PRM800K. 809
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Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 (Upper Bound) 98.1 92.0 49.3 80.5 59.6 52.6 90.5 74.7

maj@8 96.7 87.1 41.2 72.5 44.4 47.8 73.8 66.2
Qwen2.5-Math-7B-PRM800K 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9
Qwen2.5-Math-7B-PRM-MC-hard 96.8 87.3 40.1 70.6 43.7 48.1 71.6 65.5
Qwen2.5-Math-7B-PRM-MC-soft 96.8 86.3 37.9 70.6 41.0 47.7 70.4 64.4

Table 6: Performance comparison on Best-of-8 using PRMs trained with MC estimated hard labels and soft labels,
human-annotated PRM800K, denoted as Qwen2.5-Math-7B-PRM-MC-hard, Qwen2.5-Math-7B-PRM-MC-soft,
and Qwen2.5-Math-7B-PRM800K, respectively.

Model GSM8K MATH OlympiadBench Omni-MATH Avg. F1
error correct F1 error correct F1 error correct F1 error correct F1

Qwen2.5-Math-7B-PRM800K 53.1 95.3 68.2 48.0 90.1 62.6 35.7 87.3 50.7 29.8 86.1 44.3 56.5
Qwen2.5-Math-7B-PRM-MC-hard 67.1 90.2 77.0 35.2 65.8 45.8 13.2 28.0 17.9 13.3 41.9 20.2 40.2
Qwen2.5-Math-7B-PRM-MC-soft 65.7 93.3 77.1 35.7 64.5 46.0 13.2 29.2 18.1 12.9 40.2 19.6 40.2

Table 7: Performance comparison on PROCESSBENCH using PRMs trained with MC estimated hard labels and soft
labels, human-annotated PRM800K, denoted as Qwen2.5-Math-7B-PRM-MC-hard, Qwen2.5-Math-7B-PRM-MC-
soft, and Qwen2.5-Math-7B-PRM800K, respectively.

B Detailed Comparison of MC Estimation vs. LLM-as-a-judge vs. Human Annotation810

The models trained on the different data construction methods including MC estimation, LLM-as-a-judge,811

and human annotation are evaluated on Best-of-8 and PROCESSBENCH. The detailed experimental results812

are shown in Table 8 and 9.813

Setting # samples GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

MC Estimation (Math-Shepherd) 440k 96.9 86.5 36.8 71.4 41.6 47.7 69.3 64.3
MC Estimation (our data) 860k 97.0 87.6 41.9 71.4 43.6 48.2 71.9 65.9
LLM-as-a-judge (our data) 860k 96.9 86.8 39.0 71.2 43.7 47.7 71.9 65.3
Human Annotation (PRM800K) 264k 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9

Table 8: PRMs performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct.
The models are trained on the different data construction methods including MC estimation, LLM-as-a-judge, and
human annotation.

Method # samples GSM8K MATH OlympiadBench Omni-MATH Avg.F1
error correct F1 error correct F1 error correct F1 error correct F1

MC Estimation (Math-Shepherd) 440k 46.4 95.9 62.5 18.9 96.6 31.6 7.4 93.8 13.7 4.0 95.0 7.7 28.9
MC Estimation (our data) 860k 62.3 91.2 74.0 35.2 71.9 47.3 12.7 41.3 19.4 12.1 54.4 19.8 40.1
LLM-as-a-judge (our data) 860k 44.0 99.0 60.9 33.5 94.8 49.5 24.7 97.1 39.4 22.3 95.4 36.1 46.5
Human Annotation (PRM800K) 264k 53.1 95.3 68.2 48.0 90.1 62.6 35.7 87.3 50.7 29.8 86.3 44.3 56.5

Table 9: PRMs performance comparison on PROCESSBENCH. The models are trained on the different data
construction methods including MC estimation, LLM-as-a-judge, and human annotation.

C Process Verification Capability of Existing PRMs814

The policy model may generate the responses that have correct answers but flawed processes. To investigate815

the discriminative capability of PRMs for such cases, we extract instances from PROCESSBENCH where816

answers are correct but processes are erroneous and analysis the detection accuracy rates of PRMs for these817

cases. As shown in Table 10, except our PRM-7B and 72B, all other open-sourced PRMs demonstrate818

detection accuracy rates below 50%.819
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GSM8K MATH
Olympiad

Bench
Omni-
MATH

Avg.

# samples 7 94 161 259

1.5B
Skywork-PRM-1.5B 42.9 36.2 12.4 13.9 26.4

7B+
Math-Shepherd-PRM-7B 14.3 12.8 13.7 14.7 13.9
RLHFlow-PRM-Mistral-8B 14.3 13.8 7.5 10.0 11.4
RLHFlow-PRM-Deepseek-8B 0.0 18.1 9.9 10.8 9.7
Skywork-PRM-7B 57.1 26.6 14.3 13.1 27.8
EurusPRM-Stage1 28.6 25.5 19.9 20.1 23.5
EurusPRM-Stage2 42.9 27.7 18.0 20.8 27.4
Qwen2.5-Math-7B-Math-Shepherd 0.0 9.6 4.3 1.2 3.8
Qwen2.5-Math-7B-PRM800K 42.9 50.0 31.7 28.2 38.2
⋆ Our PRM-7B 42.9 68.1 48.4 56.0 53.9

72B
⋆ Our PRM-72B 28.6 76.6 62.7 64.5 58.1

Table 10: The accuracy in identifying erroneous steps on the test cases of PROCESSBENCH containing correct
answers but erroneous reasoning steps. “# samples” represents the number of test cases.

D Supplementary Experimental Results 820

D.1 The BoN Evaluation on Qwen2.5-Math-72b-Instruct 821

The BoN evaluation on policy model Qwen2.5-Math-72b-Instruct is shown in Table 11. Our PRM-7B 822

outperforms other PRMs of equivalent model scale. However, its performance is inferior to maj@8, 823

suggesting challenges in employing a 7B PRM for the supervision of 72B policy model-generated 824

responses. Besides, Our PRM-72B surpasses maj@8 in prm@8 and is comparable with Qwen2.5-Math- 825

RM-72B in orm@8. 826

D.2 The BoN Evaluation with Various Scoring Strategies 827

We demonstrate experimental results using the last step score, the minimum step score or the production 828

of step scores as the solution-level score. The BoN results with policy model Qwen2.5-Math-7B-Instruct 829

and Qwen2.5-Math-72B-Instruct are shown in Table 13 and Table 14 respectively. 830

D.3 The BoN Evaluation on Chinese Benchmarks 831

We evaluate across three Chinese benchmarks including Chinese math benchmarks CMATH (Wei et al., 832

2023), GaoKao Math Cloze (Zhong et al., 2024), and GaoKao Math QA (Zhong et al., 2024) following 833

(Yang et al., 2024c), as shown in Table 15 and Table 16. 834

E PRM Guided Search 835

We further integrate PRM with greedy search by generating N candidate steps at each step, evaluating 836

these candidates using PRM scoring, and selecting the highest-scoring step for subsequent expansion. For 837

the policy model, we employed Qwen2.5-7B-Instruct which has greater diversity in generation to sample 838

8 candidates at each step, with sampling parameters set to temperature = 1.0 and top_p = 1.0. We 839

conduct comparative experiments with ORM in BoN approach. As shown in Table 12, Our PRM-72B with 840

greedy search@8 is slightly superior performance compared to Qwen2.5-Math-RM-72B with orm@8. 841

We argue the potentially smaller performance differential between PRM and ORM lies in the consistency 842

of generated token counts between greedy search and BoN outputs. Furthermore, although greedy search 843

always selects the highest-scoring candidate at each step, the highest-scoring step may not be the correct 844
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Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 97.3 93.2 56.6 83.6 62.4 54.1 95.3 77.5
maj@8 96.0 88.6 47.8 73.8 50.1 50.2 84.9 70.2

1.5B
Skywork-PRM-1.5B 96.5 88.1 45.2 74.3 48.4 49.7 79.7 68.8

7B+
Math-Shepherd-PRM-7B 96.5 86.8 45.6 71.9 49.2 49.5 77.5 68.1
RLHFlow-PRM-Mistral-8B 96.6 87.5 46.3 73.5 48.9 49.4 83.4 69.4
RLHFlow-PRM-Deepseek-8B 96.5 87.7 44.5 73.5 48.7 49.4 84.6 69.3
Skywork-PRM-7B 97.0 89.0 47.1 75.3 49.8 49.9 76.3 69.2
EurusPRM-Stage1 95.4 85.6 44.1 72.5 46.5 49.2 80.3 67.7
EurusPRM-Stage2 95.3 85.1 44.9 72.5 47.1 49.0 80.2 67.7
Qwen2.5-Math-7B-Math-Shepherd 96.9 88.5 46.0 75.8 49.9 49.5 79.7 69.5
Qwen2.5-Math-7B-PRM800K 96.5 88.9 47.4 75.3 50.7 50.1 76.6 69.4
⋆ Our PRM-7B 96.8 89.6 46.7 77.7 51.4 50.4 76.4 69.9

72B
Qwen2.5-Math-RM-72B 96.4 89.8 47.4 76.9 54.5 50.6 80.1 70.8
⋆ Our PRM-72B 96.4 89.9 46.0 77.4 52.9 50.1 82.3 70.7

Table 11: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-72B-Instruct. ⋆
represents the models we trained.

one. Therefore, implementing either Depth-First Search (DFS) with backtracking capabilities or search845

approaches incorporating score constraints could prove more suitable for this cases.846

We choose the highest-scoring candidate at each step which the score predicted by PRM represents847

the correctness of this step. But such locally optimal choices may not lead to the correct final answer.848

In contrast, value models can predict the future probability of reaching the correct answer, rather than849

reflecting the correctness of the current step like rewards do, making them particularly well-suited for850

integration with search strategies. Based on these considerations, we believe there is still significant851

potential for exploration in the future regarding more appropriate search strategies or combining rewards852

and values to simultaneously consider both the correctness of the current step and the possibility of853

reaching the correct future outcomes.854

Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 (Upper Bound) 96.9 89.6 48.2 79.7 58.4 55.0 81.6 72.8
pass@1 91.2 74.0 32.0 64.7 36.9 46.2 57.1 57.4
maj@8 93.7 80.3 37.1 69.9 45.8 48.5 61.9 62.5

orm@8
Qwen2.5-Math-RM-72B 95.4 84.2 38.6 73.0 48.6 50.1 75.6 66.5

Greedy Search@8
Skywork-PRM-7B 95.3 83.2 33.8 70.4 44.1 48.2 60.1 62.2
⋆ Our PRM-7B 95.5 82.6 32.0 71.4 44.9 48.8 69.6 63.5
⋆ Our PRM-72B 95.9 84.7 37.9 73.2 48.9 50.0 75.3 66.6

Table 12: The performance of PRM guided greedy search and ORM of Best-of-8 with policy model Qwen2.5-7B-
Instruct. For greedy search, 8 candidates is proposed at each step.
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F Prompt Template for LLM-as-a-judge 855

856

I will provide a math problem along with a solution. They will be formatted as
follows:

[Math Problem]

<math_problem>
...(math problem)...
</math_problem>

[Solution]

<paragraph_1>
...(paragraph 1 of solution)...
</paragraph_1>

...

<paragraph_n>
...(paragraph n of solution)...
</paragraph_n>

Your task is to review each paragraph of the solution in sequence, analyzing,
verifying, and critiquing the reasoning in detail. You need to provide the
analyses and the conclusion in the following format:

<analysis_1>
...(analysis of paragraph 1)...
</analysis_1>

...

<analysis_n>
...(analysis of paragraph n)...
</analysis_n>

<conclusion>
Correct/Incorrect
</conclusion>

* When you analyze each paragraph, you should use proper verification,
recalculation, or reflection to indicate whether it is logically and
mathematically valid. Please elaborate on the analysis process carefully.

* If an error is detected in any paragraph, you should describe the nature and
cause of the error in detail, and suggest how to correct the error or the correct
approach. Once a paragraph is found to contain any error, stop further analysis
of subsequent paragraphs (as they may depend on the identified error) and directly
provide the conclusion of "Incorrect."

857
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For instance, given a solution of five paragraphs, if an error is found in the
third paragraph, you should reply in the following format:

<analysis_1>
...(analysis of paragraph 1)...
</analysis_1>

<analysis_2>
...(analysis of paragraph 2)...
</analysis_3>

<analysis_3>
...(analysis of paragraph 3; since an error is found here, also provide detailed
critique and correction guideline)...
</analysis_3>

<conclusion>
Incorrect
</conclusion>

Note that the analyses of paragraphs 4 and 5 should be skipped as the paragraph
3 has been found to contain an error.

* Respond with your analyses and conclusion directly.

--------------------------------------------------

The following is the math problem and the solution for you task:

[Math Problem]

{tagged_problem}

[Solution]

{tagged_response}
858
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Setting Scoring GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 (Upper Bound) - 98.1 92 49.3 80.5 59.6 52.6 90.5 74.7
maj@8 - 96.7 87.1 41.2 72.5 44.4 47.8 73.8 66.2

Math-Shepherd-PRM-7B
last 96.8 85.2 39.0 70.1 42.8 47.2 67.7 64.1

product 97.3 85.4 37.9 70.6 40.4 47.2 70.5 64.2
min 96.9 85.3 39.0 69.9 42.2 47.4 70.6 64.5

RLHFlow-PRM-Mistral-8B
last 97.0 85.3 39.0 71.2 44.0 47.1 64.0 63.9

product 97.0 86.1 37.1 70.6 41.2 47.6 69.5 64.2
min 97.0 84.3 37.1 69.4 40.4 46.9 68.7 63.4

RLHFlow-PRM-Deepseek-8B
last 97.0 84.7 35.7 70.4 43.0 46.8 63.8 63.1

product 97.3 86.3 40.8 70.9 42.2 47.2 69.3 64.9
min 97.3 84.5 38.2 69.6 40.7 46.5 67.6 63.5

Skywork-PRM-1.5B
last 96.8 86.4 39.0 71.7 45.0 47.9 68.2 65.0

product 96.9 86.7 37.9 70.1 42.1 47.9 67.9 64.2
min 96.6 86.6 37.9 71.9 43.1 48.2 66.9 64.5

Skywork-PRM-7B
last 97.2 87.3 41.2 73.8 45.8 48.3 65.3 65.6

product 97.3 87.3 38.2 71.9 43.7 47.8 67.7 64.8
min 96.7 87.0 39.7 71.2 42.5 48.2 66.6 64.6

EurusPRM-Stage1
last 94.7 79.7 32.7 61.6 33.8 45.7 63.4 58.8

product 95.6 83.0 35.7 66.2 38.2 46.2 66.6 61.6
min 95.8 83.3 39.0 67.8 37.9 46.6 67.4 62.5

EurusPRM-Stage2
last 94.7 79.7 33.1 61.3 34.2 45.7 63.5 58.9

product 95.4 83.4 34.9 67.3 39.1 46.3 67.3 62.0
min 96.1 83.6 39.3 68.8 38.8 46.7 67.5 63.0

Qwen2.5-Math-7B-Math-Shepherd
last 97.1 87.7 38.6 73.8 44.6 48.1 68.0 65.4

product 96.9 86.5 36.8 71.4 41.6 47.7 69.3 64.3
min 97.0 86.7 36.8 72.5 43.1 47.6 70.7 64.9

Qwen2.5-Math-7B-PRM800K
last 96.7 86.3 37.9 71.9 44.3 47.6 68.1 64.7

product 96.9 86.9 37.1 71.2 44.0 47.6 70.9 64.9
min 96.9 86.6 39.7 71.7 45.6 47.8 71.1 65.6

⋆ Our PRM-7B
last 96.9 87.2 39.0 73.5 45.5 48.5 72.0 66.1

product 97.1 88.0 42.6 74.5 47.6 48.7 74.5 67.6
min 97.0 87.8 42.3 74.3 46.2 48.3 74.1 67.1

⋆ Our PRM-72B
last 97.6 88.9 43.4 73.8 49.2 49.6 76.8 68.5

product 97.6 88.7 46.0 74.3 48.1 49.3 81.1 69.3
min 97.6 88.8 45.2 74.5 48.1 49.2 80.9 69.2

Table 13: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-7B-Instruct with 3
scoring strategies: last, product and minimum. ⋆ represents the models we trained.

17



Setting Scoring GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM Avg.

pass@8 (Upper Bound) - 97.3 93.2 56.6 83.6 62.4 54.1 95.3 77.5
maj@8 - 96.0 88.6 47.8 73.8 50.1 50.2 84.9 70.2

Math-Shepherd-PRM-7B
last 96.2 87.0 46.7 73.0 47.3 49.8 76.3 68.0

product 96.5 86.8 45.6 71.9 49.2 49.5 77.5 68.1
min 96.1 86.8 45.6 73.2 48.6 49.9 76.0 68.0

RLHFlow-PRM-Mistral-8B
last 96.3 86.6 44.9 74.3 47.6 49.3 67.1 66.6

product 96.6 87.5 46.3 73.5 48.9 49.4 83.4 69.4
min 96.4 86.3 44.5 71.9 47.9 49.3 76.0 67.5

RLHFlow-PRM-Deepseek-8B
last 96.1 86.6 46.3 73.2 49.2 49.2 71.7 67.5

product 96.5 87.7 44.5 73.5 48.7 49.4 84.6 69.3
min 96.6 87.4 44.1 74.0 48.6 49.3 74.8 67.8

Skywork-PRM-1.5B
last 96.1 88.6 44.9 72.2 47.9 50.1 74.2 67.7

product 96.5 88.1 45.2 74.3 48.4 49.7 79.7 68.8
min 96.0 88.3 45.6 73.8 48.6 50.1 75.9 68.3

Skywork-PRM-7B
last 97.0 89.0 46.0 74.8 51.0 49.7 66.7 67.7

product 97.0 89.0 47.1 75.3 49.8 49.9 76.3 69.2
min 96.9 89.2 46.7 73.5 49.8 49.8 73.2 68.4

EurusPRM-Stage1
last 95.9 87.3 44.9 72.7 47.0 49.4 78.4 67.9

product 95.4 85.6 44.1 72.5 46.5 49.2 80.3 67.7
min 96.4 88.2 44.9 75.1 49.0 49.5 83.7 69.5

EurusPRM-Stage2
last 96.0 87.7 44.5 73.5 47.0 49.4 78.1 68.0

product 95.3 85.1 44.9 72.5 47.1 49.0 80.2 67.7
min 96.5 88.6 45.2 75.3 48.9 49.6 83.3 69.6

Qwen2.5-Math-7B-Math-Shepherd
last 97.0 89.6 44.9 77.4 50.8 50.5 74.9 69.3

product 96.9 88.5 46.0 75.8 49.9 49.5 79.7 69.5
min 97.0 88.6 46.0 74.8 50.2 49.6 79.6 69.4

Qwen2.5-Math-7B-PRM800K
last 96.7 88.8 47.1 76.1 50.1 49.5 71.8 68.6

product 96.5 88.9 47.4 75.3 50.7 50.1 76.6 69.4
min 96.5 89.1 47.1 76.1 50.7 49.9 75.3 69.2

⋆ Our PRM-7B
last 96.8 89.0 46.7 75.3 49.8 50.3 78.4 69.5

product 96.8 89.6 46.7 77.7 51.4 50.4 76.4 69.9
min 96.7 89.6 46.3 77.9 50.8 50.3 76.0 69.7

⋆ Our PRM-72B
last 96.3 89.8 47.8 76.6 53.3 50.9 80.5 70.7

product 96.4 89.9 46.0 77.4 52.9 50.1 82.3 70.7
min 96.4 89.7 46.3 77.7 52.4 50.4 81.2 70.6

Table 14: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math-72B-Instruct with
3 scoring strategies: last, product and minimum. ⋆ represents the models we trained.
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Setting Scoring CMATH CN Middle
School 24 GaoKao Avg.

pass@8 (Upper Bound) - 95.3 82.2 84.3 87.3
maj@8 - 92.7 78.2 68.1 79.7

Math-Shepherd-PRM-7B
last 91.8 80.2 63.0 78.3

product 92.0 80.2 69.1 80.4
min 91.5 80.2 69.8 80.5

RLHFlow-PRM-Mistral-8B
last 92.8 79.2 57.2 76.4

product 92.7 77.2 65.8 78.6
min 92.8 76.2 62.1 77.0

RLHFlow-PRM-Deepseek-8B
last 93.2 75.2 56.9 75.1

product 92.7 76.2 63.6 77.5
min 93.0 74.3 67.3 78.2

Skywork-PRM-1.5B
last 93.8 80.2 66.6 80.2

product 92.8 79.2 66.3 79.4
min 93.3 80.2 66.6 80.0

Skywork-PRM-7B
last 94.0 81.2 66.7 80.6

product 93.3 79.2 68.1 80.2
min 93.8 80.2 66.3 80.1

EurusPRM-Stage1
last 91.8 77.2 55.4 74.8

product 91.7 77.2 52.6 73.8
min 91.7 78.2 64.4 78.1

EurusPRM-Stage2
last 91.8 77.2 55.7 74.9

product 92.0 77.2 52.4 73.9
min 92.0 78.2 64.7 78.3

Qwen2.5-Math-7B-Math-Shepherd
last 93.0 81.2 65.4 79.9

product 93.0 79.2 67.7 80.0
min 92.5 80.2 69.8 80.8

Qwen2.5-Math-7B-PRM800K
last 92.8 78.2 67.1 79.4

product 92.7 77.2 68.9 79.6
min 93.0 77.2 69.4 79.9

⋆ Our PRM-7B
last 93.3 80.2 68.2 80.6

product 93.7 80.2 70.1 81.3
min 93.5 80.2 71.7 81.8

⋆ Our PRM-72B
last 94.3 80.2 72.1 82.2

product 94.2 80.2 73.5 82.6
min 94.2 80.2 73.1 82.5

Table 15: Best-of-8 performance comparison on the Chinese benchmarks with the policy model Qwen2.5-Math-7B-
Instruct in 3 scoring strategies: last, product and minimum. ⋆ represents the PRMs we trained.

19



Setting Scoring CMATH CN Middle
School 24 GaoKao Avg.

pass@8 (Upper Bound) - 96.8 83.2 86.2 88.7
maj@8 - 95.3 79.2 75.0 83.2

Math-Shepherd-PRM-7B
last 93.7 78.2 73.2 81.7

product 94.0 80.2 72.1 82.1
min 93.5 80.2 73.9 82.5

RLHFlow-PRM-Mistral-8B
last 94.3 79.2 65.5 79.7

product 93.8 79.2 72.0 81.7
min 93.3 79.2 71.2 81.2

RLHFlow-PRM-Deepseek-8B
last 94.3 79.2 63.0 78.8

product 94.3 79.2 72.5 82.0
min 94.5 79.2 73.5 82.4

Skywork-PRM-1.5B
last 94.8 80.2 74.3 83.1

product 93.8 79.2 69.7 80.9
min 94.5 80.2 74.6 83.1

Skywork-PRM-7B
last 95.3 80.2 72.6 82.7

product 94.7 80.2 71.5 82.1
min 94.8 80.2 76.0 83.7

EurusPRM-Stage1
last 94.0 79.2 64.5 79.2

product 93.8 80.2 64.5 79.5
min 94.7 79.2 70.8 81.6

EurusPRM-Stage2
last 94.2 79.2 63.4 78.9

product 93.7 80.2 65.4 79.8
min 94.3 79.2 69.7 81.1

Qwen2.5-Math-7B-Math-Shepherd
last 95.0 81.2 74.6 83.6

product 94.5 80.2 73.0 82.6
min 94.3 80.2 71.5 82.0

Qwen2.5-Math-7B-PRM800K
last 94.2 79.2 76.5 83.3

product 94.2 82.2 70.8 82.4
min 93.8 80.2 72.9 82.3

⋆ Our PRM-7B
last 94.7 79.2 74.5 82.8

product 94.3 81.2 77.6 84.4
min 94.5 81.2 77.6 84.4

⋆ Our PRM-72B
last 96.0 79.2 76.1 83.8

product 96.0 80.2 77.2 84.5
min 95.8 80.2 77.5 84.5

Table 16: Best-of-8 performance comparison on the Chinese benchmarks with the policy model Qwen2.5-Math-
72B-Instruct in 3 scoring strategies: last, product and minimum. ⋆ represents the PRMs we trained.
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