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ABSTRACT

The double descent curve is one of the most intriguing properties of deep neural
networks. It contrasts the classical bias-variance curve with the behavior of mod-
ern neural networks, occurring where the number of samples nears the number
of parameters. In this work, we explore the connection between the double de-
scent phenomena and the number of samples in the deep neural network setting.
In particular, we propose a construction which augments the existing dataset by
artificially increasing the number of samples. This construction empirically miti-
gates the double descent curve in this setting. We reproduce existing work on deep
double descent, and observe a smooth descent into the overparameterized region
for our construction. This occurs both with respect to the model size, and with
respect to the number epochs.

1 INTRODUCTION

Underparameterization and overparameterization are at the heart of understanding modern neural
networks. The traditional notion of underparameterization and overparameterization led to the clas-
sic U-shaped generalization error curve (Trevor Hastie & Friedman, 2001; Stuart Geman & Doursat,
1992), where generalization would worsen when the model had either too few (underparameterized)
or too many parameters (overparameterized). Correspondingly, it was expected that an underparam-
eterized model would underfit and fail to identify more complex and informative patterns, and an
overparameterized model would overfit and identify non-informative patterns. This view no longer
holds for modern neural networks.

It is widely accepted that neural networks are vastly overparameterized, yet generalize well. There is
strong evidence that increasing the number of parameters leads to better generalization (Zagoruyko
& Komodakis, 2016; Huang et al., 2017; Larsson et al., 2016), and models are often trained to
achieve zero training loss (Salakhutdinov, 2017), while still improving in generalization error,
whereas the traditional view would suggest overfitting.

To bridge the gap, Belkin et al. (2018a) proposed the double descent curve, where the underparame-
terized region follows the U-shaped curve, and the overparameterized region smoothly decreases in
generalization error, as the number of parameters increases further. This results in a peak in general-
ization error, where a fewer number of samples would counter-intuitively decrease the error. There
has been extensive experimental evidence of the double descent curve in deep learning (Nakkiran
et al., 2019; Yang et al., 2020), as well as in models such as random forests, and one layer neural
networks (Belkin et al., 2018a; Ba et al., 2020).

One recurring theme in the definition of overparameterization and underparameterization lies in the
number of neural network parameters relative to the number of samples (Belkin et al., 2018a; Nakki-
ran et al., 2019; Ba et al., 2020; Bibas et al., 2019; Muthukumar et al., 2019; Hastie et al., 2019). On
a high level, a greater number of parameters than samples is generally considered overparameteri-
zation, and fewer is considered underparameterization.

However, this leads to the question “What is a sample?” In this paper, we revisit the fundamen-
tal underpinnings of overparameterization and underparameterization, and stress test when it means
to be overparameterized or underparameterized, through extensive experiments of a cleverly con-
structed input. We artificially augment existing datasets by simply stacking every combination of
inputs, and show the mitigation of the double descent curve in the deep neural network setting. We
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humbly hypothesize that in deep neural networks we can, perhaps, artificially increase the number
of samples without increasing the information contained in the dataset, and by implicitly changing
the classification pipeline mitigate the double descent curve. In particular, the narrative of our paper
obeys the following:

• We propose a simple construction to artificially augment existing datasets of sizeO(n) by stacking
inputs to produce a dataset of size O(n2).

• We demonstrate that the construction has no impact on the double descent curve in the linear
regression case.

• We show experimentally that those results on double descent curve do not extend to the case of
neural networks.

Concretely, we reproduce results from recent landmark papers, and present the difference in behavior
with respect to the double descent curve.

2 RELATED WORKS

The double descent curve was proposed recently in (Belkin et al., 2018a), where the authors define
overparameterization and underparameterization as the proportion of parameters to samples. The
authors explain the phenomenon through the model capacity class. With more parameters in the
overparameterized region, there is larger “capacity” (i.e., the model class contains more candidates),
and thus may contain better, simpler models by Occam’s Razor rule. The interpolation region is sug-
gested to exist when the model capacity is capable of fitting the data nearly perfectly by overfitting
on non-informative features, resulting in higher test error. Experiments included a one layer neural
network, random forests, and others.

The double descent curve is also observed in deep neural networks (Nakkiran et al., 2019), with the
additional observation of epoch-wise double descent. Experimentation is amplified by label noise.
With the observation of unimodel variance (Neal et al., 2018), Yang et al. (2020) also decomposes
the risk into bias and variance, and posits that the double descent curve arises due to the bell-shaped
variance curve rising faster than the bias decreases.

There is substantial theoretical work on double descent, particularly in the least squares regression
setting. Advani & Saxe (2017) analyses this linear setting and proves the existence of the interpola-
tion region, where the number of parameters equals the number of samples in the asymptotic limit
where samples and parameters tend to infinity. Hastie et al. (2019) follows a similar line of work,
and proves that regularization reduces the peak in the interpolation region. Belkin et al. (2019b)
requires only finite samples, where the features and target be jointly Gaussian. Other papers with
similar setup include (Bartlett et al., 2019; Muthukumar et al., 2019; Bibas et al., 2019; Mitra, 2019;
Mei & Montanari, 2019).

Ba et al. (2020) analyses the least squares regression setting for two layer linear neural networks
in the asymptotic setting, where the double descent curve is present when only the second layer is
optimized. There is also work in proving that optimally tuned `2-norm regularization mitigates the
double descent curve for certain linear regression models with isotropic data distribution (Nakkiran,
2019). This setting has also been studied with respect to the variance in the parameter space (Bartlett
et al., 2019). Multiple descent has also been studied, and in particular there is work to show in the
linear regression setting that multiple descent curves can be directly designed by the user (Chen et al.,
2020). Additionally, there is supporting evidence of double descent in the sample-wise perspective
(Nakkiran et al., 2020).

There is other work in this area, including studying the double descent curve for least squares in
random feature models (Belkin et al., 2019a; d’Ascoli et al., 2020; Ghorbani et al., 2019), leveraging
the Neural Tangent Kernel to argue for certain number of parameters the output of the neural network
diverges (Geiger et al., 2020), characterizing the double descent in non-linear settings (Caron &
Chretien, 2020), kernel learning (Belkin et al., 2018b; Liang et al., 2019), and connecting to other
fields (Geiger et al., 2019). Lastly, we note here that, in the deep neural network setting, models can
be trained to zero training loss even with random labels (Zhang et al., 2016).
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Figure 1: Left: The standard case. Right: The concatenated inputs construction. Plots of the
Test MSE verses number of samples (pre-concatenation) for min-norm ridgeless regression, where
d = 30. Following Nakkiran (2019), inputs are drawn x ∼ N (0, Id), target y = θx + N (0, σ2),
where θ are the parameters, ||θ||2 = 1, σ = 0.1. θ̂ = X†y.

3 THE CONCATENATED INPUTS CONSTRUCTION

We introduce the concatenated inputs construction, on which our main hypothesis is based on.
The concatenated inputs construction refers to the general idea of concatenating pairs of inputs and
element-wise adding and averaging pairs of outputs to produce new inputs and targets. This way the
size of a dataset can be artificially –but non-trivially– increased.

This construction can be applied both to the regression setting and the classification setting. In the
setting of linear regression, for given input pairs, (x1, y1), (x2, y2), an augmented dataset can be
constructed as:{(

[x1, x1], y1+y1

2

)
,
(
[x1, x2], y1+y2

2

)
,
(
[x2, x1], y2+y1

2

)
,
(
[x2, x2], y2+y2

2

)}
,

where [α, β] represents concatenation of the input α, β. In the setting of classification, the process
is identical, where the targets are produced by element-wise addition and then averaged to sum to
1. The averaging is not strictly necessary even in the deep neural network classification case, where
the binary cross entropy loss can be used instead of cross entropy. For test data, we concatenate
the same input with itself, and the target is the original target. This way a dataset of size O(n) is
artificially augmented to size O(n2).

Concretely, our reasons for the concatenated inputs construction are as follows: i) there is limited
injection of information or semantic meaning; ii) the number of samples is significantly increased.
For the purposes of understanding underparameterization, overparameterization and the double de-
scent curve, such a construction tries to isolate the definition of a sample. We revisit and assess these
implications in the context of extensive experiments in the following sections.

4 RESULTS

In this section, we reproduce settings from benchmark double descent papers, add the concatenated
inputs construction and analyze the findings. In particular, we begin with the linear regression,
move to one hidden layer feedforward neural networks, and then deep neural networks, in both
the model parameter-wise double descent and epoch-wise double descent. Finally, we analyze the
performance of deep neural networks for the concatenated inputs construction, and the behavior of
the double descent curve in the classification setting, when we transfer from the cross entropy to the
binary cross entropy loss.

4.1 LINEAR REGRESSION

The linear regression setting has been a fruitful testbed for empirical work in double descent, as well
as yielding substantial theoretical understanding. The concatenated inputs construction is applied

3



Under review as a conference paper at ICLR 2021

Figure 2: Top row: Loss against number of parameters. Bottom row: Error against number of
parameters. In order from left to right: 1. Input is 32 × 32 image, label is one-hot vector and loss
is Cross Entropy, 2. Input is 64 × 32 image (two of the same image stacked on top of each other),
label is one-hot vector and loss is Cross Entropy, 3. Input is 64 × 32 image (two different 32 × 32
images stacked on top of each other), label is two-hot vector of values 0.5 and 0.5 and loss is Cross
Entropy. All models trained with batch size of 100 for 1000 epochs on a subset (n = 4000) of the
MNIST dataset. Adam optimizer is used with learning rate = 0.001, β1 = 0.9, β2 = 0.999. Models
are feedforward neural networks with a single layer of hidden units with ReLU activation.

similarly here, however with different motivation. Namely, we wish to motivate that the concate-
nated inputs construction is not expected to add any information and is therefore not expected to
impact the double descent curve.

We reproduce the linear regression setting from Nakkiran (2019), given in Figure 1. For the con-
catenated inputs construction, we first draw the number of samples before concatenation and con-
struction of the augmented dataset. We observe that, by construction, the concatenated inputs con-
struction does not affect the double descent curve, and the peak occurs in the exact same location.
We also make the remark here that it is not surprising that this is the case, and it is not complicated
to understand why from a theoretical perspective.

4.2 ONE HIDDEN LAYER FEEDFORWARD NEURAL NETWORK

Following linear regression, we move to neural networks. We train a feedforward neural network
with one hidden layer and ReLU activations on a subset of the MNIST dataset, reproducing the
experimental setup from Belkin et al. (2018a). We vary the number of parameters in the neural
network by changing the size of the hidden layer. We use the Cross Entropy loss instead of the
original MSE loss due to the prevalence of those losses for image classification tasks. This is shown
in Figure 2.

We observe the double descent in the loss versus number of parameters, but were unable to produce
the double descent in the error. In the rightmost plot, the double descent curve is completely removed
in the concatenated inputs construction relative to the other two settings. Namely, a smooth decrease
in loss is observed, where there is a clear double descent in the other cases. Furthermore, we provide
the extra setting of concatenating each input only by itself, and the double descent curve is present
almost exactly in this scenario. This provides further evidence that the disappearance of the double
descent is not due to the extra parameters which originate from the larger sized inputs. In this setting,
it appears that the behavior of underparameterization and overparameterization can be altered by
simply artificially increasing the number of samples through concatenating images.
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Figure 3: Left: Standard one-hot vector setup, Right: Concatenated inputs construction. Top: Loss. Bottom:
Error. All models trained with batch size of 128 for 400 epochs with 15% label noise on the CIFAR10 dataset.
Label noise is defined by changing p% of the samples to random wrong labels and is applied prior to training,
and prior to the concatenated inputs construction. Adam optimizer is used with learning rate = 0.0001, β1 =
0.9, β2 = 0.999. Models are ResNet18 architecture where the width k is varied. k = 64 is the standard
ResNet18. The plot is visually similar when plotted against parameters, since concatenated inputs construction
typically adds less than 5% of the total parameters.

In addition, the model trained on MNIST and one-hot vectors can be concatenated with itself, with
all other parameters being zero, to produce a model with two times the number of hidden units
which can be applied to the concatenated inputs construction. We consider this setting in the context
of a possible explanation of the interpolation region, where the number of parameters nears that of
samples. Concretely, it is possible for a neural network with double the hidden units in the concate-
nated inputs construction to recover the double descent curve by learning two smaller, disconnected
networks, where each of the smaller networks are the ones learned in the double descent peak of
the standard, one-hot case. However, in practice while the network can do so, it does not appear to,
which leads to the smooth descent in the rightmost plot in Figure 2.

4.3 DEEP NEURAL NETWORKS

In this section, we investigate deep double descent in several settings, including model size double
descent, and epoch-wise double descent. Finally, we decompose the loss into bias and variance to
further investigate the effect of the concatenated inputs construction.

4.3.1 MODEL SIZE DOUBLE DESCENT

ResNet18 - CIFAR10. We train a ResNet18 architecture on the CIFAR10 dataset in Figure 3,
reproducing the experimental setup from Nakkiran et al. (2019). We vary the number of parameters
in the neural network by changing the width k. In this experimental setup, we use deep neural
networks and reproduce the double descent with respect to the model size. Immediately, we see that
the double descent curve is relatively mitigated in the case of the concatenated inputs construction
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Figure 4: Left: Standard one-hot vector setup, Right: Concatenated inputs construction. All models trained
with batch size of 128 for 400 epochs with 15% label noise on the CIFAR100 dataset. Label noise is defined
by changing p% of the samples to random wrong labels and is applied prior to training, and prior to stacking
for two-hot vectors. Adam optimizer is used with learning rate = 0.0001, β1 = 0.9, β2 = 0.999. Models are
ResNet18 architecture where the width k is varied.

where from k = 5 to 20. Here, the curve is much smoother, although not entirely smooth. Notably,
the concatenated inputs construction retains the test error across k, except in the interpolation region
where it achieves significantly lower test error (> 5%). We also note that the conclusion is identical
when error is plotted against parameters, since the concatenated inputs construction typically adds a
very small number of parameters (< 5%).

We also present the plot for loss in Figure 3 (Top row). Here, we observe a clear double descent
in the one-hot case, where the model follows the classical U shaped curve prior to the interpolation
region, and then steadily decreases in loss after. The concatenated inputs construction exhibits more
interesting behavior where the U curve is significantly muted and mitigated, and there is no clear
peak of the curve.

ResNet18 - CIFAR100. We train a ResNet18 architecture on the CIFAR100 dataset in Figure
4, reproducing the experimental setup from Nakkiran et al. (2019) and almost identical setup in
ResNet18 - CIFAR10. The results are similar and slightly clearer here, where the double de-
scent curve in error entirely disappears with the concatenated inputs construction, and test error is
decreased in the interpolation region. Again, the test error difference is significant (> 5%).

4.3.2 EPOCH-WISE DOUBLE DESCENT

Figure 5: Left: Standard one-hot vector setup, Right: Concatenated inputs construction. Models are ResNet18
architecture on CIFAR-10 where the error during training is plotted above.

ResNet18 - CIFAR10. We use the same setting as in the previous section, except we train models
for an additional 600 epochs, for a total of 1000 epochs. In Figure 5, we plot test error against
epochs. In the one hot setting, as expected we observe a U shape for medium sized models and a
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Figure 6: Left: Standard one-hot vector setup, Right: Concatenated inputs construction. Models are ResNet18
architecture on CIFAR-100 where the error during training is plotted above.

double descent for larger models (Nakkiran et al., 2019). For the concatenated inputs construction,
a flat U shape and double descent is indeed observed, although they are significantly mitigated. The
mitigation allows a 5% improvement at the end of training for medium sized models and a 10%
improvement in the middle of training for large sized models.

ResNet18 - CIFAR100. Similarly to above, we use the same setting as in the previous section,
except we train models for a total of 1000 epochs. Results are given in Figure 6. The one hot
results mirror ResNet18 - CIFAR10, as expected (Nakkiran et al., 2019). For the concatenated input
construction, we observe complete mitigation of the double descent curve for medium and large
sized models. For large models, this is more than a 10% gap.

4.3.3 BIAS VARIANCE DECOMPOSITION

In this section, we follow Yang et al. (2020) and decompose the loss into bias and variance. Namely,
let CE denote the cross entropy loss, T a random variable representing the training set, π is the true
one-hot label, π̄ is the average log-probability after normalization, and π̂ is the output of the neural
network. Then,

ET [CE(π, π̂)] = DKL(π||π̄) + ET [DKL(π̄||π̂)]

where the first component is the bias and the second component is the variance. On a high level, the
variance can then be estimated by training separate same capacity models on different splits of the
dataset, and then measuring the difference in outputs on the same test set. The bias is then computed
by subtracting the empirical variance from the empirical risk. For finer details, see Yang et al. (2020)

For training, we follow Yang et al. (2020) and train a ResNet-34 (He et al., 2016) on the CIFAR10
dataset, with stochastic gradient descent (learning rate = 0.1, momentum = 0.9). The learning rate
is decayed a factor of 0.1 every 200 epochs, and a weight decay of 5e-4 is used. The width k of the
network is varied suitably between 1 and 64. We also make 5 splits of 10,000 training samples for
the calculation of bias and variance.

We present results in Figure 7. The concatenated inputs construction significantly delays and
smoothens the increase in variance relative to the standard case, where the unimodal variance is
significantly sharper. This impacts the shape of the test error, where in this setting we see a shifted
bump in test error for the concatenated inputs construction. One possible explanation is in the case
of deep neural networks the concatenated inputs construction is a form of implicit regularization for
small models, which controls overfitting and leads to a smoother variance curve.
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Figure 7: Left: Bias and Variance against width k of ResNet-34 in the standard case. Middle: Bias
and Variance against width k of ResNet-34 in the concatenated inputs construction. Right: Test error
against width k of ResNet-34 in the standard case and concatenated inputs construction.

5 DISCUSSION

We revisit the topic of overparameterization, underparameterization and the double descent curve.
The understanding of overparameterization, underparameterization, and the double descent curve
is strongly tied to the number of samples. It appears that given a fixed number of unique samples
it is possible to manipulate overparameterization and underparameterization by artificially boosting
the number of samples by the concatenated inputs construction. This is based on the observation of
removing or shifting the double descent curve through the concatenated inputs construction.

A similar topic on double descent is the possible explanation that the model is being forced to fit
the training data as perfectly as possible, and at some model capacity it is possible to fit the training
data perfectly by overfitting on non-existent, or weakly present, features. This results in overfitting
and the double descent curve. Interestingly, the concatenated inputs construction generally removes
the double descent curve, even though it is possible to build models for the concatenated inputs
construction from models for the standard setting. This suggests a possible route to improve on the
understanding of the relationship to the model capacity.

Furthermore, we consider the topic of underfitting. It is well know that overparameterized neural
networks don’t exhibit strong overfitting in practice, even though they can memorize the dataset
(Zhang et al., 2016). The experimental results in this work regarding underparameterization, over-
parameterization and the double descent curve support that the behavior of the neural network can
change with respect to the number of samples, even if the majority of samples add limited infor-
mation, via the concatenated inputs construction. In this view, the concatenated inputs construction
creates possibly a huge dataset, for example 50, 0002 samples for the originally 50, 000 samples
CIFAR10 dataset where 50, 0002 = 2, 500, 000, 000 is far larger than any neural network for the
CIFAR10 dataset. Yet, there is no noticeable underfitting. Namely, the concatenated inputs con-
struction very quickly achieves comparable performance compared to the standard one-hot vector
deep learning setting. This suggests we may need to rethink the relationship between underfitting
and the number of parameters, samples, and model capacity.

6 CONCLUSION

In this paper, we examine the double descent phenomena through the concatenated inputs construc-
tion. The concatenated inputs construction is designed to add limited information whilst artificially
augmenting the size of the dataset. As constructed, in the linear regression setting there is no impact
on the location of the peak. Yet, in the neural network setting, the concatenated inputs construc-
tion generally removes the double descent curve. Finally, we explore this phenomena through bias
variance decomposition, and draw connections with samples, model capacity, and underfitting in
discussion.
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