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ABSTRACT

Transformers have demonstrated strong performance in offline reinforcement
learning (RL) for Markovian tasks, due to their ability to process historical infor-
mation efficiently. However, in partially observable environments, where agents
must rely on past experiences to make decisions in the present, transformers are
limited by their fixed context window and struggle to capture long-term depen-
dencies. Extending this window indefinitely is not feasible due to the quadratic
complexity of the attention mechanism. This limitation led us to explore other
memory handling approaches. In neurobiology, associative memory allows the
brain to link different stimuli by activating neurons simultaneously, creating asso-
ciations between experiences that occurred around the same time. Motivated by
this concept, we introduce Re:Frame (Retrieving Experience From Associative
Memory), a novel RL algorithm that enables agents to better utilize their past ex-
periences. Re:Frame incorporates a long-term memory mechanism that enhances
decision-making in complex tasks by integrating past and present information.

1 INTRODUCTION

Figure 1: Re:Frame – an associative memory
framework that enables retrieval of relevant expe-
riences for RL agents.

Memory is fundamental to human intelligence,
enabling us to accumulate experiences, learn
from past interactions, and make informed
decisions in complex environments (Tulving,
2002; Squire, 2004; Baddeley, 2010). This
cognitive capability allows humans to seam-
lessly integrate historical information with
present observations, facilitating adaptive be-
havior across diverse scenarios (Eichenbaum,
2017; Parr et al., 2020; 2022).

In the field of reinforcement learning (RL), significant advances have led to agents that can sur-
pass human performance (Mnih et al., 2015; Silver et al., 2017) in Markovian tasks – environments
where optimal decision-making depends solely on the current state (Sutton & Barto, 2018). How-
ever, real-world scenarios frequently present partial observability challenges, where complete en-
vironmental information is not immediately available (Kaelbling et al., 1996). For instance, while
humans can effortlessly recall the location of an object days after placing it, traditional RL agents
struggle with such memory-intensive tasks without specialized memory mechanisms (Wayne et al.,
2018; Parisotto et al., 2020).

Among various approaches to embedding memory in artificial agents (Zaremba & Sutskever, 2015;
Oh et al., 2016; Wayne et al., 2018), transformer architectures (Vaswani et al., 2017) have emerged
as a promising solution, largely due to their remarkable success in processing sequential data, partic-
ularly in natural language tasks (Achiam et al., 2023; Guo et al., 2025). However, these transformer-
based agents face a critical limitation in partially observable RL environments: their effectiveness
dramatically diminishes when crucial information extends beyond their fixed context window. This
constraint restricts their ability to maintain and utilize long-term memories effectively.

To address these limitations, we draw inspiration from human associative memory – a fundamen-
tal cognitive mechanism that enables the brain to form connections between different stimuli and
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experiences (Polson, 1975; Steinberg & Sompolinsky, 2022). When humans encounter a situation,
they naturally recall and utilize relevant past experiences through associative links, even if these
experiences occurred in the distant past (Schacter, 1999). This biological process allows for effi-
cient retrieval and application of pertinent information without the need to sequentially process all
intervening experiences.

Motivated by this cognitive mechanism, we introduce Re:Frame – Retrieving Experience From
Associative Memory – a novel method for RL agents inspired by the associative memory principles
of the human brain. Our approach enables agents to form and utilize associative connections be-
tween current observations and relevant past experiences, effectively bypassing the context window
limitations of traditional transformer-based architectures. Re:Frame creates a memory space where
experiences are encoded and organized in a way that facilitates rapid retrieval of relevant information
based on contextual similarities, rather than temporal proximity.

The key innovation of Re:Frame lies in its ability to dynamically access and utilize relevant his-
torical information through associative retrieval, regardless of when that information was originally
encountered. This mechanism allows our agents to maintain effective decision-making capabilities
in partially observable environments, even when crucial information lies far beyond the traditional
context window. By combining the sequential processing capabilities of transformers with an asso-
ciative memory mechanism, Re:Frame achieves robust performance in memory-intensive tasks.

Our contribution can be summarized as follows:

• We introduce Re:Frame, a novel associative memory framework for RL that enables the
retrieval of relevant experiences independent of temporal distance, thus addressing the fun-
damental challenge of long-term information retention in memory-intensive tasks.

• We demonstrate that Re:Frame can be effectively integrated with existing RL architectures,
significantly improving their performance on partially observable tasks through efficient
memory utilization and retrieval mechanisms.

2 RELATED WORKS

Associative memory mechanisms, inspired by biological neural systems, have been explored in vari-
ous machine learning contexts. Hopfield networks (Hopfield, 1982) represent an early attempt to im-
plement associative memory in artificial neural networks. Neural Turing Machines (NTM) (Graves,
2014) introduced external memory with both content-based and location-based addressing, while
Associative Recurrent Memory Transformer (ARMT) (Rodkin et al., 2024) extended transformer
architecture with an associative memory to enhance its ability to handle long-term dependencies.

The principles of associative memory have also been investigated in RL. Thus, Associative Memory
Prioritized Experience Replay (AMPER) (Li et al., 2022) utilizes associative memory to acceler-
ate prioritized experience replay in deep RL. Fast Weight Memory (FWM) (Schlag et al., 2020)
enhances Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) architecture with
associative memory capabilities, enabling efficient meta-learning and associative inference in RL.
Self-attentive Associative Memory (SAM) (Le et al., 2020) implements a dual-memory system that
combines item storage with relational memory, enabling both memorization and relational reasoning
capabilities in RL tasks. Associative Search Network (ASN) (Barto et al., 1981) introduces a self-
learning associative memory that optimizes output patterns based on reinforcement signals, enabling
autonomous learning of sensory-motor control without explicit supervision. Episodic Reinforce-
ment Learning with Associative Memory (ERLAM) (Zhu et al., 2020) improves sample efficiency
in RL by building a graph-based associative memory that connects related experiences and enables
rapid value propagation through reverse-trajectory updates.

While these approaches demonstrate the potential of associative memory in RL, they fo-
cus primarily on specific architectural modifications. In contrast, Re:Frame can potentially
be integrated into any RL agent architecture without modifying its core structure. Our ap-
proach differs by using a dedicated associative memory buffer that stores and retrieves ex-
periences based on their similarity, rather than relying on temporal relationships or ex-
plicit graph structures. This design allows for more flexible and context-aware memory
retrieval, which is particularly beneficial for tasks requiring long-term memory retention.
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Figure 2: The process of Associative Memory
Buffer generation using AE on expert data.
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Figure 3: Integration of Re:Frame with DT to
support decision-making process.

Algorithm 1 Re:Frame-DT Integration
Require: AMB B ∈ RT×N , trajectory τ
Ensure: Predicted actions â

1: Memory Retrieval:
2: for (Rt, ot, at) ∈ τ do
3: R′

t ← RtgEnc1(Rt), o′t ← ObsEnc1(ot)
4: h∗

t ← Linear(concat(R′
t, o

′
t))

5: h′
t ← argminh∈B ∥h∗

t − h∥22
6: a′t ← ActDec1(h′

t)
7: a′′t ← Linear(a′t) ∈ R1×D

8: end for
9: Action Generation:

10: τ ′ ← Embed Sequence(τ)
11: a∗ ← Transformer(τ ′) ∈ RT×D

12: â← ActHead(a∗ + a′′) ∈ RT×D

13: return â with loss L(a, â)

3 BACKGROUND

Partially Observable Markov Decision Pro-
cess. A Partially Observable Markov Deci-
sion Process (POMDP) extends the standard
Markov Decision Process (MDP) framework to
scenarios where agents cannot directly observe
the complete state of the environment (Kael-
bling et al., 1998). Formally, a POMDP is de-
fined as a tuple (S,A, T,R,Ω, O), where S is
the state space, A is the action space, T is the
transition function, R is the reward function, Ω
is the observation space, and O is the observa-
tion function. At each timestep, instead of ob-
serving the true state st, the agent receives an
observation ot ∈ Ω that may only partially re-
flect the underlying state.

Offline Reinforcement Learning. Offline RL learns policies from a fixed dataset D without en-
vironment interaction. Each trajectory τ ∈ D consists of triplets (rt, ot, at), containing immediate
reward rt, observation ot, and action at. Decision Transformer (DT) (Chen et al., 2021) reformulates
RL as a sequence modeling problem by introducing return-to-go Rt =

∑T
k=t rk, which represents

the cumulative future rewards from timestep t. DT processes sequences of (Rt, ot, at) tokens using
a transformer architecture to autoregressively predict actions that achieve the desired return. By con-
ditioning on different target returns during inference, DT can generate behaviors of varying quality
from the same trained model. We selected DT as our base architecture as its attention-based nature
provides a clear way for measuring the impact of Re:Frame’s memory enhancement capabilities on
long-term information retention tasks.

Autoencoder. An Autoencoder (AE) (Rumelhart et al., 1986) is a neural network that learns compact
data representations through an encoder-decoder architecture. The encoder fθ : X → Z maps input
data to a lower-dimensional latent space, while the decoder gϕ : Z → X reconstructs the original
input. Training minimizes the reconstruction loss L(θ, ϕ) = ∥x− gϕ(fθ(x))∥2. We leverage AE to
create efficient encodings of agent experiences for memory-intensive decision-making.

4 RE:FRAME METHOD

The proposed Re:Frame method employs a two-stage training strategy: initially, we train an Autoen-
coder (AE) to construct the Associative Memory Buffer (AMB), a compressed repository of expert
experiences (Figure 2). The AE’s parameters are then fixed, ensuring stable memory representations
throughout the subsequent learning process. Then, the proposed decision-making framework that
leverages this stored information from AMB to enhance the agent’s performance (Figure 3).
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4.1 ASSOCIATIVE MEMORY BUFFER

Figure 4: Agent’s observation in ViZDoom-Two-
Colors (top) and corresponding feature spaces
(bottom), where the yellow color indicates the
first 45 steps with a visible pillar. Bottom figures
demonstrate feature space that was obtained by re-
ducing latent representations into 3-dimensional
vectors using PCA algorithm.

Our method employs AMB that compresses
and stores key environmental events, en-
abling efficient retrieval of past experiences
for decision-making in memory-intensive tasks
(see Figure 2).

The buffer construction process begins by sam-
pling triplets (Rt, ot, at) at timesteps t from
the expert trajectory dataset D. Each compo-
nent of these triplets is processed through ded-
icated encoders to produce corresponding em-
beddings (R′

t, o
′
t, a

′
t). These embeddings are

then concatenated into a unified hidden state
ht = concat(R′

t, o
′
t, a

′
t) and stored in the As-

sociative Memory Buffer B. A linear transfor-
mation maps ht to a compact latent representation, which is subsequently decoded back into its
original components (R̂t, ôt, ât) through separate decoders. During training, we optimize each de-
coder’s reconstruction loss independently using separate optimizers for each component.

4.2 DECISION-MAKING WITH RE:FRAME

To evaluate Re:Frame’s effectiveness in memory-intensive tasks, we integrated it with Decision
Transformer (DT) architecture. As DT lacks mechanisms for processing information beyond its
context window, comparing DT and Re:Frame-DT performance directly demonstrates the benefits
of our approach. The Re:Frame-DT integration, illustrated in Figure 3 and detailed in Algorithm 1,
operates in two stages: Memory Retrieval and Action Generation.

Memory Retrieval. The first stage processes each timestep t of trajectory τ by encoding returns-
to-go Rt and observations ot through pre-trained AE encoders. These embeddings are concatenated
(h̃t = concat(R′

t, o
′
t)) and transformed through a linear layer to match AMB’s latent space, produc-

ing h∗
t . The AMB B contains expert demonstrations encoded as latent vectors h, while h∗

t repre-
sents the current state. To leverage relevant past experiences, we retrieve h′

t from B that minimizes
∥h∗

t − h∥22. This retrieved memory is processed through frozen AE decoder to obtain a′t, which is
further refined through the linear layer to produce the correction vector a′′t .

Action Generation. The second stage processes the input trajectory τ through dedicated encoders
to create embedded sequence τ ′. This sequence feeds into the transformer to generate action em-
beddings a∗. The final action is produced by combining a∗ with the memory-derived corrections a′′t
through the Action Head layer, effectively incorporating both current context and relevant historical
information from AMB B.

5 EXPERIMENT SETUP AND RESULTS

Figure 5: Re:Frame-DT performance in Minigrid-
Memory environment.

We evaluate Re:Frame in two memory-
intensive environments: ViZDoom-Two-
Colors (Sorokin et al., 2022) and Minigrid-
Memory (Chevalier-Boisvert et al., 2023). In
ViZDoom, the agent must retain the color of
a briefly visible pillar that disappears after 45
steps, and collect same-colored items while
navigating a hazardous map. Episodes last up
to 2100 timesteps, requiring long-term memory
for optimal performance (see Figure 4, top;
details in subsection A.1). In Minigrid-Memory, the agent must find a visual cue and retain it
while moving through a corridor in order to identify the correct goal object, effectively testing
both memory and credit assignment capabilities (see subsection A.2). The hyperparameters for the
models used in these experiments are provided in the Appendix, Table 3.
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Table 1: Re:Frame vs baselines in ViZDoom.

Reward1 DLSTM DGRU DMamba DT Re:Frame-DT

R[Total] 13.1 ± 0.6 12.9 ± 0.2 26.9 ± 1.9 24.8 ± 1.4 34.0 ± 1.0
R[Red] 8.8 ± 0.7 9.4 ± 0.5 6.9 ± 0.4 7.2 ± 0.4 12.4 ± 1.3
R[Green] 17.5 ± 1.6 16.3 ± 0.8 46.9 ± 4.2 42.3 ± 3.3 55.8 ± 2.1

Table 2: Effect of buffer size on Re:Frame.

AMB Size R[Total] R[Red] R[Green]

3,000 34.2 ± 0.8 11.5 ± 0.5 56.9 ± 2.0
6,000 33.4 ± 1.4 11.3 ± 0.7 55.4 ± 3.4
9,000 34.0 ± 1.0 12.4 ± 1.3 55.8 ± 2.1

As shown in Figure 5, Re:Frame-DT consistently outperforms the standard DT across all environ-
ment sizes in Minigrid-Memory. Notably, both models were trained on environments ranging from
11× 11 to 31× 31 and evaluated on sizes up to 91× 91, demonstrating Re:Frame’s superior gener-
alization in out-of-distribution scenarios.

In ViZDoom, we benchmark Re:Frame-DT not only against DT, but also against RNN-based mod-
els (DLSTM (Siebenborn et al., 2022), DGRU) and an SSM-based model (DMamba (Gu & Dao,
2023)). We store 9,000 expert triplets in the Associative Memory Buffer (AMB) prior to training
and freeze the encoder-decoder weights to ensure stability. Hyperparameter details are provided
in Table 3. As summarized in Table 1, Re:Frame-DT outperforms all baselines across total reward
and color-specific objectives. Unlike DT, which fails to dominate any metric, Re:Frame-DT delivers
substantial performance gains: +72.2% on red, +31.9% on green, and +37.1% overall, indicating
that Re:Frame transforms a non-optimal baseline into a leading architecture.

Dependency between buffer size and agent performance. To assess the impact of AMB capac-
ity, we reduce the number of stored expert triplets from 9000 to 6000 and 3000. Results in Table 2
show minimal degradation in performance, suggesting that Re:Frame is robust to reduced memory
availability, and full buffer access is not strictly required for strong performance.

6 LIMITATIONS AND FUTURE WORK

While our experiments with DT demonstrate the effectiveness of Re:Frame in memory-intensive
environments, several promising directions for future research emerge. First, although Re:Frame
is designed to be architecture agnostic, in this paper we only validate its performance with DT,
thus validation with other base architectures would provide valuable insights into the framework’s
versatility. Second, our current evaluation, while promising, focuses on a specific memory-intensive
environment. Extending these experiments to a broader range of memory-intensive tasks would
help establish the generalizability of the framework. In addition, it would be valuable to verify
that Re:Frame maintains performance in classical environments where memory is not essential, to
ensure that our approach does not degrade performance in simpler scenarios. Beyond architectural
considerations of AMB construction, exploring alternative methods for retrieving experience from
the AMB could potentially improve both efficiency and performance, as our current similarity-based
mechanism is only one possible approach to leveraging stored experience. Notably, while our current
implementation focuses on offline RL, there are no apparent limitations preventing the application
of Re:Frame to online RL, suggesting an important direction for future work.

7 CONCLUSION

In this work, we demonstrated the concept of associative memory mechanism based on latent rep-
resentations of past experiences. The proposed Re:Frame algorithm can be integrated with any
base model, making it a flexible and easy-to-implement tool that does not require additional data
for its operation. The idea of storing experience in a compact vector form allows Re:Frame to
function without demanding significant computational resources, which is another key advantage.
We also experimentally demonstrated the advantages of the Re:Frame algorithm in the memory-
intensive VizDoom and Minigrid-Memory environments, significantly improving the performance
of the baseline DT architecture.

The primary goal of this work is to introduce the concept rather than to reduce it to strictly de-
fined, architecture-dependent algorithms. We hope that this research will serve as a foundation and
inspiration for further studies in this direction.

1Results from Cherepanov et al. (2024).
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A EXPERIMENTAL DETAILS

A.1 VIZDOOM-TWO-COLORS

We evaluated Re:Frame in ViZDoom-Two-Colors (Sorokin et al., 2022), a memory-intensive en-
vironment where an agent must remember a pillar’s color (green or red) that disappears after 45
timesteps. The agent navigates an acid floor that depletes health (-10/32 HP per step), collecting
matching-colored items for health restoration (+25 HP) and rewards (+1). With episodes spanning
2100 timesteps and a survival bonus of +0.02 per step, success requires long-term retention of the
initial color information.

We collected 5000 expert trajectories (90 steps each) using a pre-trained A2C agent (Beeching et al.,
2019), achieving an average reward of 4.46. The agent always starts facing the pillar to ensure visual
contact before disappearance. Simple color-matching strategies based on recent item collections
are ineffective due to occasional mistakes in the training data that can mislead the agent’s future
decisions.

We ran the training process of Re:Frame on three different seeds and subsequently selected the best
checkpoint from each run. Then, each of these three selected checkpoints was evaluated over 50
seeds (25 with green and 25 with red). The resulting rewards were first averaged over the game
seeds and then across the three runs, calculating mean reward with std.

Figure 6: Latent representations of VizDoom triplets colored with the respect to time (top three
charts) and with respect to the color of the observable pillar (bottom three charts).

How does the AMB look? Three upper charts on Figure 6 illustrate PCA decomposed latent rep-
resentations of the expert triplets in the VizDoom environment. The lighter point corresponds to
an earlier timestep. Three bottom charts illustrate PCA decomposed triplets but with respect to the
color of the observable pillar. Yellow color means that the agent observes the red pillar, green color
corresponds to a green pillar. The purple color of the point means that there are no pillars in front of
the agent.

A.2 MINIGRID-MEMORY

Minigrid-Memory (Chevalier-Boisvert et al., 2023) is a grid-based partially observable environment
specifically designed to evaluate agents’ ability to retain information over long horizons and to test
credit assignment capabilities. The environment is structured as a T-shaped maze. At the start of
each episode, the agent is placed at a random position within the central corridor. Early in the
episode, the agent can access a small room containing a object (a circle or key); this object serves
as a cue and must be memorized. Later, upon reaching the end of the corridor, the agent encounters
a branching junction and must choose the correct direction—left or right—based on which branch
contains an identical object to the one previously seen.
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The agent receives a reward that depends on the number of steps from the environment when it turns
in the correct direction at a junction. If the agent makes an incorrect choice or exceeds the time
limit, the episode terminates with zero reward. Observations are restricted to a 3× 3 grid around the
agent, reinforcing the need for strong memory mechanisms. To construct the training dataset, we
collected 10,000 expert trajectories on maps of size up to 31 × 31. Expert behavior was generated
using the data collection protocol from Cherepanov et al. (2024).

B HYPERPARAMETERS

Table 3 shows the main Re:Frame hyperparameters for experiments in the ViZDoom-Two-Colors
and Minigrid-Memory environments. For DT and Re:Frame-DT, we used the same Transformer
hyperparameters for a fair comparison.

Table 3: DTand Re:Frame-DT hyperparameters used in ViZDoom-Two-Colors (ViZDoom2C) and
Minigrid-Memory environments.

Hyperparameter ViZDoom2C Minigrid-Memory
Number of layers 6 8
Number of attention heads 8 10
Embedding dimension 128 64
Latent memory dim 30 30
Memory buffer size 9000 3000
Context length K 30 30
Hidden dropout 0.2 0.2
Attention dropout 0.05 0.05
Max epochs 100 250
Batch size 50 32
Weight decay 0.1 0.1
Loss function CE CE
Optimizer AdamW AdamW
Learning rate 3e-4 1e-3
AdamW (β1, β2) (0.9, 0.95) (0.9, 0.95)
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