
Graph-KV: Breaking Sequence via Injecting
Structural Biases into Large Language Models

Haoyu Wang1∗, Peihao Wang2, Mufei Li1, Shikun Liu1, Siqi Miao1, Zhangyang Wang2, Pan Li1∗
1 Georgia Institute of Technology 2 The University of Texas at Austin

Abstract

Modern large language models (LLMs) are inherently auto-regressive, requiring
input to be serialized into flat sequences regardless of their structural dependencies.
This serialization hinders the model’s ability to leverage structural inductive biases,
especially in tasks such as retrieval-augmented generation (RAG) and reasoning on
data with native graph structures, where inter-segment dependencies are crucial.
We introduce Graph-KV with the potential to overcome this limitation. Graph-
KV leverages the KV-cache of text segments as condensed representations and
governs their interaction through structural inductive biases. In this framework,
“target” segments selectively attend only to the KV-caches of their designated
“source” segments, rather than all preceding segments in a serialized sequence.
This approach induces a graph-structured block mask, sparsifying attention and
enabling a message-passing-like step within the LLM. Furthermore, strategically
allocated positional encodings for source and target segments reduce positional bias
and context window consumption. We evaluate Graph-KV across three scenarios:
(1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and
long-document understanding; (2) ARXIV-QA, a novel academic paper QA task
with full-text scientific papers structured as citation ego-graphs; and (3) paper topic
classification within a citation network. By effectively reducing positional bias
and harnessing structural inductive biases, Graph-KV substantially outperforms
baselines, including standard costly sequential encoding, across various settings.
Code and the ARXIV-QA data are publicly available at https://github.com/
Graph-COM/GraphKV.

1 Introduction

Modern large language models (LLMs) [1, 50, 2], despite their notable successes, are fundamentally
auto-regressive. This characteristic, as a consequence of their training approaches [51, 41], necessi-
tates the serialization of information for processing. Consequently, all input, regardless of its intrinsic
structure or complex dependencies, such as order-insensitivity, temporal or logical relationships, must
be flattened into an ordered sequence. This forced serialization can be suboptimal and may introduce
a sequential bias, potentially hindering the LLM’s ability to fully leverage these internal relationships.

For example, in retrieval-augmented generation (RAG) [29, 11, 67, 30], retrieved text segments,
which may lack a linear order or possess complex, non-linear interdependencies, must still be
artificially serialized, which can limit effective multi-hop reasoning [17, 62, 44, 49] and introduce
positional biases [58, 15, 66]. Similarly, processing data with native graph structures, such as citation
networks [20, 14] where citations signify knowledge dependencies, presents challenges. Serializing
documents referenced by the same document, for instance, leads to drawbacks including: 1) positional
biases that can obscure parallel citation relationships; 2) quadratic computational complexity when

*Correspondence to: haoyu.wang@gatech.edu, panli@gatech.edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Graph-COM/GraphKV
https://github.com/Graph-COM/GraphKV

Query with Structured Data

Full Attention and
Quadratic Complexity Context Window Issue

L 2L ... nL

Positional Encoding

Positional Bias

The answer is: A

The answer is: B

...

Step1: Inject Structural Inductive Biases when PrefillingDoc.1 Doc.3 Doc.5

Doc.1 Doc.4

Step2: Attend Query

Shared PE: 0 L L+1 2L 2L+1 2L+q
Graph-KV

Figure 1: When processing data with inherent structure (bottom-left), modern LLMs encounter three challenges
due to serialized input reading (top row): (1) positional bias, where different serialization orders lead to varied
outputs [69];(2) quadratic computational complexity from full attention between all document pairs; and (3)
rapid context window consumption, as position indices quickly exceed limits. The bottom-right subfigure
illustrates Graph-KV. Text chunks are independently encoded into KV caches, where Graph-KV arranges the
text chunk of each target text after the KV of their source texts to update their respective KV caches. Notably, all
source texts share same positional encoding (PE) range, while all target texts share another, with their position
index immediately following that of the source nodes. This approach reduces the PE and context window usage.
At query time, the query attends to both the source chunks and the target chunks to perform decoding.

attending to all document pairs; and 3) context window limitations when dealing with numerous
references (Fig. 1).

Therefore, a critical question arises: How can we align the structural inductive bias of the data with
the mechanisms of auto-regressive LLMs, moving beyond simplistic serialization?

Existing literature has explored mitigating the negative effects of token-serialization, primarily by
aiming to eliminate positional bias and enable LLMs to process text segments in a permutation-
invariant manner. For instance, Wang et al. [56] proposed to reorder documents based on attention
scores computed without positional encodings (PEs); however, the requisite sorting and full attention
computations in this method introduce significant computational overhead. Other works prioritize
efficient inference by prefilling the key-value (KV) cache of documents independently in parallel [61,
43, 12, 35]. In these approaches, the encoding of documents within the KV-cache often relies on
either shared PEs or sorting based on semantic similarity scores from external retrievers. Although
these parallel encoding strategies enhance efficiency, they inherently cannot model inter-segment
dependencies, let alone native inductive biases within the structured data (as summarized in Table 1).

Long-Context
Friendly

Sparse Attention
& Efficiency

Free from
Positional Biases

Structural
Inductive Biases

Sequential Encoding ✗ ✗ ✗ ✗
Promptcache [12] ✗ ✓ ✗ ✗

PINE [56] ✗ ✗ ✓ ✗
PCW [43] ✓ ✓ ✓ ✗
APE [61] ✓ ✓ ✓ ✗

Block-Attention [35] ✗ ✓ ✗ ✗
Graph-KV (ours) ✓ ✓ ✓ ✓

Table 1: Comparison among existing approaches.
“Long-Context Friendly” refers to avoiding of rapid
context window consumption as the number of input
text chunks increases. “Free from positional bias”
means model predictions remain stable irrespective
of the input chunks’ placement order.

To address these limitations, we introduce Graph-
KV. The core principle of Graph-KV is to treat
the KV cache of a given text segment as its con-
densed information representation and to control its
generation using structural inductive biases. Specif-
ically, after initially prefilling the independent KV
caches of all text segments, a “target” segment’s
KV cache is generated by attending only to the
KV caches of its “source” text segments, rather
than to all segments that merely precede it in the
token-serialization sequence. The determination
of “source → target” relationships is guided by
structural inductive biases tied to either the data or the specific tasks. From another perspective,
this approach essentially introduces a graph-structured block mask (Fig. 1) that sparsifies attention
computation during KV cache generation, effectively enabling a “message passing through graph”
step within the LLM. Moreover, to mitigate inherent positional biases from the LLM, the attention
computation imposes shared PEs across the source segments, with the target segment receiving PEs
with position indices immediately following its sources. This design substantially reduces context
window consumption through shared PEs while preserving structural alignment.

2

We evaluated Graph-KV across three diverse settings. First, Graph-KV was assessed on seven
RAG benchmarks, covering direct inference [22, 25], multi-hop reasoning [49, 17, 44, 62], and
long-document understanding [4]. For these tasks, where native graph structures are absent, we
introduced a bipartite graph to establish structural bias between text segments. Across all RAG
benchmarks, Graph-KV significantly outperformed parallel text encoding baselines. Notably, in
multi-hop reasoning tasks, Graph-KV surpassed even sequential reading while maintaining sparse
computation. Second, we introduced ARXIV-QA, a novel and challenging task featuring real-world
graph biases. In ARXIV-QA, questions are constructed from the full text of a central scientific paper
and its linked references, sourced from the arXiv citation network [20]. These questions require
probing technical details and understanding both content and citation relationships. On ARXIV-QA,
existing efficient parallel text encoding baselines performed poorly, and standard sequential encoding
demonstrated severe positional biases. In contrast, Graph-KV exhibited significant robustness,
achieving performance comparable to the peak results of sequential encoding (which necessitates
optimal document positioning) without displaying such sensitivity. Third, Graph-KV was evaluated
on paper topic classification tasks within citation networks, which possess inherent structural biases
through citation links. In this setup, LLMs must classify a central paper by analyzing its title, abstract,
and potentially hundreds of references. Graph-KV demonstrated significantly superior performance
compared to both sequential encoding and parallel text encoding baselines.

2 Related Work
Positional Bias in LLMs. Large Language Models (LLMs) exhibit positional bias, wherein their
performance is adversely affected by the sequential order of input data [69, 55, 71, 46, 18, 66, 33, 15].
This phenomenon is widely believed to stem from the interplay of Positional Embeddings (PEs) [47,
58, 24, 40] and the inherent causal attention mechanism [42]. Although some research indicates
that removing PEs from the transformer architecture can enhance LLM generalization to longer
context windows [54], the causal attention mechanism itself can still implicitly induce positional
biases [24, 16]. Concrete examples of positional bias are evident in RAG, where models often favor
information placed at the beginning or end of the context [33, 39], and in in-context learning, where
the order of examples significantly impacts outcomes [68, 34]. The tasks investigated in this work
necessitate a more explicit capture of structural dependencies, and our findings reveal that naively
serializing input exacerbates positional bias in such scenarios.

Parallel Encoding and Block Attention. Research has explored techniques to avoid quadratic
computational complexity in RAG for generating KV caches for retrieved documents individually
and in parallel [21, 43, 12, 61, 72, 64, 70, 63]. PCW [43] initiated this line of study; however, its
performance can degrade substantially in many cases due to distribution shifts in the new form of KV
caches. APE [61] proposes a fine-tuning-free algorithm that mitigates distribution shifts with parallel
encoding by re-scaling attention magnitudes. [72] further trains a small-LM as a scorer to refine the
retrieved parallel contexts. Block-Attention [35] demonstrates further performance improvements
over these methods, attributed to its more extensive post-training process. However, a common
limitation of these parallel processing strategies is their failure to model inter-document dependencies.
Graph-KV mitigates this limitation while preserving the efficiency of parallel encoding.

Modeling structured data with LLMs. LLMs predominantly process structured data via two main
strategies. The first serializes structured information like graphs into natural language formats for
model input [5, 10, 38]. However, this method faces scalability issues from quadratic attention
complexity and the inherent challenge of accurately verbalizing intricate structural dependencies.
As a result, even reasoning over moderately sized text-attributed graphs (e.g., tens of documents,
100k+ tokens) can be problematic [19, 53]. The second strategy uses adapter modules to project
graph data into the LLM’s token embedding space [60, 26, 6, 52, 48]. These adapter-based solutions
often exhibit limited generalization, largely due to challenges in achieving robust adapter-mediated
alignment [7, 32, 31, 73]. Graph-KV offers a distinct, more foundational approach by being the first
to directly modify the LLM’s attention mechanism for structured data integration.

The Challenge of Noisy Multi-Hop Reasoning. Multi-hop reasoning, which demands capturing ar-
bitrary structural dependencies among multiple pieces of information, remains challenging for LLMs
with standard sequential encoding. This difficulty is substantially amplified in real-world scenarios
where information is non-contiguous and sparsely distributed within noisy, long contexts, leading to
N-fold reductions in LLM performance [3, 27, 65]. However, as our experiments demonstrate, with
structural inductive biases, Graph-KV can significantly improve the reasoning capabilities of LLMs.

3

3 Methodology
In this section, we introduce Graph-KV. We assume structural inductive biases can be described by a
graph connecting text chunks. Such biases might originate natively from the data or be defined based
on the tasks. How these are specified for various tasks will be detailed in the experimental section.

Preliminaries. Let q be a natural language query and G = (V,E) be a directed graph representing
input structured data. Each node u ∈ V corresponds to a text chunk with an average token length d,
and each directed edge (u1, u2) ∈ E represents some structural dependence from a source chunk u1

to a target chunk u2. The objective is for an LLM f to generate an answer a = f(q,G) by encoding
both q and G. This task requires the LLM to comprehend the individual textual content of nodes
while also properly leveraging and reasoning over the structural inductive biases encoded in G.

Sequential Encoding is the default approach in modern LLMs [42, 13, 23]. It involves processing an
arbitrary linearized sequence of text chunks, denoted without loss of generality as [u1, u2, . . . , un],
where each ui ∈ V is composed of a sequence of token embeddings, by using the concatenated
sequence [u1, u2, . . . , un, q] as input. Modern LLMs commonly employ causal attention, where
each token attends to all preceding tokens. This mechanism results in a computational complexity
of O(n2L2), where L denotes the max chunk length. A consequence of sequential encoding is the
sensitivity of the model output to input order, termed positional biases. Moreover, this default setting
lacks inherent mechanisms for leveraging structural inductive biases, should they exist in the data.

Parallel Text Encoding is adopted by an alternative line of work [43, 61, 12, 35] that treats text chunks
as an unordered set, S = {u1, u2, . . . , un}. Here, the LLM encodes each chunk ui ∈ S independently
and in parallel, often with all chunks sharing the same PEs to signify their lack of explicit order.
The computational complexity for this encoding process is O(nL2), linear in n (the number of
chunks). This method, however, discards the modeling of direct interactions among chunks, thereby
sacrificing relational information critical for multi-hop reasoning in favor of efficiency. During answer
generation, tokens attend to all encoded text chunks in S and the query q.

Graph-KV injects structural inductive bias using two main strategies: a structure-aware attention
mechanism and appropriately assigned shared PEs.

3.1 Graph-KV

s

PE: 0 L L+1 2L 2L+1 2L+q

Graph-KV Generation

‘Target’ Texts Query‘Source’ Texts

Doc. 2

Doc. 3

Doc. 5

Doc. 1

Doc. 4

Doc. 3

Doc. 2

Doc. 1

Doc. 1

Doc. 1

Read Source Docs
and Merge

Figure 2: PE-sharing mechanism in Graph-KV. As
shown on the right side, source docs share one PE
range, while targets share another. Attending Doc.1
to the KVs of its sources (Doc.2 and Doc.3), is func-
tionally equivalent to the left side: reading Doc.2
followed by Doc.1, and Doc.3 followed by Doc.1,
then merging the resulting representations of Doc.1.

The Structure-aware Attention Mechanism.
First, Graph-KVperforms offline parallel encod-
ing of each text chunk ui to obtain its initial la-
tent representation h

(0)
ui . These representations,

{h(0)
ui }ui∈V , are then used to form initial Key-

Value (KV) pairs, denoted as {(k(0)ui , v
(0)
ui)}ui∈V ,

which can be loaded into the KV cache. Fol-
lowing the graph structure G = (V,E), Graph-
KV updates the representation of a target chunk
uj by modeling its relationships via the atten-
tion mechanism with its source chunks, denoted
as N (j) = {ui | (ui, uj) ∈ E}. This update
is achieved by computing a sparsified attention:

softmax
(

QjK
⊤
N(j)√
dh

)
VN (j) where Qj is the Query vector associated with uj (the target chunk),

KN (j) = [k
(0)
ui]ui∈N (j) and VN (j) = [v

(0)
ui]ui∈N (j) are matrices formed by stacking the key-values

of its source chunks, respectively, and dh used for normalization denotes the dimension of QK values.

This update procedure can be iterated for multiple rounds. However, for our experiments, we conduct
a single round (i.e., t = 1). This serves as a proof-of-concept to model interactions extending beyond
those addressed by existing parallel encoding methods, which typically process chunks as purely
independent, while preserving low computational complexity. Iterating for multiple rounds does not
yield significant performance gains on the current evaluation tasks. Nevertheless, we believe that with
more complex tasks, or if the model were further fine-tuned to adapt to this new attention architecture,
greater improvements could be anticipated. Finally, upon query, input query tokens and subsequently
generated answer tokens attend to the representations of both source and target chunks.

4

The Allocation of Positional Encodings. Our allocation of PEs aims to reduce positional bias
and improve context efficiency. We begin by considering the scenario without explicit directed
edges, where graph-structured data effectively becomes a collection of independent text chunks. This
configuration is analogous to those in many existing studies on parallel encoding [61, 43, 35]. To
mitigate positional bias for these independent chunks, all such text chunks are assigned positions
within the shared range [0, L), where we assume a maximum chunk length of L. Furthermore,
when structural dependencies are present in the data (e.g., via directed edges), target chunks are
subsequently assigned positions from L to 2L, i.e., within another shared range [L, 2L) immediately
following the first. Query tokens and any generated tokens are then allocated positions in a range
beyond 2L, subsequent to those of the target chunks.

While this study does not investigate the iterative application of target chunks as source chunks
in subsequent processing rounds, the proposed methodology permits such natural extension. For
instance, target chunks in a subsequent round could be allocated positions within the range [2L, 3L),
with query token positions adjusted correspondingly; this iterative pattern can be continued as needed.
A key benefit of this procedure is its conservation of the context window: since numerous chunks
share identical positional ranges, the overall required positional span is only about TL. Here, T
denotes the number of iterations (a generally small constant), and L is often less than 10k.

To illustrate how latent representations of target chunks are formed by Graph-KV, please refer to
Fig. 2. Suppose there are directed edges doc.2 → doc.1 and doc.3 → doc.1, Graph-KV can be
understood as guiding the LLM to process two effective “documents”: one formed by doc.2 followed
by doc.1, and another by doc.3 followed by doc.1. The representations of the doc.1 portions obtained
from both these effective documents, are then aggregated. Consequently, the representation of target
chunk doc.1 contains the information reflecting its connections to source chunks doc.2 and doc.3.

Computational Complexity. The representations for all text chunks in the first round are
computed with complexity O(|V |L2), aligning with previous parallel encoding methods. Sup-
pose T is a set of target chunks, updating target chunk representations has a complexity of
O(

∑
uj∈T |N (j)|L2) = O(|E|L2) as |E| is the total number of such dependencies. During query

time, the attention complexity for each query or generated token over all source and target chunks is
O(|V |L), similar to vanilla sequential and parallel encoding schemes at generation.

Remark: Attention Sink. APE [61] considers sharing the PE range but avoids using the first several
positions to avoid the attention sink problem [59]. We find that Graph-KV remains unaffected even
though its chunks share the PE range from the first token. This is because we adopt the model that
has been fine-tuned with independent attention blocks [35] to fit this change.

4 Experiments

Task Selection We design four tasks to evaluate Graph-KV, including three real-world applications
and one stress test: Task 1: Retrieval-Augmented Generation (RAG), Task 2: ARXIV-QA, a new
task of multi-hop paper understanding, Task 3: Paper topic classification, which is a classical graph
learning task; Task 4: Stress test on scalability and efficiency over synthetic data.

Backbone for Graph-KV. Graph-KV necessitates the independent encoding of different text seg-
ments. This process introduces a distributional shift standard LLM backbones [43]. Two primary
solutions address this challenge. The first involves applying a tuning-free heuristic, such as APE [61],
which alleviates the shift by adjusting the temperature and scaling of attention weights. The second
approach is to post-train the model with attention masks composed of independent attention blocks
for different text chunks, such as Block-RAG [35]. Empirically, we found that the fine-tuned model
exhibits more stable performance, particularly when employing Graph-KV, as demonstrated in subse-
quent experiments. Consequently, we default to using the llama-3.1-8B-block-ft (8B-Block)
model as the backbone for Graph-KV. This model is based on the pre-trained llama-3.1-8B and is
further post-trained with independent attention blocks [35] on the tulu-3 dataset [28] and 20k RAG
training instances from 2Wiki [17] and TriviaQA [22].

Due to limited computational resources, our work focuses on the llama-3.1-8B family, and we have
not extended this specific tuning to other LLMs. However, our findings are, in principle, generalizable.
Furthermore, we did not attempt to directly fine-tune the model with Graph-KV, although we believe
such a step could further enhance its performance on many of the tasks discussed later.

5

Bridge-Comparison

Compositional

Paragraph A: Versus (Versace) is the diffusion
line of Italian . . . , a gift by the founder Gianni
Versace to his sister, Donatella Versace. . . .

Paragraph B: Gianni Versace . . . Versace
was shot and killed outside . . .

Query: Why did the founder of Versus die?

Paragraph A: FAQ: Frequently
Asked Questions is a feature-length
dystopian movie, written and directed
by Carlos Atanes and released ...

Paragraph B: The Big Money . . .
directed by John Paddy
Carstairs . . .

Paragraph C: Carlos Atanes is
a Spanish film director . . .

Paragraph D: John Paddy
Carstairs was a prolific British
film director . . .

Query: Are both director of film
FAQ: Frequently Asked
Questions and director of film
The Big Money from the same
country?

Chunks from Long Document

Query: Please try to deduce the true story based on the evidence
currently known. Who killed Evelyn Hardcastle in your deduction?

Detective Novel:
The Seven Deaths

of Evelyn Hardcastle
Retrieved Paragraph Chunks

Paragraph A

Paragraph D

...

Direct Inference

Comparison

Query: who got the first nobel prize in physics?

Paragraph B

Paragraph A: receive a diploma, a medal and
a document ... It is one of the five Nobel Prizes.

Paragraph B: The first Nobel Prize in Physics
was awarded to physicist Wilhelm Röntgen in...

Query: Were Scott Derrickson and Ed Wood of
the same nationality?

Paragraph A: Scott Derrickson (born July 16,
1966) is an American director...

Paragraph B: Edward Davis Wood Jr. (October
10, 1924 – December 10, 1978) was an American
filmmaker...

Figure 4: The reasoning settings in RAG tasks . Direct inference task requires identifying evidence chunks (from
NarrativeQA [25]). Others that require multi-hop reasoning include multi-hop reasoning (comparison, bridge and
compositional (from 2Wiki [17], HotpotQA [62]) and long-document understanding (from LongBench-v2 [4]).
In these tasks, there exists implicit temporal or logical dependencies among the retrieved chunks.

Baselines for comparison. 1) Sequential Encoding: We consider two models which conducts serial-
ized next-token prediction during post-training based on llama-3.1-8B. One is llama-3.1-8B-sft
(8B-SFT) which is fully supervised tuned on the tulu-3 dataset. For fair comparison, we also take
llama-3.1-8B-rag (8B-RAG), which is further tuned with the extra RAG data that is used for
llama-3.1-8B-block-ft (8B-Block), which were also used for comparison in [35]. The two
models encode inputs in a standard serialized manner, serving as direct baselines for Graph-KV,
particularly in assessing its ability to leverage structural inductive biases, eliminate positional bias,
and reduce context window consumption. 2) Parallel Context Window (PCW) [43], 3) Adap-
tive Parallel Encoding (APE) [61] and 4) Block-RAG [35] are methods with block attentions.
Block-RAG serves as another direct baseline for Graph-KV as they adopt the same backbone LLM.

4.1 Task 1: Retrieval Augmented Generation (RAG)

Retrived Chunks
with Similarity Scores

1.4

1.2

0.8

0.7

0.6

Bipartite Graph Modeling in Graph-KV

Top-m
Chunks

Top-m

Figure 3: Graph-KV modeling for RAG.

Examples of the task scenarios in RAG are shown in Fig. 4,
including direct inference, multi-hop reasoning, and long
document understanding. We evaluate these scenarios us-
ing a total of 7 datasets, including NarrativeQA [25], Trivi-
aQA [22], HotpotQA [62], 2Wiki [17], Multihop-RAG [49],
MorehopQA [44] and LongBenchV2 [4]. For all the datasets,
10 text chunks are provided, and accuracy is selected as the
primary metric. We follow [35, 33, 18] to judge whether any
correct answers appear in the predicted output. See more implementation details in Appendix. A.2.1.

Graph-KV for Structure Modeling in RAG. In RAG tasks, especially those involving multi-hop
reasoning, text segments exhibit strong logical or temporal structural inductive biases. However, these
dependencies are implicit and could not be cheaply modeled. We do not assume the dependencies are
explicit, instead we construct them using a bipartite graph of text chunks. As illustrated in Fig. 3.
Graph-KV tries to capture the structural dependencies among retrieved chunks without introducing
too much complexity. Specifically, the retrieved chunks with the top-m (m=1,3 in our experiments)
similarity scores are considered source chunks, the KV-cache of them is concatenated, and attended
by each of the remaining text chunks to independently generate the corresponding KV values. We
also consider all retrieved chunks as both source and target chunks (named as “Graph-KV-Full”),
which can be viewed as modeling all potential pair-wise dependencies.

Result Analysis. Experiment results on RAG datasets are displayed in Tables. 2 3, with key insights
as follows: Across all the tasks, results show a clear trend: Graph-KV-Full generally outperforms
its sparsified variants. Specifically, Graph-KV-Top-3 generally achieves better performance than
m=1. Among them, the Graph-KV-Top-1 outperforms the Block-RAG [35] baseline except on Single
Document QA while Graph-KV-Top-3 consistently outperforms Block-RAG across all cases, which
reveals that our injected sparse dependency effectively complements the lack of dependencies among
text chunks in parallel encoding methods. Notably, in tasks that emphasize multi-hop reasoning,
or medium and long reasoning from long documents (Table. 2), Graph-KV-Top-3 significantly

6

MultiHop-RAG MorehopQA Single Document QA in LongBench-V2

Infer Compare Temporal Null Avg Hop-1 Hop-2 Hop-3 Hop-4 Hop-5 Avg Easy Hard Short Medium Long Avg

Backbone Attention 816 856 583 301 2556 444 416 154 13 91 1118 64 111 74 77 24 175

8B-SFT Sequential 42.54 33.49 33.37 99.34 39.18 57.65 24.27 29.87 15.38 26.37 38.37 35.9 28.8 35.1 31.2 20.8 31.4
8B-SFT PCW 69.39 34.29 34.35 42.10 42.01 11.26 10.81 10.38 0.00 17.58 11.35 8.3 20.0 15.4 20.0 0.0 15.6
8B-SFT APE 48.34 33.46 33.49 86.25 40.34 13.28 15.86 9.47 61.53 10.98 14.13 34.5 21.4 24.1 31.2 20.0 26.8

8B-RAG Sequential 73.12 34.66 39.00 43.43 44.27 54.72 22.59 22.07 53.85 25.27 35.86 32.8 32.4 35.1 35.1 16.7 32.6
8B-RAG PCW 50.37 33.62 34.19 48.16 39.35 0.22 1.20 0.00 0.00 1.09 0.62 16.7 27.1 29.2 21.9 9.5 23.3
8B-RAG APE 51.71 34.08 38.08 39.97 40.10 22.97 27.88 163.2 46.15 32.96 24.95 25.0 19.4 10.5 31.8 16.7 21.3

8B-Block Sequential 63.55 34.54 38.03 53.09 43.60 59.23 20.43 25.32 23.07 30.76 37.38 35.9 30.6 36.5 32.5 20.8 32.6
8B-Block Block-RAG 72.73 34.16 38.03 40.73 43.32 56.75 25.72 24.67 15.38 27.47 37.92 37.5 27.9 32.4 35.1 16.7 31.4
8B-Block Graph-KV Top-1 73.25↑ 34.19 38.18 53.85 44.81 54.72 25.72 24.67 23.07 31.86 37.96 34.9 27.0 32.9 28.6 25.0 29.9
8B-Block Graph-KV Top-3 73.12 34.43 38.69 63.64 45.79 56.53 25.72 24.67 23.07 29.67 38.11 38.5↑ 29.5 32.4 35.7↑ 32.1 32.5
8B-Block Graph-KV Full 69.04 34.63 38.48 88.79 46.41↑ 64.86↑ 30.52↑ 25.97 30.76 47.25↑ 44.90↑ 37.5 31.5↑ 32.4 35.1 33.3↑ 37.5↑

Table 2: Performance on Multihop-RAG [49], MorehopQA [44] and single documentQA in LongBench-V2 [4].
The best sequential encoding method is underlined, the best non-sequential approach is bolded. ↑ refers that the
best non-sequential approach outperforms the best sequential encoding.

NarrativeQA 2Wiki TriviaQA Hotpot QA

Infer Compare Infer Bridge Compose Avg Infer Compare Bridge Avg

Backbone Attention 3610 3040 1549 2751 5236 12576 11313 1487 5918 7405

8B-SFT Sequential 60.60 86.84 24.66 74.62 67.20 68.33 76.19 74.37 73.18 73.42
8B-SFT PCW 39.22 70.13 14.07 67.17 32.58 46.94 60.13 54.87 33.28 37.62
8B-SFT APE 49.05 74.44 18.26 61.17 37.41 49.20 66.28 60.52 46.24 49.11

8B-RAG Sequential 62.38 82.29 60.94 90.54 68.22 75.75 76.38 73.43 78.59 77.55
8B-RAG PCW 46.59 66.21 18.71 72.88 19.49 42.37 64.18 58.84 33.40 33.51
8B-RAG APE 49.14 74.40 21.88 84.55 29.96 51.65 67.31 63.34 42.41 46.61

8B-Block Sequential 63.21 84.24 63.08 90.07 70.76 77.29 76.64 71.88 78.82 77.43
8B-Block Block-RAG 59.39 83.25 50.41 89.85 60.90 71.35 74.44 70.20 71.59 71.31
8B-Block Graph-KV Top-1 62.04 82.76 52.42 90.00 65.94 73.60 75.17 70.41 74.14 73.39
8B-Block Graph-KV Top-3 62.29 83.25 56.74 90.47 67.83 75.15 75.66 71.01 76.24 75.19
8B-Block Graph-KV Full 62.88 82.69 54.16 90.43 67.11 74.38 75.85 70.41 77.62 76.17

Table 3: Performance on NarrativeQA [25], 2Wiki [17], TriviaQA [22] and HotpotQA [62]. The best sequential
encoding method is underlined, the best non-sequential approach is bolded. ↑ refers that the best non-sequential
approach outperforms the best sequential encoding.

outperforms Sequential Encoding by about 2%− 10%. In the rest tasks (in Table. 3), although the
gaps are generally narrower Graph-KV-Top-3 still outperforms Block-RAG by 4.65% in bridge on
HotpotQA, 6.93% in compose on 2Wiki). Graph-KV-Top-3 only achieves performance comparable
to, but not exceeding, the sequential baseline. This is because, in many tasks in Table. 3 such
as inference and comparison (e.g. NarrativeQA [25], TriviaQA [22])), models can often directly
infer from one text chunk. In the tasks that require two-hop reasoning, such as bridge or compose,
sequential encoding may model structural dependencies that are originally held in the serialized order.

Regarding tuning-free approaches, although APE [61] consistently outperforms PCW [43] due to its
temperature and scale adjustments, a substantial performance gap remains between the tuning-free
approach APE and the fine-tuned model Block-RAG. This reveals the need for fine-tuning to enable
LLMs that were pretrained on full causal attention to effectively encode text chunks independently
and decode properly from these text chunks.

To evaluate the applicability of Graph-KV on general LLMs, we take Llama-3.1-8B-SFT as the
backbone and provide detailed results in Appendix. A.1. While we observe a performance decline
compared with the 8B-Block backbone due to distribution shift in the absence of post-training with
block-wise attention, Graph-KV still outperforms the other parallel encoding baselines. Furthermore,
as demonstrated in Appendix. A.1.2, employing multi-hop graph construction with Graph-KV yields
additional performance improvements.

4.2 Task 2: ARXIV-QA – Multi-Hop Reasoning over Citation Network with Full Texts

0 1 2
Number of Distractors

50

100

150

200

250

Nu
m

be
r o

f T
ok

en
s /

 k Sequence Length
Graph-KV PE Range

Figure 7: Average input sequence length
(equivalent to position index range in se-
quential encoding) on ARXIV-QA with
0, 1, 2 distractors, compared to the position
index range used in Graph-KV.

Experimental Setup. We randomly selected 100 academic
papers from the Arxiv dataset [20], each with its corre-
sponding reference papers. Following a data processing
and cleaning phase, which focused on the relationships
between the primary paper and its references (detailed in
Appendix A.2.2), we curated a final dataset comprising
60 primary papers. Including their references, this dataset
encompassed a total of 472 papers with full-text availability.
We then formulated one technical question for each of the
60 papers. Answering these questions necessitates: 1) inter-

7

Capacity Achieving Linear Codes with
Random Binary Sparse Generating Matrices
A. Makhdoumi Kakhaki, H. Karkeh Abadi, P. Pad, H. Saeedi, F.
Marvasti, K. AlishahiOptimal Locally Repairable and Secure Codes

for Distributed Storage Systems
Ankit Singh Rawat, O. Ozan Koyluoglu, Natalia Silberstein, and Sriram Vishwanath

Explicit MBR All-Symbol Locality Codes
Govinda M. Kamath, Natalia Silberstein, N. Prakash, Ankit S. Rawat, V. Lalitha,
O. Ozan Koyluoglu, P. Vijay Kumar, and Sriram Vishwanath

A paper along with its reference papers (FULL TEXT)

Query: In paper 'Update-Efficiency and Local Repairability Limits for Capacity Approaching
Codes', it mentions: another paper try to construct a low row-weight generator matrix randomly to
show that the ensemble average performance achieves capacity. Provide the full name of that paper.

Update-Efficiency and Local
Repairability Limits
for Capacity Approaching Codes
Arya Mazumdar, Venkat Chandar, Gregory W.Wornell

Gold Text in Query Paper

Extracting Evidence and Reasoning

Answer: The full name is `Capacity
Achieving Linear Codes with Random
Binary Sparse Generating Matrice’.

Answer

Evidence in Reference Paper

Figure 5: An example from the ARXIV-QA task. One needs first locate the central paper’s introduction of the
low row-weight generator matrix, and then compare the described methods with the content across all provided
references (e.g., Theorems 1 and 3 in the ground-truth reference paper) to arrive at the correct answer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8B-SFT+SEQ # :27
8B-SFT+PCW # :3
8B-SFT+APE # :5
8B-RAG+SEQ # :25
8B-RAG+PCW # :3
8B-RAG+APE # :4
8B-Block+SEQ # :30
8B-Block+Block-RAG # :7
8B-Block+GraphKV # :27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8B-SFT+SEQ+First # :9
8B-SFT+SEQ+Last # :12
8B-RAG+SEQ+First # :7
8B-RAG+SEQ+Last # :18
8B-Block+SEQ+First # :7
8B-Block+SEQ+Last # :14
8B-Block+Block-RAG+First # :3
8B-Block+Block-RAG+Last # :5
8B-Block+GraphKV # :17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8B-SFT+SEQ+First # :0
8B-SFT+SEQ+Last # :6
8B-RAG+SEQ+First # :1
8B-RAG+SEQ+Last # :4
8B-Block+SEQ+First # :0
8B-Block+SEQ+Last # :9
8B-Block+Block-RAG+First # :0
8B-Block+Block-RAG+Last # :0
8B-Block+GraphKV # :9

Figure 6: QA accuracy when querying with 0, 1, 2 distractors (up to down) on the 60 questions from ARXIV-
QA. The number of correct answers is provided after ✓. ‘SEQ’ refers to sequential encoding. Green entry
means correct answer and Red refers to wrong. When querying with distractors, ‘Last’ and ‘First’ refers to the
position where the paper along with its references that are contain the answer are positioned (at the beginning or
end of the sequence).

preting the main context of the paper, 2) comprehending the
citation relationships, and 3) understanding the context of
its references. An illustrative example is provided in Fig. 5 (note: the figure size has been significantly
reduced due to space constraints; readers are encouraged to zoom in for detailed content). On average,
addressing each question involves processing approximately 88k tokens of context, which approaches
the 128k effective context window limit of the foundational models used.

To further elevate the difficulty of the question-answering task, we introduced distractors for each
question. This was achieved by randomly grouping multiple papers along with their respective
references. This expanded setup enables the evaluation of the model’s positional bias (e.g., by varying
the placement of the relevant paper and its references within the paper sequence) and rigorously tests
the boundaries of extremely long contexts. For instance, grouping three papers and their references
(i.e., one relevant paper plus two distractor papers, along with all their associated references) results
in an average input length of 264.6k tokens. Fig. 7 provides a comparison.

Graph-KV for Structure-Aware Modeling in ARXIV-QA. Understanding technical details in a
paper often involves reviewing its references, particularly when methods in the references are adapted
to solving the problem in the current work. Graph-KV forms target-source pairs connecting the
central paper with all its references. When distractors are included and text length surpasses 128k
tokens, the shared PE strategy is vital for the LLM to properly digest the full context.

Result Analysis. Fig. 6 displays the QA accuracy. When queried solely with the paper and its
references containing the answer (without distractors), sequential encoding demonstrates strong
performance in this straightforward scenario. However, all parallel text encoding baselines (PCW,
APE, and Block-RAG) fail to capture cross-document connections, resulting in significantly fewer
correct answers. In the setup including distractors, sequential encoding exhibits severe positional
bias. When the relevant paper is placed at the end of the sequence, performance remains comparable

8

to Graph-KV, primarily due to the recency bias of pre-trained auto-regressive LLMs, which tend to
focus more on later-positioned text chunks [58]. Conversely, when relevant texts are positioned at
the beginning of the sequence, the distractors and extended contexts lead to substantial performance
degradation. For instance, all sequential encoding baselines fail to answer correctly when queried
with two distractors. This demonstrates the limitations of sequential encoding in long-context, multi-
source structured reasoning. Due to its PE sharing strategy and structural inductive bias injection,
Graph-KV does not suffer from the positional bias and consistently achieves the best performance.

4.3 Paper Topic Classification

Backbone Attention Cora Pubmed
8B-SFT Sequential 66.66±0.62 80.64±0.39
8B-SFT PCW 68.63 76.95
8B-SFT APE 66.92 77.01
8B-RAG Sequential 70.35±0.17 82.06±0.16
8B-RAG PCW 66.05 76.52
8B-RAG APE 68.46 76.49
8B-Block Query-Only 57.38 83.60
8B-Block Sequential 67.09±0.17 79.79±0.16
8B-Block Block-RAG 69.55±0.30 83.24±1.16
8B-Block Graph-KV 71.03 84.61

Table 4: Performance on paper topic classification.
Sequential encoding and Block-RAG produce varied
answer due to different placement order of references.
‘Query-Only’ means only providing the central paper.

We further evaluated Graph-KV on the paper
topic classification task using the Cora [36] and
Pubmed [45] citation graphs. This task, which orig-
inated from graph learning as ‘node classification’,
requires LLMs to classify a central paper into one
of several categories based on its abstract, title, and
neighbors. See Appendix. A.2.3 for details. Each
central paper may have hundreds of references (e.g.
up to 130 in Pubmed), thus making the task chal-
lenging. To verify the effectiveness of including
reference information, we added a ‘Query-Only’
baseline that only feeds the model the central paper.
For all methods, the central paper was consistently
placed at the end of the sequence. Since Sequential encoding and Block-RAG showed varying
performance depending on the order of references placed before the central paper, we report their
average performance across seeds 42 to 44. In contrast, Graph-KV is robust to the order of references.
The results, presented in Table 4, show that by incorporating the dependency on references from the
central paper, Graph-KV outperforms both sequential encoding and parallel text encoding baselines.
It is important to note that existing works applying LLMs to this traditional graph learning task
typically either perform classification in the text embedding latent space [32, 8, 7] or train an adapter
to map sampled reference papers into the LLM’s token space [6, 48, 52]. Graph-KV is the first
approach to address this task by adjusting the fundamental mechanism of LLMs.

4.4 Task 4: Stress Test on Scalability & Efficiency

0 500 1000 1500 2000 2500

Num of Neighbors
0

5

10

15

20

25

30

Sp
ac

e
Le

ft
(G

B)

SEQ (500 words/node)
GraphKV (500 words/node)
SEQ (1000 words/node)
GraphKV (1000 words/node)

100 200 400 800

Num of Words / Node
0.00

0.05

0.10

0.15

0.20

0.25

0.30

TT
FT

 (s
)

SEQ
GraphKV

Figure 8: Left: Memory left w.r.t. num of nodes
to encode. Right: TTFT w.r.t. num words per node.

We conduct stress test on synthetic data with an
Nvidia RTX6000 GPU (48GB) with AMD EPYC
7763 64-core processor, to compare Graph-KV with
sequential encoding baseline on scalability and ef-
ficiency. For details, refer to Appendix. A.2.4. 1)
We construct synthetic star graphs (similar to the
ego graphs used in previous tasks) with fixed word
number on each node of 500 and 1000. We then
gradually increase the number of neighbors to as-
sess GPU peak memory usage and report the remaining available memory. Results are presented on
the left side of Fig. 8. Graph-KV is capable of encoding more than 3 times the number of neighbors
compared with sequential encoding. 2) To evaluate efficiency, we report the time-to-first-token
(TTFT) latency on star graphs with a fixed 10 neighbors, varying the number of words per node from
100 to 800. The results are shown on the right side of Fig. 8. The benefit stems from pre-filling text
chunks with injected structural biases, a capability not achievable with sequential encoding.

5 Conclusion and Future Work

This paper introduces Graph-KV, a novel approach designed to overcome the limitations of auto-
regressive LLMs in processing structured data. It achieves this by directly injecting structural
inductive biases into the attention mechanism and employing strategic positional encoding, which in
turn reduces positional bias and context window demands. Evaluations across diverse tasks, including
RAG, a new academic QA benchmark (ARXIV-QA), and paper topic classification, demonstrate

9

Graph-KV’s substantial outperformance of sequential and parallel encoding baselines, particularly in
multi-hop reasoning and long-context scenarios. Although this work currently evaluates Graph-KV
on one-hop structural dependencies, the core idea of leveraging structural dependencies to improve
LLM understanding of more intricate data topologies holds significant promise for broader research.

Acknowledgements

H. Wang, M. Li, S. Liu, S. Miao and P. Li are partially supported by NSF awards IIS-2239565,
CCF-2402816, IIS-2428777, PHY-2117997; DOE award DE-FOA-0002785; JPMC faculty awards;
Openai Research Credits; and Meta research award.

We extend our sincere gratitude to Xinyu Yang and Beidi Chen for their valuable discussion.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[3] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao
Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A
bilingual, multitask benchmark for long context understanding. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 3119–3137, 2024.

[4] Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng
Xu, Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning
on realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024.

[5] Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph problems. arXiv preprint arXiv:2402.16029, 2024.

[6] Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant. arXiv preprint arXiv:2402.08170, 2024.

[7] Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
benchmarks and new insights. arXiv preprint arXiv:2406.10727, 2024.

[8] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. arXiv preprint arXiv:2111.00064, 2021.

[9] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[10] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. arXiv preprint arXiv:2310.04560, 2023.

[11] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey. arXiv preprint arXiv:2312.10997, 2:1, 2023.

[12] In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. Proceedings of Machine
Learning and Systems, 6:325–338, 2024.

[13] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

10

[14] Steven A Greenberg. How citation distortions create unfounded authority: analysis of a citation
network. Bmj, 339, 2009.

[15] Xiaobo Guo and Soroush Vosoughi. Serial position effects of large language models. arXiv
preprint arXiv:2406.15981, 2024.

[16] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models
without positional encodings still learn positional information. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 1382–1390, 2022.

[17] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing
a multi-hop qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint
arXiv:2011.01060, 2020.

[18] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and
Wayne Xin Zhao. Large language models are zero-shot rankers for recommender systems. In
European Conference on Information Retrieval, pages 364–381. Springer, 2024.

[19] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia,
Yang Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context
language models? arXiv preprint arXiv:2404.06654, 2024.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[21] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for
open domain question answering. arXiv preprint arXiv:2007.01282, 2020.

[22] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

[23] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[24] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36:24892–24928, 2023.

[25] Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor
Melis, and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transac-
tions of the Association for Computational Linguistics, 6:317–328, 2018.

[26] Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. Gofa: A generative one-for-all model for joint graph language modeling. arXiv preprint
arXiv:2407.09709, 2024.

[27] Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
In Advances in Neural Information Processing Systems, pages 106519–106554, 2024.

[28] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing
systems, 33:9459–9474, 2020.

[30] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented
text generation. arXiv preprint arXiv:2202.01110, 2022.

11

[31] Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-
dataset zero-shot transferability in graphs. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 1725–1735, 2024.

[32] Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor W Chan,
and Jia Li. Glbench: A comprehensive benchmark for graph with large language models.
Advances in Neural Information Processing Systems, 37:42349–42368, 2024.

[33] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

[34] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

[35] Dongyang Ma, Yan Wang, and Tian Lan. Block-attention for efficient prefilling. In The
Thirteenth International Conference on Learning Representations, 2024.

[36] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3:127–163,
2000.

[37] A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[38] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

[39] Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long
context language models. arXiv preprint arXiv:2310.01427, 2023.

[40] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

[41] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[43] Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas,
Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large
language models. arXiv preprint arXiv:2212.10947, 2022.

[44] Julian Schnitzler, Xanh Ho, Jiahao Huang, Florian Boudin, Saku Sugawara, and Akiko Aizawa.
Morehopqa: More than multi-hop reasoning. arXiv preprint arXiv:2406.13397, 2024.

[45] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[46] Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and Soroush Vosoughi. Judging the judges:
A systematic investigation of position bias in pairwise comparative assessments by llms. arXiv
preprint arXiv:2406.07791, 2024.

[47] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[48] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 491–500, 2024.

12

[49] Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for
multi-hop queries. arXiv preprint arXiv:2401.15391, 2024.

[50] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[52] Duo Wang, Yuan Zuo, Fengzhi Li, and Junjie Wu. Llms as zero-shot graph learners: Alignment
of gnn representations with llm token embeddings. Advances in Neural Information Processing
Systems, 37:5950–5973, 2024.

[53] Haoyu Wang, Shikun Liu, Rongzhe Wei, and Pan Li. Model generalization on text attribute
graphs: Principles with large language models. arXiv preprint arXiv:2502.11836, 2025.

[54] Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
Wang. Length generalization of causal transformers without position encoding. arXiv preprint
arXiv:2404.12224, 2024.

[55] Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang, and Bryan Hooi. Primacy effect of
chatgpt. arXiv preprint arXiv:2310.13206, 2023.

[56] Ziqi Wang, Hanlin Zhang, Xiner Li, Kuan-Hao Huang, Chi Han, Shuiwang Ji, Sham M Kakade,
Hao Peng, and Heng Ji. Eliminating position bias of language models: A mechanistic approach.
arXiv preprint arXiv:2407.01100, 2024.

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[58] Xinyi Wu, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the emergence of position bias
in transformers. arXiv preprint arXiv:2502.01951, 2025.

[59] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[60] Haotong Yang, Xiyuan Wang, Qian Tao, Shuxian Hu, Zhouchen Lin, and Muhan Zhang. Gl-
fusion: Rethinking the combination of graph neural network and large language model. arXiv
preprint arXiv:2412.06849, 2024.

[61] Xinyu Yang, Tianqi Chen, and Beidi Chen. Ape: Faster and longer context-augmented genera-
tion via adaptive parallel encoding. arXiv preprint arXiv:2502.05431, 2025.

[62] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[63] Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du,
Shan Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with
cached knowledge fusion. In Proceedings of the Twentieth European Conference on Computer
Systems, pages 94–109, 2025.

[64] Howard Yen. Long-context language modeling with parallel context encoding. Master’s thesis,
Princeton University, 2024.

[65] Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui Zhuang, Zheyue Tan,
Zhuyu Yao, Dahua Lin, Boxun Li, Guohao Dai, Shengen Yan, and Yu Wang. Lv-eval: A bal-
anced long-context benchmark with 5 length levels up to 256k. arXiv preprint arXiv:2402.05136,
2024.

13

[66] Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia
Wu, and Zhangyang Wang. Found in the middle: How language models use long contexts better
via plug-and-play positional encoding. arXiv preprint arXiv:2403.04797, 2024.

[67] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-augmented generation for ai-generated
content: A survey. arXiv preprint arXiv:2402.19473, 2024.

[68] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International conference on machine
learning, pages 12697–12706. PMLR, 2021.

[69] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

[70] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs, 2024. URL https://arxiv. org/abs/2312.07104.

[71] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models
are scalable judges. arXiv preprint arXiv:2310.17631, 2023.

[72] Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng Lin, Lei Shu, Liangchen
Luo, Lei Meng, Bang Liu, et al. Accelerating inference of retrieval-augmented generation via
sparse context selection. arXiv preprint arXiv:2405.16178, 2024.

[73] Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao
Hong, and Siliang Tang. Graphclip: Enhancing transferability in graph foundation models for
text-attributed graphs. In Proceedings of the ACM on Web Conference 2025, pages 2183–2197,
2025.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contribution and scope are covered in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section. methodology and Section. Conclusion and Future Work for
details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to supplementary materials for codes and implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]

Justification: Data is publicly available. Code is provided in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See implementation details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In scenarios that may involve randomness, at least three random seeds are
used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See in implementation details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Checked.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the best of our knowledge, there is no societal impact if the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data, methods’ license are explicit.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The assets are well-documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The work develops methodology for LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Appendix

A.1 Additional Experiment Results

A.1.1 Applicability to General LLM

We apply Graph-KV to standard Llama-3.1-8B-SFT, comparing it against the parallel encoding
baselines. Graph-KV consistently outperforms all parallel baselines, as shown in Table. 56.

MorehopQA 2Wiki
Attention Hop-1 Hop-2 Hop-3 Hop-4 Hop-5 Avg Compare Infer Bridge Compose Avg

PCW 11.26 10.81 10.38 0.00 17.58 11.35 70.13 13.07 67.17 32.58 46.94
APE 13.28 15.86 9.47 61.53 10.98 14.13 74.44 18.26 61.17 37.41 49.20

Block-RAG 13.96 13.94 9.74 0.00 15.38 13.32 72.17 15.17 68.01 35.54 48.99
Graph-KV Top-3 15.54 16.10 12.98 0.00 18.68 15.47 76.41 17.43 64.15 47.19 54.30

Table 5: Results with Llama-3.1-8B-SFT.

Multihop-RAG HotpotQA NarrativeQA TriviaQA
Attention Infer Compare Temporal Null Avg Compare Bridge Avg Infer Infer

PCW 69.39 34.29 34.35 42.10 42.01 54.87 33.28 37.62 39.22 60.13
APE 48.34 33.46 33.49 86.25 40.34 60.52 46.24 49.11 49.05 66.28

Block-RAG 49.28 33.54 33.76 41.86 38.41 57.83 37.39 41.49 46.53 65.55
Graph-KV Top-3 67.00 35.14 34.76 42.74 42.35 63.55 51.44 53.90 51.08 69.47

Table 6: Results with Llama-3.1-8B-SFT.

A.1.2 Multi-Hop Graph-KV

We built multi-layer graphs from retriever relevance scores for iterative information propagation. The
design of multi-hop propagation is as follows:

• 2-Hop: We design a chain of (Top 1 chunk) → (Top 2-4 chunks) → (Rest).

Iteration 1: "Top 1" acts as the source to update the KV of "Top 2-4".

Iteration 2: The updated "Top 2-4" then update the rest.

• 3-Hop: A deeper chain (Top 1) → (Top 2-3) → (Top 4-5) → (Rest) with three-step propagation.

Multihop-RAG HotpotQA NarrativeQA TriviaQA
Attention #hop Infer Compare Temporal Null Avg Compare Bridge Avg Infer Infer

Graph-KV Top-1 1 73.25 34.19 38.18 53.85 44.81 70.41 74.14 73.39 62.04 75.17
Graph-KV Top-3 1 73.12 34.43 38.69 63.64 45.79 71.01 76.24 75.19 62.29 75.66
Graph-KV Full 1 69.04 34.63 38.48 88.79 46.41 70.41 77.62 76.17 62.88 75.85

Graph-KV Top-1-Top-3 2 73.20 34.54 38.78 70.82 46.15 71.95 77.25 76.19 62.60 75.90

Graph-KV Top1-Top3-Top5 3 73.30 34.76 38.78 75.44 46.74 72.02 77.57 76.45 62.74 76.04

MorehopQA 2Wiki
Attention #hop Hop-1 Hop-2 Hop-3 Hop-4 Hop-5 Avg Compare Infer Bridge Compose Avg

Graph-KV Top1 1 54.72 25.72 24.67 23.07 31.86 37.96 82.76 52.42 90.00 65.94 73.60
Graph-KV Top3 1 56.63 25.72 24.67 23.07 29.67 38.11 83.25 56.74 90.47 67.83 75.15
Graph_KV Full 1 64.86 30.52 25.97 30.76 47.25 44.90 82.69 54.16 90.43 67.11 74.38

Graph-KV Top1-Top3 2 67.11 32.69 25.32 30.76 37.36 45.70 83.45 57.04 90.77 68.97 75.76

Graph-KV Top1-Top3-Top5 3 67.56 32.93 25.97 38.46 43.95 46.69 83.75 57.04 90.77 69.34 75.99

Table 7: Multi-Hop performance.

A.2 Implementation Details

Hardware and Platform

For all the experiments involved in this study, the code is implemented using PyTorch [37], the
HuggingFace Transformers library [57], and FlashAttention-2 [9]. As to hardware, for the task
ARXIV-QA, the parallel text encoding baselines (Block-RAG, PCW, APE) and Graph-KV run on 4
NVIDIA A100 Tensor Core GPUs, while the sequential encoding baseline runs on 8 NVIDIA A100

22

Tensor Core GPUs, as it requires higher memory. For the other tasks, all the methods run on with
NVIDIA RTX 6000 Ada GPUs.

Model Weights For all the experiments, we adopt the open-source weight of llama-3.1-8B-sft*,
llama-3.1-8B-TAG† and llama-3.1-8B-Block-FT‡ release by [35].

We do not further fine-tune the llama-3.1-8B with Graph-KV due to limited computational re-
sources, although we believe that doing so could further improve performance on the experiments.

A.2.1 Implementation Details for RAG

Data Process and Evaluation For 2Wiki [17], NarrativeQA [25], TriviaQA [22], MorehopQA [44]
and HotpotQA [62], the data processing (the process to retrieve text chunk and the evaluation pipeline)
strictly follows Block-RAG [35]§. For Mulihop-RAG [49], the data processing and evaluation follows
the original implementation¶. Across all benchmarks, the top 10 text chunks retrieved based on
similarity scores are included in the input prompt in ascending order with respect to the scores [35].
Following [35, 33, 18], we use accuracy as the metric, and evaluate whether the correct answer
appears in the output. For all methods, the output is constrained to a maximum of 256 tokens.

Prompt: For RAG tasks, the entire prompt input is divided into 3 parts, namely Prefix, Text Chunks,
and Question, with each formatted as follows:

• Prefix: To ensure fair comparison, all the methods adopt the same prefix as follows:

You are an intelligent AI assistant. Please answer questions based on the user\’s
instructions. Below are some reference documents that may help you in answering

the user\’s question.

• Text Chunks: The format for each text chunk (10 chunks in total for each question) is as follows:

-Title: {Title #1}. \n {Text #1}
-Title: {Title #2}. \n {Text #2}
...
-Title: {Title #10}. \n {Text #10}

• Question: All the methods adopt the same question format as follows:

For 2Wiki [17], HotpotQA [62], NarrativeQA [25] and TriviaQA [22], the question prompt follows
those used in [35]:

Please write a high-quality answer for the given question using only the provided
search documents (some of which might be irrelevant). \n Question: {Question}

For MultiHop-QA [49], we adopt the prompt from the original implementation, which is as follows:

Please write a high-quality answer for the given question using only the provided
search documents. The answer to the question is a word or entity. If the

provided information is insufficient to answer the question, respond ’
Insufficient Information’. Please finally give your answer started with: ’The
answer is:’. \n Question: {Question}

For MoreHop-QA [44], the prompt is also from the original implementation, which is:

Please write a high-quality answer for the given question using only the provided
search documents. (If the answer is a date, format is as follows: YYYY-MM-DD (

ISO standard).) After thinking step by step, give your final answer following ’
Answer:’ \n Question: {Question}

*https://huggingface.co/ldsjmdy/Tulu3-SFT
†https://huggingface.co/ldsjmdy/Tulu3-RAG
‡https://huggingface.co/ldsjmdy/Tulu3-Block-FT
§https://github.com/TemporaryLoRA/Block-Attention
¶https://github.com/yixuantt/MultiHop-RAG

23

Implementation

• Sequential Encoding: Sequential method directly feeds the model with the sequence of Prefix +
Text Chunks + Question.

• Parallel Encoding: independently encode the Prefix, each one of the Text Chunks, and Question, and
then concatenate the KV cache together. The positional encoding setup follows the implementation
used in the corresponding papers.

• Graph-KV: independently encode Prefix and Question, while inject the structural inductive biases
as introduced in Section. 4.1.

A.2.2 Implementation Details for ARXIV-QA

Dataset Curation We initially sample 100 central papers along with their references from the OGBN-
ARXIV [20] citation network. Using the Arxiv API||, we download the PDF files for each paper and
convert them to full text using the fitz library**. During data cleaning, we ensure that the correct
papers are downloaded and that each contains at least three valid references. For each reference, if it
appears in a standalone sentence in the central paper—indicating that the central paper uses at least
one sentence to compare or discuss the reference—we manually design a corresponding question.
Through this process, 60 central papers with associated questions are selected to form the ARXIV-QA
task, which is publicly available††.

Distractors When adding distractors, we also employ randoms seeds 42− 44 to randomly sample
distractors paper citation ego-graphs, but we do not observe different outputs across the methods with
different seeds.

Prompt: For ARXIV-QA, the input prompt can be divided into 3 parts, namely Prefix, Paper texts,
Question:

• Prefix: To ensure fair comparison, all the methods adopt the same prefix as follows:

You are an intelligent AI assistant. You will first read the related works of a
paper, then you will read the paper. Then answer the question.

• Paper texts:

{Full Text of Reference a}, {Full Text of Reference b},..., {Full Text of
Reference k} \n\n Now please read the paper: {Full Text of Central Paper #1}

(if with distractors:)
(Distractor #1){Full Text of Reference l}, {Full Text of Reference m},..., {Full
Text of Reference s} \n\n Now please read the paper: {Full Text of Central Paper
#2}

(Distractor #2){Full Text of Reference t}, {Full Text of Reference u},..., {Full
Text of Reference y} \n\n Now please read the paper: {Full Text of Central Paper
#3}

• Question: To ensure fair comparison, all the attention methods adopt the same question as follows:

Question: {Question}

Implementation

• Sequential Encoding: directly input the sequence of Prefix + Paper Texts + Question. When
distractors are included, the Paper Texts are repeated accordingly, while ensuring that each citation
ego-graph remains intact, as illustrated above.

||https://info.arxiv.org/help/api/index.html
**https://pymupdf.readthedocs.io/en/latest/tutorial.html
††See the zip file

24

https://info.arxiv.org/help/api/index.html
https://pymupdf.readthedocs.io/en/latest/tutorial.html

• Parallel Encoding: independently encode the Prefix, the full text of each reference and each paper,
Question, and then concatenate the KV cache together. The positional encoding setup follows the
implementation used in the corresponding paper.

• Graph-KV: independently encode Prefix and Question, while inject the structural inductive biases
following the method introduced in Section. 4.2.

Demo Example Below we display two examples of question of ARXIV-QA, and the corresponding
answers generated by different attention methods. Full questions and ground truth answers could be
found in‡‡.

Demo Example #1

Question: In paper ’xLED: Covert Data Exfiltration from Air-Gapped Networks via Router
LEDs’, the authors describe a method from another paper that introduces a type of malware
aimed bridging the air-gap between computers and a nearby mobile phone by exploiting FM
radio signals emanating from the video card. You’ve also read this paper, please provide the full
name of the paper.

Ground Truth: AirHopper: Bridging the Air-Gap between Isolated Networks and Mobile
Phones using Radio Frequencies

Without Distractor

8B-SFT+SEQ: The paper that introduces a type of malware aimed bridging the air-gap
between computers and a nearby mobile phone by exploiting FM radio signals emanating
from the video card is titled AirHopper: Bridging the Air-Gap between Isolated Networks
and Mobile Phones using Radio Frequencies.
8B-RAG+SEQ: The paper that introduces a type of malware aimed bridging the air-gap
between computers and a nearby mobile phone by exploiting FM radio signals emanating
from the video card is titled AirHopper: Bridging the Air-Gap between Isolated Networks
and Mobile Phones using Radio Frequencies

8B-Block-FT+SEQ: The paper that introduces a type of malware aimed at bridging the
air-gap between computers and a nearby mobile phone by exploiting FM radio signals
emanating from the video card is titled AirHopper: Bridging the Air-Gap between Isolated
Networks and Mobile Phones using Radio Frequencies

8B-Block-FT+Block-RAG: The paper that introduces a type of malware aimed at bridging
the air-gap between computers and a nearby mobile phone by exploiting FM radio signals
emanating from the video card is titled COTTONMOUTH: An Asymmetric Subtle Software
Attack by Mordechai Guri, Gabi Kedma, Assaf Kachlon, and Yuval Elovici.
8B-Block-FT+Graph-KV: The paper that introduces a type of malware aimed bridging
the air-gap between computers and a nearby mobile phone by exploiting FM radio signals
emanating from the video card is titled: AirHopper: Bridging the Air-Gap between Isolated
Networks and Mobile Phones using Radio Frequencies. Authors: Mordechai Guri, Gabi
Kedma, Assaf Kachlon, Yuval Elovici.

‡‡zip file of supplementary material

25

With #1 Distractor

8B-SFT+SEQ-First: The full name of the paper is xLED: Covert Data Exfiltration from
Air-Gapped Networks via Router LEDs.
8B-SFT+SEQ-Last: AirHopper: Bridging the Air-Gap between Isolated Networks and
Mobile Phones using Radio Frequencies

8B-RAG+SEQ-First: According to the provided information, the paper that introduces the
malware that exploits FM radio signals emanating from the video card to bridge the air-gap
between computers and a nearby mobile phone is xLED: Covert Data Exfiltration from
Air-Gapped Networks via Router LEDs
8B-RAG+SEQ-Last: According to the provided information, the paper you’re referring to
is AirHopper: Bridging the Air-Gap between Isolated Networks and Mobile Phones using
Radio Frequencies by Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval
Elovici.
8B-Block-FT+SEQ-First: The paper you are referring to is titled Software-Defined Radio
and the RF Fingerprints of Computersb̈y Mordechai Guri, Yuval Elovici, and Boris Zadov.
8B-Block-FT+SEQ-Last: The paper you are referring to is ÄirHopper: Bridging the Air-
Gap between Isolated Networks and Mobile Phones using Radio Frequenciesb̈y Mordechai
Guri, K. Gabi, K. Assaf, and Yuval Elovici.
8B-Block-FT+Block-RAG-First: <end of text>
8B-Block-FT+Block-RAG-Last: The authors of the 5. The 5. The 5. and the 5. The 5. The
5. and the 5. The 5. The 5. The 5. The 5. The
8B-Block-FT+Graph-KV: The paper that introduces a type of malware aimed bridging
the air-gap between computers and a nearby mobile phone by exploiting FM radio signals
emanating from the video card is titled AirHopper: Bridging the Air-Gap between Isolated
Networks and Mobile Phones using Radio Frequencies by Mordechai Guri, Gabi Kedma,
Assaf Kachlon, and Yuval Elovici.

With #2 Distractors

8B-SFT+SEQ-First: The full name of the paper is Learning to Bridge the Air-Gap between
Isolated Networks and Mobile Devices using RF Modulation from the Video Card
8B-SFT+SEQ-Last: xLED: Covert Data Exfiltration from Air-Gapped Networks via Router
LEDs
8B-RAG+SEQ-First: <end of text>
8B-RAG+SEQ-Last: <end of text>
8B-Block-FT+SEQ-First: <end of text>
8B-Block-FT+SEQ-Last: <end of text>
8B-Block-FT+Block-RAG-First: Null
8B-Block-FT+Block-RAG-Last: Null
8B-Block-FT+Graph-KV: The paper that introduces a type of malware aimed bridging
the air-gap between computers and a nearby mobile phone by exploiting FM radio signals
emanating from the video card is: AirHopper: Bridging the air-gap between isolated
networks and mobile phones using radio frequencies by Mordechai Guri, Gabi Kedma, Assaf
Kachlon, and Yuval Elovici.

26

Demo Example #2

Question: In paper ‘Fast Multi-frame Stereo Scene Flow with Motion Segmentation’, they
directly adopt an edge detector, which originates from another paper that you’ve read. Provide
the full name of that paper.

Ground Truth: Fast Edge Detection Using Structured Forests

Without Distractor

8B-SFT+SEQ: The edge detector adopted in the paper ’Fast Multi-frame Stereo Scene
Flow with Motion Segmentation’ originates from the paper titled Fast Edge Detection Using
Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-RAG+SEQ: The paper Fast Multi-frame Stereo Scene Flow with Motion Segmentation
by Tatsunori Taniai, Sudipta N. Sinha, and Yoichi Sato directly adopts an edge detector from
the paper Fast Edge Detection Using Structured Forests by Piotr Dollár and C. Lawrence
Zitnick.
8B-Block-FT+SEQ: According to the paper Fast Multi-frame Stereo Scene Flow with
Motion Segmentation by Tatsunori Taniai, Sudipta N. Sinha, and Yoichi Sato, they directly
adopt an edge detector from the paper Fast Edge Detection Using Structured Forests by Piotr
Dollár and C. Lawrence Zitnick.
8B-Block-FT+Block-RAG: The edge detector adopted in the paper Fast Multi-frame Stereo
Scene Flow with Motion Segmentation is the Census Transform, which is a robust and
efficient edge detection method. The Census Transform is a non-parametric image matching
technique that was first introduced by Zabih and Woodfill in their paper Non-parametric
Local Transforms for Computing Visual Correspondence (Zabih and Woodfill, 1994).
8B-Block-FT+Graph-KV: The paper Fast Multi-frame Stereo Scene Flow with Motion
Segmentation directly adopts an edge detector that originates from the paper Fast Edge
Detection Using Structured Forests by Piotr Dollár and C. Lawrence Zitnick.

27

With #1 Distractor

8B-SFT+SEQ-First: The edge detector adopted in the paper ‘Fast Multi-frame Stereo
Scene Flow with Motion Segmentation’ is Dollár and Zitnick’s Fast Edge Detection Using
Structured Forests (DOI: 10.1109/TPAMI.2015.2467470).
8B-SFT+SEQ-Last: The edge detector adopted in the paper ‘Fast Multi-frame Stereo Scene
Flow with Motion Segmentation’ is the Fast Edge Detection Using Structured Forests by
Piotr Dollár and C. Lawrence Zitnick.
8B-RAG+SEQ-First: According to the supplementary material of the paper Fast Multi-
frame Stereo Scene Flow with Motion Segmentation by Tatsunori Taniai, Sudipta N. Sinha,
and Yoichi Sato, they directly adopt an edge detector from the paper Fast Edge Detection
Using Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-RAG+SEQ-Last: According to the paper Fast Multi-frame Stereo Scene Flow with
Motion Segmentation by Tatsunori Taniai, Sudipta N. Sinha, and Yoichi Sato, the edge
detector they adopted is from the paper Fast Edge Detection Using Structured Forests by
Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+SEQ-First: According to the supplementary material of the paper Fast Multi-
frame Stereo Scene Flow with Motion Segmentation by Tatsunori Taniai, Sudipta N. Sinha,
and Yoichi Sato, the edge detector used in their work originates from the paper Fast Edge
Detection Using Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+SEQ-Last: The paper Fast Multi-frame Stereo Scene Flow with Motion
Segmentation directly adopts an edge detector from the paper Fast Edge Detection Using
Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+Block-RAG-First: The paper that is directly adopted as an edge detector in
’Fast Multi-frame Stereo Scene Flow with Motion Segmentation’ is Fast Edge Detection
Using Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+Block-RAG-Last: The paper Fast Multi-frame Stereo Scene Flow with
Motion Segmentation by Tatsunori Taniai, Sudipta N. Sinha, and Yoichi Sato does not
directly adopt an edge detector from another paper. Instead, they use a fast edge detector
proposed by Dollár and Zitnick (2017) in their work A Continuous Optimization Approach
for Efficient and Accurate Scene Flow
8B-Block-FT+Graph-KV: The paper Fast Multi-frame Stereo Scene Flow with Motion
Segmentation directly adopts an edge detector from the paper Fast Edge Detection Using
Structured Forests by Piotr Dollár and C. Lawrence Zitnick.

28

With #2 Distractors

8B-SFT+SEQ-First: The paper that the edge detector originates from is Edge-preserving
Multi-scale Video Deblurring by Hu et al.
8B-SFT+SEQ-Last: The edge detector used in the paper ‘Fast Multi-frame Stereo Scene
Flow with Motion Segmentation’ is the Fast Edge Detection Using Structured Forests.
8B-RAG+SEQ-First: The paper that is referred to in the paper Fast Multi-frame Stereo
Scene Flow with Motion Segmentation is Edge-preserving Joint Image Segmentation and
Estimation with Contextual and Spatial Priors by J. Shen, X. Yang, and M. Chen.
8B-RAG+SEQ-Last: According to the provided information, the paper Fast Multi-frame
Stereo Scene Flow with Motion Segmentation adopts an edge detector from another paper.
The edge detector mentioned in the paper is the Fast Edge Detection Using Structured Forests
by Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+SEQ-First: The paper that the authors of Fast Multi-frame Stereo Scene
Flow with Motion Segmentation directly adopted an edge detector from is Edge-preserving
Multi-modal Deblurring.
8B-Block-FT+SEQ-Last: The edge detector mentioned in the paper Fast Multi-frame Stereo
Scene Flow with Motion Segmentation is the one proposed in the following paper: Fast Edge
Detection Using Structured Forests by Piotr Dollár and C. Lawrence Zitnick.
8B-Block-FT+Block-RAG-First: Null
8B-Block-FT+Block-RAG-Last: Null
8B-Block-FT+Graph-KV: The edge detector used in the paper Fast Multi-frame Stereo
Scene Flow with Motion Segmentation is the Simplex detector, which is described in the
paper: Piotr Dollár and C. Lawrence Zitnick. Fast Edge Detection Using Structured Forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2015.

A.2.3 Implementation Details for Paper Topic Classification

Dataset Curation The dataset is originally from Cora [36] and Pubmed [45], we adopt the test set
split adopted in [7]. For each paper, the input text consists of the title and abstract.

Prompt: For Paper Topic Classification, the input prompt can be divided into 3 parts, namely Prefix,
Paper Title & Abstracts, Question:

• Prefix: To ensure fair comparison, all the methods adopt the same prefix as follows:

You are an intelligent AI assistant. You will first read a list of titles or
abstracts of papers cited by a central paper. Then, you will read the title or
abstract of the central paper itself. Finally, you will answer a question related
to the central paper:

• Paper Title & Abstracts:

{Title & Abstract of Reference 1}, {Title & Abstract of Reference 2},..., {Title
& Abstract of Reference k} \n\n They are all cited by the following central paper:
: {Title & Abstract of Central Paper}

• Question: To ensure fair comparison, all the attention methods adopt the same question as follows:

Classify the central paper into one of the following categories: {Classes}.
Provide your answer following ’Answer:’

Implementation

For sequential encoding and Block-RAG [35], we report the average performance with seeds 42− 44
to randomly shuffle the placement order of sequence.

29

• Sequential Encoding: directly input the sequence of Prefix + Paper Title & Abstract + Question.
When distractors are included, the Paper Texts are repeated accordingly, while ensuring that each
citation ego-graph remains intact.

• Parallel Encoding The parallel encoding baselines independently encode the Prefix, each paper title
& abstract, Question, and then concatenate the KV cache together. The positional encoding setup
follows the implementation used in the corresponding paper.

• Graph-KV: independently encode Prefix and Question, while inject the structural inductive biases
with Paper Title & Abstract following the modeling as introduced in Section. 4.3.

A.2.4 Implementation Details for Stress Test

As introduced in the main text, we employ an Nvidia RTX6000 GPU (48GB) with AMD EPYC
7763 64-core processor for stress test. Specifically, for attention implementation, all the methods
use FlashAttention2 [9]. The raw text is extracted from the first test sample of the Cora [36] dataset.
To meet the specified input length requirements—500 and 1000 words for the memory test, and
100, 200, 400, and 800 words for the generation latency evaluation—we either repeat or truncate the
original text accordingly.

• Memory test: To test the memory usage of each method, we gradually increase the num-
ber of neighbors of synthetic star graph, and use torch.cuda.reset_peak_memory_stats() and
torch.cuda.max_memory_allocated() functions to monitor the peak GPU memory usage.

• Time-To-First-Token (TTFT): Similar to other parallel encoding baselines, Graph-KV also benefits
from KV-cache pre-filling. With pre-filled KV-cache, Graph-KV achieves significantly lower TTFT
(Time-To-First-Token) compared to sequential encoding. To measure TTFT, we use the time.time()
function to record the elapsed time.

30

	Introduction
	Related Work
	Methodology
	Graph-KV

	Experiments
	Task 1: Retrieval Augmented Generation (RAG)
	Task 2: Arxiv-QA – Multi-Hop Reasoning over Citation Network with Full Texts
	Paper Topic Classification
	Task 4: Stress Test on Scalability & Efficiency

	Conclusion and Future Work
	Appendix
	Additional Experiment Results
	 Applicability to General LLM
	Multi-Hop Graph-KV

	Implementation Details
	Implementation Details for RAG
	Implementation Details for Arxiv-QA
	Implementation Details for Paper Topic Classification
	Implementation Details for Stress Test

