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Abstract

Recent score-based diffusion models (SBDMs)
show promising results in unpaired image-to-
image translation (I2I). However, existing meth-
ods, either energy-based or statistically-based,
provide no explicit form of the interfered in-
termediate generative distributions. This work
presents a new score-decomposed diffusion model
(SDDM) on manifolds to explicitly optimize the
tangled distributions during image generation.
SDDM derives manifolds to make the distribu-
tions of adjacent time steps separable and decom-
pose the score function or energy guidance into an
image “denoising” part and a content “refinement”
part. To refine the image in the same noise level,
we equalize the refinement parts of the score func-
tion and energy guidance, which permits multi-
objective optimization on the manifold. We also
leverage the block adaptive instance normaliza-
tion module to construct manifolds with lower di-
mensions but still concentrated with the perturbed
reference image. SDDM outperforms existing
SBDM-based methods with much fewer diffusion
steps on several I2I benchmarks.

1. Introduction
Score-based diffusion models (Song & Ermon, 2019; Song
et al., 2021; Ho et al., 2020; Nichol & Dhariwal, 2021; Bao
et al., 2022a; Lu et al., 2022) (SBDMs) have recently made
significant progress in a series of conditional image gener-
ation tasks. In particular, in the unpaired image-to-image
translation (I2I) task (Pang et al., 2021), recent studies have
shown that a pre-trained SBDM on the target image do-
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main with energy guidance (Zhao et al., 2022) or statis-
tical (Choi et al., 2021) guidance outperforms generative
adversarial network (Goodfellow et al., 2014)(GAN)-based
methods (Fu et al., 2019; Zhu et al., 2017; Yi et al., 2017;
Park et al., 2020; Benaim & Wolf, 2017; Zheng et al., 2021;
Shen et al., 2019; Huang et al., 2018; Jiang et al., 2020; Lee
et al., 2018) and achieves the state-of-the-art performance.

SBDMs provide a diffusion model to guide how image-
shaped data from a Gauss distribution is iterated step by step
into an image of the target domain. In each step, SBDM
gives score guidance which, from an engineering perspec-
tive, can be mixed with energy and statistical guidance to
control the generation process. However, firstly due to the
stochastic differential equations of the inverse diffusion pro-
cess, the coefficient of the score guidance is not changeable.
Secondly how energy guidances affect the intermediate dis-
tributions is still not clear. As a result, the I2I result is often
unsatisfactory, especially when iterations are inadequate.
Moreover, there has yet to be a method to ensure that the
intermediate distributions are not negatively interfered with
during the above guidance process.

To overcome these limitations, we propose to decompose the
score function from a new manifold optimization perspec-
tive, thus better exerting the energy and statistical guidance.
To this end, we present SDDM, a new score-decomposed
diffusion model on manifolds to explicitly optimize the tan-
gled distributions during the conditional image generation
process. When generating an image from score guidance,
an SBDM actually performs two distinct tasks, one is im-
age “denoising”, and the other is content “refinement” to
bring the image-shaped data closer to the target domain
distribution with the same noise level. Based on this new
perspective, SDDM decomposes the score function into two
different parts, one for image denoising and the other for
content refinement. To realize this decomposition, we take
statistical guidance as the manifold restriction to get an ex-
plicit division between the data distributions in neighboring
time steps. We find that the tangent space of the manifold
naturally separates the denoising part and the refinement
part of the score function. In addition, the tangent space can
also split out the denoising part of the energy guidance, thus
achieving a more explanatory conditional generation.
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Within the decomposed score functions, the content refine-
ment part of the score function and energy functions are
on an equal footing. Therefore we can treat the optimiza-
tion on the manifold as a multi-objection optimization, thus
avoiding the negative interference of other guidance on
score guidance. To realize the score-decomposed diffusion
model, we leverage the block adaptive instance normaliza-
tion (BAdaIN) module to play the restriction function on
the manifold, which is a stronger constraint than the widely
used low-pass filter (Choi et al., 2021). With our carefully
designed BAdaIN, the tangent space of the manifold pro-
vides a better division for the score and energy guidance.
We also prove that our manifolds are equivalently concen-
trated with the perturbed reference image compared with
those in (Choi et al., 2021).

To summarize, this work makes the following three main
contributions:

• We present a new score-decomposed diffusion model
on manifolds to explicitly optimize the tangled distribu-
tions during the conditional image generation process.

• We introduce a multi-objective optimization algorithm
into the conditional generation of SBDMs, which per-
mits not only many powerful gradient combination
algorithms but also adjustment of the score factor.

• We design a BAdaIN module to construct a lower di-
mensional manifold compared with the low-pass filter
and thus provide a concrete model implementation.

With the above contributions, we have obtained a high-
performance conditional image generation model. Exten-
sive experimental evaluations and analyses on two I2I bench-
marks demonstrate the superior performance of the proposed
model. Compared to other SBDM-based methods, SDDM
generates better results with much fewer diffusion steps.

2. Background
2.1. Score-Based Diffusion Models (SBDMs)

SBDMs (Song et al., 2021; Ho et al., 2020; Dhariwal &
Nichol, 2021; Zhao et al., 2022) first progressively perturb
the training data via a forward diffusion process and then
learn to reverse this process to form a generative model of
the unknown data distribution. Denoting q(x0) the training
set with i.i.d. samples on Rd and q(xt) the intermediate dis-
tribution at time t, the forward diffusion process {xt}t∈[0,T ]

follows the stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) : Rd → Rd is the drift coefficient, dt denotes
an infinitesimal positive timestep, g(t) ∈ R is the diffusion
coefficient, and w ∼ N (0, tId) is a standard Wiener pro-
cess. Denote qt|0(xt|x0) the transition kernel from time
0 to t, which is decided by f(x, t) and g(t). In practice,

f(x, t) is usually an affine transformation w.r.t. x so that
the qt|0(xt|x0) is a linear Gaussian distribution and xt can
be sampled in one step (Zhao et al., 2022). In practice, the
following VP-SDE is mostly used:

dx = −1

2
β(t)xdt+

√
β(t)dw, (2)

and DDPM (Ho et al., 2020; Dhariwal & Nichol, 2021) use
the following discrete form of the above SDE:

xi =
√
1− βixi−1 +

√
βizi−1, i = 1, · · · , N. (3)

Normally an SDE is not time-reversible because the forward
process loses information on the initial data distribution and
converges to a terminal state distribution qT (xT ). However,
Song et al. (2021) find that the reverse process satisfies the
following reverse-time SDE:

dx =
[
f(x, t)− g(t)2∇x log qt(x)

]
dt+ g(t)dw, (4)

where dt is an infinitesimal negative timestep and w is
a reverse-time standard Wiener process. Song et al.
(2021) adopt a score-based model s(x, t) to approximate
∇x log qt(x), i.e. s(x, t)=̇∇x log qt(x), obtaining the fol-
lowing reverse-time SDE:

dx =
[
f(x, t)− g(t)2s(x, t)

]
dt+ g(t)dw. (5)

In VP-SDE, qT (xT ) is also a standard Gaussian distribution.

For a controllable generation, it is convenient to add some
guidance function ε(x, t) to the score function and then get
a new time-reverse SDE:

dx=
[
f(x, t)−g(t)2(s (x, t)+∇xε (x, t))

]
dt+g(t)dw. (6)

2.2. SBDMs in Unpaired Image to Image Translation

Unpaired I2I aims to transfer an image from a source domain
Y ⊂ Rd to a different target domain X ⊂ Rd as the training
data. This translation process can be achieved by designing
a distribution p(x0|y0) on the target domain X conditioned
on an image y0 ∈ Y to transfer.

In ILVR (Choi et al., 2021), given a reference image y0,
they refine xt after each denoising step with a low-pass filter
Φ for the faithfulness to the reference image:

x′
t = xt −Φ(xt) +Φ(yt),yt ∼ qt|0(yt | y0). (7)

In EGSDE (Zhao et al., 2022), they carefully designed two
energy-based guidance functions and follow the conditional
generation method in Song et al. (2021):

dx=
[
f(x, t)−g(t)2(s(x, t)−∇xε(x,y0, t))

]
dt+g(t)dw.

(8)

Notably, energy-based methods do not avoid the interme-
diate distribution being overly or negatively disturbed, and
they both do not fully make use of the statistics of the refer-
ence image; thus the generation results may be suboptimal.
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Figure 1. The overview of our SDDM. At each time step, compared with directly adding energy guidance to the score function, we firstly
use the moments of the distribution yt as constraints to get the manifolds Mt at each time step t. Then, we restrict potential energy of the
score function s(x, t) and energy function εi on the manifold Mt at xt to get the components of corresponding gradients sr(x, t) and
∇xtεir(xt,y0, t) on the tangent space TxtMt, and they are the “refinement” parts. Then we use multi-objective optimization viewpoint
to get MOO, the optimal sum on the tangent space near xt , Finally, we restrict f(x, t), s(x, t), and the noise on the NxtM to get the
components pointing to the next manifold Mt−1. For clarity g(t)dw does not appear and the restriction on Mt−1 is indicated as δ.

3. Score-Decomposed Diffusion Model
This section starts the elaboration of the proposed model
from Eqn. (8). For the choice of the guidance function
ε(x,y0, t) in Eqn. (8), we set it to the following widely
adopted form (Zhao et al., 2022; Bao et al., 2022b):

ε(x,y0, t) = λ1ε1(x,y0, t) + λ2ε2(x,y0, t), (9)

where ε1(·, ·, ·) and ε2(·, ·, ·) denote two different energy
guidance; λ1 and λ2 are two weighting coefficients.

3.1. Model Overview

Figure 1 overviews the main process of the proposed SDDM
model. The second equation at the bottom is the equivalent
SDE formulation from Eqns. (8) and (9). Starting with this
equation, we have the first SDE in Figure 1 to indicate such
a generation process. The illustration explains the two-stage
optimization at time step t.

To explicitly optimize the tangled distributions during im-
age generation, we use moments of the perturbed refer-
ence image y0 as constraints for constructing separable
manifolds, thus disentangling the distributions of adjacent
time steps. As shown in Figure 1, the manifolds of adja-
cent time steps t and t − 1, Mt and Mt−1 are separable,
which indicates the conditional distributions of adjacent

time steps xt and xt−1 are also separable. Furthermore, at
time step t, the manifold Mt decompose the score func-
tion s(x, t) into the content refinement part sr(x, t) and
the image denoising part sd(x, t), and also separate out the
content refinement parts ∇xε1r(x,y0, t),∇xε2r(x,y0, t)
of ∇xε1(x,y0, t),∇xε2(x,y0, t) on the tangent space
TxtMt. Therefore, The entire optimization process at each
time step is divided into two stages: one is to optimize on
the manifold Mt, and the other stage is to map to the next
manifold Mt−1 properly.

In the first stage, we optimize on the manifold Mt. We
apply a multi-objective optimization algorithm to get the
red vector MOO, which is the optimal direction consid-
ering the score function and energy guidance on the tan-
gent space Txt

Mt. Then at the second stage, we use
the rest of the first equation in Figure 1, which con-
tains

[
f(x, t)− g(t)2sd(x, t) + δ

]
dt+ g(t)dw to map the

xt +MOO to the next manifold Mt−1 properly. Note that
here we use δ to indicate the restriction on Mt−1 for the
consistency of form.

3.2. Decomposition of the Score and Energy Guidance

Given a score function s(x) = ∇x log p(x) on Rd, suppose
M is a smooth, compact submanifold of Rd. We let pM(x)
is the corresponding probability distribution restricted on
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M. Then we have the following definitions:
Definition 1. The tangent score function sr(x).

sr(x) := ∇x log pM(x),

which is the score function on the manifold. If there is
a series of manifolds {Mt}, and the original score func-
tion is denoted s(x, t), we denote sr(x, t) the tangent score
function on Mt.
Definition 2. The normal score function sd(x).

sd(x) := s(x)|NxM,

which is the score function on the normal space of the mani-
fold. We also denote sd(x, t) the normal score function on
the manifold Mt.

Then we have the following score function decomposition:
Lemma 1. s(x) = sr(x) + sd(x),

which can be derived when knowing sr(x) = s(x)|TxM.

Normally this division is meaningless because the manifolds
of adjacent time steps are coupled with each other. Previous
researchers usually treat the entire ∪txt as an entire man-
ifold (Liu et al., 2022), or use strong assumptions (Chung
et al., 2022). However, in some conditional generation tasks,
for example, the image-to-image transition task, a given ref-
erence image y0 can provide compact manifolds at different
time steps, and manifolds of adjacent time steps can be well
separated. In this situation, the tangent score function can
be treated as a refinement part on the manifold. The nor-
mal score function is part of the mapping function between
manifolds of adjacent time steps.

We have Proposition 1 to describe the manifolds.
Proposition 1. At time step t, for any single reference image
y0, the perturbed distribution qt|0(yt | y0) is concentrated
on a compact manifold Mt ⊂ Rd and the dimension of
Mt ≤ d − 2 when d is large enough. Suppose the distri-
butions of perturbed reference image yt = α̂ty0 + β̂tzt,
where zt ∼ N (0, I). The following statistical constraints
define such (d-2)-dim Mt.

µ[xt] = α̂tµ[y0],

Var[xt] = α̂2
t Var[y0] + β̂2

t .
(10)

Proposition 1 shows that we can use statistical constraints
to define concentrated manifolds with lower dimensions
than Rd. We can also use the chunking trick to lower the
manifold dimensions, which will be introduced in Section 4.
Therefore, we can use such manifolds to represent the main-
tenance of the statistics, which indicates that the tangent
space TxtMt can separate the “refinement” part well.

We also have Lemma 2 to show that perturbed distributions
of adjacent time steps, yt and yt−1 can be well separated.

Lemma 2. With the Mt defined in Proposition 1, assume
t ̸= t′, Then Mt and Mt′ can be well separated. Rig-
orously, ∀ε > 0,∃Md divide the Rd into two disconnect
spaces A,B, where Mt ∈ A ,and Mt′ ∈ B.

Therefore, we can use Mt to decompose s into sr and
sd approximately. More generally, we can decouple the
optimization space with the tangent space Txt

Mt. With
Txt

Mt, we can operate the score function of SBDM and
energy more elaborately. We can also split the “refinement”
part out, thus preventing the “denoising” part of the score
function from being overly disturbed.

3.3. Stage 1: Optimization on Manifold

Firstly, we will give some main definitions about manifold
optimization and muti-objective optimization in our task.
We use restriction Rxt represent the function that maps the
points on TxtMt near xt to the manifold Mt, which is
normally an orthogonal projection onto Mt.

Definition 3. Manifold optimization.

Manifold optimization (Hu et al., 2020) is a task to optimize
a real-valued function f(x) on a given Riemannian manifold
M. The optimized target is:

min
x∈M

f(x). (11)

Because that given t, the score function s(x, t) is an esti-
mation of ∇x log qt(x), and we can use log qt(x) as the
potential energy of s(x, t), so are the guidance of energy
funcitons. Then Stage 1 is a manifold optimization.

Definition 4. Pareto optimality on the manifold.

Consider xt, x̂t ∈ Mt,

• xt dominates x̂t if sr(xt, t) ≥ sr(x̂t, t),
εir(xt,y0, t) ≤ εir(x̂t,y0, t) for all i, and not
all equal signs hold at the same time.

• A solution xt is called Pareto optimal if there exists no
solution x̂t that dominates xt.

Then, the goal of multi-objective optimization is to find the
Pareto optimal solution. The local Pareto optimality can
also be reached via gradient descent like single-objective
optimization. We just follow the multiple gradient descent
algorithm (MGDA) (Désidéri, 2012). MGDA also leverages
the Karush-Kuhn-Tucker (KKT) conditions for the multi-
objective optimization, which in our task is that:

Theorem 1. K.K.T. conditions on a smooth manifold.

At time step t on the tangent space Txt
Mt, there

∃α, β1, β2, ..., βm ≥ 0 such that α +
∑m

i=1 β
i = 1 and

αsr(xt, t) =
∑m

i=1 β
i∇xtεir(xt,y0, t) , where sr(xt, t)

are the fractions of s(xt, t) on the tangent space and
εir(xt,y0, t) are functions restricted on the manifold Mt.
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All points that satisfy the above conditions are called Pareto
stationary points. Every Pareto optimal point is Pareto sta-
tionary point, while the reverse is not true. Désidéri (2012)
showed that the optimization solution for the problem :

min
α,β1,...,βm≥0

α+β1+...+βm=1


∥∥∥∥∥αsr(xt, t)−

m∑
i=1

βi∇xtεir(xt,y0, t)

∥∥∥∥∥
2

2


(12)

gives a descent direction that improves all tasks or gives a
Pareto stationary point. For a balanced result, we normalize
all gradients first.

However, In our task, we can search Pareto stationary points
in Bϵ(xt) ∩Mt for a small ϵ because we have many time
steps of different manifolds. Bϵ(xt) is an open ball with
center xt, radius ϵ.

We have the following algorithm:

Algorithm 1 Multi-Objective Optimization on Manifold
1: Input: stepsize λ, current xt, refinement score sr, en-

ergy funcitons εir on Mt, i = 1, . . . ,m, ϵ
2: Output: x∗

t

3: Initialize x∗
t = xt

4: repeat
5: ∇x∗

t
ε′ir = λi

∥sr(x∗
t ,t)∥

∥∇x∗
t
εir(x∗

t ,y0,t)∥∇x∗
t
εir(x

∗
t ,y0, t)

6: Get the min value v of eq. (12) and corresponding
α, β1, . . . , βm

7: if v == 0 then
8: return x∗

t

9: end if
10: δ = αsr(x

∗
t , t)−

∑m
i=1 β

i∇x∗
t
ε′ir

11: x′
t = x∗

t + λδ
12: x∗

t = Rx∗
t
(x′

t)
13: until x∗

t /∈ Bϵ(xt)
14: return x∗

t

Remark 1. We can use f(xt, t) and sd(xt, t) to approximate
f(x∗

t , t) and sd(x
∗
t , t) when ϵ is small.

Remark 2. Notably, EGSDE (Zhao et al., 2022) applies co-
efficients directly on the guidance vectors, and DVCE (Au-
gustin et al., 2022) uses coefficients after the normalization
on the guidance vectors. We can also provide coefficients
λis for normalized energy vectors to change the impact
of the vectors. A smaller norm means greater impact, as
mentioned in (Désidéri, 2012).

3.4. Stage 2: Transformation between adjacent
manifolds

After the optimization on the manifold Mt, we get x∗
t that

dominates xt, then we use f(x∗
t , t), the “denoising” part

score function sd(x
∗, t), reverse-time noise and restriction

function on Mt−1 to map to the adjacent manifold Mt−1.

Firstly, we have the following proposition to describe the
properties of the adjacent map.
Proposition 2. Suppose the f(·, ·) is affine. Then the adja-
cent map has the following properties:

• ∃!vxt ∈ NxtMt that xt + vxt ∈ Mt−1.

• Nxt
Mt = Nxt+vxt

Mt−1 .

• vxt is a transition map from Txt
Mt to Txt+vMt−1 .

• vxt is determined with f(·, ·),xt,y0 and g(·).

However, if we use vxt as the adjacent map, we will lose
the impact of sd and the reverse-time noise. Therefore, we
follow the reverse SDE, using the extra part of which on the
normal space Nxt

Mt and a restriction function on Mt−1

as the adjacent map, we denote this part as v∗
xt

.

Finally, we have Algorithm 2 in the following to generate
images with our proposed SDDM.

Algorithm 2 Generation with SDDM
1: Input: time steps T , milstone time step T0, stepsize

λ, score function s, energy funcitons εi, i = 1, . . . ,m,
small ϵ, reference image y0

2: Output: generated image x0

3: Initialize xT ∈ MT

4: for t = T to T0 do
5: Divide the Rd into two orthogonal spaces Txt

Mt

and Nxt
Mt.

6: Calculate sr(·, ·) and εir(·, ·, ·)
7: Optimize on manifold Mt with algorithm 1, and get

the output x∗
t

8: Apply the time-reverse SDE on the Nx∗
t
Mt and then

use the restriction function R on manifold Mt−1 to
map the x∗

t to xt−1 ∈ Mt−1

9: end for
10: for t = T0 − 1 to 1 do
11: Apply unconditional time-reverse SDE from xt to

xt−1

12: end for
13: return x0

Remark 3. If f(xt, t) is linear to xt, then f(xt, t) ∈ NxtM.
Remark 4. When the ϵ is small, we can just use Nxt

Mt to
approximate Nx∗

t
Mt.

Remark 5. Suppose ∥sr∥ is o
(
∥v∗

xt
∥
)
, and ϵ is O(∥sr∥).

We can ignore the restriction step in algorithm 1.
Remark 6. At time step T0, we can set larger ϵ for better
results.

4. Implementations
Chunking Trick. The chunking trick is an easy but pow-
erful trick to reduce the dimensions of the manifolds in
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high-dimensional space problems, like the generation of
images. We will divide the image shape C ×H ×W into
blocks N ×N , and the shape will be like CN2 × H

N × W
N ,

and the manifold will be the direct product of CN2 man-
ifolds at each H

N × W
N -sized block, we index them with

(c, i, j). This trick has the following advantages:

• We can easily get the TM and the NM, which are
also the direct product of each block’s TM and NM.

• We can control the impact of the reference image on
the generation process.

• We can optimize on block level and lower the impact
of other distant blocks.

Manifold Details. For each chunked H
N × W

N -sized block of
the image, we use the first-order and second-order moments
to restrict the statistics of the pixels of the block to get a
(HN × W

N − 2) − dim manifold. In particular, we denote
the H

N × H
N as d. Suppose yt =

√
ᾱty0 +

√
1− ᾱtzt,

Then, yt ∼ N (
√
ᾱty0, (1− ᾱt) I), and the yc,i,j

t ∼
N
(√

ᾱty
c,i,j
0 , (1− ᾱt) I

)
. Then, the manifold Mc,i,j

t of
block (c, i, j) is restricted with:

µ[xc,i,j
t ] =

√
ᾱt µ[y

c,i,j
0 ],

Var[xc,i,j
t ] = ᾱt Var[y

c,i,j
0 ] + (1− ᾱt).

(13)

And the restrictions of Eqn. 13, Mc,i,j
t is a (d− 2) dimen-

sional hypersphere. Then we can formulate Mt as:

Mt = ⊗c,i,jMc,i,j
t . (14)

The ⊗ denotes the direct product. Huang & Belongie (2017)
use the AdaIN module to transfer neural features as

AdaIN(x,y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y). (15)

Based on that, we leverage a useful module of BAdaIN as
the restriction function on any TxtMt:

BAdaIN(xt,yt) = ⊗c,i,jσ(y
c,i,j
t )

(
xc,i,j
t − µ(xc,i,j

t )

σ(xc,i,j
t )

)
+⊗c,i,j µ(y

c,i,j
t )

(16)
In practice, we use the distribution moments of the perturbed
reference image to simplify the calculation and eliminate
randomness after knowing the relationship between the per-
turbed and original reference images, as in Eqn. (10).

We have Lemma 3 to describe Proposition 1 in detail:
Lemma 3. ∀ϵ, ξ > 0,∃D > 0,∀d > D we have:

P
(
d2

(
yc,i,j
t ,Mc,i,j

t

)
< ϵ

√
d
)
> 1− ξ,

where d is the dimension of the Euclid space yc,i,j
t in.

Remark 7. The ILVR (Choi et al., 2021) method employs
the low-pass filter to transfer the reference image informa-
tion in Eqn. 7, and the low-pass filter calculates the block
means. We have the following relationship between our
mean restriction and the low-pass filter:

E[Φ(yt)] = ⊗c,i,j

√
ᾱt µ[y

c,i,j
0 ] (17)

Energy Function. We can also use the BAdaIN module for
constructing weak energy functions. Firstly, we use the first
several layers of VGG19 (Simonyan & Zisserman, 2014)
net to extract neural features of xt and yt to get x̂t and ŷt.
Then we use the L2 distance of BAdaIN(x̂t, ŷt) and x̂t

as the energy function for faithfulness. To verify SDDM’s
advantage, we only use this weak energy function.

5. Experiments
Datasets. We evaluate our SDDM on the following datasets.
All the images are resized to 256× 256 pixels.

• AFHQ (Choi et al., 2020) contains high-resolution ani-
mal faces of three domains: cat, dog, and wild. Each
domain has 500 testing images. we conduct Cat → Dog
and Wild → Dog on this dataset, following the experi-
ments of CUT (Park et al., 2020) and EGSDE (Zhao
et al., 2022).

• CelebA-HQ (Karras et al., 2017) consists of high-
quality human face images of two categories, male and
female. Each category contains 1000 testing images.
We conduct Male → Female on this dataset, following
the experiments of EGSDE (Zhao et al., 2022).

Evaluation Metrics. We evaluate our translated images
from two aspects. One is to assess the distance between the
translated and the source images, and we report the SSIM
between them. The other is to evaluate the distance of gener-
ated images and target domain images, and we calculate the
widely-used Frechet Inception Score (FID) (Heusel et al.,
2017) between the generated images and the target domain
images. Details about the FID settings are in Appendix D.

5.1. Comparison with the State-of-the-arts

We compare our experiments with other GANs-based and
SBDM-based methods, as shown in Table 1.

Compared with other SBDM-based methods, our SDDM
improves on both metrics FID and SSIM, which indicates
the effectiveness of the two-stage generation process of
our SDDM via the decomposition of score function and
energy guidance with manifolds. Especially compared with
EGSDE*, which has strong pre-trained energy functions, in
the Cat → Dog task, our SDDM improves the FID score
by 3.53 and SSIM score by 0.007 with much lower time
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Table 1. Quantitative comparisons. The results marked with *
come from (Zhao et al., 2022) Our method and ILVR have 100
diffusion steps. SDEdit and EGSDE* have 1000 diffusion steps.
For a fair comparison with our SDDM, we also report the results of
EGSDE** with 200 diffusion steps. All SBDM-based methods are
repeated 5 times to reduce the randomness. Details about SDDM
and SDDM† are shown in Appendix C.2.

MODEL FID↓ SSIM↑
CAT → DOG

CYCLEGAN* 85.9 -
MUNIT* 104.4 -
DRIT* 123.4 -

DISTANCE* 155.3 -
SELFDISTANCE* 144.4 -

GCGAN* 96.6 -
LSESIM* 72.8 -

ITTR (CUT)* 68.6 -
STARGAN V2* 54.88 ± 1.01 0.27 ± 0.003

CUT* 76.21 0.601

SDEDIT* 74.17 ± 1.01 0.423 ± 0.001
ILVR* 74.37 ± 1.55 0.363 ± 0.001

EGSDE* 65.82 ± 0.77 0.415 ± 0.001
EGSDE** 70.16± 1.03 0.411 ± 0.001

SDDM(OURS) 62.29 ± 0.63 0.422± 0.001
SDDM† (OURS) 49.43 ± 0.23 0.361± 0.001

WILD → DOG

SDEDIT* 68.51 ± 0.65 0.343 ± 0.001
ILVR* 75.33 ± 1.22 0.287 ± 0.001

EGSDE* 59.75 ± 0.62 0.343 ± 0.001
SDDM(OURS) 57.38 ± 0.53 0.328 ± 0.001

MALE → FEMALE

SDEDIT* 49.43 ± 0.47 0.572 ± 0.000
ILVR* 46.12 ± 0.33 0.510 ± 0.001

EGSDE* 41.93 ± 0.11 0.574 ± 0.000
EGSDE** 45.12± 0.24 0.512 ± 0.001

SDDM(OURS) 44.37± 0.23 0.526 ± 0.001

steps, 1000 → 100. For the comparison with EGSDE**
having 200 diffusion steps, SDDM improves the FID score
by 7.87 and the SSIM score by 0.011 in the Cat → Dog task
and improves the FID score by 0.75 and the SSIM score
by 0.014 in the Male → Female task, which suggests the
advantage of our SDDM in fewer diffusion steps. The visual
comparison is in Appendix F.

5.2. Ablation Studies

Observations on Score Components. While performing
the Cat → Dog experiment, we report the L2 norms of the
deterministic guidance values on Txt

M and Nxt
M. As

shown in Figure 2, the component on the normal space
has one in 128 dimensions but contains the most value of
the deterministic guidance of diffusion models, while the
component on the tangent space sr(·, ·) has 127 in 128
dimensions but contains a minimal value, which indicates

we have relative large optimization space on the manifold
which will not excessively interfere with the intermediate
distributions.

0.9T 0.8T 0.7T 0.6T 0.5T 0.4T
Times steps

0
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15

20

25

30

35

40

L2
 n

or
m

on normal space
on tangent space

Figure 2. The mean and standard deviation of L2 norms of sr in
TxtM and other part in NxtM. We repeat 100 times of our
SDDM with different reference images.

Comparison of Different Manifolds. We compare SDDM
with different manifold methods and report the results in
Table 2. Compared with the manifold restricted with a low-
pass filter, the manifold restricted with our BAdaIN has
better performance both on FID and SSIM, because our
manifold separates the content refinement part and image
denoising part better.

Table 2. Comparisons of different manifolds.

MODEL FID↓ SSIM↑
SDDM(LOW-PASS FILTER) 67.56 0.411
SDDM(BADAIN) 62.29 0.422

Comparison of Different Coefficients. We have two coef-
ficients at each iteration step, the coefficient of the step size
λ of optimal multi-objection direction and the coefficient of
the energy guidance λ1. As in Table 3, the larger λ is, the
better FID will be because, at each optimization on the man-
ifold, it reaches a position with higher probability pM(x),
but when λ is too large, the FID score will be worse again.
The λ1 has a negative connection with the impact of energy
guidance, which indicates that smaller λ1 makes the energy
guidance stronger and thus has a better SSIM score.

Comparison w./w.o. Multi-Objective Optimization. We
compare SDDM with SDDM without the MOO method and
report the FID, SSIM, and probability of negative impact
(PNI), which indicates the situation that the total guidance

7
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Table 3. Comparisons of different coefficients.

COEFFICIENTS FID↓ SSIM↑
λ = 2, λ1 = 10 65.09 0.429
λ = 2, λ1 = 40 62.02 0.420
λ = 1, λ1 = 25 66.04 0.428
λ = 3, λ1 = 25 62.32 0.415
λ = 2, λ1 = 25 62.29 0.422

including score and energy decreases the p(x) in Table 4.
The proposed SDDM method avoids such situations and
reaches better performance.

Table 4. Comparisons of different manifold optimization policies.

MODEL FID↓ SSIM↑ PNI↓
SDDM(W/O MOO) 64.93 0.421 0.024
SDDM 62.29 0.422 0

ϵ Policy in The Optimization on Manifolds. We mainly
compare three different ϵ policies:

• Policy 1: The ϵ is very small such that in Algorithm 1,
we iterate only once. With Remark 1, this method will
introduce no additional calculations of scores.

• Policy 2: ϵt = ∥sr(x, t)∥, which normally iterates
twice in Algorithm 1. In practice, we iterate twice.

• Policy 3: At the time step T0 in Algorithm 2, we set ϵt
larger to iterate another 4 times. and other time steps
are as same as Policy 1.

We report the FID and SSIM of different policies in Table 5.
Policy 3 has the best performance, which reveals that it-
eration a little more at T0 time step can balance different
metrics better without introducing too much cost.

Table 5. Comparisons of the ϵ Policies.

POLICY FID↓ SSIM↑
POLICY 1 61.33 0.413
POLICY 2 64.05 0.418
POLICY 3 62.29 0.422

The Choice of Middle-Time T0 and Block Number. As
shown in Figure 3, when we chunk more blocks or set the T0

smaller, the generated image is more faithful to the reference
image. But too many blocks will also introduce some bad
details, like the mouth in the left bottom image.

6. Related Work
GAN-based Unpaired Image-to-Image Translation.
There are mainly two categories of GANs-based methods
in the unpaired I2I task. One is two-side way, while the
other is one-side mapping. In the first category, the key idea

More blocks

0.4T 0.5T 0.7T
Reference image

Figure 3. The comparison of different numbers of blocks and dif-
ferent middle time T0s.

Table 6. Comparisons of different block numbers.

BLOCK NUMBER FID↓ SSIM↑
8× 8 54.56 0.359
16× 16 62.29 0.422
32× 32 68.03 0.426

is that the translated image could be translated back with
another inverse mapping. CycleGAN (Zhu et al., 2017),
DualGAN (Yi et al., 2017), DiscoGAN (Kim et al., 2017),
SCAN (Van Gansbeke et al., 2020) and U-GAT-IT (Kim
et al., 2019) are in this class. But translations usually lose
information. Several new studies have started to map two
domains to the same metric space and use the distance of
this space as supervision.DistanceGAN (Benaim & Wolf,
2017), GCGAN (Fu et al., 2019), CUT (Park et al., 2020)
and LSeSim (Zheng et al., 2021) are in this categoriy.

It is also noteworthy that other techniques have been pro-
posed to tackle the problem of unpaired image-to-image
translation. For instance, some studies (Xie et al., 2021;
2018) leverage cooperative learning, whereas others (Zhao
et al., 2021) adopt an energy-based framework or a short-run
MCMC like Langevin dynamics (Xie et al., 2016).

SBDMs-based Conditional Methods. There are mainly
two classes of conditional generation with SBDMs. The
first one is to empower SBDMs with the conditional genera-
tion ability during training with the classifier-free guidance
trick (Ho & Salimans, 2022), which learns the score func-
tions and conditional score functions via a single neural
network. The other method is to train another classifier to
lead the learned score functions for a conditional generation.
EGSDE (Zhao et al., 2022) generalizes the classifiers to any
energy-based functions. These methods cannot describe the
intermediate distributions clearly, which is a hard problem
because the distributions of adjacent time steps are deeply

8
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coupled. However, when the conditions can give constraints
to separate the adjacent distributions well, we can get better
results, and this observation inspires our model.

7. Conclusions
In this work, we have presented a new score-decomposed
diffusion model, SDDM, which leverages manifold analyses
to decompose the score function and explicitly optimize the
tangled distributions during image generation. SDDM de-
rives manifolds to separate the distributions of adjacent time
steps and decompose the score function or energy guidance
into an image “denoising” part and a content “refinement”
part. With the new multi-objective optimization algorithm
and block adaptive instance normalization module, our re-
alized SDDM method demonstrates promising results in
unpaired image-to-image translation on two benchmarks.
In future work, we plan to improve and apply the proposed
SDDM model in more image translation tasks.

One limitation of our approach involves additional compu-
tations, although these computations are negligible com-
pared to the inferences of neural networks. Additionally,
we should prevent any misuse of generative algorithms for
malicious purposes.
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A. Basic Knowledge about Manifolds
These definitions come from (Lee, 2010; Tu, 2011; Lee & Lee, 2012).
Definition 5. Topological space.

A topological space M is locally Euclidean of dimension n if every point p in M has a neighborhood U such that there
is a homeomorphism ϕ from U onto an open subset of Rn. We call the pair (U, ϕ : U → Rn) a chart, U a coordinate
neighborhood or an open coordinate set, and ϕ a coordinate map or a coordinate system on U . We say that a chart (U, ϕ) is
centered at p ∈ U if ϕ(p) = 0. A chart (U, ϕ) about p simply means that (U, ϕ) is a chart and p ∈ U .
Definition 6. Locally Euclidean property.

The locally Euclidean property means that for each p ∈ M, we can find the following:

• an open set U ⊂ M containing p;

• an open set Ũ ⊂ Rn;and

• a homeomorphism ϕ : U → Ũ (i.e., a continuous bijective map with continuous inverse).

Definition 7. Topological manifold.

Suppose M is a topological space. We say M is a topological manifold of dimension n or a topological n-manifold if it has
the following properties:

• M is a Hausdorff space: For every pair of points p, q ∈ M, there are disjoint open subsets U, V ⊂ M such that
p ∈ Uand q ∈ V .

• M is second countable: There exists a countable basis for the topology of M.

• M is locally Euclidean of dimension n: Every point has a neighborhood that is homeomorphic to an open subset of
Rn.

Definition 8. Tangent vector.

A tangent vector at a point p in a manifold M is a derivation at p.
Definition 9. Tangent space.

As for Rn, the tangent vectors at p form a vector space Tp(M), called the tangent space of M at p. We also write TpM
instead of Tp(M).
Definition 10. Normal space.

the normal space to M at p to be the subspace NpM ⊂ Rm consisting of all vectors that are orthogonal to TpM with
respect to the Euclidean dot product. The normal bundle of M is the subset NM ⊂ Rm × Rmdefined by

NM =
∐
p∈M

NpM = {(p, v) ∈ Rm × Rm : p ∈ M and v ∈ NpM} (18)

B. Proofs
B.1. Proof of Lemma 1

Proof. Consider the local coordinate system at x. Suppose {xi}i=1,2,...,d are the orthonormal basis of Rd and {xi}i=1,2,...,m

(m < d) are in the tangent space TxM and the rest of them are in the normal space NxM. Then:

sr(x) =∇x log pM(x) =

d∑
i=1

∂

∂xi
log pM(x)

=

m∑
i=1

∂

∂xi
log pM(x) =

m∑
i=1

∂

∂xi
logCp(x)

=

m∑
i=1

∂

∂xi
log p(x) = s(x)|TxM.

(19)
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Therefore, we have:

s(x) =s(x)|TxM + s(x)|NxM

=sr(x) + sd(x)
(20)

□

In the following sections, consider the distributions of perturbed reference image yt = α̂ty0 + β̂tzt, where zt ∼ N (0, I),
and the reference image y0 is fixed.

B.2. Proof of Proposition 1 and Lemma 3

Before proving the Proposition 1 and Lemma 3, we will prove another two relevant lemmas.

Lemma 4. yt is clustered on the (d− 1)− dim manifolds {Mt} restricted with the first-order moment constraints,

µ[xt] = α̂t µ[y0] (21)

under the d2 distance of Rd.

Strictly speaking, in the original Cartesian coordinate system Rd.

∀ϵ, ξ > 0,∃D > 0,∀d > D we have:

P
(
d2 (yt,Mt) < ϵ

√
d
)
> 1− ξ

Proof. The manifold provided with restriction of Eqn. (21) is a hyperplane in Rd, and the normal vector n = 1√
d
(1, 1, ..., 1).

Then the L2 distance from yt to the manifold Mt is |β̂tzt · n|, where β̂tzt · n ∼ N (0, β̂2
t ). Therefore,

d2 (yt,Mt) =
√
d| 1√

d
β̂tzt · n| (22)

Thus, as d → +∞, the variance of 1√
d
β̂tzt · n → 0.

Then strictly speaking, ∀ϵ, ξ > 0,∃D > 0,∀d > D we have:

P
(
d2 (yt,Mt) < ϵ

√
d
)
> 1− ξ

□

Lemma 5. Suppose yt shares the same bound A, which means ∥yt∥∞ < A. yt is clustered on the (d− 1)−dim manifolds
{Mt} restricted with the second-order moment constraints,

µ [xt − α̂t µ[y0]]
2
= α̂2

t Var[y0] + β̂2
t (23)

under the metric of d2 distance.

Strictly speaking,

∀ϵ, ξ > 0,∃D > 0,∀d > D we have:

P
(
d2 (yt,Mt) < ϵ

√
d
)
> 1− ξ

Proof. The manifold provided with restriction of Eqn. (23) is a hypersphere on the Rd. The center of the hypersphere is
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α̂t µ[y0](1, 1, ..., 1) and the radius is
√
d

√
α̂2
t Var[y0] + β̂2

t . The square of the L2 distance of yt to the center is:

[
α̂ty0 + β̂tzt − α̂t µ[y0]

]2
=

d∑
i=1

[
(α̂ty

i
0 − α̂t µ[y0]) + β̂tz

i
t

]2
=

d∑
i=1

[
(α̂ty

i
0 − α̂t µ[y0])

2 + β̂2
t (z

i
t)

2 + 2(α̂ty
i
0 − α̂t µ[y0])β̂tz

i
t

]
= dα̂2

t Var[y0] + β̂2
t z

2
t + 2α̂tβ̂t(y0 − µ[y0]) · zt,

(24)

Therefore,

d2 (yt,Mt) =

∣∣∣∣∣
√[

α̂ty0 + β̂tzt − α̂t µ[y0]
]2

−
√
d

√
α̂2
t Var[y0] + β̂2

t

∣∣∣∣∣
=

∣∣∣∣[α̂ty0 + β̂tzt − α̂t µ[y0]
]2

− dα̂2
t Var[y0]− dβ̂2

t

∣∣∣∣√[
α̂ty0 + β̂tzt − α̂t µ[y0]

]2
+

√
d

√
α̂2
t Var[y0] + β̂2

t

≤ 1√
dβ̂t

∣∣∣∣[α̂ty0 + β̂tzt − α̂t µ[y0]
]2

− dα̂2
t Var[y0]− dβ̂2

t

∣∣∣∣
=

1√
dβ̂t

∣∣∣dα̂2
t Var[y0] + β̂2

t z
2
t + 2α̂tβ̂t(y0 − µ[y0]) · zt − dα̂2

t Var[y0]− dβ̂2
t

∣∣∣
≤ 1√

d

(
β̂2
t

∣∣z2t − d
∣∣+ ∣∣∣2α̂tβ̂t(y0 − µ[y0]) · zt

∣∣∣)
=
√
d

(
β̂t

∣∣z2t − d
∣∣

d
+ 2α̂t

|(y0 − µ[y0]) · zt|
d

)
,

(25)

where the z2t is a stand chi-square distribution with d degrees of freedom. We apply the standard Laurent-Massart
bound (Laurent & Massart, 2000) for it and get

P[z2t − d ≥ 2
√
dt+ 2t] ≤ e−t

P[z2t − d ≤ −2
√
dt] ≤ e−t,

(26)

which holds for any t > 0. We let t = dϵ′, where the ϵ′ +
√
ϵ′ = ϵ

4β̂t
for any given ϵ, Then we have

P
[
−2d

√
ϵ′ ≤ z2t − d ≤ 2d(ϵ′ +

√
ϵ′)
]
≥ 1− 2e−dϵ′ . (27)

Therefore,

P

[
β̂t

∣∣z2t − d
∣∣

d
<

ϵ

2

]
> 1− 2e−dϵ′ (28)

and ∃D1,∀d > D1, 4e
−dϵ′ ≤ ξ, thus

P

[
β̂t

∣∣z2t − d
∣∣

d
<

ϵ

2

]
> 1− ξ

2
(29)

Similar to Lemma 4, 2α̂t
(y0−µ[y0])·zt

d is a Gaussian distribution, and the mean is 0, variance is bounded with (4α̂tA)2

d . As
d → +∞, the variance → 0, thus ∃D2,∀d > D2, we have

P
[
2α̂t

|(y0 − µ[y0]) · zt|
d

<
ϵ

2

]
> 1− ξ

2
(30)

14
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Finally, ∀ϵ, ξ > 0,∃D = Max{D1, D2},∀d > D,

P
(
d2 (yt,Mt) < ϵ

√
d
)
≥P

[
β̂t

∣∣z2t − d
∣∣

d
<

ϵ

2
, 2α̂t

|(y0 − µ[y0]) · zt|
d

<
ϵ

2

]

=P

[
β̂t

∣∣z2t − d
∣∣

d
<

ϵ

2

]
+ P

[
2α̂t

|(y0 − µ[y0]) · zt|
d

<
ϵ

2

]

− P

[
β̂t

∣∣z2t − d
∣∣

d
<

ϵ

2
or 2α̂t

|(y0 − µ[y0]) · zt|
d

<
ϵ

2

]

≥1− ξ

2
+ 1− ξ

2
− 1

=1− ξ

(31)

□

Then we will prove the Proposition 1.

Proof. Consider Mt, which is restricted with:

µ[xt] = α̂t µ[y0],

Var[xt] = α̂2
t Var[y0] + β̂2

t .
(32)

We can substitute the µ[xt] with
√
ᾱt µ[y0] in the calculation of the variance and get the following equivalent restrictions:

µ[xt] = α̂t µ[y0],

µ [xt − α̂t µ[y0]]
2
= α̂2

t Var[y0] + β̂2
t .

(33)

These two constraints correspond to Lemma 4 and Lemma 5 respectively. We denote the manifold restricted with one of
these constraints as MtA and MtB . MtA ∩MtB = Mt. Suppose the angle of MtA and MtB at the intersection is θ.
Then locally the hypersphere can be treated as a hyperplane and the error is second-order. We have the following relationship
when ϵ is small:

B( 1

sin θ
2

+1)ϵ
√
d(Mt) ⊃ Bϵ

√
d(MtA) ∩Bϵ

√
d(MtB) (34)

Then, according to Lemma 4 and Lemma 5:

∀ϵ, ξ,∃D,∀d ≥ D, where ϵ is small,

P
(
d2 (xt,MtA) < ϵ

√
d
)
>1− ξ

2

P
(
d2 (xt,MtB) < ϵ

√
d
)
>1− ξ

2
.

(35)

Then,

P

(
d2 (xt,Mt) < (

1

sin θ
2

+ 1)ϵ
√
d

)
≥P

[
d2 (xt,MtA) < ϵ

√
d, d2 (xt,MtB) < ϵ

√
d
]

=P
(
d2 (xt,MtA) < ϵ

√
d
)
+ P

(
d2 (xt,MtB) < ϵ

√
d
)

− P
[
d2 (xt,MtA) < ϵ

√
d or d2 (xt,MtB) < ϵ

√
d
]

>1− ξ

2
+ 1− ξ

2
− 1

=1− ξ

(36)

□

Let α̂2
t = ᾱt and β̂2

t = 1− ᾱt and only consider the block(c, i, j), We can get the Lemma 3.
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B.3. Proof of Lemma 2

Proof. We just use the following hyperplane:
µ[x] = α̂ t+t′

2

µ[y0] (37)

Then, becauseα̂t monotonically decreasing with t in VP-SDE. Therefore, The hyperplanes µ[x] = α̂t µ[y0] and µ[x] =
α̂t′ µ[y0] are on different sides of the given hyperplane. As a consequence, Mt and Mt′ are on different sides of the given
hyperplane. □

B.4. Proof of Proposition 2

∃!vxt ∈ Nxt
Mt that xt + vxt ∈ Mt−1.

Proof. We consider the 2-dim normal space Nxt
Mt. Easy to show that it has these two orthogonal basis vectors,

[xt − µ[xt](1, 1, ..., 1)] and µ[xt](1, 1, ..., 1). There are only two points in 2-dim normal space Nxt
Mt that are in Mt−1

because there are only two points, in 2-dim normal space Nxt
Mt meet the following conditions:

• The distance between this point to µ[xt−1](1, 1, ..., 1) is C0.

• The line connecting this point to µ[xt−1](1, 1, ..., 1) is perpendicular to (1, 1, ..., 1).

And there is only one of them near xt.

Thus, ∃!vxt ∈ NxtMt that xt + vxt ∈ Mt−1.

□

Nxt
Mt = Nxt+vxt

Mt−1.

Proof. Because xt + vxt ∈ NxtMt, µ[xt + vxt ](1, 1, ..., 1) inNxtMt, and they are two orthogonal basis vectors of
Nxt+vxt

Mt−1.

Therefore, NxtMt = Nxt+vxt
Mt−1.

□

vxt is a transition map from Txt
Mt to Txt+vxt

Mt−1 .

Proof. Because Nxt
Mt = Nxt+vxt

Mt−1, Txt
Mt and Txt+vxt

Mt−1 are parallel, and vxt maps xt to xt + vxt .

Therefore, vxt is a transition map from TxtMt to Txt+vxt
Mt−1 .

□

vxt is determained with f(·, ·),xt,y0 and g(·).

Proof. As proved in (Särkkä & Solin, 2019), the means and covariances of linear SDEs can be transformed to corresponding
ODEs. Therefore, suppose yt = α̂ty0+ β̂tzt, yt−1 = α̂t−1y0+ β̂t−1zt−1, all the coeffients are determained by f(·, ·), g(·).
For clarity, we will represent vxt with xt,y0 and the coefficients above.

In fact, it is easy to show that√
α̂2
t−1V ar[y0] + β̂2

t−1

 xt − α̂t µ(y0)√
α̂2
tV ar[y0] + β̂2

t

+ α̂t−1 µ(y0) (38)

is in both Nxt
Mt and Mt−1, and is the one in Nxt

Mt ∩Mt−1 near xt. Therefore,

vxt =

√
α̂2
t−1V ar[y0] + β̂2

t−1

 xt − α̂t µ(y0)√
α̂2
tV ar[y0] + β̂2

t

+ α̂t−1 µ(y0)− xt (39)

□
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B.5. Proof of Remark 3

Proof. Equivalently, we prove that xt ∈ NxtMt. Consider MtA and MtB restricted with one of the equations in Eqn. (33).
We do the following decomposition of xt

xt = [xt − µ[xt](1, 1, ..., 1)] + µ[xt](1, 1, ..., 1) (40)

Easy to know that [xt − µ[xt](1, 1, ..., 1)] ∈ NxtMtB and µ[xt](1, 1, ..., 1) ∈ NxtMtA. Because Mt = MtA ∩MtB ,
thus the two compoments are all ∈ NxtMt and then xt ∈ NxtMt . □

B.6. Proof of Remark 7

Proof.
E[Φ(yt)] = E[⊗c,i,jµ[y

c,i,j
t ]]

= ⊗c,i,jE[µ[yc,i,j
t ]]

= ⊗c,i,j

√
ᾱt µ[y

c,i,j
0 ]

(41)

□

C. Details about SDDM
Assumption 1. Suppose s(·, ·) : RD × R → RD is the score-based model, f(·, ·) : RD × R → RD is the drift coefficient,
g(·) : R → R is the diffusion coefficient, and E(·, ·, ·) : RD × RD × R → R is the energy function. y0 is the given source
image.

Like previous works (Zhao et al., 2022; Choi et al., 2021; Meng et al., 2022), we define a valid conditional distribution
p (x0 | y0) under following assumptions:

• ∃C > 0,∀t ∈ R,∀x,y0 ∈ RD : ∥f(x, t)− f(y0, t)∥2 ≤ C∥x− y∥2.

• ∃C > 0,∀t, s ∈ R,∀x ∈ RD : ∥f(x, t)− f(x, s)∥2 ≤ C|t− s|.

• ∃C > 0,∀t ∈ R,∀x,y0 ∈ RD : ∥s(x, t)− s(y0, t)∥2 ≤ C∥x− y∥2.

• ∃C > 0,∀t, s ∈ R,∀x ∈ RD : ∥s(x, t)− s(x, s)∥2 ≤ C|t− s|.

• ∃C > 0,∀t ∈ R,∀x,y0 ∈ RD : ∥∇xE (x,y0, t)−∇yE (y0,y0, t)∥2 ≤ C∥x− y∥2.

• ∃C > 0,∀t, s ∈ R,∀x ∈ RD : ∥∇xE (x,y0, t)−∇xE (x,y0, s)∥2 ≤ C|t− s|.

• ∃C > 0,∀t, s ∈ R : |g(t)− g(s)| ≤ C|t− s|.

C.1. Details about Pre-Trained Diffusion Models

We use two pre-trained diffusion models and a VGG model.

In the Cat → Dog task and Wild → Dog task, we use the public pre-trained model provided in the official code
https://github.com/jychoi118/ilvr adm of ILVR (Choi et al., 2021).

In the Male → Female task, we use the public pre-trained model provided in the official code https://github.com/ML-
GSAI/EGSDE of EGSDE (Zhao et al., 2022).

Our energy function uses the pre-trained VGG net provided in the unofficial open source code
https://github.com/naoto0804/pytorch-AdaIN of AdaIN (Huang & Belongie, 2017).

C.2. Details about Our Default Model Settings

Our default SDDM settings:

• Using BAdaIN to construct manifolds.
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• Using multi-optimization on manifolds.

• λ = 2, λ1 = 25.

• Using ϵ Policy 3.

• Blocks are 16× 16.

• T0 = 0.5T .

• 100 diffusion steps.

SDDM† sets T0 = 0.6T .

C.3. Implementation Details about Solving Problem (12)

To simplify the process, we denote all the vectors as {vi}, and coefficients as {λi}, and rewrite Problem (12) as

min
λ1,λ2,...,λn≥0

λ1+λ2+...+λn=1


∥∥∥∥∥

n∑
i=1

λivi

∥∥∥∥∥
2

2

 . (42)

When there are only two vectors (in our situation) and no restriction λ1, λ2, . . . , λn ≥ 0, we can get the following analytical
solution:

λ̂∗
1 =

(v2 − v1)
Tv2

∥v2 − v1∥22
. (43)

Therefore, easy to prove that when there are only two vectors, the analytical solution is:

λ∗
1 = min

(
1,max

(
(v2 − v1)

Tv2

∥v2 − v1∥22
, 0

))
. (44)

For general situations, we can apply Frank–Wolfe algorithm on this problem as in (Sener & Koltun, 2018).

D. Details about FID calculation
The FID is calculated between 500 generated images and the target validation dataset containing 500 images in the Cat
→ Dog and Wild → Dog task. The number is 1000 in the Male → Female task. All experiments are repeated 5 times to
eliminate the randomness.

E. FID on the Male→Female task
It is true that EGSDE with sufficient diffusion steps outperforms our SDDM on the Male→Female task, it is important to note
that the energy function used in EGSDE is strongly pretrained on related datasets and contains significant domain-specific
information. In contrast, to demonstrate the effectiveness and versatility of our framework, we intentionally chose to use a
weak energy function consisting of only one layer of convolution without any further pretraining. After incorporating the
strong guidance function from EGSDE, our method outperforms EGSDE in the FID score, as shown in the following table.

Table 7. The FID comparison between EGSDE and our SDDM with the same energy guidance function on the Male→Female task.

MODEL FID↓
EGSDE 41.93 ± 0.11
SDDM(OURS) 40.08 ± 0.13

F. Samples
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Source

EGSDE

SDEdit

ILVR

CUT

Ours

Figure 4. The visual comparison of different methods.
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Source OutputOutputSource

Figure 5. More random samples of our methods.
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