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Abstract

Event extraction (EE) is a fundamental task001
in natural language processing (NLP) that002
involves identifying and extracting event in-003
formation from unstructured text. Effective004
EE in real-world scenarios requires two key005
steps: selecting appropriate schemas from006
hundreds of candidates and executing the ex-007
traction process. Existing research exhibits008
two critical gaps: (1) the rigid schema fixa-009
tion in existing pipeline systems, and (2) the010
absence of benchmarks for evaluating joint011
schema matching and extraction. Although012
large language models (LLMs) offer potential013
solutions, their schema hallucination tenden-014
cies and context window limitations pose chal-015
lenges for practical deployment. In response,016
we propose Adaptive Schema-aware Event017
Extraction (ASEE), a novel paradigm combin-018
ing schema paraphrasing with schema retrieval-019
augmented generation. ASEE adeptly retrieves020
paraphrased schemas and accurately generates021
targeted structures. To facilitate rigorous eval-022
uation, we construct the Multi-Dimensional023
Schema-aware Event Extraction (MD-SEE)024
benchmark, which systematically consolidates025
12 datasets across diverse domains, complexity026
levels, and language settings. Extensive eval-027
uations on MD-SEE show that our proposed028
ASEE demonstrates strong adaptability across029
various scenarios, significantly improving the030
accuracy of event extraction. Our codes and031
datasets are available at https://anonymous.032
4open.science/r/ASEE-67BB033

1 Introduction034

Event extraction (EE) is an essential task in infor-035

mation extraction (IE) (Xu et al., 2023; Lu et al.,036

2022) that aims to identify event triggers (i.e.,037

Event Detection (ED)) and their associated argu-038

ments (i.e., Event Arguments Extraction (EAE))039

from unstructured text, thereby transforming raw040

text into structured event representations (Xu et al.,041

2023). Event extraction plays an important role in042

Figure 1: An example of Adaptive Schema-aware Event
Extraction (ASEE) in broad domains.

various natural language processing applications, 043

such as knowledge graph construction, question 044

answering, information retrieval, and event pre- 045

diction, by providing structured representations of 046

real-world occurrences (Lai, 2022). 047

While existing studies typically assume a fixed 048

set of event schemas, real-world EE deployments 049

necessitate a dynamic two-stage paradigm: practi- 050

tioners must first select proper schemas from hun- 051

dreds of domain-specific candidates before execut- 052

ing extraction. This requirement becomes critical 053

in interaction scenarios, such as constructing user 054

profiles through AI assistant (Wu et al., 2025). In 055

conversations where users dynamically disclose 056

personal histories, conventional approaches with 057

predefined rigid schema are incompatible. This op- 058

erational gap exposes two fundamental limitations 059

in current research. 060

First, existing pipeline systems suffer from in- 061

flexible schema adherence. Current EE pipeline 062

systems operate under a paradoxical assumption: 063

they either rigidly fix event schemas during deploy- 064

ment or naively concatenate all available schemas. 065

The former approach fails in cross-domain scenar- 066

ios, while the latter causes schema conflicts and 067

error propagation when handling overlapping event 068

types. This rigidity severely limits real-world ap- 069

plicability. Though large language models (LLMs) 070

initially demonstrate promise through their gen- 071
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eralization capabilities (Huang et al., 2025), two072

critical shortcomings emerge: (1) Schema hallu-073

cination, where LLMs invent non-existent event074

types (Huang et al., 2025), and (2) Context window075

constraints that prevent loading all schema candi-076

dates as prompts (Naveed et al., 2023; Wang et al.,077

2024b). While retrieval-augmented generation078

(RAG) methods (Gao et al., 2023) partially address079

these issues, current implementations either exceed080

context capacity with full schema loads (Shiri et al.,081

2024) or use oversimplified schema definitions that082

hinder LLM comprehension.083

Second, the absence of joint evaluation bench-084

marks creates an academic-industrial disconnect.085

While recent studies explore LLM-based extrac-086

tion (Shiri et al., 2024), existing datasets (Lai,087

2022) presuppose perfect schema selection—an088

assumption invalid in real-world scenarios where089

schema retrieval constitutes a mission-critical pre-090

requisite. This discrepancy leaves the combined091

capability of schema retrieval and event extraction092

unevaluated.093

To address the first limitation, we propose094

Adaptive Schema-aware Event Extraction (ASEE),095

a novel paradigm integrating schema paraphrasing096

with schema retrieval-augmented generation, by097

decomposing the event extraction task into schema098

retrieval and schema-aware extraction. Figure 1099

shows an example of ASEE in broad domains. In100

particular, ASEE extensively builds event extrac-101

tion schemas, adaptively retrieves specific schemas,102

automatically assembles event extraction prompts,103

and accurately generates targeted structures.104

To resolve the second limitation, we con-105

struct the Multi-Dimensional Schema-aware Event106

Extraction (MD-SEE) benchmark by systemati-107

cally consolidating 12 datasets, enabling rigorous108

joint evaluation on schema retrieval and extraction109

accuracy across various domains, complexities, and110

language settings, addressing the current evaluation111

vacuum.112

Our principal contributions are threefold:113

• Adaptive Schema-aware EE Framework:114

We propose ASEE, the first framework that115

jointly enhances the event extraction capabil-116

ity through LLM-based schema paraphrasing117

and schema-retrieval augmented generation.118

• Multi-Dimensional EE Benchmark: We119

construct MD-SEE, the first benchmark eval-120

uating both schema matching and extraction121

accuracy across domains, complexity, and lan- 122

guage settings. 123

• Empirical Insights: Through extensive ex- 124

periments and analysis, we provide insightful 125

results for event extraction with LLMs across 126

broad domains, providing actionable guide- 127

lines for industrial deployment. 128

2 Related Work 129

Information Extraction Task Information ex- 130

traction (IE) aims to automatically extract struc- 131

tured knowledge from unstructured texts, typi- 132

cally involving three core tasks: (1) Named Entity 133

Recognition (NER) for identifying entity bound- 134

aries and types (Ye et al., 2024), (2) Relation Ex- 135

traction (RE) for detecting semantic relationships 136

between entities (Wang et al., 2023b), and (3) 137

Event Extraction (EE) for recognizing event trig- 138

gers and their associated arguments (Wang et al., 139

2022a). These tasks are conventionally categorized 140

as closed IE (with predefined schemas) or open 141

IE (schema-agnostic). Closed IE relies on prede- 142

fined schemas specifying target entities, relations, 143

or event structures, enabling precise extraction in 144

constrained domains (Lu et al., 2022). Open IE 145

systems, conversely, extract open-domain triples 146

without schema constraints, sacrificing precision 147

for broader coverage (Wang et al., 2023b). 148

Existing event extraction methods predomi- 149

nantly follow the closed IE paradigm, requiring pre- 150

defined schemas that specify event types, roles, and 151

constraints. Though effective in controlled settings, 152

such rigid schemas face two key challenges: (1) 153

Oversimplification - Most schemas abstract away 154

domain-specific nuances (e.g., using generic role 155

labels like "participant"), making them insufficient 156

for guiding LLMs in real-world extraction; (2) Se- 157

mantic Gap - Predefined schemas often mismatch 158

actual context semantics, especially when process- 159

ing cross-domain or emerging event types. 160

This paper proposes Adaptive Schema-aware 161

Event Extraction (ASEE) to address real-world EE 162

scenarios requiring schema retrieval before extrac- 163

tion. Unlike traditional closed EE with rigid prede- 164

fined schemas, our framework dynamically adapts 165

schemas through : (1) Schema Paraphrasing that 166

rewrites schema elements using contextual knowl- 167

edge, and (2) Schema-Retrieval Augmented Gen- 168

eration guided by retrieving the relevant schemas 169

and extracting events with the matched schemas. 170
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Event Extraction with LLMs Recently, a sig-171

nificant amount of work has focused on utilizing172

large language models (LLMs) to implement and173

enhance the performance of information extrac-174

tion tasks. These works can be primarily divided175

into four aspects: (1) data augmentation: leverag-176

ing LLMs to generate synthetic data or augment177

existing datasets for information extraction tasks,178

avoiding the introduction of unrealistic, mislead-179

ing, and offset patterns (Wang et al., 2023a). (2)180

prompt engineering: crafting effective prompts for181

LLMs to guide them in extracting relevant infor-182

mation from text (Ashok and Lipton, 2023). (3)183

code LLMs: utilizing code-based LLMs to auto-184

mate and enhance the information extraction pro-185

cess (Guo et al., 2023). (4) LLM fine-tuning: fine-186

tuning LLMs on domain-specific data to optimize187

their performance on targeted information extrac-188

tion tasks (Zhou et al., 2023).189

However, when using LLMs for event extrac-190

tion (EE), they tend to experience significant hal-191

lucinations due to insufficient task-specific opti-192

mization, and their limited context window makes193

it impractical to rely solely on LLMs to handle194

event extraction tasks across diverse scenarios.195

Retrieval-augmented generation (RAG) methods196

have emerged as a promising solution, enhanc-197

ing extraction accuracy by incorporating external198

knowledge (Gao et al., 2023). For instance, Shiri199

et al. (2024) decompose event extraction into two200

subtasks: Event Detection (ED), which retrieves201

relevant event examples, and Event Argument Ex-202

traction (EAE), which extracts events based on the203

retrieved examples.204

In this paper, we aim to mitigate the hallucina-205

tion issue of LLMs in EE by adopting schema-206

retrieval augmented generation, while also address-207

ing the issue of LLM context length limitations.208

3 Methodology209

3.1 Preliminaries210

Schema-aware Event Extraction (SEE) (Shiri et al.,211

2024; Gui et al., 2024) leverages predefined212

schemas to guide the extraction of structured in-213

formation from unstructured text. A schema serves214

as a formal representation of the types of informa-215

tion to be extracted, encompassing entities, rela-216

tionships, events, and their attributes. By defining217

the structure and constraints of the desired data,218

schemas enable the extraction system to identify219

and organize relevant information systematically.220

Given a query text q, which can range from a sin- 221

gle sentence to an entire document, and a schema s 222

that specifies a particular type of information to be 223

extracted along with its associated arguments, the 224

goal of SEE is to extract relevant information from 225

q according to s. Each schema s consists of a set 226

of arguments A = {a1, a2, . . . , aK}, where K is 227

the number of arguments in schema s. 228

Formally, the Schema-aware Event Extraction 229

(SEE) task can be represented as V = θ(s, q), 230

where V = {v1, v2, . . . , vK} denotes the set of 231

extracted values corresponding to the arguments in 232

schema s, and θ represents the extraction model 233

that takes schema s and query q as inputs to pro- 234

duce the extracted information. 235

SEE assumes the availability of predefined 236

schemas, which may not always be feasible in real- 237

world scenarios. Acquiring accurate and compre- 238

hensive schemas from a wide range of domains 239

and languages can be resource-intensive and chal- 240

lenging. Our proposed Adaptive Schema-aware 241

Event Extraction (ASEE) framework addresses this 242

issue by incorporating schema paraphrasing and 243

retrieval, enabling robust and versatile event extrac- 244

tion across diverse scenarios. 245

3.2 Adaptive Schema-aware EE (ASEE) 246

Building upon the foundational concepts of 247

SEE (Shiri et al., 2024; Gui et al., 2024), we intro- 248

duce our proposed framework, Adaptive Schema- 249

aware Event Extraction (ASEE). ASEE addresses 250

the inherent challenges of SEE by incorporating 251

adaptive mechanisms for schema retrieval and ex- 252

traction. The framework is visually represented in 253

Figure 2 and comprises two primary components: 254

Schema Paraphrasing (SP) and Schema-Retrieval 255

Augmented Generation (SRAG, including Schema 256

Retrieval (SR) and Schema-aware Extraction (SE)). 257

The ASEE framework can be formally repre- 258

sented by the following sequence of operations, 259

with each step explained alongside its correspond- 260

ing formula: 261

• Step 1 - Schema Paraphrasing (SP): 262

S =
⋃
s∈S0

{ϕLLM (s,Ds) |Ds ⊆ Dtrain } (1) 263

Equation 1 represents the schema paraphrasing pro- 264

cess. Here, ϕLLM denotes the schema paraphrasing 265

function, which takes each initial schema s from 266

the set S0 and generates a paraphrased schema pool 267

S using a subset of the training dataDs as few-shot 268

examples. 269
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Figure 2: The architecture of ASEE comprises two primary components: Schema Paraphrasing (SP) and Schema-
Retrieval Augmented Generation (SRAG, including Schema Retrieval (SR) and Schema-aware Extraction (SE)).

• Step 2 - Schema Retrieval (SR):270

Rq = ψretriever(q,S) (2)271

Equation 2 describes the schema retrieval step. The272

function ψretriever is the retrieval model that takes273

the query text q and the paraphrased schema pool274

S to retrieve the top-k relevant schemas, resulting275

in the setRq.276

• Step 3 - Schema-aware Extraction (SE):277

V = θLLM(q,Rq) (3)278

Equation 3 outlines the information extraction pro-279

cess. The function θLLM represents the LLM fine-280

tuned for extraction, which takes the query q and281

the retrieved schemas Rq to produce the final set282

of extracted values V .283

3.2.1 Schema Paraphrasing (SP)284

Schema Paraphrasing (SP) serves as the preparation285

stage and backbone for the extraction process, es-286

tablishing a robust and comprehensive schema pool.287

For a given event extraction task, we first collect288

all relevant schemas S0. For each schema s ∈ S0,289

we utilize data samples from the training set that290

adhere to schema s as few-shot demonstrations to291

guide a frozen LLM in generating paraphrased ver-292

sions of the original schema. These paraphrased293

schemas introduce detailed argument descriptions,294

enhancing the semantic clarity of the schemas and295

facilitating more effective retrieval. The resulting296

paraphrased schemas are aggregated to form the297

schema pool S, which serves as a repository of di-298

verse schemas tailored for various extraction tasks,299

as defined in Equation 1.300

3.2.2 Schema-Retrieval Augmented301

Generation (SRAG)302

The extraction component encompasses the oper-303

ational aspects of the ASEE framework, divided304

into Schema Retrieval (SR) and Schema-aware Ex- 305

traction (SE) processes. 306

Schema Retrieval (SR) Upon receiving a new 307

query text q, the first task is to identify the most 308

relevant schemas from the schema pool S. This 309

is achieved through a schema retrieval mecha- 310

nism that employs a specialized retrieval model 311

ψ. The retriever processes the query q to search 312

the schema pool and retrieves the top-k schemas 313

Rq = {s1, s2, . . . , sk} that are most pertinent to 314

the information contained within q, as defined in 315

Equation 2. This retrieval step ensures that the 316

subsequent extraction is guided by schemas that 317

are contextually aligned with the query, enhancing 318

extraction accuracy and relevance. 319

Schema-aware Extraction (SE) With the relevant 320

schemasRq identified, the next step involves the in- 321

formation extraction process. While large language 322

models (LLMs) can directly perform extraction 323

based on schemas, their zero-shot performance may 324

be suboptimal due to challenges in strictly adher- 325

ing to schema constraints or interpreting complex 326

argument definitions. To address this, we employ 327

Supervised Fine-Tuning (SFT) to adapt the base 328

LLM for schema-guided extraction. 329

Given a dataset Dtrain = {(qi, si,Vi)}Ni=1 con- 330

taining query texts, schemas, and ground-truth 331

structured outputs, we fine-tune the LLM to mini- 332

mize the discrepancy between its predictions and 333

the target values. Formally, for each sample 334

(q, s,V), the model θ is optimized to maximize 335

the likelihood of generating the correct argument 336

values conditioned on the input query q and schema 337

s. The SFT objective is defined as: 338

LSFT = −E∼Dtrain

K∑
k=1

logPθ (vk | q, s, v<k) (4) 339
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where vk denotes the k-th argument value in V ,340

and v<k represents previously generated values.341

This autoregressive training enables the model to342

learn schema-specific dependencies and format-343

ting constraints. After fine-tuning, the LLM θLLM344

in Equation 3 becomes specialized in generating345

structured outputs that strictly comply with the re-346

trieved schemasRq. The final output V comprises347

structured information extracted from q, organized348

according to the specifications ofRq.349

4 Benchmark Constrcution350

351 We construct the Multi-Dimensional Schema-352

aware Event Extraction (MD-SEE) benchmark to353

facilitate rigorous evaluation, which systematically354

consolidates 12 datasets across diverse domains,355

complexity levels, and language settings. Due to356

space constraints, additional details are provided in357

the Appendix A.358

4.1 Data Collection359

Datasets were collected from various sources, fo-360

cusing on those that are fully open-source to361

avoid licensing restrictions. The collected datasets362

include DocEE (Tong et al., 2022), MAVEN-363

Arg (Wang et al., 2024a), GENEVA (Parekh et al.,364

2023), CrudeOilNews (Lee et al., 2022), and the365

event extraction datasets from IEPILE (Gui et al.,366

2024), which contains out-of-domain testing tests367

to evaluate the generalize capability. Table 5368

in Appendix A provides a summary of the col-369

lected datasets. We perform initial cleaning to en-370

sure data quality, detailed procedures are provided371

in Appendix A.1 for schema processing and Ap-372

pendix A.2 for dataset processing.373

4.2 MD-SEE Dataset374

To demonstrate the capabilities of ASEE, we devel-375

oped the Multi-Dimensional Schema-aware Event376

Extraction (MD-SEE) dataset. Constructed by ag-377

gregating the collected datasets, MD-SEE ensures378

comprehensive coverage across a wide range of379

non-overlapping schemas. The multidimensional380

nature of MD-SEE is characterized by:381

• Various Query Lengths: Supports sentence-382

level to document-level queries, enabling evalu-383

ation across varying textual granularities.384

•Multiple Domains: Incorporates datasets from385

diverse domains such as news, cybersecurity,386

biomedical, finance, and legal sectors, ensuring387

generalization across varied contexts.388

Figure 3: Dataset used in MD-SEE.

• Diverse Event Complexity: Accommodates 389

both single-event and multi-event extraction sce- 390

narios, testing the system’s adaptability in handling 391

complex event structures. 392

• Multiple Language Settings: Encompasses 393

English-only, Chinese-only, and cross-lingual ex- 394

traction subsets, highlighting proficiency in multi- 395

lingual and cross-lingual information extraction. 396

4.2.1 Schema Consolidation 397

To enhance schema diversity and reduce redun- 398

dancy, we performed schema consolidation. We 399

merged all schemas from individual datasets and 400

conducted a manual merging step to unify nearly 401

identical schemas and cross-lingual duplicates (En- 402

glish and Chinese). Detailed procedures are the 403

same as in Appendix A.1. 404

Subsequently, we used the multilingual sentence 405

embedding model BGE-M3 (Chen et al., 2024) to 406

encode schemas. We constructed a graph where 407

each node represents a schema, and edges connect 408

schemas with cosine similarity above 0.85. Apply- 409

ing a Greedy Maximum Independent Set algorithm 410

(Algorithm 1 in Appendix A.3), we identified the 411

largest possible subset of diverse schemas by re- 412

moving highly similar ones. We then filtered the 413

dataset to include only the samples associated with 414

these schemas, ensuring relevance and alignment 415

within MD-SEE. 416

4.2.2 Cross-Lingual Subset 417

To incorporate cross-lingual extraction capabilities, 418

we processed subsets from DocEE and DuEE1.0: 419
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• DocEE: After consolidation, only English420

queries remained. We translated all schemas from421

English to Chinese and adjusted the labels, re-422

sulting in English queries paired with Chinese423

schemas.424

• DuEE1.0: Originally in Chinese, we translated425

schemas from Chinese to English and modified the426

labels, producing Chinese queries associated with427

English schemas.428

These cross-lingual subsets require the model to429

interpret schemas in one language while extracting430

information from queries in another, preserving the431

extracted values in the query’s original language.432

This setup evaluates the model’s ability to general-433

ize across languages and handle multilingual sce-434

narios common in real-world applications.435

4.2.3 Dataset Statistics436

Shown as Figure 3, the consolidated MD-SEE437

dataset comprises 300 schemas covering multiple438

dimensions, 12,817 training samples, 1,775 devel-439

opment samples, and 7,686 test samples. Detailed440

statistics are provided in Table 6 (Appendix A.4).441

This aggregation ensures that MD-SEE is robust442

and versatile, catering to various event extraction443

tasks across different contexts.444

5 Experiments445

5.1 Evaluation Settings446

Our evaluation considers three main aspects: 1)447

schema retrieval evaluation, 2) schema-aware ex-448

traction evaluation, and 3) end-to-end evaluation,449

providing a comprehensive assessment across vari-450

ous dimensions.451

5.1.1 Schema Retrieval Evaluation452

Given a query ranging from a sentence to a full doc-453

ument, the schema retrieval task expects to retrieve454

the most relevant schemas from a schema pool.455

Metric We use Recall@K to measure the pro-456

portion of ground-truth schemas included in the457

top-K retrieved schemas for each query. A high458

Recall@K indicates effective identification of po-459

tential schemas.460

5.1.2 Schema-aware Extraction Evaluation461

Provided with both the query q and the correspond-462

ing ground-truth schemas Sq, the objective of the463

extraction evaluation is to extract information ac-464

curately according to the paraphrased schemas.465

Metric We evaluate extraction performance by 466

calculating the F1 score for each argument within 467

each schema and then averaging these scores over 468

all arguments and schemas. 469

5.1.3 End-to-End Evaluation 470

The end-to-end evaluation assesses the system’s 471

performance in autonomously retrieving relevant 472

schemas and extracting information based on the 473

matched schemas without prior knowledge of the 474

ground-truth schemas. For each query, the system: 475

• Schema Retrieval: Retrieve a set of schemas 476

Rq based on the query q. 477

• Schema-aware Extraction: Extract informa- 478

tion from the query q according to retrieved 479

schemas Rq. 480

Metric We use a modified End-to-End F1 Score 481

(E2E-F1), defined as: 482

F1 =
1

N |Sq|

N∑
q=1

∑
s∈Sq

F1(s, q) · I(s ∈ Rq) (5) 483

Here, I(s ∈ Rq) is an indicator function that equals 484

1 if schema s is retrieved for query q, and 0 other- 485

wise. The E2E-F1 considers the following cases: 486

• Schema Retrieved and Relevant: If a ground- 487

truth schema s ∈ Sq is retrieved (s ∈ Rq), we eval- 488

uate the extraction for that schema using F1(s, q). 489

• Schema Not Retrieved: If a ground-truth 490

schema s ∈ Sq is not retrieved (s /∈ Rq), we assign 491

an F1 score of zero for that schema. 492

• Schema Retrieved but Not Relevant: Retrieved 493

schemas not in the ground truth (s ∈ Rq, s /∈ Sq) 494

are ignored in the evaluation. 495

This evaluation framework mirrors real-world 496

scenarios where both retrieval and extraction ac- 497

curacy are critical, emphasizing the importance of 498

effectively identifying and extracting relevant in- 499

formation. 500

5.2 Experimental Settings 501

Retrieval Models. We employed the following 502

seven retrieval models, which are commonly used 503

in RAG scenarios and support multiple languages, 504

including: BM25 (Robertson and Zaragoza, 2009), 505

BGE-M3, BGE-Reranker-Base (BGE-RB), and 506

BGE-Reranker-Large (BGE-RL) (Chen et al., 507

2024), E5-large-v2 (E5-LV2) (Wang et al., 2022b), 508

GTE-Large (GTE-L) (Li et al., 2023) LLM- 509

Embedder (LLM-E) (Zhang et al., 2024). 510
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CrudeOilNews DocEE-en DocEE-zh GENEVA IEPILE-en IEPILE-zh MAVEN-Arg
Raw Paraph. Raw Paraph. Raw Paraph. Raw Paraph. Raw Paraph. Raw Paraph. Raw Paraph.

BM25 0.35 0.31 0.21 0.67 0.55 0.77 0.11 0.41 0.61 0.78 0.75 0.81 0.09 0.22
BGE-M3 0.35 0.32 0.85 0.92 0.73 0.94 0.43 0.50 0.77 0.88 0.84 0.91 0.13 0.33
E5-LV2 0.35 0.36 0.84 0.87 0.41 0.51 0.43 0.51 0.83 0.90 0.46 0.30 0.20 0.31
GTE-L 0.33 0.37 0.95 0.95 0.47 0.50 0.40 0.48 0.84 0.89 0.34 0.50 0.19 0.32
LLM-E 0.30 0.31 0.88 0.90 0.34 0.33 0.40 0.51 0.82 0.88 0.27 0.53 0.17 0.30
BGE-RB 0.31 0.33 0.43 0.49 0.48 0.44 0.33 0.47 0.66 0.83 0.89 0.87 0.10 0.16
BGE-RL 0.28 0.31 0.57 0.77 0.66 0.69 0.41 0.41 0.78 0.81 0.89 0.90 0.14 0.20

Table 1: Schema retrieval evaluation results on individual datasets, using Recall@10 as the metric. Better results are
highlighted in bold.

Recall@10 Recall@20 Recall@50
Raw Paraph. Raw Paraph. Raw Paraph.

BM25 0.33 0.58 0.39 0.67 0.49 0.76
BGE-M3 0.61 0.78 0.69 0.86 0.78 0.94
E5-LV2 0.35 0.61 0.43 0.72 0.62 0.86
GTE-L 0.28 0.57 0.36 0.68 0.51 0.82
LLM-E 0.34 0.71 0.49 0.82 0.68 0.91
BGE-RB 0.51 0.59 0.60 0.66 0.70 0.76
BGE-RL 0.56 0.61 0.64 0.69 0.75 0.79

Table 2: Schema retrieval evaluation results on MD-
SEE. Better results are highlighted in bold.

LLMs. Within the limits of our computational511

resources, we employed the following state-of-the-512

art large language models and information extrac-513

tion models to carry out our information extrac-514

tion tasks, including: Phi-3.5-mini (Abdin et al.,515

2024), Llama-3.2-3B and Llama-3.1-8B (Dubey516

et al., 2024), Mistral-7B-v0.3 (Jiang et al., 2023),517

Qwen2.5-7B and Qwen2.5-14B (Yang et al., 2024),518

YAYI-UIE (Xiao et al., 2023), GPT-4-turbo (Wada519

et al., 2024)520

Datasets We conduct experiments on several col-521

lected datasets, including MAVEN-Arg, GENEVA,522

CrudeOilNews, DocEE (-zh & -en), IEPILE (-zh523

& -en), and our newly developed MD-SEE dataset.524

These datasets span multiple scenarios, providing525

comprehensive insights into our ASEE framework.526

5.3 Schema Retrieval Evaluation527

To verify the effectiveness of our proposed ASEE528

method in improving retrieval performance by para-529

phrasing the raw schema, we conducted the follow-530

ing experiments. First, we performed the retrieval531

experiments to the collected individual datasets,532

computing Recall@10 for both raw schema (de-533

noted as “Raw”) and schema paraphrasing (denoted534

as “Paraph.”). In most cases presented in Table 1,535

the “Paraph.” consistently showed marked improve-536

ments over “Raw” across different retrieval models.537

As an addition, we calculated the Recall@10, 538

Recall@20, and Recall@50 for both the raw 539

schema and the schema paraphrasing on the 540

MD-SEE dataset. The results, as shown in Ta- 541

ble 2, indicate that “Paraph.” outperforms “Raw” 542

across all metrics—Recall@10, Recall@20, and 543

Recall@50—for all retrieval models. These ex- 544

periments collectively demonstrate that paraphras- 545

ing the raw schema using our proposed few-shot 546

demonstration paraphrasing can effectively en- 547

hance schema retrieval performance. 548

5.4 Schema-aware Extraction Evaluation 549

To evaluate the performance of state-of-the-art 550

LLMs for event extraction, we conducted exper- 551

iments on zero-shot schema-aware event extrac- 552

tion tasks on multiple datasets using the ground- 553

truth paraphrased schemas. As shown in Table 3, 554

we used six state-of-the-art open-source LLMs 555

(i.e., Phi-3.5-mini, Llama-3.2-3B, Llama-3.1-8B, 556

Mistral-7B-v0.3, Qwen2.5-7B, Qwen2.5-14B), an 557

information extraction model based on an LLM 558

(i.e., YAYI-UIE), and the popular closed-source 559

model GPT-4 (i.e., GPT-4-turbo). Notably, we by- 560

passed the schema matching step and directly pro- 561

vided each extraction task with an optimal event 562

extraction schema. 563

The results clearly indicate that GPT-4 has the 564

strongest zero-shot event extraction capabilities, 565

outperforming all other models on most datasets. 566

However, in the Chinese data sets DocEE-zh and 567

IEPILE-zh, it was closely matched by Qwen2.5- 568

14B, which specializes in Chinese. We also ob- 569

served that YAYI-UIE, a universal information ex- 570

traction method, did not achieve satisfactory event 571

extraction results compared to the open-source 572

LLM-based methods. Despite having 14 billion 573

parameters, its performance lagged behind due to 574

the limited capabilities of its backbone LLM, per- 575

forming even worse than Llama-3.2-3B. 576
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CrudeOilNews DocEE-en DocEE-zh GENEVA IEPILE-en IEPILE-zh MAVEN-Arg

Phi-3.5-mini 0.22 0.43 0.46 0.31 0.33 0.60 0.29
Llama-3.2-3B 0.35 0.47 0.60 0.47 0.44 0.71 0.37
Llama-3.1-8B 0.43 0.48 0.61 0.58 0.55 0.71 0.51
Mistral-7B-v0.3 0.37 0.45 0.57 0.57 0.49 0.71 0.47
Qwen2.5-7B 0.42 0.45 0.41 0.60 0.55 0.73 0.48
Qwen2.5-14B 0.30 0.49 0.62 0.49 0.53 0.78 0.40
YAYI-UIE 0.35 0.37 0.30 0.43 0.41 0.34 0.33
GPT-4-turbo 0.50 0.56 0.62 0.67 0.62 0.77 0.56

Table 3: Zero-shot schema-aware extraction results, using F1 score as the metric.The best results are marked in
bold,while the second underlined.

BM25 BGE-M3 E5-LV2 GTE-LG LLM-E BGE-RB BGE-RL

Llama-3.2-3B 0.46 0.62 0.48 0.46 0.57 0.47 0.48
w/ SFT 0.47 0.63 0.49 0.47 0.58 0.48 0.49

Llama-3.1-8B 0.48 0.65 0.51 0.47 0.59 0.49 0.51
w/ SFT 0.50 0.68 0.53 0.50 0.62 0.51 0.53

Table 4: End-to-end results of MD-SEE across different retrieval and extraction model configurations, using E2E-F1
score as the metric. Better results are highlighted in bold.

5.5 End-to-End Evaluation577

To comprehensively assess the performance of our578

ASEE framework, we conducted end-to-end eval-579

uations. Table 4 shows the end-to-end results of580

MD-SEE across different retrieval and extraction581

model configurations, using E2E-F1 score as the582

metric. This evaluation encompasses both schema583

retrieval and information extraction components,584

reflecting real-world application scenarios where585

the system must autonomously retrieve relevant586

schemas and accurately extract information with-587

out prior knowledge of ground-truth schemas.588

Table 4 shows that ASEE, using BGE-M3 as589

the schema retriever, achieves the best overall per-590

formance in E2E-F1 compared to other retrieval591

models (e.g., BM25) across both Llama-3.2-3B and592

Llama-3.1-8B, with and without SFT, for schema-593

aware event extraction. The improved retrieval594

enabled by schema paraphrasing allows ASEE to595

identify more relevant schemas, thereby providing596

a stronger foundation for accurate event extraction.597

In addition, ASEE with Llama-3.1-8B achieves598

better E2E-F1 performance than ASEE with Llama-599

3.2-3B, which is a smaller and less powerful LLM.600

The end-to-end event extraction performance of601

ASEE can be further enhanced when the extrac-602

tion LLM (e.g., Llama-3.2-3B or Llama-3.1-8B) is603

trained with supervised fine-tuning (SFT). These604

results demonstrate that ASEE benefits from using605

a larger and/or fine-tuned LLM for schema-aware606

extraction.607

Overall, our proposed ASEE method can be en- 608

hanced either by a strong retrieval model for para- 609

phrased schema matching or by a larger and/or 610

fine-tuned LLM for schema-aware extraction. 611

6 Conclusion 612

In this paper, we introduced Adaptive Schema- 613

aware Event Extraction (ASEE), a novel frame- 614

work designed to enhance event extraction (EE) 615

across diverse domains using large language mod- 616

els (LLMs). By decomposing the extraction 617

process into schema paraphrasing and schema 618

retrieval-augmented extraction, ASEE effectively 619

mitigates challenges such as hallucinations and con- 620

text length limitations inherent in LLM-based ap- 621

proaches. We develop the MD-SEE dataset, which 622

consists of high-quality schemas across various di- 623

mensions, providing a comprehensive resource for 624

evaluating event extraction systems. We conducted 625

extensive experiments on multiple datasets includ- 626

ing our newly developed MD-SEE dataset, demon- 627

strating ASEE’s adaptability and superior extrac- 628

tion performance. The framework’s ability to build 629

and leverage a comprehensive schema pool enables 630

more precise and scalable event extraction, making 631

it a robust solution for a wide range of real-world 632

applications. Future work will explore integrating 633

relation extraction and named entity recognition, 634

fine-tuning larger LLMs, and extending ASEE to 635

more complex multilingual and cross-lingual sce- 636

narios to further enhance its capabilities. 637
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7 Limitations638

Our Adaptive Schema-aware Event Extraction639

(ASEE) framework has several limitations. First,640

we did not incorporate relation extraction (RE)641

and named entity recognition (NER) due to our642

focus on schema-based extraction tasks, for which643

event extraction is more suited. Second, we were644

unable to fine-tune larger language models, such645

as those with 32B or 70B parameters, owing to646

computational resource constraints. Additionally,647

our current implementation does not address more648

complex multilingual and cross-lingual scenarios,649

which presents further challenges for scalable and650

versatile information extraction. We hope to ad-651

dress the above limitations in the follow-up work.652
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A Dataset Collection804

805

We present the details of MD-SEE dataset collec-806

tion, including schema processing (Appendix A.1),807

dataset processing (Appendix A.2), schema con-808

solidation algorithm (Appendix A.3), and dataset809

statistics (Appendix A.4).810

A.1 Schema Processing811

812

Each dataset was examined to extract unique813

schemas, which include the schema name, descrip-814

tion, arguments, and relevant metadata. We em-815

ployed a heuristic merging process to address po-816

tential duplications. This included:817

1. Character Similarity: Schemas were merged818

if their names and arguments shared over 80%819

character similarity, thus reducing redundancy820

due to variations in tense or plural forms.821

2. Numerical and Variant Arguments: For ar-822

guments with numerical variants (e.g., place,823

place1, place2), we consolidated them into a824

single argument with values stored in a list, to825

enhances the schema’s clarity and usability.826

These efforts ensure that our schema pool re-827

flects a rich and diverse set of scenarios, ultimately828

enhancing the robustness of the data.829

A.2 Dataset Processing830

831

We follow these principles:832

1. Split Handling: If a dataset contains original833

train/dev/test splits, we adhered to them even834

if some splits were missing. For datasets with835

only a train split, we implemented an 80/10/10836

split for consistency.837

2. Filtering Criteria: To maintain quality, we838

filtered out data instances with more than 15839

extracted event labels, especially in MAVEN-840

Arg, where instances with excessive labels841

could skew results.842

3. Query Length Diversity: We ensured the843

datasets included varied lengths of queries,844

from single sentences to longer documents,845

enriching the task complexity and addressing846

different real-world scenarios.847

A.3 Greedy Maximum Independent Set 848

849

Algorithm 1 shows the algorithm for identifying 850

the largest possible subset of diverse schemas for 851

schema consolidation. 852

Algorithm 1 Greedy Maximum Independent Set

Require: Adjacency list adj_list representing
schema similarities

Ensure: Maximum independent set of schemas
1: remaining ← {all schema indices in adj_list}

2: independent_set← {}
3: degrees← {i : len(adj_list[i]) | i ∈ adj_list}
4: while remaining is not empty do
5: node← argmini∈remaining(degrees[i])
6: independent_set ← independent_set ∪

{node}
7: remaining← remaining \ {node}
8: remaining← remaining \ adj_list[node]
9: for each neighbor n ∈ adj_list[node] do

10: degrees← degrees \ {n}
11: for each neighbor m ∈ adj_list[n] do
12: if m in remaining then
13: degrees[m]← degrees[m]− 1
14: end if
15: end for
16: end for
17: degrees← degrees \ {node}
18: end while
19: return independent_set

A.4 Dataset Statistics 853

Table 5 shows the statistics of the collected 854

datasets before processing, such as CrudeOilNews, 855

GENEVA, MAVEN-Arg, DocEE-en, DocEE-zh, 856

IEPILE-en, and IEPILE-zh. Table 6 shows the 857

statistics of the processed MD-SEE dataset, includ- 858

ing source, language, domain, split distributions, 859

and maximum number of labels per sample. 860

B End-to-End Experimental Results 861

862

The following tables show the end-to-end results 863

of CrudeOilNews (Table 7), DocEE-en (Table 8), 864

DocEE-zh (Table 9), GENEVA (Table 10), IEPILE- 865

en (Table 11), IEPILE-zh (Table 12), and MAVEN- 866

Arg (Table 13). 867

C Examples 868
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Dataset Source Language Domain #Schemas #Train #Dev #Test #Max_Labels

CrudeOilNews - en Oil News 18 1489 - 265 10
GENEVA - en General 115 1922 778 931 10

MAVEN-Arg - en General 162 2913 - 710 15
DocEE-en DocEE en General 59 21966 2748 2771 1
DocEE-zh DocEE zh General 58 29383 3672 3674 1

IEPILE-en

CASIE† en Cybersecurity 5 3732 777 1492 1
PHEE† en Biomedical 2 2897 960 968 1
RAMS† en News 106 - - 887 1

WikiEvents† en Wikipedia 31 - - 249 5

IEPILE-zh

DuEE-fin† zh Finance 13 7015 - 1171 14
DuEE1.0† zh News 65 11908 - 1492 15
FewFC† zh Finance 5 - - 2879 5
ccf_law† zh Legal 9 - - 971 10

Table 5: Statistics of the collected datasets including language, domain, split distributions, and maximum number of
labels per sample. Datasets marked with † were collected from IEPILE and further processed in this work.

Source Language Domain #Schemas #Train #Dev #Test #Max_Labels

DocEE en/zh General 52 2000 200 1000 1
DuEE1.0 zh/en News 53 2000 - 1000 8

CrudeOilNews en Oil News 11 949 - 198 6
GENEVA en General 61 1278 200 600 7

MAVEN-Arg en General 30 590 - 150 8
CASIE en Cybersecurity 4 2000 200 1000 1
PHEE en Biomedical 1 2000 200 867 1
RAMS en News 52 - - 286 1

WikiEvents en Wikipedia 18 - - 66 2
DuEE-fin zh Finance 7 2000 - 558 11
FewFC zh Finance 5 - - 1000 5
ccf_law zh Legal 6 - - 961 9

Total - - 300 12817 800 7686 11

Table 6: Statistics of the MD-SEE dataset, including source, language, domain, split distributions, and maximum
number of labels per sample. Mixed languages (en/zh or zh/en) indicate the language of queries and schemas
respectively, representing subsets for cross-lingual extraction.
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Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.08 0.12 0.15 0.13 0.15 0.10 0.12 0.17
BGE-M3 0.08 0.12 0.15 0.13 0.15 0.10 0.12 0.17
E5-LV2 0.08 0.12 0.15 0.13 0.15 0.10 0.12 0.17
GTE-L 0.07 0.12 0.14 0.12 0.14 0.10 0.12 0.17
LLM-E 0.07 0.11 0.13 0.11 0.13 0.09 0.11 0.15
BGE-RB 0.07 0.11 0.13 0.11 0.13 0.09 0.11 0.15
BGE-RL 0.06 0.10 0.12 0.10 0.12 0.08 0.10 0.14

Paraph.

BM25 0.07 0.11 0.13 0.11 0.13 0.09 0.11 0.15
BGE-M3 0.07 0.11 0.14 0.12 0.14 0.10 0.11 0.16
E5-LV2 0.08 0.13 0.16 0.13 0.15 0.11 0.13 0.18
GTE-L 0.08 0.13 0.16 0.14 0.15 0.11 0.13 0.18
LLM-E 0.07 0.11 0.14 0.12 0.13 0.09 0.11 0.16
BGE-RB 0.07 0.11 0.14 0.12 0.14 0.10 0.11 0.16
BGE-RL 0.07 0.11 0.13 0.11 0.13 0.09 0.11 0.15

Table 7: End to end results of CrudeOilNews.

Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.09 0.10 0.10 0.09 0.09 0.10 0.08 0.12
BGE-M3 0.36 0.40 0.41 0.38 0.38 0.41 0.31 0.47
E5-LV2 0.36 0.40 0.40 0.38 0.38 0.41 0.31 0.47
GTE-L 0.41 0.45 0.46 0.43 0.43 0.47 0.35 0.53
LLM-E 0.38 0.41 0.42 0.39 0.39 0.43 0.32 0.49
BGE-RB 0.19 0.20 0.21 0.19 0.19 0.21 0.16 0.24
BGE-RL 0.25 0.27 0.27 0.26 0.26 0.28 0.21 0.32

Paraph.

BM25 0.29 0.31 0.32 0.30 0.30 0.33 0.25 0.37
BGE-M3 0.39 0.43 0.44 0.41 0.41 0.45 0.34 0.51
E5-LV2 0.37 0.41 0.42 0.39 0.39 0.42 0.32 0.49
GTE-L 0.41 0.45 0.45 0.43 0.43 0.46 0.35 0.53
LLM-E 0.38 0.42 0.43 0.40 0.40 0.44 0.33 0.50
BGE-RB 0.21 0.23 0.23 0.22 0.22 0.24 0.18 0.27
BGE-RL 0.33 0.36 0.37 0.34 0.34 0.37 0.28 0.43

Table 8: End to end results of DocEE-en.

Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.25 0.33 0.33 0.31 0.22 0.34 0.16 0.31
BGE-M3 0.34 0.44 0.45 0.42 0.30 0.45 0.22 0.44
E5-LV2 0.19 0.24 0.25 0.23 0.17 0.25 0.12 0.23
GTE-L 0.22 0.28 0.29 0.27 0.19 0.29 0.14 0.26
LLM-E 0.16 0.20 0.21 0.19 0.14 0.21 0.10 0.19
BGE-RB 0.22 0.29 0.29 0.27 0.20 0.30 0.14 0.28
BGE-RL 0.31 0.40 0.40 0.38 0.27 0.41 0.21 0.37

Paraph.

BM25 0.36 0.46 0.47 0.44 0.32 0.48 0.23 0.43
BGE-M3 0.43 0.56 0.57 0.53 0.38 0.58 0.28 0.53
E5-LV2 0.24 0.30 0.31 0.29 0.21 0.31 0.15 0.28
GTE-L 0.23 0.28 0.29 0.27 0.21 0.29 0.14 0.27
LLM-E 0.15 0.19 0.20 0.18 0.14 0.20 0.10 0.18
BGE-RB 0.20 0.26 0.27 0.25 0.18 0.27 0.13 0.25
BGE-RL 0.26 0.35 0.36 0.33 0.28 0.38 0.21 0.43

Table 9: End to end results of DocEE-zh.
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Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.03 0.05 0.06 0.06 0.07 0.05 0.05 0.07
BGE-M3 0.13 0.20 0.25 0.24 0.26 0.21 0.18 0.29
E5-LV2 0.13 0.20 0.25 0.24 0.26 0.21 0.18 0.29
GTE-L 0.13 0.19 0.23 0.22 0.24 0.20 0.15 0.27
LLM-E 0.12 0.19 0.23 0.23 0.24 0.20 0.15 0.27
BGE-RB 0.10 0.16 0.19 0.18 0.20 0.15 0.13 0.22
BGE-RL 0.13 0.19 0.24 0.23 0.25 0.20 0.15 0.27

Paraph.

BM25 0.13 0.19 0.24 0.23 0.25 0.20 0.18 0.27
BGE-M3 0.16 0.24 0.29 0.29 0.30 0.25 0.22 0.34
E5-LV2 0.16 0.24 0.29 0.29 0.31 0.25 0.22 0.34
GTE-L 0.15 0.22 0.28 0.27 0.29 0.24 0.20 0.32
LLM-E 0.16 0.24 0.29 0.29 0.31 0.25 0.22 0.34
BGE-RB 0.14 0.22 0.27 0.26 0.28 0.23 0.20 0.32
BGE-RL 0.13 0.19 0.24 0.24 0.25 0.20 0.18 0.27

Table 10: End to end results of GENEVA.

Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.20 0.27 0.33 0.30 0.33 0.32 0.25 0.38
BGE-M3 0.25 0.34 0.42 0.38 0.42 0.41 0.31 0.47
E5-LV2 0.27 0.37 0.46 0.41 0.46 0.44 0.34 0.51
GTE-L 0.28 0.37 0.46 0.41 0.46 0.44 0.34 0.52
LLM-E 0.27 0.36 0.45 0.40 0.45 0.43 0.33 0.50
BGE-RB 0.22 0.29 0.36 0.32 0.36 0.35 0.27 0.41
BGE-RL 0.26 0.34 0.43 0.38 0.43 0.41 0.32 0.48

Paraph.

BM25 0.26 0.34 0.43 0.38 0.43 0.41 0.32 0.48
BGE-M3 0.29 0.39 0.49 0.43 0.49 0.47 0.36 0.55
E5-LV2 0.30 0.40 0.50 0.44 0.50 0.48 0.37 0.56
GTE-L 0.29 0.39 0.49 0.43 0.49 0.47 0.36 0.55
LLM-E 0.29 0.39 0.49 0.43 0.49 0.47 0.36 0.55
BGE-RB 0.27 0.37 0.46 0.41 0.46 0.43 0.33 0.52
BGE-RL 0.27 0.36 0.44 0.40 0.45 0.43 0.33 0.50

Table 11: End to end results of IEPILE-en.

Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.45 0.53 0.53 0.53 0.55 0.58 0.25 0.57
BGE-M3 0.50 0.59 0.59 0.59 0.61 0.65 0.28 0.64
E5-LV2 0.28 0.33 0.33 0.33 0.34 0.36 0.16 0.36
GTE-L 0.20 0.24 0.24 0.24 0.25 0.27 0.12 0.26
LLM-E 0.16 0.19 0.19 0.19 0.20 0.21 0.09 0.19
BGE-RB 0.54 0.63 0.63 0.63 0.65 0.70 0.30 0.69
BGE-RL 0.54 0.63 0.63 0.63 0.65 0.70 0.30 0.69

Paraph.

BM25 0.49 0.58 0.58 0.58 0.59 0.63 0.28 0.62
BGE-M3 0.55 0.65 0.65 0.65 0.67 0.71 0.31 0.70
E5-LV2 0.18 0.21 0.21 0.21 0.22 0.23 0.10 0.23
GTE-L 0.26 0.31 0.31 0.31 0.32 0.34 0.14 0.34
LLM-E 0.32 0.37 0.37 0.37 0.39 0.41 0.18 0.40
BGE-RB 0.53 0.62 0.62 0.62 0.64 0.68 0.29 0.67
BGE-RL 0.54 0.64 0.64 0.64 0.67 0.70 0.30 0.69

Table 12: End to end results of IEPILE-zh.
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Phi-3.5-mini Llama-3.2-3B Llama-3.1-8B Mistral-7B-v0.3 Qwen2.5-7B Qwen2.5-14B YAYI-UIE GPT-4-turbo

Raw

BM25 0.03 0.04 0.05 0.04 0.04 0.04 0.03 0.05
BGE-M3 0.04 0.05 0.07 0.06 0.06 0.05 0.04 0.08
E5-LV2 0.06 0.07 0.10 0.09 0.09 0.08 0.06 0.11
GTE-L 0.06 0.07 0.10 0.09 0.09 0.08 0.06 0.11
LLM-E 0.05 0.06 0.09 0.08 0.08 0.07 0.06 0.09
BGE-RB 0.03 0.04 0.05 0.05 0.05 0.04 0.03 0.06
BGE-RL 0.04 0.05 0.07 0.06 0.07 0.06 0.05 0.08

Paraph.

BM25 0.06 0.08 0.11 0.10 0.10 0.09 0.07 0.12
BGE-M3 0.10 0.12 0.17 0.16 0.16 0.13 0.11 0.18
E5-LV2 0.09 0.12 0.16 0.15 0.15 0.12 0.10 0.17
GTE-L 0.09 0.12 0.16 0.15 0.15 0.13 0.10 0.18
LLM-E 0.09 0.12 0.16 0.15 0.15 0.12 0.10 0.17
BGE-RB 0.06 0.08 0.11 0.10 0.10 0.09 0.07 0.13
BGE-RL 0.06 0.08 0.10 0.10 0.10 0.08 0.07 0.11

Table 13: End to end results of MAVEN-Arg.
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Schema Paraphrasing

[Instruction]
Generate natural language descriptions for the given event extraction schema, which consists of an
event name and its associated argument roles, each with an empty description to be completed.
Using the provided reference queries as contextual guidance, your description must:
Clearly delineate the event’s semantic scope and triggers,
Specify each argument’s functional role with domain-relevant examples,
Maintain schema-task alignment through query-aware contextualization.

[Schema]
{"name": "Preventing exit of a person", "arguments": "{’event_trigger’: ”, ’destination’: ”, ’origin’:
”, ’preventer’: ”, ’passenger’: ”, ’transporter’: ”}"}

[Relevant Queries]
["Customs officers intercepted the migrant group attempting to cross the Montenegro border using
forged passports last night.",
"A mother blocked her teenage daughter from boarding the Chicago-bound Greyhound bus after
discovering suspicious text messages.",
"The automated facial recognition system at Dubai Airport Terminal 3 flagged and detained a
passenger on the Emirates flight to London Heathrow."]

[The Start of Assistant’s Response]
{"name": "Preventing exit of a person", "description": "This schema captures incidents where an
individual/entity actively obstructs a person’s movement from an origin point to an intended desti-
nation. The event inherently implies physical or systemic intervention to stop transit.", "arguments":
"{’event_trigger’: ’Verbs/Nouns indicating prevention: intercepted, blocked, detained, barred,
lockdown’, "destination": "The intended end location for the subject or object, e.g., ’US’", "origin":
"The initial location from which the subject or object originates, e.g., ’Iran’, ’jail’", "preventer":
"The entity that acts to prevent the event from occurring, e.g., ’Iran’, ’jail’", "passenger": "The
person or object being transported or affected by the event, e.g., ’Americans’, ’Harold Martin’",
"transporter": "The entity responsible for moving or transporting the subject, e.g., ’Greyhound
bus’}}
[The End of Assistant’s Response]

Figure 4: Prompt and Example of Schema Paraphrasing
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Schema Retrieval

[Query q]
The chief facility for researching and producing CW agents was a military front company called
Delta G Scientific, located between Johannesburg and Pretoria, and several other facilities were set
up to develop protective clothing, manufacture exotic assassination devices, and “ weaponize ”
irritants ( Riot Control Agents such as CS and CR ) and incapacitants by placing them in artillery
shells, mortar bombs, and grenades.

[Retrieve from the Paraphrased Schema Pool S]
[ {"name": "Construction of a structure or artifact", "description": "This event extraction
task focuses on physical building processes involving permanent structures (e.g., monuments,
buildings) or complex artifacts. Focuses on geographic specificity (exact construction sites) and
physical tools/methods.", "arguments": "{"event_trigger": "The action that initiates the event,
e.g., ’constructed’, ’assembled’, ’construct’", "instrument": "The tool or means used to carry
out the action, if applicable", "manufacturer": "The maker or creator of the artifact or structure,
e.g., ’European manufacturer’", "artifact": "The object or structure that is created, e.g., ’pathetic
monuments’", "place": "The location where the event occurs, e.g., ’Ur’"}"},

{"name": "Creation or manufacturing of goods", "description": "This schema identifies production
events of movable goods/technological systems (e.g., spacecraft, electronics). Emphasizes tech-
nical instrumentation and industrial actors, including virtual/digital creations.", "arguments": "{
"event_trigger": "The action that initiates the event, e.g., ’assembled’", "instrument": "An appara-
tus used during the event, e.g., ’scientific instruments’, ’radar’, ’computers’", "manufacturer": "The
maker or constructor of the artifact, e.g., ’UK’, ’European manufacturer Thales Alenia Space’",
"artifact": "The object or item that is created, e.g., ’rover’, ’Schiaparelli’", "place": "The location
targeted or concerned, e.g., ’Meridiani Planum’"}"},
...... ]

Figure 5: Example Input of Schema Retrieval
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Schema-aware Extraction

[Instruction]
Extract from the query any fields defined in the given schema and output exactly one dictionary.
Only include schema arguments that appear in the query, using their exact field names and
verbatim values.

[Schema s]
{ "name": "Research", "description": "The schema focuses on identifying events related to
scientific research activities.", "arguments": { "event_trigger": "Action verbs/gerunds explicitly
indicating scientific research activities (e.g., researching, developing, studying)", "Topic":
"Specific subject or technical domain being researched", "Institution": "Name of organization or
entity that conducting the research", "Location": "Geographic location of research facilities (city,
country, or geocoordinates)", "Application": "Specific applications of research outcomes" } }

[Query q]
The chief facility for researching and producing CW agents was a military front company called
Delta G Scientific, located between Johannesburg and Pretoria, and several other facilities were set
up to develop protective clothing, manufacture exotic assassination devices, and “ weaponize ”
irritants ( Riot Control Agents such as CS and CR ) and incapacitants by placing them in artillery
shells, mortar bombs, and grenades.

[The Start of Assistant’s Response]
{"name": "Research", "arguments": {"event_trigger": "researching", "Topic": "CW agents"}}
[The End of Assistant’s Response]

Figure 6: Prompt and Example of Schema-aware Extraction
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MD-SEE Examples

[schema example]
{"name": "phishing", "description": "The information extraction task focuses on identifying key
elements related to phishing attacks and incidents.", "arguments": {"damage amount": " Details on
any financial or material loss resulting from the phishing attack.", "attack pattern": "Information
on the method or technique used in the phishing attempt", "tool": "Identification of any software
or technology used to facilitate the phishing attack.", "victim": "The individual or group targeted
by the phishing scheme.", "place": "The geographical or virtual location where the phishing
attack occurred.", "attacker": "Information on the person or group responsible for conducting
the phishing attack.", "purpose": "The objective or goal behind the phishing attempt.", "trusted
entity": "The legitimate entity being impersonated by the attacker to deceive the victim.", "time":
"The timeframe during which the phishing attack took place."}, "dataset": "CASIE", "task": "EE",
"lang": "en"}

[test example_1]
{"query": "There ’s likely not a person reading this online who has n’t received a phishing attack ,
in which someone pretending to be a bank sends an email or text message , hoping to trick you
into enter or re-enter account information or a credit card number .", "label": ["name": "phishing",
"arguments": "Event_trigger": "pretending to be", "attacker": "someone", "trusted entity": "a
bank"], "dataset": "CASIE", "task": "EE", "lang": "en"}

[test example_2]
{"query": "From there , the attacker could spoof the website , using it to lure in victims and
potentially gather credentials or spread malware .", "label": ["name": "phishing", "arguments":
"Event_trigger": "spoof", "trusted entity": "the website", "attacker": "the attacker"], "dataset":
"CASIE", "task": "EE", "lang": "en"}

Figure 7: MD-SEE Examples
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