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Abstract

Spherical Sliced-Wasserstein (SSW) has recently been pro-
posed to measure the discrepancy between spherical data
distributions in various fields, such as geology, medical do-
mains, computer vision, and deep representation learning.
However, in the original SSW, all projection directions are
treated equally, which is too idealistic and cannot accurately
reflect the importance of different projection directions for
various data distributions. To address this issue, we pro-
pose a novel data-adaptive Discriminative Spherical Sliced-
Wasserstein (DSSW) distance, which utilizes a projected en-
ergy function to determine the discriminative projection di-
rection for SSW. In our new DSSW, we introduce two types of
projected energy functions to generate the weights for projec-
tion directions with complete theoretical guarantees. The first
type employs a non-parametric deterministic function that
transforms the projected Wasserstein distance into its corre-
sponding weight in each projection direction. This improves
the performance of the original SSW distance with negligible
additional computational overhead. The second type utilizes a
neural network-induced function that learns the projection di-
rection weight through a parameterized neural network based
on data projections. This further enhances the performance
of the original SSW distance with less extra computational
overhead. Finally, we evaluate the performance of our pro-
posed DSSW by comparing it with several state-of-the-art
methods across a variety of machine learning tasks, includ-
ing gradient flows, density estimation on real earth data, and
self-supervised learning.

Introduction

In real-world scenarios, more and more tasks involve defin-
ing data distributions on the hypersphere, highlighting the
importance and universality of spherical geometry. These
tasks include characterizing the density distribution of geo-
physical (Di Marzio, Panzera, and Taylor 2014; An et al.
2024; Hu et al. 2023, 2024) or meteorology data (Besombes
et al. 2021), magnetic imaging of the brain in the medical
field (Vrba and Robinson 2001), texture mapping in com-
puter graphics (Dominitz and Tannenbaum 2010), etc, where
the latent representation is mapped to a bounded space com-
monly known as a sphere (Wang and Isola 2020; Chen et al.
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2020).

The distribution analysis on the hypersphere is often fo-
cused on the statistical study of directions, orientations, and
rotations. It is known as circle or sphere statistical analysis
(Jammalamadaka and Sengupta 2001). Recently, there has
been a growing interest in comparing probability measures
on the hypersphere using Optimal Transport (OT) (Cui et al.
2019). This is driven by its appealing statistical, geometrical,
and topological properties (Peyré, Cuturi et al. 2019a).

Two critical challenges in applying OT theory are the
high computational complexity and the curse of dimension-
ality (Peyré, Cuturi et al. 2019b). These issues have led to
a growing focus on developing faster solving tools (Cu-
turi 2013) and computationally efficient alternative distance
metrics (Kolouri et al. 2019a). One such metric is the Sliced-
Wasserstein (SW) distance, which has lower computational
complexity and does not suffer from the curse of dimen-
sionality (Nietert et al. 2022). This distance metric inherits
similar topological properties from the Wasserstein distance
(Nadjahi et al. 2020) and is widely used as an alternative
solution for comparing probability measures. The SW dis-
tance is defined as the expectation of the one-dimensional
Wasserstein distance between two projected measures over
a uniform distribution on the unit sphere. However, due to
the intractability of this expectation, Monte Carlo estima-
tion is often used to approximate the SW distance. Some
SW variants aim to learn a discriminative or optimal projec-
tions distribution from training data, PAC-SW (Ohana et al.
2023) learns a discriminative projection direction distribu-
tion from training data based on the PAC-Bayesian theory.
DSW (Nguyen et al. 2021) learns optimal projections distri-
bution from training data by the neural network.

Recently, SW distance has been employed to compare
probability measures on the hypersphere due to its computa-
tional efficiency and simplicity of implementation. This has
led to the development of spherical sliced OT approaches
(Bonet et al. 2023; Quellmalz, Beinert, and Steidl 2023;
Tran et al. 2024). The main challenge in developing these
methods is extending the classical Radon transform to its
spherical counterparts. Quellmalz et al. (Quellmalz, Bein-
ert, and Steidl 2023) introduced two spherical extensions for
the Radon transform to define sliced OT on the sphere: the
vertical slice transform (Rubin 2018), and the normalized
semicircle transform (Groemer 1998). Bonet et al. (Bonet



et al. 2023) proposed a new spherical Radon transform and
leveraged the closed-form solution of the Wasserstein dis-
tance on the circle to define SSW for empirical probability
measures. Both works (Bonet et al. 2023; Quellmalz, Bein-
ert, and Steidl 2023) map a distribution defined on a hyper-
sphere to its marginal distributions on a unit circle, and solve
circular OT to compare these marginals. However, calculat-
ing the OT between two one-dimensional measures defined
on a circle is more expensive. To address this issue, Tran et
al. (Tran et al. 2024) first adopted the stereographic projec-
tion to transform the hypersphere into a hyperplane, and then
utilized the classic Radon transform to define Stereographic
Spherical Sliced-Wasserstein (S3W).

These existing works on SSW usually assume that all pro-
jection directions contribute equally when calculating the
expectation of one-dimensional Wasserstein distance. How-
ever, this assumption is too idealistic and inconsistent with
real-world situations, as this practice ignores the discrim-
inative information from different projection directions in
SSW. This paper aims to learn the better SSW distance to
handle practical applications by considering the discrimina-
tion between projection directions. Specifically, we empha-
size that different projection directions in SSW have varying
degrees of importance and propose using projected weights
adaptively learned from data to characterize them, where the
weight is directly proportional to the Wasserstein distance
of the corresponding projection direction. As weights can
reflect the distribution of the data, this approach effectively
captures valuable discriminative information hidden in vari-
ous directions. This is beneficial in improving the accuracy
of SSW distance. Towards this end, we propose two types of
the projected energy function (i.e., non-parametric and para-
metric forms) to learn the weights of projection directions
under the projection of supports, taking into account the ef-
ficiency and performance. In the non-parametric form, the
weight is calculated from the projected Wasserstein distance
using a non-parametric function, such as softmax, identity,
or polynomial function. In the parametric form, a parametric
neural network such as linear, nonlinear, or attention mech-
anisms is used to generate the weight based on the input of
the projected supports. Our new method effectively charac-
terizes the importance of each projection direction, allowing
for a more precise computation of the discrepancy between
real-world distributions. Our contributions are as follows:

* We first propose learning discriminative projection direc-
tion for SSW distance which is implemented by the non-
parametric function and the parametric neural network to
consider specific data distributions.

We provide the corresponding theoretical analysis and
mathematical derivation to guarantee the topological and
statistical properties of the novel DSSW distance.

We apply our DSSW distance to several classical ma-
chine learning tasks, and the experimental results show
that our DSSW is superior to the existing SSW, S3W,
SW and Wasserstein distance.
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Background

The goal of this work is to define a DSSW distance on the
hypersphere 5%t = {z | € R?, ||z]|, = 1}. It is neces-
sary to first review the definition of Wasserstein distance on
manifolds: the SW distance on R and the SSW distance on
the hypersphere S91.

Wasserstein Distance. Let M be a Riemannian manifold
equipped with the distance d (+,-) : M x M — R . For1 <
p < 400, let two probability measures p and v € Pp(M) =
{pw|pwePM), [, d°(x,xo)du(x) < +oo forany zq €
M} be defined on manifold M with p finite moments, and
P(M) means the set of all probability measures defined on
M. The aim of OT is to transport the mass from p to v in
a way that minimizing the expectation of transport distance.
So the p-Wasserstein distance (Peyré, Cuturi et al. 2019b)
can be defined as

W[Z))(Hﬁ v) =

inf / d(z,y)" dy(z,y), (D)
YE(sv) J M x M
where II(, v) is the set of couplings of ;1 and v.

Unfortunately, for discrete probability measures with
n samples, the Wasserstein distance can be calculated
by linear programs with the computational complexity of
@) (n3 log n) so it is computationally expensive. Therefore,
the alternative distance metrics with lower computational
complexity are explored in Euclidean spaces. One of the
widely adopted alternative distances is the SW distance.

Sliced-Wasserstein Distance. For one dimensional mea-
sures 11, v € P,(R?), the Wasserstein distance between p
and v has the closed form as

v) = / F ) -

where F,;! and F, ! are the quantile functions of x and v.
This property can be used to define the p-SW distance (Bon-
neel et al. 2015) as

SWh(p,v

SoffdL @

/ WE(P%u, PPv)dA(©0),  (3)

where A is the uniform distribution on the unit sphere
Si=1 = {00 R, ||§], =1}. Forany z € R?, we de-
fine PY(x) = (z,0) termed as the projection of z. Since the
expectation in the definition of the SW distance is intractable
to calculate, the Monte-Carlo estimation is adopted to ap-
proximate the SW distance with the computational complex-
ity of O (Ln (d + logn)) as

L
=P 1
SW (mv) =7 X WE(P ", PPv), ()
l=1

where {GE}EL: "y (S?=1) are termed as projection di-

rections sampled from the spherical uniform distribution
U(S?~1), and L is the number of projections used for Monte-
Carlo approximation.

Spherical Sliced-Wasserstein Distance. For p, v €
Pp(S?71), we can define the SSW distance (Bonet et al.
2023) between p and v as

SSWpu) = | WyPLpPve). ®



where
UTx

U],
and o is the uniform distribution over the Stiefel manifold
(Bendokat, Zimmermann, and Absil 2024) V4, = {U |
U e R>2 UTU = LL}. P# (z) denotes the geodesic pro-
jection on the circle determined by U. The SSW; can be
computed by the binary search algorithm or the level median

formulation, while SSTW5 can be calculated via Proposition
1 in (Bonet et al. 2023).

P (z) (0)

Method

It is well-known that computing the SSW distance involves
averaging the projected Wasserstein distances across all pro-
jection directions. This means that each projection direction
is given equal weight, resulting in a lack of discrimination.
To improve the discriminative power of the projection di-
rections, we propose assigning different weights to each di-
rection. Our approach introduces formulating a novel SSW
distance that incorporates these weights. Additionally, we
present the projected energy function designed to generate
these weights for the projection directions.

Definition 1 (DSSW Distance). For p > 1, dimension
d > 1, two probability measures i € P,(S?1) and v €
P, (S971), and the projected energy function f : S™ x S™ —
(0,1), the DSSW distance between i and v is defined as fol-
lows:

DSSWE(u,v; f) =

|5 @hnpg) wphu pvsw),
Va2

where o is the uniform distribution over the Stiefel mani-
fold (Bendokat, Zimmermann, and Absil 2024) V4 5 = {U |
U e R¥>2, UTU = I,}. P{(x) denotes the geodesic pro-
jection on the circle determined by U.

The projected energy function f transforms the projection
of two probability measures ;. and v into the weights of the
projection directions. It can effectively learn the weights for
the projection directions from the data distribution.

We now provide the detailed definition and formulation of
the projected energy function f as follows:

Definition 2 (Projected Energy Function). Forp > 1, di-
mension d > 1, two probability measures | € Pp(Sdfl)
and v € P,(S471), and two transformation functions g
and h, the projected energy function f used to calculate the
weights for the (-th projection direction is defined as fol-
lows:

I (PYu Pv) = g (1P ) ®)

St (h(PEu, PYw))

where P#‘-’u is the projection of p on the ¢-th projection
direction.

Taking into account the efficiency, we propose the non-
parametric form of the projected energy function f. In this
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form, both the functions h and g are non-parametric. Specif-
ically, i is defined as Eq. (1) to calculate the projected
Wasserstein distance, while g : [0, +00) — (0, +00) trans-
forms the projected Wasserstein distance into the weights of
the projection directions. Following the implementation in
(Nguyen and Ho 2024), the non-parametric g can be the ex-
ponential function (i.e., g(x) = e%), the identity function
(i.e., g(x) = x), or the polynomial function (i.e., g(x) =
22). Then, normalization is performed on the weights ob-
tained from the projection directions. The non-parametric
projected energy function shows that the weights are pro-
portional to the Wasserstein distance for the respective pro-
jection direction. Given the above calculation steps, it can be
seen that the only additional step in the original SSW calcu-
lation process is the calculation of the weights for the pro-
jection direction. Therefore, the added calculation time can
be disregarded. This means that the proposed DSSW with
the non-parametric projected energy function achieves better
performance with minimal additional computing overhead
compared to the original SSW. In the subsequent sections,
DSSW with the exponential, identity, and polynomial func-
tions will be referred to as DSSW (exp), DSSW (identity),
and DSSW (poly), respectively.

Considering the accuracy, we present the parametric pro-
jected energy function f. In this case, h is represented by
a parameterized neural network h,,, where v denotes the
learnable weights of the neural network hy,. The network
hy can be a linear neural network, a nonlinear neural net-
work, or an attention mechanism. The detailed training con-
figuration for the parameterized neural network h,, is de-
scribed in Algorithm 2 in Appendix Section B. Meanwhile,
g is a non-parametric function and is specialized as the ex-
ponential function (i.e., g(x) = e%). The normalization
operation combined with the non-parametric function g is
equivalent to calculating the famous Softmax function. Us-
ing the Stochastic Gradient Descent (SGD) method to ob-
tain more precise projection directions via the parameter-
ized neural network h., our proposed DSSW with a pa-
rameterized projected energy function outperforms that with
the non-parametric projected energy function and the orig-
inal SSW. However, it does come with a higher computa-
tional cost compared to these two forms. In the subsequent
sections, we will refer to DSSW with the linear neural net-
work, nonlinear neural network, and attention mechanism as
DSSW (linear), DSSW (nonlinear), and DSSW (attention),
respectively.

Proposition 1. For any p > 1 and the projected energy
function f, the DSSW distance DSSW,, is positive and sym-
metric.

The definition of the DSSW distance implies that it does
not satisfy identity due to the case that the different points
on the hypersphere S?~! may share the same projection on
the circle determined by U. The proofs for the related propo-
sitions and theorems can be found in Appendix Section A.

Proposition 2. For any p > 1 and the projected energy
function f, let pg, p € Pp(S471). Ifklirf Ui = i, then
c—>+00

lim  DSSWP (g, p; f) = 0.

k—+o0



Proposition 2 indicates that DSSW),, is asymptotically
convergent. It implies that our DSSW distance also satisfies
the property of weak convergence that is one of the most cru-
cial requirements that a distance metric should satisfy (Nad-
jahi et al. 2019).

Proposition 3. For any p > 1, suppose that for u, v €
P(SY), with empirical measures fi = 37" 6,., and v =

1
LS 10y, where {a;} |~ p, {y;}]_, ~ v are indepen-
dent samples, we have

E“Wé)(ﬂm Un) — W;f(.u» v)|] < B(p,n), )

where 3(p,n) is independent of the dimensionality d and
only depends on p and n. Then, for the projected energy
function f and p, v € P(S9™1) with empirical measures
[ and U, there exists a universal constant C' such that

E[|DSSWy (fin, ons; f) = DSSW (. v; )] <CB(p,n). (10)

Proposition 3 demonstrates that the sample complexity of
DSSW is independent of the dimension. This insight also
verifies that our DSSW distance, akin to the SW distance,
can avoid the curse of dimensionality.

Theorem 1. For any p > 1, two probability measures |
and v € P(S'), and the projected energy function f, there
exists a universal constant C' such that the error made with
the Monte Carlo estimate of DSSW} can be bounded as

0 2
Ev || DSSW,, 1 v: )~ DSSWE (1, £)|

2
< %VarU (W2 (Pgu, Piv)), (11)

where D/sz,L(/%V;f) = %Zlef(Pg%Pg“’) '

wp (P#Z Ly P#’Z V> with { Ug}f:1 ~ o independent samples.
L is referred to as the number of projections.

Theorem 1 highlights that the projection complexity of
DSSW depends on the convergence rate of the Monte Carlo
approximation towards the true integral that has been de-
rived for sliced-based distances in (Nadjahi et al. 2020). This
indicates that the estimation error in the Monte Carlo ap-
proximation is determined by the number of projections L
and the variance of the evaluations of the Wasserstein dis-
tance (Nadjahi et al. 2020).

Implementation Details

Similar to the SSW distance, we adopt Monte-Carlo estima-
tion to approximate the integral on V4 5 as in Eq. (5).

We begin by randomly sampling L projections {Ug}le
from the uniform distribution ¢ on the Stiefel manifold V4 5.
Each projection is obtained by first constructing a matrix
7 € R%*? with each element drawn from the standard nor-
mal distribution A/ (0, 1), followed by QR decomposition of
each projection.

We then project the points on the circle S according to
Eq. (6) and calculate the coordinate of each point in each
projection direction on this circle S! using the formula &{ =

(m + atan2(—x, —x,))/(27).
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Then, we can compute the Wasserstein distance on the cir-
cle S* and determine the weights of the projection directions
using Eq. (8). The detailed computation procedure of com-
puting the Wasserstein distance on the circle S* for p = 1
and p = 2 can be referred to (Bonet et al. 2023). Finally, we
can calculate the DSSW distance using Eq. (7). The pseudo-
code for computing the DSSW distance is provided in Algo-
rithms 1 and 2 in Appendix Section B.

Computation Complexity. Given n samples from p and
m samples from v, along with L projections. Just as the
work (Bonet et al. 2023), we can finish the QR factorization
of L matrices of size d x 2 in O (dL). Projecting the points
on the circle S! can be finished in O ((m + n)dL). The
complexity of computing the general SSW), can be writ-
ten as O (L (m+n) (d+log (1))+Lnlogn+Lmlogm),
where e denotes the desired accuracy. The complexity of cal-
culating the weights of the projection directions is O (L)
when using the non-parametric projected energy function
f. When using the parametric projected energy function
f, the complexity of calculating the weights of the projec-
tion directions is O (T'L), where T' is the maximum itera-
tions for training the parameterized neural network. There-
fore, the total complexity of computing the DSSW distance
utilizing the non-parametric projected energy function f
is O (L (m+n) (d+log (1)) +Lnlogn+Lmlogm-+L).
In contrast, for the parametric projected energy func-
tion f, the total complexity of our proposed method is
O (L (m+n) (d+log (1)) +Lnlogn+Lmlogm+TL).

Runtime Comparison. We conducted runtime compar-
isons between various distances between the uniform distri-
bution and the von Mises-Fisher distribution on S!%°. The
results, shown in Figure 1, are averaged over 50 iterations
for varying sample sizes of each distribution. For all sliced
approaches, we used L = 200 projections. The results in
Figure 1 include our DSSW with the non-parametric pro-
jected energy function variant (exp). It can be observed that
the runtime curve of DSSW (exp) closely aligns with that
of SSW, indicating that the additional computing overhead
introduced by our DSSW (exp) is negligible. Due to space
limitations, runtime comparisons for DSSW with other non-
parametric projected energy function variants (identity and
poly) and DSSW with the parametric projected energy func-
tion variants (linear, nonlinear, and attention) are provided
in Appendix Section C.1. Furthermore, we explore the evo-
lution of our DSSW across varying dimensions, number of
projections, and rotation numbers in Appendix Section C.2,
along with the runtime analysis of the proposed DSSW in
Appendix Section C.3.

Experiments

In line with previous works (Bonet et al. 2023; Tran et al.
2024), we conducted five different numerical experiments to
validate the effectiveness of our method in comparison to
SW, SSW (Bonet et al. 2023) and S3W distance (Tran et al.
2024), where our DSSW distance serves as a loss to mea-
sure the distribution discrepancy on the sphere. The results
of these experimental are detailed in this section and Ap-
pendix Section C. All our experiments are implemented by
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Figure 1: Runtime comparison for Wasserstein distance,
Sinkhorn distance with geodesic distance as cost function,
SWo (SW distance), S ST, distance with the level median,
SSW, distance with binary search (BS), SSW5 distance
against a uniform distribution (Unif), S3W, distance, RI-
S3Ws (rotationally invariant extension of S3W5) distance,
ARI-S3W5 (amortized rotationally invariant extension of
S3W5) distance, DS SW; (exp) (ours), DSSWs (exp), BS
(ours), DSSWy (exp), Unif (ours).

PyTorch (Paszke et al. 2019) on Ubuntu 20.04 and a single
NVIDIA RTX 4090 GPU.

Gradient Flows on The Sphere
Suppose the explicit form of the target distribution is
unknown and only samples {y; € 17;}?]:1 are available,

our goal is to iteratively minimize the objective function
arg min d (fi;, U, ), where d is a distance metric such as SW,

w
SSW, S3W, or DSSW. To achieve this goal, we employ the
Projected Gradient Descent (PGD) algorithm (Madry et al.
2017) to estimate the target distribution with the update rule
as follows:

x;,kJrl :xi,k_W'in,kDSSW (/llﬁ ﬁm)
T (12)

b

Tik+1= ’

xi,k+1’ )
where  is the learning rate for the update rule, 7 denotes the
index of the mini-batches, and k is the gradient step.

We present both qualitative and quantitative results us-
ing the Negative Log-likelihood (NLL) and the logarithm
of the 2-Wasserstein distance (log W5) as evaluation met-
rics, including mean and standard deviation for each. The
mini-batch results for all distances are shown in Table 1,
and the Molleweide projections of the mini-batch are illus-
trated in Figure 2. Table 1 shows that our DSSW performs on
par or better than other baselines. Additionally, it is evident
that our DSSW with a parametric projected energy function
surpasses the non-parametric from. Overall, DSSW demon-
strates superior performance in accurately learning the target
distribution compared to other distances.

Full-batch results are reported in Appendix Section C.4.
These results indicate that all distance measures perform
well in learning the target distribution. In cases where the
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Distance NLL | log Wa |

SW -282.48 £17.42 -2.77+0.10

SSw -287.11£6.22 -2.78 £0.08

S3w -181.38£8.72  -2.61 £0.07
RI-S3W (1) -213.63 £19.24 -2.68 £0.09
RI-S3W (5) -256.23 £10.72 -2.77+0.13
RI-S3W (10) -285.20+13.22 -2.77+0.11
Mini-batch ARI-S3W (30) -291.38+16.48 -2.82+0.12
DSSW (exp) -316.38£6.901 -2.92+0.101
DSSW (identity) -310.45+£5.00% -2.94+0.12
DSSW (poly)  -307.22+£7.50%1 -2.94+0.111
DSSW (linear) -319.41+£6.721 -2.94+0.10 }

DSSW (nonlinear) -319.96 £6.651 -2.97+0.15
DSSW (attention) -320.16 +5.58 1 -2.93 +0.10 I

Table 1: Mini-batch comparison between different distances
as loss for gradient flows averaged over 10 training runs.
Notation 1" indicates that DSSW variants are significantly
better than the best baseline method using t-test when the
significance level is 0.05.

density of the target distribution is known up to a con-
stant, we utilize the Sliced-Wasserstein Variational Inference
(SWVI) framework (Yi and Liu 2023), optimized through
MCMC (Doucet, de Freitas, and Gordon 2001) methods.
This approach does not require optimization or a tractable
approximate posterior family, as detailed in Appendix C.8.
The SWVI results further validate the accuracy of our
DSSW method in approximating the target distribution com-
pared to other competitors.

Earth Density Estimation

We evaluate the performance of our proposed DSSW on the
density estimation task using normalizing flows on S2. In
alignment with (Bonet et al. 2023; Tran et al. 2024), we
adopt three datasets (Mathieu and Nickel 2020): Earthquake
(NOAA 2022), Flood (Brakenridge 2017) and Fire (EOSDIS
2020). The earth’s surface is modeled as a spherical man-
ifold. Following the implementation of (Bonet et al. 2023;
Tran et al. 2024), we utilize an exponential map normaliz-
ing flow model (Rezende et al. 2020), which is optimized by
mjin DSSW (T, z). In this formulation, T is the trans-

formation introduced by the model, p is the data distribution
known by sampling samples {x;};_,, and z is a prior distri-
bution on S?. The learned density f,, can be obtained by

fu(z) =2(T (2))|det Jr (z)|, Vz € S?, (13)

where Jp () means the the Jacobian of T" at x.

The NLL values of density estimation on three earth
datasets are demonstrated in Table 2. Stereo (Gemici,
Rezende, and Mohamed 2016) first projects samples from S?
to R2 and then applies the Real NVP (Dinh, Sohl-Dickstein,
and Bengio 2017) model in the projected space. The results
show that our proposed DSSW outperforms all other base-
lines. Specifically, on the Earthquake dataset, DSSW (lin-
ear) achieves the best performance, while DSSW (nonlinear)
performs best on the Flood and Fire datasets. These results
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Figure 2: The Mollweide projections for mini-batch projected gradient descent. We use 1, 5, and 30 rotations for RI-S3W (1),
RI-S3W (5), and RI-S3W (10), respectively. We also use 30 rotations with a pool size of 1000 for ARI-S3W (30).

Method Dataset
Earthquake |  Flood | Fire |

Stereo 204+£0.19 1.85+0.03 1.34+0.11
SW 1.12+£0.07 1.58+£0.02 0.55+0.18
SSwW 0.84+0.05 1.26+£0.03 0.24+0.18
S3wW 0.88+£0.09 1.33+£0.05 0.36+0.04
RI-S3W (1) 0.79+0.07 1.25+£0.02 0.15+0.06
ARI-S3W (50) 0.78£0.06 1.24+0.04 0.10+0.04
DSSW (exp) 0.70+£0.091 1.22+0.04 1 0.05+0.08 1
DSSW (identity) 0.76 £0.08  1.23+0.06 1 0.10+0.13
DSSW (poly) 0.74+0.051 1.23+0.08% 0.22+0.21
DSSW (linear) 0.69 +0.04 1 1.21 £0.03 1 0.09 £0.04

DSSW (nonlinear) 0.71 £0.06 { 1.20 £ 0.03 { 0.05 = 0.05
DSSW (attention) 0.70+0.08 £ 1.21 +0.03 1 0.08 +0.07

Table 2: Earth datasets results. We evaluate the NLL on test
data averaged over 5 training runs. We use 1 rotation for RI-
S3W (1). We also use 50 rotations with a pool size of 1000
for ARI-S3W (50). The results of baselines are cited from
(Tran et al. 2024). The notation ”}” indicates that DSSW
variants are significantly better than the best baseline method
using t-test when the significance level is 0.05.

indicate that DSSW is more suitable for fitting data on the
sphere than other methods.

In addition, the density visualization using various dis-
tances on test data is shown in Appendix Section C.5. These
visualizations further support that DSSW estimates a more
accurate density distribution than other distances.

Sliced-Wasserstein Autoencoder

In this section, we employ the classical SWAE (Kolouri et al.
2019b) framework to evaluate the performance of various
distances in generative modeling. Let o denote an encoder,
and (3 be a decoder in this framework. The goal of SWAE
is to force the encoded embedding to follow a prior distri-
bution in the latent space. For this experiment, we utilize a
mixture of vMF distributions with 10 components on S? as
the prior distribution denoted as z. The training objective of
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the revised SWAE is
min Bqp [c (@, 0 (8 (@))]+n-DSSW (agp, z), (14)

where p is the unknown data distribution that we only have
access to samples, c refers to the reconstruction loss that is
implemented as the standard Binary Cross Entropy (BCE)
loss, and 7 denotes the regularization coefficient.

The results on the CIFAR10 (Krizhevsky and Hinton
2009) benchmark for SWAE with vMF prior are shown in
Table 3. Our DSSW outperforms other methods in terms of
log W5 and NLL. In terms of the reconstruction loss BCE,
SW is better than other competitors. In a word, all the reg-
ularization priors are superior to the original supervised au-
toencoder (AE). This phenomenon indicates that a prior on
the hypersphere can enhance the training performance of
SWAE (Davidson et al. 2018; Xu and Durrett 2018).

Moreover, we also demonstrate the details about the net-
work architectures, training configurations, additional re-
sults and the latent space visualization on the MNIST (Lecun
et al. 1998) benchmark in Appendix Section C.6.

Self-Supervised Representation Learning

It has been proven that the contrastive objective can be de-
composed into an alignment loss, which forces positive rep-
resentations coming from the same image to be similar, and
a uniformity loss, which preserves the maximum informa-
tion of the feature distribution and thus avoids collapsing
representations (Wang and Isola 2020; Zhang et al. 2024;
Zheng et al. 2023). Similar to SSW (Bonet et al. 2023) and
S3W (Tran et al. 2024), we replace the Gaussian kernel
uniformity loss with our DSSW. Therefore, the overall pre-
trained objective of the self-supervised learning network can

be defined as:
1 n
Lpssw-sst, = — ZH%A - 27|13
i (15)
+g (DSSW2(z4, 1)+ DSSWE(22, 1)),

where 24 and 2 denote the hyperspherical projections of
the representations from the network for two augmented ver-
sions of the same images, v = Unif (Sdil) is the uniform



Method n logWa | NLL | BCE |
Supervised AE 1 -0.1313 £ 0.8101 0.0031 £ 0.0126 0.6329 + 0.0021
SSw 10 -3.2368 £ 0.1836 0.0008 + 0.0019 0.6323 £ 0.0017
SW 0.001 -3.2537 £0.1116 -0.0004 +£0.0030  0.6307 = 0.0005
S3wW 0.001  -3.0541 £0.2244 -0.0000 £ 0.0027  0.6310 = 0.0012
RI-S3W (5) 0.001 -2.8317 £0.8168 0.0004 + 0.0034 0.6330 + 0.0049
ARI-S3W (5) 0.001  -3.1639+£0.1744 0.0002 + 0.0028 0.6315 £ 0.0016
DSSW (exp) 10 -3.3607 £0.1349 1 -0.0012+£0.0051 £ 0.6321 £ 0.0006
DSSW (identity) 10 -3.4203£0.0402 % -0.0011£0.0025% 0.6318 £ 0.0006
DSSW (poly) 10 -3.3454 £0.1117 1 -0.0018 £ 0.0021 £  0.6330 £ 0.0024
DSSW (linear) 10 -3.4027 £0.0480 £ -0.0002 £0.0038 £  0.6314 + 0.0004
DSSW (nonlinear) 10 -3.4078 £0.0753 £ -0.0014 +£0.00451 0.6323 £0.0013
DSSW (attention) 10 -3.4242 £ 0.0337 1  -0.0002 £0.0044 £ 0.6324 £ 0.0016

Table 3: CIFAR10 results for SWAE with vMF prior. We evaluate the latent regularization loss (log W5 and NLL), along with
the BCE loss on the test data for d = 3. We use 5 rotations for RI-S3W (5). We also use 5 rotations with the pool size of 1000
for ARI-S3W (5). The notation ”}” indicates that DSSW variants are significantly better than the best baseline method using a

t-test when the significance level is 0.05.

d Method Et+ §°1
Supervised 92.38 91.77

hypersphere 79.76 74.57

SimCLR 79.69 72.78

SW-SSL (n=1, L=200) 74.45 68.35
SSW-SSL (n=20, L=200) 70.46 64.52
S3W-SSL (n=0.5, L=200) 78.54 73.84

10 RI-S3W(5)-SSL (n=0.5, L=200) 79.97 74.27
ARI-S3W(5)-SSL (n=0.5,L=200)  79.92 75.07
DSSW-SSL (exp, =100, L=200) 80.10 76.30
DSSW-SSL (identity, n=105, L=200) 79.65 75.14
DSSW-SSL (poly, n=105, L=200)  78.46 73.69
DSSW-SSL (linear, =100, L=200) 80.15 76.87

DSSW-SSL (nonlinear, n=100, L=200) 79.73
DSSW-SSL (attention, n=100, L=200) 79.66

76.61
75.98

Table 4: Linear evaluation on CIFAR10 for d = 10. E de-
notes the encoder output. We use 5 rotations for RI-S3W
(5). We also use 5 rotations with the pool size of 1000 for
ARI-S3W (5). The results are compared with methods cited
from (Tran et al. 2024).

distribution on the hypersphere and 7 > 0 acts as a regu-
larization coefficient to balance the alignment loss and the
uniformity loss in Eq. (15).

We conduct experiments on CIFAR10 (Krizhevsky and
Hinton 2009) by adopting ResNet18 (He et al. 2016) as the
encoder. The results of the standard linear classifier evalu-
ation for d = 10 are reported in Table 4. The results indi-
cate that our DSSW (exp) and DSSW (linear) are superior
to other self-supervised methods in terms of the accuracy
for the encoder output and the projected features on S°. As
expected, the supervised method achieves the highest preci-
sion due to the additional supervised signals.

Implementation details and the additional results of the
standard linear classifier evaluation on S? are reported in Ap-
pendix Section C.7. Furthermore, we visualize the projected
features on S? in Figure 3, the visualization plot demon-
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(b) DSSW (exp)
® airplane ® dog
automobile frog
® bird ® horse
® cat ship
® deer ® truck
(c) DSSW (linear)

Figure 3: Projected features on S? for CIFAR10

strates that the cluster result of the projected features on S?
obtained by our DSSW is better than other methods.

Conclusion

In this work, we propose a novel approach termed DSSW
distance that emphasizes the importance of the projection di-
rection. Our proposed DSSW employ a non-parametric pro-
jected energy function to learn a discriminative projection
direction, considering both efficiency and accuracy. Our pro-
posed DSSW has been proven to be effective and competi-
tive in various applications. However, the issue of reducing
the additional computing overhead caused by training the
parametric neural network remains to be addressed in future
research. Additionally, the idea of learning discriminative
projection direction from the specific data distribution can
also be extended to other non-Euclidean Sliced-Wasserstein
methods.
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