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Abstract

In-context learning (ICL) is a critical emerging
capability of large language models (LLMs),
enabling few-shot learning during inference by
including a few demonstrations (demos) in the
prompt. However, it has been found that ICL’s
performance can be sensitive to the choices
of demos and their order. This paper investi-
gates an unexplored new positional bias of ICL
for the first time: we observe that the predic-
tions and accuracy can drift drastically when
the positions of demos, system prompt, and
user message in LLLM input are varied. This
bias, we refer to as DEMOS’ POSITION IN
PROMPT bias (DPP bias). We design a sys-
tematic evaluation pipeline to study this type
of positional bias across classification, QA,
summarization, and reasoning tasks. We in-
troduce two metrics, ACCURACY-CHANGE and
PREDICTION-CHANGE, to quantify net gains
and output volatility induced by demos’ po-
sition change. Extensive experiments on ten
LLMs from four open-source model families
(QWEN, LLAMA3, MISTRAL, COHERE) ver-
ify that the bias significantly affects their ac-
curacy and predictions: placing demos at the
start of prompt yields the most stable and accu-
rate outputs with gains of up to +6 points. In
contrast, placing demos at the end of the user
message flips over 30% of predictions without
improving correctness in QA tasks. Smaller
models are most affected by this sensitivity,
though even large models do remain marginally
affected on complex tasks.

1 Introduction

The rapid evolution of large language models
(LLMs) has redefined the boundaries of machine
learning, enabling unprecedented few-shot and
zero-shot generalization across tasks like classi-
fication, question answering, and summarization
(Brown et al., 2020; Radford et al., 2019). Central
to this paradigm shift is in-context learning (ICL),
where models dynamically adapt to new tasks by
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Figure 1: Four configurations of demos’ position in prompt
(DPP) from §3: ssp (Start of System Prompt), esp (End of
System Prompt), sum (Start of User Message, default), and
eum (End of User Message). Their results with QWEN-1.5B
on AG news datasets are reported on the right: Their accuracies
vary drastically and the percentage of changed predictions
(compared to default sum) can be up to 45.5%.

processing demos embedded directly in the input
prompt. Recent work has exposed critical vulner-
abilities: minor perturbations to demo ordering
or demo count (Lu et al., 2022) can degrade per-
formance unpredictably. This brittleness not only
undermines reproducibility but also challenges as-
sumptions about LLMs’ capacity for systematic
reasoning, raising urgent questions about whether
current models truly learn from context or merely
exploit superficial patterns.

We discover a novel positional bias in in-context
learning (ICL): DPP bias, in which moving an un-
changed block of demos from the start of a prompt
to the end can swing task accuracy by up to 20 per-
centage points and flip almost half of a model’s
predictions (see Fig. 1). This phenomenon, purely
spatial, independent of demo content, challenges
the widespread assumption that large language
models (LLMs) learn robustly from any properly
formatted context.

Despite growing awareness of prompt sensitiv-
ity, the role of demo positioning where demos are
placed relative to instructions, queries, or other
contextual elements remains underexplored. Prior
studies have focused primarily on demo selection



(Liu et al., 2022), or template phrasing (Cho et al.,
2024; Voronov et al., 2024), leaving a gap in under-
standing how spatial arrangements modulate ICL
efficacy. This paper addresses this gap through a
systematic investigation of positional effects across
eight tasks spanning classification, reasoning, and
generation. By conducting controlled studies on
models like LLAMA-3 (1B, 3B, 8B, 70B) and
MIXTRAL_8X7B, we demonstrate that strategic
placement (e.g., clustering critical demos near task
instructions) can yield performance swings, even
when demo content remains identical.

Our work makes five complementary contribu-
tions. 1. We first uncover and quantify a previously
unreported positional bias (DPP bias) in in-context
learning, showing that simply relocating an identi-
cal demo block within the prompt can shift accu-
racy by up to 50 percentage points while flipping
nearly half of a model’s predictions. 2. Building
on this insight, we design a controlled evaluation
pipeline that isolates four canonical demo place-
ments, at the start or end of the system prompt and
at the start or end of the user message, so that any
performance change is attributable purely to posi-
tion. 3. To capture both net performance shifts and
output volatility, we introduce two task-agnostic
metrics, accuracy-change and prediction-change.
Using this framework, 4. we conduct the first large-
scale empirical study of positional effects across
eight tasks and ten state-of-the-art LLMs, revealing
a consistent primacy bias that becomes less severe
as model size grows. 5. Finally, we translate these
findings into practical guidelines.

2 Related Work

In this section, we review existing literature on posi-
tional biases in in-context learning (ICL). We orga-
nize the discussion into three subsections: internal
demo-order bias, mechanistic hypothesis, and the
role level gap spatial placement.

2.1 Internal Demonstration-Order Bias

Prompt-order sensitivity is a well-established phe-
nomenon in in-context learning (ICL). Lu et al.
(2022) demonstrated that merely permuting the or-
der of demonstrations can lead to accuracy fluctu-
ations of approximately +15% in reasoning tasks,
such as arithmetic and commonsense question-
answering. Similarly, Min et al. (2022) found that
large language models (LLMs) frequently exploit
superficial lexical overlaps between demonstrations

and queries rather than learning robust semantic
mappings. Zhao et al. (2021) further showed that
demonstration order significantly impacts few-shot
outcomes and this was also supported by Wang
et al. (2023) who found that ChatGPT predomi-
nantly favors earlier listed labels in classification
tasks, while Wei et al. (2022b) indicated that rea-
soning gains from Chain-of-Thought (CoT) ratio-
nales heavily depend on their positioning within
prompts. These studies underscore the fragility of
ICL to superficial prompt characteristics, motivat-
ing further exploration into position-related biases.
Our study departs from these works by holding the
internal order fixed and relocating the entire demo
block to different prompt regions.

2.2 Mechanistic Hypothesis

Recent research attributes positional bias in
transformer-based models to intrinsic architectural
tendencies, notably primacy bias and induction
heads. Olsson et al. (2022) and Chan et al. (2022)
highlight that transformers disproportionately em-
phasize early tokens due to induction head mecha-
nisms, causing initial context to steer subsequent
predictions significantly. Similarly, Xiao et al.
(2024) note sequential processing biases towards
earlier context, which impact performance when
crucial information appears later in the sequence.
Additionally, Liu et al. (2023) observed that tokens
in the middle positions of sequences receive less
attention, leading to performance degradation.
Bietti et al. (2023) further supports this by linking
primacy bias to underlying transformer memory
mechanisms. While these hypotheses illuminate
why order matters, empirical work on how they in-
teract with prompt roles (system vs. user) is scarce.
We provide the first role-aware stress test of these
mechanisms.

2.3 Spatial Placement (Role-Level) Gap

While prior ICL research extensively explores the
selection of demonstrations, relatively little atten-
tion has been paid to their precise spatial place-
ment within prompts. Studies such as Cho et al.
(2024), Reynolds and McDonell (2021), and Web-
son and Pavlick (2022) prioritize choosing seman-
tically relevant demonstrations and designing tai-
lored prompt templates but overlook how the exact
location of demonstration blocks, particularly rela-
tive to system and user roles, might independently
affect model outcomes. Our study addresses this
gap by explicitly varying demonstration placement



across prompt roles, highlighting an overlooked
but critical dimension of prompt structuring for
achieving reliable ICL performance.

3 Methodology

We present a systematic framework to investigate
how the position of in-context demos within a
prompt affects model performance. Our approach
formalizes the problem of DPP bias, defines the
range of demonstration placements considered, and
outlines an evaluation pipeline for measuring per-
formance variations.

3.1 Problem Formulation

We focus on the classical in-context learning sce-
nario, where a large language model (LLM) is
given a small set of demonstrations along with a
query, all concatenated into a single prompt. For-
mally, let 7 be a set of tasks (e.g. sentiment clas-
sification, QA, etc.), and for each task 7 € T, let
D, be a set of N demonstrations and () a set of
evaluation queries. For a given query g € Q-, we
construct a prompt P that combines some or all
examples from D, with ¢. Crucially, our study
keeps the content of P (the instruction, the exam-
ples in D, and the query ¢) fixed, and manipu-
lates only the structural position of the demonstra-
tion block within the prompt. We define positional
bias (or spatial confounder effect) as any change
in the model’s performance on the query set ),
that arises solely from where the demonstrations
appear in P, rather than which demonstrations are
provided. Essentially isolating how the different
structural positions affect the model output.

3.2 Demo Positions: Definitions

In many recent instruction tuned LLMs, a prompt
can include a system prompt, which is then fol-
lowed by the user message (chat-style format). We
leverage this structure to define four distinct canon-
ical demonstration positions where a block of &
demos can be inserted in the prompt. These four
configurations, illustrated in Figure 1 are defined
as followed:

e Start of System Prompt (ssp): The demos
block is placed at the very beginning of the
system message, before any instructional con-
tent.

* End of System Prompt (esp): The demos
block is placed at the end of the system mes-

sage, after any general instructions but still
before the user’s query.

o Start of User Message (sum): The demos
block is inserted at the beginning of the user
message, before the actual query text.

* End of User Message (eum): The demonstra-
tion block is appended at the very end of the
user message, after the query.

Figure 1 provides a schematic diagram of these
four positions. It shows whether the demos re-
side in the system vs. user section of the prompt
and whether they appear at the start or end. Intu-
itively, ssp and esp represent placing demonstra-
tions before the user’s question, whereas sum and
eum place them before and after the user’s question
respectively.

3.3 Evaluation Metrics

We report the task-specific metrics recommended
by prior work: Accuracy for multiple-choice
(MCQ) problems, F; and Exact Match for ex-
tractive question answering (QA), and ROUGE-L
and BERTScore for summarization. Aside from
the suggested metrics, to understand the per ques-
tion by position transitions, we also report other
metrics:

Accuracy Change. Accuracy Change A etric di-
rectly quantifies how adding demonstrations at a
given position influences the model’s overall task
performance relative to zero-shot. Formally,

Afiimetric = Metricposition — Metriczero-shot (1)

A positive Agpeiric| indicates that placing demos
in that location helps the model make more cor-
rect predictions, while a negative value means the
demonstrations actually degrade performance. By
isolating the net gain or loss in accuracy, this metric
cleanly attributes performance differences to spa-
tial placement of the same content, enabling fair
comparison across positions, models, and tasks.

Prediction Change. Prediction Change Apeq
measures the volatility of individual model outputs
induced by demonstration placement. It is defined
as

#answer flips
#Q

"metric = Accuracy, Exact Match, ROUGE-L

(@)

Apred =



where #0Q is the total number of evaluation
queries, and #answer flips counts all instances
whose predicted outputs flips when going from the
default ICL position(sum) to the other in-context
positions. High A4 reveals that demonstration
placement strongly perturbs the model’s decision
boundary, even if net metric gains are small.
Remarks We propose a systematic framework
to investigate how the structural position of in-
context demonstrations affects large language
model (LLM) performance. Our study isolates po-
sitional effects by controlling for prompt content
while varying the location of a fixed demonstration
block. We define four canonical positions within
a prompt, ssp, esp, sum, and eum, which differ in
whether demos are placed within the system or user
section, and whether they precede or follow the
query. These positions are visualized in Figure 1.

4 Empirical Results

We evaluate how demonstration position affects
model performance both in terms of net accuracy
change relative to zero-shot, and in terms of answer
volatility (prediction flips)

4.1 Positional Bias across Tasks

A consistent and pronounced pattern emerges
across our benchmark datasets: demonstrations po-
sitioned at the beginning of prompts (ssp or esp)
reliably outperform placements later in the prompt
(eum) and frequently surpass the default ICL po-
sition (sum). Throughout our experiments, we set
the number of demos to five. We keep the demos
in the demos block and identical across these con-
ditions, so that any performance differences can
be attributed purely to positional effects. (Any
additional prompt formatting details and exact tem-
plates used for each position are provided in the
Appendix. §A.2 & §A.3)
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Figure 2: Accuracy Change (comparing to zero-shot) of the
four DPPs across four datasets, averaged over all models.
The ssp achieves the greatest improvement over zero-shot
across all four datasets (note the winner may vary for different
models as shown in Fig. 8-10).

Classification and QA Tasks. Across MNLI, AG
NEWS, ARC, and MMLU, placing demonstrations
at ssp yields the most consistent accuracy improve-
ments (Figure 2). Notably, MMLU shows a +18%
gain in accuracy over the zero-shot baseline under
ssp. For QA tasks like SQUAD, ssp similarly out-
performs later placements, while eum consistently
underperforms.
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Figure 3: Prediction change (comparing to sum) ratios of
the three DPPs (excluding sum) across four datasets. The
eum position shows the largest variability on the mmlu dataset.

Arithmetic Tasks. Arithmetic reasoning exhibits
scale-sensitive trends. When evaluated, models
with smaller parameter sizes (1.5B - 8B) are con-
sistent in preferring demos being placed in the ssp,
esp positions. For LLAMA3 3B, moving demos
from ssp to eum causes a drop in improved pre-
diction rate: GSMS8K falls from 42.0% to 11%,
and SQUAD from 47.0% to 26.5%. Conversely,
LLAMA3 70B benefits from eum, improving from
21.5% to 88% on GSM 8K, suggesting that model
capacity modulates the effect of position.

Generative Summarization. Performance volatil-
ity is most severe in generation tasks. On
LLAMA3 3B, XSUM sees a drop from 82.5%
to 27.5% improved predictions when shifting from
ssp to eum, while CNN/DAILYMAIL drops from
49% to a mere /%. These effects percist even in
large models, albeit with reduced severity.

4.2 Scaling Law of Performance Robustness

To better understand how positional robustness
varies with model scale, we analyze the percentage
of changed and improved predictions across the
four prompt positions. Across all tasks, we observe
that larger models generally exhibit reduced predic-
tion volatility (% changed) and enhanced perfor-
mance stability, but the degree of robustness is task-
dependent and not uniformly monotonic with size.

Stability Trends Across Tasks. On classification
tasks such as AG News, MNLI, and ARC, larger
models (e.g., QWEN 72B, LLAMA3 70B) exhibit
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Figure 4: Prediction change (vs. zero-shot) and accuracy change (vs. sum) of the four DPPs when applied to 10 LLMs of
different sizes (1.5B to 72B) on MMLU. Both metrics reveal a weak scaling law: as the model scale increases, the variations
caused by DPPs in accuracy and prediction from baselines gradually decline.

reduced sensitivity to prompt position changes, es-
pecially for early-positioned demonstrations (ssp,
esp). For example, on MNLI, the percentage of pre-
dictions that change when moving from sum to ssp
drops below /0% for LLAMA3 70B, compared
to over 20% for LLAMA3 3B. Meanwhile, accu-
racy improvements over zero-shot are consistently
higher for early positions but show greater spread
across mid-sized models (e.g., 7B-32B). This in-
dicates that while small models benefit from posi-
tional tuning, they are also more fragile to changes.

On question answering tasks like SQuAD and
GSMSK, the pattern is more nuanced. For GSMSK,
the change rate remains above 90% across nearly
all models and positions, indicating high sensitivity
to demonstration placement. However, the percent-
age improvement fluctuates non-monotonically:
models like MISTRAL 8X7B under-perform with
ssp placement relative to both smaller and larger
models, and LLAMA3 70B shows a complete col-
lapse in improvement under ssp, contrasting its
robustness on other tasks. This suggests arithmetic
reasoning requires specialized inductive biases that
do not scale uniformly with size.

In summarization tasks such as XSUM and
CNN/DAILYMAIL, the percentage of prediction
changes is consistently near /00% for the eum po-
sition, even in the largest models. This reflects
that downstream text generation is highly suscepti-
ble to positional shifts. Notably, larger models like
QWEN-72B still exhibit drops in % improved when
moving from ssp to eum, albeit less drastically than
smaller counterparts. On CNN/DailyMail, eum im-
proves only 1% of predictions for LLAMA3-3B,
compared to 49% under ssp, while LLAMA?3-

70B narrows that gap considerably.

4.3 Analysis of DPP induced Transitions

While accuracy-based evaluations reveal global
trends in positional effectiveness, they can obscure
local instability in model behavior. To uncover
finer-grained effects, we visualize the answer tran-
sitions between correct and incorrect predictions
using Sankey diagrams.
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Figure 5: Correct-Incorrect Transition from the default
baseline DPP “sum” to ssp, esp, and eum when applied to
LLAMA3-3B model on XSUM benchmark. Green and red
bars denote the accuracy and error rate, respectively. Left and
right bars are associated with the baseline and a specific DPP.
We also report the percentage of examples that change from
Incorrect—Correct (I -> C) and Correct—Incorrect (C -> I).

Volatility Patterns Across Tasks. Across the eight
evaluated tasks, we observe a recurring pattern:
later-positioned demos (eum) cause significantly
more answer flips than earlier positions (ssp, esp).
This suggests that placing demonstrations after the
query can inject instability into model decision-
making, especially in models with fewer inductive
biases or weaker context modeling capabilities.

In Figure 5, we see this volatility concretely for
LLAMAZ3 3B on MMLU, where moving from ssp
to eum causes a large number of transitions from
correct to incorrect answers. Similar patterns are
seen on:



* AG News: Smaller models like QWEN 1.5B
exhibit over 40% incorrect-to-correct transi-
tions under ssp, which plummet under eum.

* CNN/DailyMail: MISTRAL 8X7B shows one
of the most volatile behaviors, with many cor-
rect answers flipping to incorrect under late-
positioned demos (Fig. 6).

* GSMSK: Predictions by models like QWEN
72B and LLAMA3 70B still flip a lot across
positions, despite their scales (Fig. 7).
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Figure 6: Correct-Incorrect Transition on CNN/ DAI-
LYMAIL for MISTRAL-8X7B. The high transition ratios
between incorrect and correct samples indicate the sensitivity
to the change of DPP.
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Figure 7: Correct-Incorrect Transition on GSM8K for
QWEN-72B. Even for the largest model evaluated in this pa-
per, >50% predictions are changed when using different DPP.

Together, these transition plots reveal that the
same input content,when moved across prompt sec-
tions can yield drastically different outputs. The
effect persists across models and tasks, underlining
that prompt formatting is not merely stylistic, but
functionally consequential. This volatility is espe-
cially concerning in high-stakes domains like QA
or summarization, where reliability is paramount.

Scale-Driven Shifts in Optimal Position. Impor-
tantly, the position yielding the best improvement
is not consistent across model sizes. On ARC, ssp
dominates for smaller models (QWEN 1.5B to M1s-
TRAL 7B), whereas eum unexpectedly overtakes
ssp in QWEN 72B albeit marginally. Similarly,
on AG News, while ssp yields the best result for
LLAMAZ3 3B, esp becomes the strongest position
in LLAMA3 70B.

4.4 Winning DPP is Task and Model Specific

While general trends suggest that early demonstra-
tion positions (ssp, esp) often outperform later
ones (sum, eum), our analysis reveals that this

preference is not consistent across all models or
tasks. To understand this heterogeneity, we con-
duct a win—tie—loss analysis across tasks, identify-
ing which demo position performs best for each
task—model pair.
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Figure 8: Win—loss—tie of each DPP vs. zero-shot on QWEN
1.5B (averaged over all the eight benchmarks).

0
%}
©

o
%)
kel

Position
[} "
f=4 c
‘3 ‘3 | ‘

B win
B tie
B loss

o

20 40 60 80
Percent of comparisons

.
o
o

Figure 9: Win-loss—tie of each DPP vs. zero-shot on COHERE
8B (averaged over all the eight benchmarks).
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Figure 10: Win—loss—tie of each DPP vs. zero-shot on
LLAMA3 70B (averaged over all the eight benchmarks).

Figures 8, 9, and 10 illustrate this breakdown
for three representative models at different scales:
QWEN-1.5B, COHERE-8B, and LLAMA3-70B.
These win—loss—tie plots display, for each posi-
tion, the number of tasks where it yielded the best
performance (win), tied for the best (tie), or was
outperformed by another position (loss).

QWEN 1.5B (Figure 8): As the smallest model
in our suite, QWEN 1.5B strongly prefers placing
demos at the esp and ssp position. It wins on most
tasks with esp and ssp, rarely losing. This sug-
gests that smaller models are especially sensitive to
how demonstrations are front-loaded in the prompt,
likely due to limitations in long-range context inte-
gration.

COHERE 8B (Figure 9): At 8B parameters, Co-



here shows moderate flexibility. While ssp still
wins most often, sum begin to win on some tasks,
particularly XSUM and SQUAD indicating that as
model capacity grows, preferences start to shift de-
pending on task format and type (classification vs.
QA vs. generation).

LLAMA3 70B (Figure 10): In contrast to
smaller models, LLAMA3 70B shows a consistent
preference for placing demonstrations at the sum
position, that is, at the start of the user message.
Across multiple tasks, sum outperforms all other
configurations, including ssp and esp, which dom-
inate in earlier models. This suggests that larger
models like LLAMA3 70B may benefit from hav-
ing demonstrations placed in closer proximity to
the query, perhaps due to their greater ability to re-
tain relevant context across longer input sequences.

Emergent Observation: No Universally Best Po-
sition. Our results demonstrate that early positions
dominate on average but exceptions emerge for
arithmetic tasks Instead, the optimal position varies
by both model architecture and task category. For
example, in generative summarization tasks, later
positions (sum, eum) occasionally outperform early
ones, whereas in classification and reasoning tasks,
early positions (ssp, esp) are generally more reli-
able.

For completeness, we provide win—loss—tie plots
for all remaining models and also task specific plots
in the §A.8 (Figures 11-17). Collectively, they con-
firm the absence of a universally optimal position
and highlight the need for model-specific prompt
tuning.

4.5 Statistical Test of Performance Difference
between zero-shot vs. ICL with each DPP

Position 0-shot Accuracy ICL Accuracy p-value Effect Size
ssp 0.3364 0.6885 0.0022%* 1.7193
esp 0.3364 0.6950 0.0022%* 1.7000
sum 0.3364 0.6869 0.0022%* 1.7254
eum 0.3364 0.4519 0.1659 0.4140

Table 1: Comparing zero-shot vs. the four DPPs on MMLU
dataset (averaged over all models) via one-sided Wilcoxon
signed-rank test. **—statistical significance at 1%.

To quantify the reliability of performance differ-
ences across demonstration positions, we conduct
a paired statistical analysis comparing each of the
four DPPs to the zero-shot baseline.

For each dataset and DPP, we form paired sam-
ples across the available models. We then perform

a one-sided Wilcoxon signed-rank test to assess
whether the positional condition of the ICL im-
proves over baseline. Specifically, we test the
null hypothesis Hy: the median difference be-
tween the DPP and the baseline is zero, against
the alternative hypothesis H;: the median dif-
ference is greater than zero, indicating that the
DPP outperforms the baseline. The effect sizes are
calculated as the standardized mean difference of
paired differences. In addition, we apply a multi-
ple comparisons correction (using the FDR Ben-
jamini—Hochberg procedure at o = 0.05) to ac-
count for the fact that multiple hypotheses are
tested simultaneously. This analysis provides statis-
tical rigor to our evaluation, helping us determine
not just whether differences exist, but whether they
are consistently positive across models. By quan-
tifying both the statistical significance and effect
size, we can better assess the reliability and practi-
cal importance of each DPP.

5 Conclusion

This paper introduces and systematically inves-
tigates a previously overlooked dimension of in-
context learning (ICL): the effects of the positional
placement of demonstrations within LLM prompts.
Through a large-scale evaluation spanning ten open-
source models, eight NLP tasks, and four canonical
prompt positions, we uncover a consistent DPP bias,
where demos placed earlier in the prompt (ssp,
esp) yield higher accuracy and greater prediction
stability than those placed later (sum, eum). These
findings persist across both classification and gen-
erative tasks and are particularly pronounced in
smaller models.

Our analysis reveals that not only does perfor-
mance vary substantially by position, but late-
placed demonstrations (especially eum) can induce
significant prediction volatility flipping model out-
puts without improving correctness. We further
show that positional sensitivity is modulated by
both task and model scale: while larger models
demonstrate greater robustness, they still exhibit
non-trivial instability and shifting optimal positions
across tasks.

We introduce novel diagnostic tools, ACCURACY-
CHANGE and PREDICTION-CHANGE to quantify
these effects and uncover hidden volatility that
standard accuracy metrics obscure. Our win—tie—
loss analyses reinforce the key insight: no single
demonstration position is universally optimal.



Effective prompt design must therefore be both
model-aware and task-sensitive.

These findings have broad implications for prompt-
ing strategies in practice. We recommend that
users of instruction-tuned LLMs explicitly eval-
uate demonstration placement rather than relying
on default or ad hoc formats. Furthermore, posi-
tional robustness should be considered a core axis
in both prompt optimization and instruction fine-
tuning pipelines.

Future Work. Our study opens up several avenues
for follow-up research. First, deeper interpretabil-
ity work could investigate why certain positions are
privileged, whether due to attention initialization,
decoder primacy, instruction tuning templates or
training corpus conventions. Second, extending
this analysis to few-shot chain-of-thought prompts
and real-world instruction datasets (e.g., HELM,
BIG-Bench) could help generalize these insights.
Finally, developing automated demo-placement op-
timization routines that adapt position jointly with
content could offer a principled pathway toward
more robust ICL systems.

6 Ethics Statement

Our work focuses on the technical aspects of
prompt design and does not directly engage with
potentially sensitive content or private data. How-
ever, the following ethical considerations are rele-
vant:

1. Misuse of Prompt Engineering: Enhanced
control over LLM behavior through strategic
demonstration placement could be exploited
to generate deceptive or harmful content more
effectively. We encourage researchers to incor-
porate content filtering and moderation frame-
works when deploying these methods.

2. Bias and Fairness: If demonstrations carry
implicit biases (e.g., skewed label distribu-
tions or stereotypical examples), placing them
early in the prompt may amplify such biases
in model outputs. Practitioners should care-
fully curate demonstration sets and validate
outputs for unintended bias.

We believe that increasing awareness of spatial
effects in prompts will ultimately aid in design-
ing safer, more reliable LLM-based systems while
mitigating misuse and bias.

7 Limitations

While our experiments reveal robust trends in
how demonstration placement impacts LLM per-
formance, several limitations remain:

* Model Diversity: We evaluated only a small
subset of model sizes and architectures (e.g.,
7B, 13B). Larger-scale models or different ar-
chitectures (e.g., those fine-tuned on dialogue)
may exhibit different sensitivity patterns.

» Task Coverage: Though we tested multi-
ple tasks (classification, QA, summarization,
reasoning), certain tasks with more complex
structures (e.g., multi-hop retrieval or dialogic
contexts) were not explored in depth.

* Focus on English: Our results primarily fo-
cus on English data. Cross-lingual variations
in grammar, morphology, and script may lead
to different positional biases and should be
investigated further.

Automated Evaluation Metrics: We relied
on standard metrics (accuracy, F1, ROUGE)
to quantify performance. These are imper-
fect proxies for true utility, especially for gen-
erative tasks. It’s conceivable that a prompt
layout yields a higher ROUGE but lower factu-
ality, for example. We assume the metrics cor-
relate with better quality in our tasks, which
is generally accepted, but caution that “better
metric” doesn’t always mean strictly better
output in all aspects.

Addressing these limitations will be crucial for
fully understanding the impact of demonstration
placement across diverse LLMs, languages, and
application domains. We hope our findings will
catalyze more research into robust, spatially aware
prompting techniques.
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A Appendix

A.1 Foundations of In-Context Learning

The ability of large language models (LLMs) to adapt to novel tasks through in-context learning
(ICL)—Ilearning from demonstrations embedded directly in the input prompt—has emerged as a hallmark
of their generalization capabilities (Brown et al., 2020). Early studies underscored the remarkable ability
of LLMs to generalize from minimal context, a capability that was later extended to zero-shot settings
(Radford et al., 2019). Unlike traditional fine-tuning, ICL requires no gradient updates, enabling rapid
task adaptation in zero- and few-shot settings (Wei et al., 2022a). Recent works, such as Zhang et al.,
synthesize the evolution of ICL, framing it as both a practical tool for task-specific adaptation and a
window into understanding emergent behaviors in LLMs. However, these works Kim et al., 2022; Lu
et al., 2022; Yang et al., 2024; Liu et al., 2024 highlight a critical unresolved challenge: the brittleness of
ICL to seemingly minor variations in prompt structure, including the ordering (Lu et al., 2022; Liu et al.,
2024) and formatting (Kim et al., 2022; Hao et al., 2022; Yang et al., 2024) of demonstrations, as well as
the selection of the demonstrations.

A.2 Prompting LLMs

Prompt Format and Instruction-Tuning. The model families in our study (QWEN, MISTRAL,
LLAMAZ3, and COHERE) are instruction-tuned using chat-style templates that explicitly separate prompt
segments into system instructions, user messages, and assistant responses. These templates are commonly
implemented using structured tags (e.g., <|system|>, role delimiters) that guide the model’s internal
parsing of the prompt.> As a result, demonstration position within these fields (whether they appear
in the system prompt versus the user message) interacts with the model’s learned formatting biases.
Our experiments quantify this interaction and reveal a systematic spatial preference that emerges from
instruction-tuned behavior.

Model Instantiation. We wrap each LLM in a unified ChatModel interface, parameterized by model
type (e.g., LLAMA3_8B, LLAMA3_70B) and decoding settings. This abstraction ensures consistent
usage across tasks. We set the temperature to O for deterministic decoding. For multiple-choice tasks,
we cap max_new_tokens at 50, and for generative tasks, at 500.

Question Processing. For each query g, we:

1. Assemble the prompt: combine the chosen prompt template, the formatted demonstrations (possibly
shuffled or ablated), and g;.

2. Check length: as some demonstrations D, might exceed the model defined token limits, we estimate
the token length to ensure we do not exceed model limits (e.g., 8192 tokens).

3. Generate response: feed the prompt into fy via streaming token-by-token output.

’See Hugging Face’s chat template documentation: https://huggingface.co/docs/transformers/main/chat_
templating, and instruction-tuning frameworks such as LLaMA Factory: https://github.com/hiyouga/LLaMA-Factory
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A.3 Final System Prompts
* AG News

one of the following categories: World, Sports, Business, or Sci/Tech. Respond with only the
category name. Do not provide any explanations in your response. Provide your answer as a json

You are a text classification assistant. You will receive a news article and must classify it into
object with the key *Answer’.

« MNLI

You are a multi-genre natural language inference system. When given two sentences (premise and
hypothesis), determine whether the relationship is entailment, neutral, or contradiction. Handle
diverse domains including fiction, government reports, telephone speech, and more. Do not
provide any explanations in your response. Provide your answer as a json object with the key
’Answer’.

* ARC

You are a science-focused tutor who provides detailed reasoning for multiple-choice questions at
the middle-school and high-school level. You excel at scientific reasoning and can clarify your
thought process if asked. When given a question with several possible answers, identify the most
scientifically accurate choice. Do not provide any explanations in your response. Provide your
answer as a json object with the key ’Answer’.

« MMLU

You are an expert tutor with broad interdisciplinary knowledge. You can answer college-level and
advanced high-school multiple-choice questions across numerous subjects, from mathematics and
science to humanities and law. When given a question and multiple options, select the best option
based on your expertise. Do not provide any explanations in your response. Provide your answer
as a json object with the key Answer’.

* CNN/Dailymail

You are a summarization expert for news articles. Given a full news story, produce a concise
summary capturing the main points. Avoid adding personal commentary or speculative details.
Stick to the facts from the article. Do not provide any explanations in your response. Provide
your answer as a json object with the key *Answer’.

* XSUM

"You are a summarization expert for news articles. Given a full news story, produce a concise
summary capturing the main points. Avoid adding personal commentary or speculative details.
Stick to the facts from the article. Do not provide any explanations in your response. Provide
your answer as a json object with the key *Answer’.

* SQuAD

You are a reading comprehension assistant. Given a passage (context) and a question, you identify
the most accurate answer from the passage. You only rely on the provided text and avoid adding
extraneous information. Do not provide any explanations in your response. Provide your answer
as a json object with the key Answer’.
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* GSM8K

You are a math tutor specializing in grade-school arithmetic and algebra word problems. Explain
your reasoning step by step (if requested) and provide the final numeric or short answer. Emphasize
clarity and correctness in each step. Provide your answer as a json object with the key *Answer’.

DPP templates

1. ssp

-
<system>
Use the demos below as examples on how to answer the question
<DEMOS_PLACEHOLDER>
<SYSTEM_PLACEHOLDER>
<end_of_system>
<user>
<QUESTION_PLACEHOLDER>
\<end_of_user>

2. esp

-
<system>
<SYSTEM_PLACEHOLDER>
Use the demos below as examples on how to answer the question
<DEMOS_PLACEHOLDER>
<end_of_system>
<user>
<QUESTION_PLACEHOLDER>
\<end_0f_user>

3. sum

o
<system>
<SYSTEM_PLACEHOLDER>
<end_of_system>
<user>
Use the demos below as examples on how to answer the question
<DEMOS_PLACEHOLDER>
<QUESTION_PLACEHOLDER>
\<end_0f_user>

4. eum

-
<system>
<SYSTEM_PLACEHOLDER>
<end_of_system>
<user>
Answer this question <QUESTION_PLACEHOLDER>
Use the demos below as examples on how to answer the question
<DEMOS_PLACEHOLDER>
\<end_0f_user>
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A.4 Terms of use

We adhere to the terms of usage provided by the model/dataset authors.
Licenses and Citations for Model Families

* Qwen (Yang et al., 2025) : https://choosealicense.com/licenses/apache-2.0/

* Cohere (Dang et al., 2024) : https://docs.cohere.com/docs/c4ai-acceptable-use-policy ;
https://cohere.com/c4ai-cc-by-nc-license

» Mistral (Jiang et al., 2024, 2023) : https://mistral.ai/terms-of-service/ ; https://
choosealicense.com/licenses/apache-2.0/

e LLLAMA (Grattafiori et al., 2024) : ai.meta.com/1lama/use-policy ; https://huggingface.
co/meta-1lama/Meta-Llama-3-8B/blob/main/LICENSE

Licenses and Citations for datasets

* AG News (Zhang et al., 2015) : http://groups.di.unipi.it/~gulli/AG_corpus_of_news_
articles.html

e MNLI (Williams et al.,, 2018) : https://www.anc.org/0ANC/license.txt ; https:
//huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md ;
https://spdx.org/licenses/CC-BY-SA-3.0 ; https://spdx.org/licenses/CC-BY-3.0

* ARC (Clark et al., 2018) : https://huggingface.co/datasets/choosealicense/licenses/
blob/main/markdown/cc-by-sa-4.0.md

e MMLU (Hendrycks et al., 2021a,b) : https://github.com/hendrycks/test/blob/master/
LICENSE

e CNN/Dailymail (Hermann et al., 2015; See et al., 2017) : https://huggingface.co/datasets/
choosealicense/licenses/resolve/main/markdown/apache-2.0.md

e XSUM (Narayan et al., 2018) : https://github.com/EdinburghNLP/XSum?tab=MIT-1-ov-file

* SQuAD (Rajpurkar et al., 2016) : https://huggingface.co/datasets/choosealicense/
licenses/resolve/main/markdown/cc-by-sa-4.0.md

* GSM8K (Cobbe et al., 2021) : https://huggingface.co/datasets/choosealicense/
licenses/resolve/main/markdown/mit.md
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A.5 Experiment Details

We discuss below the experiment details of our work. We detail the model sizes and hyperparameters as
well as the computational resorces used.

A.5.1 Model Size and Budget

The model sized we use are between 1.5B parameters to 72B parameters:
e Llama 3: 3B, 8B and 70B (4-bit BnB)
e Mistral: 7B (4-bit BnB) and Mixture-of-Experts 8 x 7B (4-bit AWQ)
* Qwen: 1.5B, 7B and 72B (4-bit BnB)
* Cohere: 8B and 32B (4-bit BnB)

All checkpoints are loaded in 4-bit weight-only quantisation (bitsandbytes (Dettmers et al., 2022) or
AWQ (Lin et al., 2024)) with Flash-Attention v2(Dao, 2024) and a 1 000-token context window.?

Compute budget. Inference is performed on a cluster of A100 80 GB and RTX A4000 16 GB GPUs
via vLLM 0.4.0; tensor parallelism is disabled (1 GPU / model). A single 8-task x 5-demo sweep for a 70
B model requires ~ 1 GPU-hour (temperature 0, no sampling).

A.5.2 Experimental Setup And Hyperparameters
* Prompt structures. We cycle through four canonical demo slots (ssp, esp, sum, eum; see §3). Demo
counts k€{1,2,3,4,5} are enumerated; ablations drop one demo at a time.

¢ Generation parameters. Unless stated otherwise we use temperature = 0.0, top_p = 1.0,
num_beams = 1. max_new_tokens is task-dependent: 50 for classification/QA, 500 for open-ended
generation (CNN/DailyMail, XSum, GSM8K, Squad).

* Seed and reproducibility. All experiments use seed=42; we fix NumPy, Python and PyTorch RNGs
before each run.

A.5.3 Evaluation Metrics

Task family Metrics reported

Classification (MNLI, ARC, MMLU, AG News) Accuracy

Extractive QA (SQuAD, GSM8K) Exact Match, F;

Summarisation (CNN/DailyMail, XSum) ROUGE-1/2/L, BERTScore (P/R/F1)

Auxiliary readability metrics for all tasks:
Coleman-Liau, Flesch-Kincaid, Gunning-Fog

In addition, we introduce two position-agnostic measures described in §3: (i) Accuracy-A —the absolute
change from zero-shot—and (ii) Prediction-A —the fraction of queries whose answers flip when moving
demos from the sum baseline to another position. These metrics quantify net gain/loss and output volatility,
respectively, and are computed for every (model, task, position, k) tuple.

3The Mixture-of-Experts model is served with AWQ because vLLM currently lacks bitsandbytes support for 8-expert routing.
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A.6 Use of AI

ChatGPT was used in this work to rephrase sentences, and write the code to generate tables. Most captions
(Figures and Tables) were refined by Al

A.7 Additions Experimentational Results: Tables

Task

System AG News MNLI ARC MMLU

SSp  esp sum eum SSp eSp Sum eum SSp esSp Sum eum SSp esp Sum eum
Qwen_1.58 076 073 0.69 056 034 032 029 032 0.7 071 0.69 063 05 056 05 038
Qwen_7B 0.82 081 081 081 034 035 035 031 0.89 0.89 089 084 071 07 0.69 041
Qwen_728B 081 0.81 082 081 033 033 033 033 094 094 095 095 0.83 0.83 081 0.82
Cohere_8B 082 08 079 079 035 035 035 035 08 078 078 0.73 094 092 093 0.05
Cohere_32B 076 0.88 086 0.77 034 035 033 034 0.84 084 083 086 096 097 096 0.86
Mistral_7B 083 0.8 081 081 035 036 035 034 064 065 064 057 04 045 046 029
Mistral_8x7B  0.77 0.79 079 081 032 033 033 032 0.66 08 074 046 0.57 059 056 0.12
LLAMA3_3B 076 073 072 07 033 032 03 032 077 078 074 069 059 058 057 023
LLAMA3_8B 087 087 083 0.86 036 034 036 034 078 0.8 079 075 059 057 058 057
LLAMA3_70B 0.84 083 084 081 035 035 034 033 093 091 092 092 079 077 081 0.77

Table 2: Accuracy scores of ten LLMs on AG News, MNLI, ARC, and MMLU benchmarks under four prompting strategies:
ssp (demos at the start of the system prompt), esp (demos at the end of the system prompt), sum (demos at the start of the user
message), and eum (demos at the end of the user message).

Tasks
System
CNN Dailymail XSUM
ROGUE-1 ROGUE-2 ROGUE-L ROGUE-1 ROGUE-2 ROGUE-L

ssp esp sum eum Ssp esp sum eum Ssp esp sum eum Ssp esp sum eum Ssp esp sum eum ssp esp sum eum
Qwen_1.5B 035 032 034 014 013 0.12 013 001 022 02 022 009 019 019 02 012 0.04 0.04 005 001 0.3 0.13 0.14 0.09
Qwen_7B 038 038 038 023 013 013 0.13 006 024 024 024 015 024 027 026 016 006 0.07 007 001 0.16 0.19 0.18 0.13
Qwen_72B 0.41 04 039 039 015 0.14 0.14 014 025 025 024 023 025 029 031 024 0.08 0.09 o011 007 0.18 021 023 0.17
Cohere_8B 042 041 042 023 018 0.17 0.17 0.06 028 027 027 015 032 037 038 017 012 0.16 0.16 004 024 028 029 0.12
Cohere_32B 043 043 044 037 019 02 02 015 029 03 03 024 044 047 047 03 021 024 024 012 035 039 039 023
Mistral_7B 035 036 036 0.15 014 015 0.15 001 022 023 023 01 019 0.19 0.19 009 005 0.05 005 001 0.13 0.13 013 0.07
Mistral_8x7B 035 033 032 035 013 0.12 0.12 0.13 022 02 02 021 023 021 022 02 007 007 007 0.06 016 0.15 0.16 0.14
LLAMA3_3B 04 039 039 014 0.15 0.14 014 001 025 025 024 0.1 026 028 03 0.17 007 008 009 001 018 021 023 0.14
LLAMA3_8B 039 039 04 038 015 015 0.5 0.15 024 024 025 023 03 033 032 024 0.09 0.11 011 007 022 024 024 0.17
LLAMA3_70B 041 042 041 041 0.16 016 0.16 0.17 026 026 026 026 031 034 037 028 011 0.13 0.14 009 023 026 028 021

Table 3: ROUGE-1, ROUGE-2, and ROUGE-L scores for ten LLMs on the CNN/DailyMail and XSUM datasets. We evaluate
four prompting strategies: ssp (demos at the start of the system prompt), esp (demos at the end of the system prompt), sum
(demos at the start of the user message), and eum (demos at the end of the user message).

Tasks
System SQUAD GSMSK
Exact Match F1 Exact Match F1

ssp esp sum eum  SSp esp sum  eum SSp esp sum eum  SSp esp  sum  eum
Qwen_1.5B 50.5 56.5 54.5 165 6497 7121 67.12 25.63 - - - - 13 16.7 13,5 0.31
Qwen_7B 66.5 685 655 53 80.39 81.9 805 6851 - - - - 2458 43.58 4276 41.74
Qwen_72B 685 69.5 69.5 68 8326 83.82 84.02 82.62 - - - - 4556 45.68 4595 46.97
Cohere_8B 72 69 685 7 8434 83.69 8286 109 - - - - 39.02 45.82 45.87 17.67
Cohere_32B 63 645 67 58 80.66 81.66 82.83 7745 - - - - 3459 4785 4833 47.21
Mistral_7B 57 525 49 41 7455 70.64 67.87 54.01 - - - - 3219 40.11 39.63 31.14
Mistral_8x7B 515 47 445 335 69.18 65.19 63.84 5629 - - - - 2421 2771 2771 35.75
LLAMA3_3B 62 635 58 585 77.12 7845 7435 7322 - - - - 3476 3373 36.52 11.5
LLAMA3_8B 68 68 685 63 8228 82.66 83.16 7895 - - - - 38.45 40.06 39.72 42.85
LLAMA3_70B 68 675 69 68 82.66 82.7 84.09 8228 - - - - 594 578 12.07 4193

Table 4: Exact Match and F1 scores of ten LLMs on SQuAD and GSMS8K benchmarks under four prompting strategies: ssp
(demos at the start of the system prompt), esp (demos at the end of the system prompt), sum (demos at the start of the user
message), and eum (demos at the end of the user message).
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Dataset ssp esp sum eum

Qwen_1.5B
mnli 0.0171 0.0108 0.0046 0.0124
ag_news -0.2592 -0.2448 -0.2256 -0.1656
arc -0.1596 -0.161 -0.1554 -0.1386
mmlu -0.0155 -0.0185 -0.0155 -0.0095
Qwen_7B
mnli -0.0048 0.0024 0.0048 -0.0168
ag_news -0.0943 -0.0918 -0.0918 -0.0909
arc 0.137 0.136 0.137 0.128
mmlu 0.0053 0.0052 0.0051 0.0023
Qwen_72B
mnli -0.0048 -0.0064 -0.0064 -0.0048
ag_news 0.0756 0.0763 0.0777 0.0763
arc -0.518 -0.518 -0.5215 -0.5215
mmlu -0.3965 -0.3965 -0.3873 -0.3904
Cohere_8B
mnli -0.003 -0.003 -0.003 -0.003
ag_news 0.5952 0.5712 0.5616 0.5616
arc -0.1728 -0.1674 -0.1688 -0.1553
mmlu -0.4125 -0.4042 -0.407 0.0743
Cohere_328B
mnli -0.0158 -0.004 -0.0237 -0.0158
ag_news 0.3941 0.4828 0.4722 0.4012
arc -0.3699 -0.3699 -0.3672 -0.3807
mmlu -0.4882 -0.4946 -0.4914 -0.4284
Mistral_7B
mnli 0.045 0.055 0.045 0.035
ag_news 0.4209 0.4002 0.4071 0.4105
arc 0.4361 0.445 0.4406 0.3827
mmlu 0.142 0.1775 0.1846 0.0674

Mistral_8x7B

mnli 0.0041 0.0061 0.0061 0.0041
ag_news -0.158 -0.1653 -0.1638 -0.1696
arc 0.4845 0.6223 0.5653 0.2993
mmlu 0.1687 0.1778 0.162 -0.0337
LLAMA3_3B
mnli 0.0018 -0.0018 -0.009 -0.0018
ag_news -0.11 -0.1056 -0.1023 -0.099
arc -0.3186 -0.3213 -0.3024 -0.2754
mmlu -0.0675 -0.066 -0.0637 -0.0135
LLAMA3_8B
mnli 0.0126 0.0054 0.0126 0.0036
ag_news -0.4536 -0.4536 -0.4248 -0.4464
arc -0.2644 -0.2706 -0.2685 -0.2521
mmlu 0.016 0.0154 0.0156 0.0152
LLAMA3_70B
mnli 0.0068 0.0068 0.0051 -0.0017
ag_news 0.054 0.0535 0.0544 0.0508
arc -0.6715 -0.6545 -0.663 -0.663
mmlu -0.354 -0.3393 -0.3629 -0.3422

Table 5: Transition metrics for four benchmarks (MNLI, AG News, ARC, and MMLU)) across ten LLMs under different in-context
demonstration placements. For each model and dataset, the entry shows the performance delta (relative to the zero-shot baseline)
under each placement strategy: ssp, esp, sum, and eum.
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Dataset ssp esp sum eum

Qwen_1.5B
mnli 0.4488 0.4426 0.4364 0.4442
Xxsum 0.0167 0.0139 0.0236 -0.0263
squad 0.0089 0.1059 0.0422 -0.602
gsm8k 9.2178 12.1266 9.6114 -0.7547
ag_news 0.3752 0.3896 0.4088 0.4688
cnn_dailymail -0.0136 -0.0319 -0.0114 -0.1755
arc 0.4426 0.4412 0.4468 0.4636
mmlu 0.5 0.497 0.5 0.506
Qwen_7B
mnli 0.4208 0.428 0.4304 0.4088
xsum 0.0344 0.0614 0.0581 -0.0081
squad 0.0646 0.0846 0.066 -0.0927
gsm8k 7.7581 14.5307 14.2375 13.8742
ag_news 0.4447 0.4473 0.4473 0.4482
cnn_dailymail 0.0164 0.017 0.0199 -0.0956
arc 0.578 0.577 0.578 0.569
mmlu 0.5021 0.502 0.5019 0.4991
Qwen_72B
mnli 0.4456 0.444 0.444 0.4456
xsum 0.044 0.0767 0.0999 0.0345
squad 0.042 0.0489 0.0515 0.034
gsm8k 9.7468 9.7755 9.8384 10.0803
ag_news 0.5434 0.5441 0.5455 0.5441
cnn_dailymail 0.0299 0.0238 0.0173 0.0088
arc 0.1885 0.1885 0.185 0.185
mmlu 0.2987 0.2987 0.3079 0.3048
Cohere_8B
mnli 04116 0.4116 0.4116 0.4116
xsum 0.1092 0.1615 0.1727 -0.0324
squad 0.0502 0.0421 0.0318 -0.8643
gsm8k 44.3362 52.2347 52.2888 19.5249
ag_news 0.8072 0.7832 0.7736 0.7736
cnn_dailymail 0.0442 0.0321 0.034 -0.1237
arc 0.4204 0.4258 0.4244 0.4379
mmlu 0.2607 0.269 0.2663 0.7475
Cohere_328B
mnli 0.3736 0.3854 0.3657 0.3736
xsum 0.1149 0.1607 0.1659 -0.0528
squad 0.0129 0.0254 0.0401 -0.0274
gsm8k 16.7731 23.5865 23.8346 23.2584
ag_news 0.6811 0.7698 0.7591 0.6882
cnn_dailymail 0.0069 0.0239 0.0336 -0.0546
arc 0.3164 0.3164 0.3191 0.3056
mmlu 0.2102 0.2039 0.207 0.2701
Mistral_7B
mnli 0.355 0.365 0.355 0.345
xsum 0.0182 0.024 0.0212 -0.0473
squad 0.1141 0.0557 0.0143 -0.1928
gsm8k 15.4169 19.456 19.2118 14.8845
ag_news 0.7277 0.707 0.7139 0.7173
cnn_dailymail -0.0015 0.0064 0.0025 -0.1621
arc 0.6202 0.6291 0.6246 0.5667
mmlu 0.429 0.4645 0.4716 0.3544

Mistral_8x7B

mnli 0.4262 0.4283 0.4283 0.4262
xsum 0.0411 0.0313 0.0329 0.0155
squad 0.1719 0.1043 0.0814 -0.0465
gsm8k 6.6051 7.7051 7.7045 10.2305
ag_news 0.4232 0.4159 04174 04116
cnn_dailymail 0.0196 0.0002 -0.0071 0.0144
arc 0.6473 0.785 0.728 0.462
mmlu 0.5337 0.5428 0.527 0.3313
LLAMA3_3B
mnli 0.4388 0.4352 0.428 0.4352
xsum 0.0299 0.0605 0.0842 -0.0204
squad -0.0249 -0.008 -0.0599 -0.0742
gsm8k 6.0728 5.863 6.4302 1.3402
ag_news 0.4439 0.4483 0.4516 0.4549
cnn_dailymail 0.007 0.008 0.0051 -0.1837
arc 0.3542 0.3515 0.3704 0.3974
mmlu 0.4858 0.4872 0.4895 0.5397
LLAMA3_8B
mnli 0.4514 0.4442 0.4514 0.4424
xsum 0.0743 0.1038 0.0994 0.0212
squad 0.0394 0.0442 0.0504 -0.0027
gsm8k 25.1482 26.2461 26.0143 28.1443
ag_news 0.2336 0.2336 0.2624 0.2408
cnn_dailymail -0.0004 0.0035 0.0074 -0.0125
arc 0.3852 0.3791 0.3811 0.3975
mmlu 0.5036 0.503 0.5032 0.5028
LLAMA3_70B
mnli 0.449 0.449 0.4473 0.4405
xsum 0.0922 0.128 0.1531 0.0664
squad 0.0172 0.0176 0.0347 0.0125
gsm8k 0.0691 0.0406 1.1734 6.5517
ag_news 0.5306 0.5302 0.5311 0.5274
cnn_dailymail 0.0156 0.0172 0.0158 0.021
arc 0.1387 0.1557 0.1472 0.1472
mmlu 0.3289 0.3437 0.32 0.3407

Table 6: Comprehensive transition metrics for eight benchmarks (MNLI, XSUM, SQuAD, GSMSK, AG News, CNN/DailyMail,
ARC, and MMLU) across ten LLMs and four demonstration placements. Each cell reports the change in performance relative to
zero-shot when demos are placed at the start/end of the system prompt or the start/end of the user message (ssp, esp, sum, eum).
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MNLI
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 38.50 19.00 19.50 -1 37.00 18.50 18.50 0
esp 34.50 16.00 18.50 -5 34.50 18.00 16.50 3
sum 38.50 17.00 21.50 -9 37.00 19.50 17.50 4
eum 6.00 2.00 4.00 -4 29.50 13.50 16.00 -5
Qwen_72B Cohere_8B
ssp 9.00 6.00 3.00 6 13.00 8.50 4.50 8
esp 9.50 6.00 3.50 5 19.00 11.50 7.50 8
sum 9.50 6.00 3.50 5 14.00 9.00 5.00 8
eum 8.00 5.50 2.50 6 12.00 8.00 4.00 8
Cohere_32B Mistral_7B
Ssp 13.00 6.50 6.50 0 34.00 20.00 14.00 12
esp 15.50 8.50 7.00 3 33.00 20.00 13.00 14
sum 10.00 4.50 5.50 -2 32.00 19.00 13.00 12
eum 12.00 6.00 6.00 0 26.00 15.50 10.50 10
Mistral_8x7B LLAMA3_3B
Ssp 5.00 2.00 3.00 -2 41.50 20.50 21.00 -1
esp 4.50 2.00 2.50 -1 30.50 14.50 16.00 -3
sum 4.50 2.00 2.50 -1 18.50 7.50 11.00 -7
eum 9.50 4.50 5.00 -1 24.50 11.50 13.00 -3
LLAMA3_8B LLAMA3_70B
ssp 23.00 13.50 9.50 8 58.50 30.00 28.50 3
esp 24.00 13.00 11.00 4 56.50 29.00 27.50 3
sum 33.00 18.50 14.50 8 58.00 29.50 28.50 2
eum 20.50 11.00 9.50 3 59.00 29.00 30.00 -2

Table 7: Delta metrics on the MNLI benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.
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XSUM
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 0.00 92.50 0.00 185 0.00 99.00 0.00 198
esp 0.00 90.50 0.50 180 0.00 99.00 0.00 198
sum 0.00 91.50 0.00 183 0.00 99.00 0.00 198
eum 0.00 69.00 0.00 138 0.00 92.50 0.00 185
Qwen_72B Cohere_8B
ssp 0.00 99.00 0.00 198 0.00 99.00 0.00 198
esp 0.00 98.50 0.00 197 0.00 97.50 0.50 194
sum 0.00 98.50 0.00 197 0.00 98.50 0.00 197
eum 0.00 98.00 0.50 195 0.00 78.00 1.00 154
Cohere_32B Mistral_7B
Ssp 0.00 99.00 0.00 198 0.00 92.00 0.00 184
esp 0.00 99.00 0.00 198 0.00 90.50 0.00 181
sum 0.00 99.50 0.00 199 0.00 88.50 0.00 177
eum 0.00 88.50 0.00 177 0.00 42.00 0.50 83
Mistral_8x7B LLAMA3_3B
Ssp 0.00 94.00 0.00 188 0.00 99.50 0.00 199
esp 0.00 94.00 0.00 188 0.00 97.00 0.00 194
sum 0.00 95.00 0.00 190 0.00 98.50 0.00 197
eum 0.00 91.50 0.00 183 0.00 90.50 0.00 181
LLAMA3_8B LLAMA3_70B
ssp 0.00 98.00 0.00 196 0.00 99.50 0.00 199
esp 0.00 98.50 0.00 197 0.00 99.50 0.00 199
sum 0.00 97.50 0.00 195 0.00 99.50 0.00 199
eum 0.00 97.50 0.00 195 0.00 99.50 0.00 199

Table 8: Delta metrics on the XSUM benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.
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SQUAD
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 0.00 23.00 26.50 -7 0.00 19.50 7.00 25
esp 0.00 27.00 36.50 -19 0.00 20.00 3.50 33
sum 0.00 24.50 27.50 -6 0.00 21.00 5.50 31
eum 0.00 13.00 56.50 -87 0.00 19.50 20.00 -1
Qwen_72B Cohere_8B
Ssp 0.00 16.50 4.50 24 0.00 20.50 6.50 28
esp 0.00 16.00 4.00 24 0.00 16.00 9.00 14
sum 0.00 17.00 4.50 25 0.00 15.50 8.00 15
eum 0.00 13.50 5.50 16 0.00 9.50 75.50 -132
Cohere_32B Mistral_7B
Ssp 0.00 13.00 7.00 12 0.00 43.00 6.00 74
esp 0.00 16.00 8.00 16 0.00 42.00 7.00 70
sum 0.00 16.50 7.00 19 0.00 38.50 9.00 59
eum 0.00 16.00 15.00 2 0.00 32.00 20.00 24
Mistral_8x7B LLAMA3_3B
Ssp 0.00 42.50 3.00 79 0.00 19.50 13.00 13
esp 0.00 34.50 5.50 58 0.00 22.50 9.00 27
sum 0.00 37.00 8.00 58 0.00 22.00 18.50 7
eum 0.00 27.00 10.50 33 0.00 22.50 18.50 8
LLAMA3_8B LLAMA3_70B
ssp 0.00 16.50 5.50 22 0.00 14.50 5.00 19
esp 0.00 17.00 5.00 24 0.00 15.00 5.50 19
sum 0.00 19.50 6.50 26 0.00 17.00 5.00 24
eum 0.00 15.00 12.50 5 0.00 18.00 8.00 20

Table 9: Delta metrics on the SQUAD benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.
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GSMSK
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 0.00 35.50 9.00 53 0.00 62.00 0.50 123
esp 0.00 42.50 5.50 74 0.00 100.00 0.00 200
sum 0.00 34.50 9.50 50 0.00 100.00 0.00 200
eum 0.00 0.50 15.50 -30 0.00 95.00 0.00 190
Qwen_72B Cohere_8B
Ssp 0.00 100.00 0.00 200 0.00 91.50 0.50 182
esp 0.00 100.00 0.00 200 0.00 100.00 0.00 200
sum 0.00 100.00 0.00 200 0.00 100.00 0.00 200
eum 0.00 100.00 0.00 200 0.00 53.50 4.00 99
Cohere_32B Mistral_7B
Ssp 0.00 73.00 1.50 143 0.00 96.50 0.50 192
esp 0.00 98.00 0.00 196 0.00 99.50 0.00 199
sum 0.00 99.50 0.00 199 0.00 99.50 0.00 199
eum 0.00 99.50 0.00 199 0.00 99.50 0.00 199
Mistral_8x7B LLAMA3_3B
Ssp 0.00 62.00 0.00 124 0.00 97.50 0.00 195
esp 0.00 73.50 0.50 146 0.00 95.50 2.00 187
sum 0.00 73.00 2.00 142 0.00 100.00 0.00 200
eum 0.00 91.00 0.50 181 0.00 73.50 3.00 141
LLAMA3_8B LLAMA3_70B
ssp 0.00 100.00 0.00 200 0.00 12.00 2.00 20
esp 0.00 99.50 0.00 199 0.00 13.00 1.50 23
sum 0.00 100.00 0.00 200 0.00 32.00 1.00 62
eum 0.00 100.00 0.00 200 0.00 92.50 0.00 185

Table 10: Delta metrics on the Gsm8k benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.
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AG_NEWS

Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 7.50 3.50 4.00 -1 5.00 1.50 3.50 -4
esp 10.50 3.50 7.00 -7 5.50 1.00 4.50 -7
sum 19.50 6.00 13.50 -15 6.50 1.50 5.00 -7
eum 46.00 13.00 33.00 -40 7.00 1.50 5.50 -8
Qwen_72B Cohere_8B
Ssp 3.50 1.00 2.50 -3 11.00 7.00 4.00 6
esp 2.00 0.50 1.50 -2 11.50 6.00 5.50 1
sum 2.00 1.00 1.00 0 11.50 5.50 6.00 -1
eum 2.00 0.50 1.50 -2 17.50 8.50 9.00 -1
Cohere_32B Mistral_7B
Ssp 20.00 5.50 14.50 -18 16.50 11.50 5.00 13
esp 8.50 6.00 2.50 7 11.50 7.50 4.00 7
sum 9.00 5.50 3.50 4 12.50 8.50 4.00 9
eum 15.00 3.50 11.50 -16 14.00 9.50 4.50 10
Mistral_8x7B LLAMA3_3B
Ssp 8.50 3.50 5.00 -3 14.50 9.00 5.50 7
esp 11.00 3.50 7.50 -8 13.50 7.50 6.00 3
sum 11.00 3.50 7.50 -8 14.00 7.00 7.00 0
eum 8.50 3.00 5.50 -5 15.50 7.00 8.50 -3
LLAMA3_8B LLAMA3_70B
Ssp 9.00 5.50 3.50 4 10.50 9.50 1.00 17
esp 9.00 5.50 3.50 4 10.00 9.00 1.00 16
sum 12.00 5.00 7.00 -4 11.00 10.00 1.00 18
eum 8.00 4.50 3.50 2 7.00 6.00 1.00 10

Table 11: Delta metrics on the Ag News benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage
of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net
A (Improved-Regressed), all measured relative to the sum configuration.
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CNN_DAILYMAIL
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 0.00 86.00 5.50 161 0.00 94.50 1.50 186
esp 0.00 80.00 9.50 141 0.00 94.00 0.50 187
sum 0.00 87.50 6.00 163 0.00 92.50 1.00 183
eum 0.00 0.00 13.00 -26 0.00 42.50 7.00 71
Qwen_72B Cohere_8B
ssp 0.00 95.50 0.00 191 0.00 94.00 1.50 185
esp 0.00 95.50 0.00 191 0.00 91.50 4.00 175
sum 0.00 95.50 0.00 191 0.00 91.00 1.50 179
eum 0.00 94.00 0.00 188 0.00 31.50 7.00 49
Cohere_32B Mistral_7B
Ssp 0.00 99.00 0.00 198 0.00 93.50 3.50 180
esp 0.00 94.50 3.00 183 0.00 94.50 2.00 185
sum 0.00 95.50 3.00 185 0.00 94.50 2.50 184
eum 0.00 81.00 0.50 161 0.00 12.00 0.50 23
Mistral_8x7B LLAMA3_3B
Ssp 0.00 89.00 2.50 173 0.00 88.50 0.50 176
esp 0.00 88.00 4.50 167 0.00 91.00 1.00 180
sum 0.00 86.00 6.00 160 0.00 90.50 0.50 180
eum 0.00 89.95 4.02 171 0.00 2.50 20.00 -35
LLAMA3_8B LLAMA3_70B
ssp 0.00 91.50 0.00 183 0.00 98.50 0.00 197
esp 0.00 89.00 3.00 172 0.00 98.50 0.00 197
sum 0.00 90.50 1.00 179 0.00 99.00 0.00 198
eum 0.00 90.00 1.00 178 0.00 99.00 0.00 198

Table 12: Delta metrics on the Cnn/Dailymail benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the
percentage of examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed,
and (4) the net A (Improved-Regressed), all measured relative to the sum configuration.
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ARC
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 14.00 9.50 4.50 10 3.00 2.50 0.50 4
esp 14.00 9.50 4.50 10 3.50 2.50 1.00 3
sum 14.00 8.50 5.50 6 4.00 3.00 1.00 4
eum 15.50 6.50 9.00 -5 3.50 1.50 2.00 -1
Qwen_72B Cohere_8B
Ssp 1.00 0.00 1.00 -2 7.50 5.00 2.50 5
esp 1.00 0.00 1.00 -2 10.50 5.50 5.00 1
sum 0.50 0.00 0.50 -1 13.00 7.00 6.00 2
eum 0.50 0.00 0.50 -1 10.00 3.50 6.50 -6
Cohere_32B Mistral_7B
Ssp 6.50 2.00 4.50 -5 15.50 9.00 6.50 5
esp 5.50 1.50 4.00 -5 12.00 7.50 4.50 6
sum 7.00 2.00 5.00 -6 13.50 8.00 5.50 5
eum 3.50 1.50 2.00 -1 12.00 4.00 8.00 -8
Mistral_8x7B LLAMA3_3B
Ssp 10.50 7.00 3.50 7 17.00 11.00 6.00 10
esp 10.50 7.00 3.50 7 14.50 10.00 4.50 11
sum 11.00 7.50 3.50 8 14.00 8.00 6.00 4
eum 12.50 8.00 4.50 7 16.00 6.50 9.50 -6
LLAMA3_8B LLAMA3_70B
ssp 7.00 3.50 3.50 0 2.00 1.00 1.00 0
esp 8.50 5.00 3.50 3 2.00 0.00 2.00 -4
sum 9.00 5.00 4.00 2 2.00 0.50 1.50 -2
eum 8.00 2.50 5.50 -6 1.00 0.00 1.00 -2

Table 13: Delta metrics on the ARC benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.

Table 14: Delta metrics on arc across models and DPPs.
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MMLU
Changed % Improved % Regressed % Net A Changed % Improved % Regressed % Net A

Position
Qwen_1.5B Qwen_7B
Ssp 19.00 8.00 11.00 -6 11.50 7.50 4.00 7
esp 12.50 7.00 5.50 3 12.50 7.00 5.50 3
sum 17.00 7.00 10.00 -6 10.50 5.50 5.00 1
eum 29.50 7.00 22.50 -31 40.00 6.50 33.50 -54
Qwen_72B Cohere_8B
Ssp 4.50 2.50 2.00 1 11.50 10.00 1.50 17
esp 5.50 3.00 2.50 1 12.50 10.00 2.50 15
sum 6.00 2.50 3.50 -2 12.50 10.00 2.50 15
eum 3.50 1.50 2.00 -1 81.00 0.50 80.50 -160
Cohere_32B Mistral_7B
Ssp 5.50 3.00 2.50 1 13.50 5.00 8.50 -7
esp 4.50 3.00 1.50 3 22.50 9.00 13.50 -9
sum 4.00 2.50 1.50 2 23.00 9.50 13.50 -8
eum 12.00 1.50 10.50 -18 43.50 11.00 32.50 -43
Mistral_8x7B LLAMA3_3B
Ssp 13.00 8.50 4.50 8 15.50 9.50 6.00 7
esp 10.50 6.00 4.50 3 16.00 9.50 6.50 6
sum 12.50 6.00 6.50 -1 19.00 10.00 9.00 2
eum 26.50 8.50 18.00 -19 48.50 8.00 40.50 -65
LLAMA3_8B LLAMA3_70B
ssp 8.00 3.50 4.50 -2 10.50 5.00 5.50 -1
esp 7.00 2.00 5.00 -6 11.50 4.50 7.00 -5
sum 8.50 3.00 5.50 -5 10.00 5.50 4.50 2
eum 22.50 9.50 13.00 -7 7.50 2.50 5.00 -5

Table 15: Delta metrics on the MMLU benchmark across ten LLMs and four DPPs. For each DPP, we report: (1) the percentage of
examples whose predicted answer changed, (2) the percentage that improved, (3) the percentage that regressed, and (4) the net A
(Improved—Regressed), all measured relative to the sum configuration.
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A.8 Appendix: Full Win-Loss-Tie Breakdown by Model

Task-Centric Analysis in Appendix. To complement the model-centric win—loss breakdowns discussed
above, we provide a task-centric perspective here. Figures 14 through 17 illustrate how frequently
each demonstration position emerges as the best (or worst) across models for individual tasks. These
visualizations confirm that no single position consistently dominates across tasks: while ssp often
performs best on classification tasks like MNLI and AG NEWS, positions like esp or sum sometimes
outperform on reasoning or summarization tasks. This highlights the need for prompt position tuning

tailored not just to model size but also to the task domain.
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(a) LLAMA3-3B results. (b) Qwen-7B results.
Figure 11: Win—loss—tie analysis for LLAMA3-3B and QWEN-7B across all tasks
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(a) Qwen-72B results. (b) Mistral-7B results.

Figure 12: Win-loss—tie analysis for QWEN-72B and MISTRAL-7B across all tasks
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(a) Mistral-8x7B results. (b) Cohere-32B results.

Figure 13: Win—loss—tie analysis for MISTRAL-8X7B and COHERE-32B across all tasks
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(a) MMLU results. (b) MNLI results.
Figure 14: Win—loss—tie analysis for MMLU and MNLI across all models.
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(a) ARC results. (b) AG News results.
Figure 15: Win—loss—tie analysis for ARC and AG NEWS across all models.
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(a) SQuUAD results. (b) GSMSK results.
Figure 16: Win—loss—tie analysis for SQUAD and GSMS8K across all models.
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(a) XSum results. (b) CNN/DailyMail results.

Figure 17: Win—loss—tie analysis for XSUM and CNN/DAILYMAIL across all models.

A.9 Data Sampling

For each benchmark we first sample 200 test examples (without replacement) from the official test split,
using five different random seeds (42, 123, 456, 789, 1). We also sample 5 in-context demonstration
examples (without replacement) from the train split for each seed as our DDP set.
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