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Abstract— Kinship verification using facial images is widely
applied in forensic analysis, immigration, and child trafficking
prevention. However, deep learning models for kinship veri-
fication are vulnerable to morphed images, where the facial
features of two individuals are blended to create realistic but
fake images. This work investigates the influence of different
morphing ratios (95% child + 5% random parent to 50%
child + 50% random parent) on kinship verification algorithms.
Developing a morphed dataset allows us to experiment with
deep learning and Kkinship-specific models on original and
morphed child images to determine the threshold beyond which
non-kin morphs are labeled kin. The experiments show a
continuous rise in misclassification rates with the increasing
percentage of parental features in morphed images, underscor-
ing the difficulties encountered by current kinship verification
systems. It is to be noted that the current study is the first
to present significant insights into the vulnerability of existing
kinship verification models against different morph ratios. It
highlights the necessity for more effective verification methods
to counter the risks associated with facial morphing in real-
world applications.

I. INTRODUCTION

Face is one of the most widely used biometric traits, and
a significant and growing application of facial biometrics
is kinship verification, where the goal is to determine if
two people are biologically related. This technology can
help build family trees and measure how similar family
members are based on facial traits. Moreover, it is crucial in
several real-world applications such as forensic analysis [20],
missing person identification [1], [6], and border control. By
analyzing facial similarities, automated kinship verification
systems aim to infer familial ties, offering a non-invasive
and scalable method for identity validation. With increasing
reliance on Al-based verification systems in security and
legal domains, robust kinship verification becomes essential
to ensure trustworthy decision-making [32]. These systems
must remain reliable in various real-world scenarios while
being resilient to manipulation.

In this research, we address a critical security concern in
kinship verification: the susceptibility of deep learning mod-
els to face morphing attacks [2], [3], [4], [14]. Specifically,
we explore how morphed images, synthetically generated by
blending features of a child with those of a random parent,
fool kinship verification systems into wrongly predicting a
biological relationship. Such deception poses serious risks
in contexts such as child trafficking and immigration fraud,
where verifying family ties is vital for safety and justice. To
address this, we construct a comprehensive morphed dataset
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at various morphing ratios (e.g., 95-5, 90-10, 80-20, 70-30,
60-40, and 50-50, through blending of a child and a random
parent images) and evaluated the robustness of different
kinship verification models trained with two different loss
optimizing strategies. We then assess the robustness of the
model and analyze the morphing thresholds (morph ratio)
at which it incorrectly classifies non-kin as kin. This study
uncovers the vulnerabilities in current kinship models and
highlights the need for morphing-aware verification systems.

II. RELATED WORK

Early kinship verification research often uses handcrafted
features such as Local Binary Patterns (LBP) [5] and His-
togram of Oriented Gradients (HOG) [10], followed by tra-
ditional classifiers such as Support Vector Machines (SVM)
and Random Forests [7]. These approaches offer limited
performance due to their inability to capture complex facial
variations. With the emergence of deep learning, models such
as DeepFace [16] and VGG-Face [26], research started to
leverage convolutional neural networks (CNNs) to extract hi-
erarchical facial features. The availability of kinship-specific
datasets, including KinFaceW [23] and TSKinFace [25], fur-
ther promotes data-driven kinship modeling in the research
community.

Recent techniques introduce Siamese networks [22] and
supervised contrastive learning [31] to improve verifica-
tion accuracy by learning discriminative embeddings and
contrasting kin and non-kin pairs. OR2Net [18] proposes
an online re-weighting strategy that emphasizes kin-related
facial regions, achieving state-of-the-art results. However,
most existing research focuses exclusively on genuine kin
relationships and overlooks the threat of morphed images.
Morphing attacks gain attention in face recognition studies,
where researchers develop GAN-based morphing detection
methods [29] and Transformer-based spoofing defenses [30],
but kinship verification remains largely unexplored in this
context. Our work fills this gap by systematically analyzing
how kinship models respond to morphing-based deception.
We examine different morphing ratios to identify how models
begin misclassifying non-kin pairs as kin, revealing critical
weaknesses in current verification systems and emphasizing
the need for morphing-aware defenses. The different morph
ratios will ensure a trade-off between an attack image’s
naturalness and fooling rate.
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III. PROPOSED FACE MORPH DATASET

This study utilizes the TSKinFace dataset [25] for kinship
verification and kinship morph generation. The TSKinFace
dataset [25] is a benchmark dataset for kinship verification,
containing facial images of Father (F), Mother (M), Son (S),
and Daughter (D). We organize these into three categories:
Father-Mother-Daughter (FMD), Father-Mother-Son (FMS),
and Father-Mother-Son-Daughter (FMSD), each containing
822, 855, and 912 images, respectively. To evaluate the
robustness of kinship verification models under adversarial
conditions, we propose a novel morphed dataset generated
using two approaches: (1) traditional image morphing via
OpenCV [8] and (2) a generative model-based technique us-
ing Denoising Diffusion Probabilistic Models (DDPMs) [13],
[27]. Both methods aim to synthetically blend the facial
features of a child and a random non-biological parent from
the TSKinFace dataset to create realistic, deceptive morphed
images. These morphed images are then categorized similarly
to the original TSKinFace dataset, that is, FMD, FMS, and
FMSD, facilitating consistent evaluation.

In the traditional OpenCV method, we adopt a simplified
face-morphing approach based on pixel-level blending to
generate synthetic facial images. Two aligned face images
representing a child and a random parent are combined
by computing a weighted average of pixel intensities. In
addition to the traditional method, we introduce a second
variant of the morphed dataset using a diffusion-based refine-
ment approach [27]. Specifically, we first create intermediate
morphs by linearly blending a child’s and a parent’s image
at varying ratios. To enhance photorealism, these blended
images are then passed through a pretrained stable diffusion
[27], [28] image-to-image model. The visual contribution
of each identity is controlled through the blending weights,
effectively simulating morphing ratios similar to those used
in traditional approaches.

To simulate subtle and stronger levels of identity blending,
we generate morphed images at six morphing ratios: 95%
Child + 5% Random Parent, 90% Child + 10% Random
Parent, 80% Child + 20% Random Parent, 70% Child +
30% Random Parent, 60% Child + 40% Random Parent, and
50% Child + 50% Random Parent. These variations allow
us to study the threshold (morph ratio) at which kinship
verification models begin misclassifying non-kin pairs as
kin, highlighting vulnerabilities in real-world scenarios such
as human trafficking or identity fraud. Figure 1 illustrates
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Example morphed images generated at different morphing ratios where a non-kin child aims to gain the kinship identity of a random parent.

sample morphed images using OpenCV at different blending
ratios, showcasing how a non-kin child can gradually adopt
features of a random parent to deceive a verification model.
Unlike existing face-swapping or deepfake methods [15],
[19], which often aim to transfer identity or attributes without
explicit control over identity proportion, our dataset intro-
duces graded control over feature dominance. This provides
a more nuanced testbed for analyzing kinship verification
robustness under morphing attacks.

IV. KINSHIP VERIFICATION MODELS

We employ a Siamese network [9] architecture with three
different CNN backbones: Custom CNN, ResNet50 [12],
and ConvNeXt-Tiny [11] models. This network processes a
pair of images (parent and child) through identical feature
extractors. The extracted embeddings are then compared
using distance metrics such as the L2 norm and feature
concatenation to determine the probability of kinship. In
the feature concatenation setup, a pair of images (parent
and child) is passed through identical feature extractors to
obtain embeddings. These are then concatenated and passed
through a fully connected layer to determine the probability
of the image pair being a kinship. The architecture for the
verification of kinship based on L2 norms and concatenation-
based characteristics is shown in Figure 2. Additionally,
we evaluate kinship verification using GLANet [17] and
MagFace [21], both leveraging feature concatenation. We
further include experiments with the KFC model [24], a
widely adopted framework for kinship verification tasks. The
vulnerability assessment of various models ensures that the
findings presented in this paper are robust and highlight the
need to develop a robust kinship verification architecture. The
used kinship verification models are described as follows:

e Custom CNN (C-CNN): A lightweight 12-layer net-
work consisting of three convolutional layers (with 64,
128, and 256 filters), followed by ReLU activations and
MaxPooling. The final fully connected layer outputs a
128-dimensional feature vector. Features extracted from
the parent and child images are concatenated and passed
through dense layers for kinship classification.

o ResNet-50: A deep residual network [12] pre-trained
on ImageNet, used by removing the classification head.
The resulting 2048-dimensional embeddings from both
images are concatenated and fed to a classification head
for kinship verification.
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Fig. 2. Proposed kinship verification architecture using L2 distance and feature concatenation.

o ConvNeXt-Tiny: We extract 768-dimensional feature
from this transformer styled architecture [11] and con-
catenated for classification network training.

o GLANet (Global-Local Attention Network): In
our implementation of GLANet [17], we incorpo-
rate two complementary feature extractors: ResNet-
50 for capturing local facial details, and PVTv2-B0
(a transformer-based backbone) for modeling global
contextual features. Features from both backbones are
projected into a lower-dimensional space and concate-
nated before being embedded into a joint representation.

o MagFace: This model [21] produces magnitude-aware
embeddings tailored for facial identity, within a Siamese
network framework. Each image pair is passed through
a shared MagFace backbone (iResNet-100), followed by
a fully connected layer to generate compact descriptors.

« Kinship Verification with Fair Contrastive Loss and
Multi-Task Learning (KFC Model): It integrates Fair
Contrastive Loss (FCL) to reduce bias and Multi-Task
Learning (MTL) to jointly learn kinship classification
and facial attribute prediction, improving robustness and
fairness [24].

A. Model Learning Strategy

We train the deep-learning models for kinship verification
using real parent-child pairs and test their robustness against
morphed child images. The kinship verification framework
leverages CNN-based and transformer-based architectures
and employs two primary strategies for learning facial
similarity: L2 distance with contrastive loss and feature
concatenation with binary cross-entropy loss. The standard
training configuration includes a batch size 32, a learning rate
0.0001, binary cross-entropy loss, and the Adam optimizer.
The KFC model is trained with a batch size of 32, and
fairness-aware contrastive loss is used to optimize parameters
using an Adam optimizer with a learning rate of 10~6. This
learning strategy allows us to assess how different feature
extractors perform under adversarial testing conditions (i.e.,
with morphed images) and how well they generalize beyond
real kinship pairs. The models are trained with clean kinship
pairs but evaluated on clean (100:00 ratio) and different
morph ratio images.

V. KINSHIP VERIFICATION RESULTS AND ANALYSIS

This section presents the performance of various models
for kinship verification on the morphed datasets, with a

TABLE I
FOOLING RATES (%) OF KINSHIP VERIFICATION MODELS ON OPENCV
AND DDPM MORPHED DATASETS USING L2 NORM STRATEGY.

Ratio OpenCV DDPM
C-CNN  ResNet-50 ConvNeXt C-CNN  ResNet-50 ConvNeXt

100:00 16.82 22.40 16.34 16.82 22.40 16.34
95:05 47.17 43.89 46.66 34.52 44.53 16.50
90:10 50.98 47.28 51.54 39.82 46.21 18.90
80:20 73.26 52.77 59.61 47.56 50.89 20.23
70:30 78.62 66.52 68.72 53.47 53.79 22.58
60:40 86.13 72.61 7579 59.50 59.56 31.39
50:50 91.03 78.58 86.96 68.51 70.15 49.88

systematic vulnerability analysis based on morphing ratios
using the fooling rate, which is computed as follows:

__ No. of Non-Kin Images Classified as Kin
- Total No. of Non-Kin Images

Fooling Rate (%) x 100

Table I displays the fooling rates of kinship verification
models on the clean (100:00) and morphed dataset generated
by OpenCV and DDPM, evaluated using L2 distance. As
observed, the fooling rate increases with a higher con-
tribution of parental features in the morph, showing that
models are progressively more susceptible to synthetic ma-
nipulations. Among all configurations, C-CNN at the 50:50
morphing ratio yields the highest fooling rate of 91.03% on
the OpenCV dataset, demonstrating extreme susceptibility.
ConvNeXt showcases the second-highest fooling rate of
86.96% for the OpenCV dataset, but on the other hand, it
has the lowest fooling rate of 49.88% for the DDPM dataset.
The increasing trends and significant vulnerability across all
models and strategies highlight the serious risk that morphed
images pose to kinship verification systems. These findings
reinforce the need for more robust and morph-resilient kin-
ship verification models, especially in contexts such as child
trafficking detection, where generative morphing attacks can
exploit system vulnerabilities.

Table II shows the kinship verification fooling rates of
various models trained using the feature concatenation strat-
egy on the proposed OpenCV morphed dataset. Again, as the
proportion of parental features increases in the morphed child
image, all models show a notable increase in the fooling rate,
meaning the models are progressively more likely to classify
non-biological pairs as kin incorrectly. The seriousness of
this can be seen from the fact that even when the morph
ratios are high (say 50-50), the generated morph images
do not contain visual artifacts to be caught by any external
examiner. Interestingly, sophisticated architectures, including



TABLE I
FOOLING RATES (%) AT VARIOUS MORPHING RATIOS FOR DIFFERENT MODELS ON OPENCV AND DDPM DATASETS USING FEATURE
CONCATENATION STRATEGY.

Ratio ResNet50 C-CNN ConvNeXt GLANet MagFace

OpenCY DDPM OpenCV DDPM OpenCV DDPM OpenCYV DDPM OpenCV DDPM
100:00 32.12 32.12 23.36 23.13 24.82 24.82 10.21 09.98 22.40 21.36
95:05 41.12 42.43 47.06 58.11 50.37 28.42 28.20 49.13 32.26 46.78
90:10 43.57 44.45 49.82 60.05 55.01 29.01 34.85 52.60 38.56 48.70
80:20 58.12 50.64 55.41 65.62 62.33 31.59 42.36 54.09 44.73 51.18
70:30 65.78 58.87 60.28 69.66 65.96 37.95 49.68 56.80 53.19 55.22
60:40 72.44 63.50 68.87 74.43 75.59 44.48 58.55 59.26 65.68 58.42
50:50 78.21 75.12 70.83 79.31 79.21 51.03 62.34 61.33 75.15 6591

= ® at a 50% child + 50% parent ratio, the accuracy is high,

g as the increased parental features make the model easy to

= misclassify non-kin as kin. This analysis demonstrates that

% as the contribution of parental features increases in morphed

* images, the model shifts towards classifying them as kin

with greater accuracy. Also, the L2 strategy consistently
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Fig. 3. Fooling Rates (%) of KFC Model on OpenCV Dataset.
transformer-based models such as MagFace and GLANet,
demonstrate significant susceptibility, leaving a substantial
security gap in the kinship verification systems. Specifically,
MagFace achieves a fooling rate of 75.15% and 65.91%
on OpenCV and DDPM morphed datasets, respectively.
ConvNeXt-Tiny surpasses all other models, with the highest
fooling rate of 79.21% at the 50:50 morphing ratio in the
OpenCV morphed dataset. Moreover, the vulnerability trend
is similar in the DDPM morphed dataset; we observe that C-
CNN gets fooled most at a 50:50 morph ratio. As morphing
approaches increasingly balance child and parent features,
the boundary between genuine kin and forged similarity
becomes blurred, particularly evident in the 50:50 ratio,
where model predictions are most compromised.

Fig. 3 presents the fooling rates of the KFC model on the
OpenCV morphed datasets across different blending ratios. It
has the highest accuracy of 54.86% for the OpenCV morph
dataset at a 50:50 morph ratio. The KFC model demonstrates
a similar vulnerability trend to other models, showcasing that
no verification model is secure.

Discussion: The results underline the importance of in-
corporating morph-aware defense mechanisms in kinship
verification pipelines, especially in sensitive domains such
as child trafficking detection, where adversarial manipulation
can severely undermine system reliability. As the percentage
of parent features in morphed images increases, the model
becomes more confident in classifying the image as kin.
At a 95% child + 5% parent ratio, the accuracy of kinship
verification is low, indicating that the model struggles to rec-
ognize kinship due to the high dominance of child features,
which is genuinely a non-kin to a random parent. Conversely,

shows higher fooling rates than feature concatenation for the
OpenCV morphed dataset, suggesting that simple distance
metrics can also be more vulnerable to morphing attacks.

VI. CONCLUSION

This study explores vulnerabilities of deep kinship ver-
ification models by proposing multiple morphed parent-
child datasets. Unlike traditional morphing methods, we
systematically vary morphing ratios to assess their impact
on kinship verification accuracy. We train and evaluate
various deep learning models, covering pure convolutional
and transformer models, to determine their effectiveness in
distinguishing kin from non-kin. For similarity computation,
we employ both L2 distance and feature concatenation strate-
gies. Our results reveal a critical threshold at which non-
kin morphed images, containing increasing proportions of
random parental features, are misclassified as kin. This trend
becomes especially evident at higher morphing ratios, such
as 50:50, where fooling rates peak across all models. Being
the first-ever such detailed study, our findings have critical
implications for applications such as forensic investigations,
missing person identification, and child trafficking detection,
where precise kinship verification is essential. Therefore, the
high susceptibility of models to morphed images underscores
the urgent need for robust verification frameworks. While
this study offers key insights into current vulnerabilities,
future work could explore further refinement of kinship
verification models, including adversarial training, attention-
based filtering, and feature disentanglement, which could
help develop models more resilient to manipulation and
deception.
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