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ABSTRACT

Complementarity Determining Regions (CDRs) are critical segments of an anti-
body that facilitate binding to specific antigens. Current computational methods
for CDR design utilize reconstruction losses and do not jointly optimize binding
energy, a crucial metric for antibody efficacy. Rather, binding energy optimiza-
tion is done through computationally expensive Online Reinforcement Learning
(RL) pipelines rely heavily on unreliable binding energy estimators. In this paper,
we propose AbFlowNet, a novel generative framework that integrates GFlowNet
with Diffusion models. By framing each diffusion step as a state in the GFlowNet
framework, AbFlowNet jointly optimizes standard diffusion losses and binding
energy by directly incorporating energy signals into the training process, thereby
unifying diffusion and reward optimization in a single procedure. Experimental
results show that AbFlowNet outperforms the base diffusion model by 3.06% in
amino acid recovery, 20.40% in geometric reconstruction (RMSD), and 3.60% in
binding energy improvement ratio. ABFlowNet also decreases Top-1 total energy
and binding energy errors by 24.8% and 38.1% without pseudo-labeling the test
dataset or using computationally expensive online RL regimes. 1

1 INTRODUCTION

Antibodies are essential molecules of the adaptive immune system, with their complementarity-
determining regions (CDRs) serving as the primary determinants of antigen recognition and binding
specificity. Compared to the rest of the antibody, CDRs exhibit remarkable variability, enabling the
immune system to recognize diverse antigens (Polonelli et al., 2008). CDRs are crucial for therapeu-
tic antibody development, particularly in humanization where CDRs from non-human antibodies are
transferred onto human antibodies to help it target new antigens, using techniques like CDR graft-
ing (Jones et al., 1986) and shuffling (Jirholt et al., 1998). Daclizumab, the first FDA-approved
humanized drug, was developed in 1997 by humanizing a mouse antibody to treat multiple scle-
rosis (Tsurushita et al., 2005). Since then, thousands of other drugs have been developed using
CDR-based antibody modifications (Lu et al., 2020).

While transferring known animal CDRs has proven effective, there has been immense research inter-
est into designing de novo CDRs to target novel antigens (Tang et al., 2024) and neoantigens (Zhang
et al., 2021). The computational (in silico) design of CDRs presents a significant challenge due to
the vast search space - a CDR sequence with L amino acids has 20L possible combinations, not ac-
counting for structural variations. Traditional Monte Carlo search-based approaches use biophysical
energy functions (Adolf-Bryfogle et al., 2018a; Lapidoth et al., 2015; Adolf-Bryfogle et al., 2018b)
to guide the search process but are computationally intensive and often get trapped in local optima
(Luo et al., 2022; Jin et al., 2022). Deep Learning (DL) approaches using either Graph Neural Net-
works (Gao et al., 2023; Jin et al., 2022; Kong et al., 2023; 2022) or Diffusion models (Luo et al.,
2022; Peng et al., 2023; Zhu et al., 2024) can learn the distribution of existing CDRs and sample new
ones. However, unlike search-based approaches, DL methods do not explicitly optimize biophysical
energy functions which has led to new research on online Reinforcement Learning (RL) (Sutton
et al., 1998) post-training using these functions as rewards (Zhou et al., 2024; Ren et al., 2025; Wen

1The code and model weights are available at anonymous.4open.science/r/abflownet-06E8.
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Figure 1: AbFlowNet reframes the diffusion process as a GFlowNet where each partially denoised
CDR is a state and the transition probabilities are flows through edges. The initial state’s flow is
learned and the final state’s flow is the binding energy of the reference CDR. To train, we simply
enforce forward and backward flow parity, in addition to the diffusion losses.

et al., 2024). However these online RL regimes are extremely computationally expensive and highly
dependent on the programs used to estimate said energy functions which are not always reliable
(Vreven et al., 2012). Some approaches (Zhou et al., 2024; Wen et al., 2024) use the test dataset
itself during RL which raises concerns about dataset bias (Deng et al., 2023). Furthermore, Zhou
et al. (2024) has shown that RL improves binding energy but reduces two key structural metrics:
Amino Acid Recovery and Root Mean Square Deviation with respect to the reference CDR.

Given the limitations of RL, GFlowNets have emerged as a promising alternative for optimizing Im-
age Diffusion models (Venkatraman et al., 2024; Zhang et al., 2024a;b). In this work, we introduce
AbFlowNet to address these concerns in biophysical energy optimization. As shown in Figure 1, we
reframe the denoising diffusion process (Ho et al., 2020; Leach et al., 2022) in a GFlowNet (Bengio
et al., 2021) framework where each partially denoised structure is a GFlowNet state and the forward
and backwards transition probabilities are flows through edges. The flow of a state is the sum of
all flow’s of all trajectories through that state. The final fully-denoised state’s flow is the binding
energy reward. We use the Trajectory Balance objective (Bengio et al., 2021) to enforce that the
forward and backward flow for a trajectory (a full denoising sequence starting from random noise
and ending at a CDR structure) must be equal. As a result, the diffusion model implicitly learns
better state transitions that lead to higher rewards.

Practically, AbFlowNet can be implemented by adding a single learned parameter and adding a
TB loss term to the original loss terms. AbFlowNet shows convincing improvements over the base
diffusion model, DiffAb (Luo et al., 2022), for the same number of gradient updates. Concretely,
when averaged over all six CDR regions, AbFlowNet improves amino acid recovery (AAR) by
3.06%, root mean square deviation (RMSD) by 20.40% and samples 3.60% more CDRs that have
better binding energy than the reference CDR. AbFlowNet also improves over DiffAb in Top-1 total
energy and binding energy by 24.8% and 38.1%. Unlike online RL approaches such as AbDPO
(Zhou et al., 2024), AbFlowNet is orders-of-magnitude less expensive, does not need repeated use of
unreliable energy estimators and does not rely on pseudo-labeling the test set. Our key contributions
are:

1. We present AbFlowNet, the first application of the GFlowNet framework for direct binding
energy optimization in de novo diffusion-based CDR design. AbFlowNet improves over
the base diffusion model in all metrics.

2. AbFlowNet is competitive with RL-based methods (Zhou et al., 2024) without using the
test set complexes to generate synthetic CDR data for training, thereby mitigating data
leakage concerns.

3. Unlike existing RL-based approaches (Zhou et al., 2024; Wen et al., 2024) which reduce
AAR and RMSD, AbFlowNet improves AAR by +3.06% and RMSD by +20.40%.

2 RELATED WORKS

Computational CDR Design Classical approaches to CDR design, such as RAbD Adolf-
Bryfogle et al. (2018a) and AbDesign Lapidoth et al. (2015), rely on Monte Carlo algorithms that

2
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sample and optimize antibody structures based on biophysical energy functions. These methods,
while effective in certain contexts, are computationally expensive and often get trapped in local op-
tima due to the rugged energy landscape (Luo et al., 2022; Kong et al., 2023). In recent years, deep
learning methods have emerged as promising alternatives. Notable Graph Neural Network-based
models include HERN (Jin et al., 2022), MEAN Kong et al. (2022), AbGNN (Gao et al., 2023) and
dyMEAN (Kong et al., 2023). This methods have shown high AAR and RMSD but are limited in
generation diversity due to their GNN structure. Diffusion-based models can generate multiple CDR
given a complex which can be later ranked heuristically. Notable Diffusion-based models include
AbDiffuser (Martinkus et al., 2024), DiffAb (Luo et al., 2022), AbDesign (Peng et al., 2023), and
AbX (Zhu et al., 2024). AbX is the current state-of-the-art CDR design model and uses a large Pro-
tein Language Model (Lin et al., 2022) to enforce evolutionary plausibility of the generated CDRs.

Binding Energy Optimization For CDR Design A key metric for CDR effectiveness is binding
affinity. One commonly used energy metric is binding energy ∆G. Since binding energy is a
singular value for the entire complex, it is a sparse training signal which is often optimized via
Reinforcement Learning (Sutton et al., 1998). AbDPO (Zhou et al., 2024) post-trains a base DiffAb
model by repeatedly sampling new CDRs, ranking them based on binding affinity, determined with
Rossetta InterfaceAnalyzer (Chaudhury et al., 2010) and using DPO (Rafailov et al.,
2024). However, this RL training phase significantly lowers AAR and RMSD compared to the base
method. AlignAb (Wen et al., 2024) points out that there are multiple valid energy-based rewards
and finetune separate models for each reward using DPO. AbNovo (Ren et al., 2025) follows the
approach of AbDPO with AbX instead of DiffAb as the base model and used Noise Contrastive
Alignment (NCA) (Chen et al., 2024) as the RL objective instead of DPO.

One notable weakness of all online RL methods is the need to compute binding energy for newly
designed CDRs. In silico methods such as Rosetta (Chaudhury et al., 2010; Adolf-Bryfogle
et al., 2018a) or OpenMM Yank (Eastman et al., 2017; Rizzi et al., 2020) have only moderate
corelation with the real binding energy(Vreven et al., 2012). Furthermore, the generated CDRs are
not guaranteed to be geometrically plausible which might reduce the reliability of energy estimators
further. In contrast, AbFlowNet does not require computing the energy of newly generated CDRs
and can, in principle, be trained solely on in vitro affinity data of CDRs in the training set.

3 BACKGROUND

3.1 ANTIBODY-ANTIGEN COMPLEX

L1 L2 L3

H1 H2 H3

Light Chain

V
H

V
L

Variable Domain CDRs on Light Chain V
L

Variable Domain CDRs on Heavy Chain V
HAntibody

H3-CDR in 
Antigen-Antibody Complex

Variable Domain

Different Types of Antigens

Antigen

Heavy Chain

Figure 2: Antibody-antigen complex.

As shown in Figure 2, antibodies are
composed of two heavy chains and
two light chains. Each chain consists
of a variable region and a constant re-
gion. The variable regions of both the
heavy chain (VH) and the light chain
(VL) contain three complementarity
determining regions (CDRs): CDR1,
CDR2, and CDR3, making a total of
six CDRs per antibody. These re-
gions are highly diverse due to ge-
netic recombination and somatic hy-
permutation, allowing antibodies to recognize a vast array of antigens. The CDRs form a binding
site that is complementary in shape and chemical properties to the antigen’s binding site (epitope). In
Figure 2, the third CDR in the heavy chain (CDR-H3) is highlighted due to its critical in determining
the binding affinity to the antigen. The sequence and structure of CDRs vary widely among anti-
bodies, enabling the immune system to recognize and respond to a wide range of antigens. CDRs
interact with the antigen through non-covalent bonds (e.g., hydrogen bonds, electrostatic interac-
tions, van der Waals forces) (Polonelli et al., 2008). In our work, we aim to design the sequences
and structures of the CDR regions (often referred to as the framework regions), conditioned on the
non-CDR regions of the antibody and on the target antigen.
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3.2 GFLOWNET

GFlowNets are generative models that learn to sample from a desired distribution by modeling
flows on a directed acyclic graph (DAG) (Bengio et al., 2021). Given a DAG G = (S,A) with
state space S and action space A, and a positive reward function R : X → R≥0 defined on terminal
states X , a GFlowNet learns a policy that generates trajectories terminating at states with probability
proportional to their rewards. Formally, a GFlowNet defines a flow F on trajectories τ = (s0 →
s1 → ... → sn) from the initial state s0 to terminal states. The state flow of state s is defined as
F (s) =

∑
τ=(...→s...) F (τ) and the edge flow between states s and s′ is defined as F (s → s′) =∑

τ=(...→s→s′...) F (τ). The following flow matching constraint (incoming flow = outgoing flow) is
satisfied for all non-boundary states F (s) =

∑
(s′′→s)∈A F (s′′ → s) =

∑
(s→s′)∈A F (s → s′).

For terminal states sn, the flow is the non-negative reward: F (sn) = R(sn).

Flows also induce forward and backward transition policies: PF (s
′|s) = F (s→s′)

F (s) and PB(s|s′) =
F (s→s′)
F (s′) . A GFlowNet aims to learn policies such that the terminal state flows match their rewards.

Trajectory Balance Trajectory Balance (TB) (Malkin et al., 2022) provides an elegant training
objective for GFlowNets that enforces consistency between forward generation and backward re-
construction across entire trajectories. For any complete trajectory τ = (s0 → s1 → ... → sn)
terminating at state x, TB enforces the constraint:

F (s0)

n∏
t=1

PF (st|st−1) = F (sn)

n∏
t=1

PB(st−1|st) (1)

Here, the flow of the terminal state sn is F (sn) = R(sn). The flow of the initial state F (s0) is the
sum of the flow over all trajectories which is not tractable. Therefore, the authors of TB propose
approximating F (s0) with Zθ where θ is a neural network. This yields the final constraint:

Zθ

n∏
t=1

PF (st|st−1) = R(sn)

n∏
t=1

PB(st−1|st) (2)

4 METHODOLOGY

In Section 4.1, we discuss the training objectives of the base diffusion model, and in Section 4.2,
we describe our reframing of the diffusion process as a GFlowNet. Equation 18 presents our final
training objective, which jointly optimizes the diffusion losses and the binding energy.

4.1 DENOISING OBJECTIVE

We train a diffusion probabilistic model parameterized by a neural network for CDR design. Follow-
ing Luo et al. (2022), we condition on the antigen structure and the antibody framework to generate
CDR. The model is trained using the standard denoising objective across three protein properties:
amino acid type di ∈ {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T,W, Y, V }, 3D coordi-
nate xi ∈ R3, and 3D orientation Oi ∈ SO(3) where SO(3) is the Lie group of 3D rotations.

Assume the CDR to be generated has m amino acids with index from l + 1 to l + m. They are
denoted as St = {stj |j = l + 1, . . . , l + m} where stj = (dtj , x

t
j , O

t
j). Our goal is to model the

distribution of S0 given the structure of the antibody-antigen complex C = {(di, xi, Oi) | i ∈
{1, . . . , N} \ {l + 1, . . . , l +m}}.

Multinomial Diffusion for Amino Acid Types The forward diffusion process for amino acid
types is based on the multinomial diffusion process (Hoogeboom et al., 2021):

q(dtj |dt−1
j ) = Mul

(
(1− βt

type) · oh(dt−1
j ) +

βt
type

20
· 1

)
(3)

p(dt−1
j |St, C) = Mul

(
Fθ(S

t, C)[j]
)

(4)

where p is the forward diffusion process, q is the backward denoising process, Mul() is the Multino-
mial function and oh() is the one-hot function. βt

type is the probability of resampling another amino

4
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acid uniformly over the 20 types and Fθ(·)[j] is a neural network model that predicts the probability
of the amino acid type for the j-th amino acid on the CDR. The training objective is to minimize the
expected KL divergence between the posterior distribution q and the predicted distribution p:

Lt
type = E

 1

m

∑
j

DKL
(
q(dt−1

j |dtj , d0j )∥p(dt−1
j |St, C)

) (5)

Diffusion for 3D Coordinates The forward and backward diffusion processes for the coordinate
xj are defined as:

q(xt
j |xt−1

j ) = N
(
xt
j

∣∣∣∣√1− βt
pos · xt−1

j , βt
posI

)
(6)

p(xt−1
j |St, C) = N

(
xt−1
j

∣∣∣∣µp(S
t, C), βt

posI

)
(7)

µp(S
t, C) =

1√
1− βt

pos

xt
j −

βt
pos√

1− α̃t
pos

Gθ(S
t, C)[j]

 (8)

where βt
pos controls the rate of diffusion in q. The denoising diffusion process p uses the reparame-

terization trick (Ho et al., 2020) and Gθ(·)[j] is a neural network that predicts the standard Gaussian
noise ϵj ∼ N (0, I) added instead of predicting xt−1

j directly where α̃t
pos =

∏T
t=1(1− βt

pos).

The training objective is to minimize the expected MSE between G and ϵ:

Lt
pos = E

 1

m

∑
j

∥ϵj −G(St, C)[j]∥2
 (9)

SO(3) Denoising for Amino Acid Orientations Following Leach et al. (2022); Luo et al. (2022),
the denoising process for orientation directly attempts to predict the final orientation O0

j from Ot
j .

The transitions are defined as:

q(Ot
j |O0

j ) = IGSO(3)

(
Ot

j |λ
(√

ᾱt
ori, O

0
j

)
, 1− ᾱt

ori

)
(10)

p(Ot−1
j |St, C) = IGSO(3)

(
Ot−1

j

∣∣∣∣Hθ(S
t, C)[j], βt

ori

)
(11)

where ᾱt
ori =

∏t
τ=1(1−βτ

ori) with βt
ori being the variance increased with step t, IGSO(3) denotes the

isotropic Gaussian distribution on SO(3) (Leach et al., 2022) and λ(γ, x) = exp
(
γ log(x)

)
is the

geodesic interpolation (or “scaling”) of the rotation x ∈ SO(3) from the identity. Hθ(·)[j] is a neural
network that denoises the orientation and outputs the denoised orientation matrix. The training
objective simply minimizes the difference between the real and predicted orientation matrices:

Lt
ori = E

 1

m

∑
j

∥(O0
j )

⊤Õt−1
j − I∥2

 (12)

4.2 TRAJECTORY BALANCE OBJECTIVE

In addition to the denoising objectives, we aim to optimize the binding energy of the generated CDR
with respect to the antigen and antibody. However, binding energy can only be computed for the
final CDR after a complete denoising process, making it a sparse reward. To address this, we use the
Trajectory Balance (TB) objective (Malkin et al., 2022) which propagates rewards back through
the diffusion trajectory by enforcing global flow-matching constraints.

We begin by defining a GFlowNet state as the partially denoised CDR at timestep t. A CDR is
composed of a sequence of amino acids and the transition probability for each amino acid location
j is the product of the three independent denoising processes (Equations 13 and 14). We define the

5
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GFlowNet edge flow as the transition probability of the entire CDR, which is simply the product of
the probability of each location (Equations 15 and 16):

q(stj |st−1
j ) = q(dtj |dt−1

j ) · q(xt
j |xt−1

j ) · q(Ot
j |Ot−1

j ) (13)

p(st−1
j |stj) = p(st−1

j |St, C) = p(dt−1
j |St, C) · p(xt−1

j |St, C) · p(Ot−1
j |St, C) (14)

q(St|St−1) =

l+m∏
j=l

q(stj |st−1
j ) (15) p(St−1|St) =

l+m∏
j=l

p(stj |st−1
j ) (16)

For each data point during a mini-batch update, we uniformly sample a timestep t to compute Lt
type,

Lt
pos and Lt

ori. However, we require a complete trajectory to enforce TB. Therefore, we compute all
forward q(St−1|St) and backward probabilities p(St|St−1; θ) for t in (0, T ). Following Kim et al.
(2024), we precompute the reward R(S0) = exp(−α ·BindingEnergy(S0)) for each CDR S0 in the
training dataset and enforce the TB objective:

LTB =

(
log

Zθ

∏T
t=0 p(S

t|St−1; θ)

R(S0)
∏T

t=0 q(S
t−1|St)

)2

(17)

where Zθ is the estimated initial state flow and R(x) is the binding energy reward. Therefore, the
overall training objective combines the denoising losses and the TB objective:

L = Et∼Uniform(1,...,T )

[
Lt

type + Lt
pos + Lt

ori

]
+ w · LTB (18)

where w is a scaling factor for balancing the denoising objectives computed per diffusion step and
the TB objective calculated over the entire trajectory.

4.3 SAMPLING ALGORITHM

For sequence-structure co-design, we construct ST by sampling amino acid types for each position
from the distribution dTj ∼ Uniform(20), CDR positions from the standard normal distribution:
xT
j ∼ N (0, I3), and orientations from the uniform distribution over SO(3): OT

j ∼ Uniform(SO(3)).
AbFlowNet iteratively denoises the sequence and structures following the standard diffusion process
until t = 0. Upon generating the amino acid sequence and the structure of the backbone, we optimize
the side-chain angles using PyRosetta PackRotamersMover (Chaudhury et al., 2010).

Crucially, AbFlowNet applies the GFlowNet balance objective solely during training, not during
inference. This approach enables AbFlowNet to operate as a standard diffusion model at sampling
time, without requiring energy calculations via the Rosetta InterfaceAnalyzer.

5 EXPERIMENTS

Dataset Curation We use the Structural Antibody Database (SAbDab) (Dunbar et al., 2014) as the
training dataset. We first remove structures whose resolution is less than 4Å and discard antibodies
targeting non-protein antigens (Luo et al., 2022). We cluster antibodies in the database according to
CDR-H3 sequences at 50% sequence identity using MMSeq2 (Steinegger and Söding, 2017). Our
final training dataset contains 9410 antigen-antibody complexes. We evaluate sequence-structure
codesign on RAbD test dataset, consisting of 60 diverse antibody-antigen complexes Adolf-Bryfogle
et al. (2018b). We also evaluate on the test set proposed by DiffAb (Luo et al., 2022) which contains
19 complexes with antigens from several well-known pathogens including SARS-CoV-2, MERS,
influenza, and so on. For both test sets, we strictly remove the overlap between the training set and
the testing sets using a CDR-H3 sequence identity threshold of 50%.

Metrics We use standard metrics to evaluate designed antibodies (Adolf-Bryfogle et al., 2018b;
Luo et al., 2022; Zhu et al., 2024), namely, (1) AAR: the amino acid recovery rate measured by the
sequence identity between the reference CDR sequences and the generated sequences, (2) RMSD:
the Cα root-mean-square deviation (RMSD) between the generated structure and the original struc-
ture, and (3) IMP: the percentage of designed CDRs with lower (better) binding energy (∆G) than

6
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the original CDR. The binding energy is calculated by InterfaceAnalyzer in the Rosetta soft-
ware package (Adolf-Bryfogle et al., 2018a; Chaudhury et al., 2010). Diffusion models are capable
of generating diverse data points from the target distribution by randomly sampling from the initial
distribution (Ho et al., 2020; Leach et al., 2022). This is especially advantageous in CDR design
where we can generate multiple candidates CDRs in silico and select only the most promising CDR
for in vitro validation according to some desirable property. To this end, the authors of AbDPO
(Zhou et al., 2024) proposed: (1) Top-1 CDR Etotal: total energy of the whole designed CDR
(kcal/mol) of the best CDR out of N ; (2) Top-1 CDR-Ag ∆G : the difference in total energy
between the bound state and the unbound state of that CDR and antigen. Following AbDPO, we
generate N CDRs for each antigen-antibody complex in the RAbD test dataset and choose the best
CDR ranked by Etotal +∆G.

Model Architecture and Hyperparameters We use the transformer-based parametrization de-
fined in Luo et al. (2022) to encode antigen-antibody complex C and conditionally generate dtj , xt

j

and Ot
j . We add a learnable parameter to predict a Zθ which is learned solely through backpropaga-

tion since Zθ global estimation of the initial state’s flow independent of individual training samples.
Following DiffAb (Luo et al., 2022), we train both DiffAb and AbFlowNet for 200, 000 steps using
Adam optimizer (Kingma and Ba, 2014) with learning rate 1e − 6. For AbFlowNet, computing
TB loss requires sampling full trajectories which is computationally expensive (∼ 20 seconds per
step). Therefore, we train first 195, 000 steps without TB loss and set TB loss weight w = 5e − 6
for the final 5000 steps. We present details about parameter sweep over w in Appendix B.2 and
discuss the effect of training longer in Appendix B.3. Results for methods using sampling budget of
N = 2, 528 were taken from Zhou et al. (2024). We use N = 100 when evaluating AbFlowNet for
computational efficiency.

6 RESULTS

In Section 6.1, we show that AbFlowNet significantly improves Top-1 energy-based metrics and
is comparable to AbDPO (Zhou et al., 2024), a far more computationally expensive method. In
Section 6.2 we demonstrate that AbFlowNet’s joint optimization improves upon the base diffusion
model across all metrics for the same number of training steps. Finally, in Section 6.3, we highlight
a qualitative example of the CDR-H3 designed for PDB 5MES by DiffAb and AbFlowNet.

6.1 De novo CDR-H3 DESIGN USING TOP-1 ENERGY METRICS

Table 1: Top-1 CDR Etotal and CDR-Ag ∆G (kcal/mol) for de novo CDR-H3 design. (↓) indicates
lower is better. We also show the percentage reduction over DiffAb with the same sampling budget.
AbX and AbNovo report Mean CDR Etotal and CDR-Ag ∆G instead of Top-1.

Methods Sampling CDR Etotal (↓) CDR-Ag ∆G (↓) Test Set Used # Param. (M)
Budget (with ∆) (with ∆) in Sampling

Reference 4.52 -13.72 — —

GNN Baselines
HERN (Jin et al., 2022) 2,528 7594.94 1159.34 — 5
MEAN (Kong et al., 2022) 2,528 3113.70 114.98 — -
dyMEAN1 (Kong et al., 2023) 2,528 15025.67 2391.00 — -
dyMEAN2 2,528 3234.30 1619.24 — -

Diffusion-Based
DiffAb (Luo et al., 2022) 2,528 211.00 9.54 — 4
AbDPO (Zhou et al., 2024)† 2,528 162.75 (↓23.4%) -4.85 (↓61.9%) Yes 4

DiffAb 100 480.25 11.20 — 4
AbFlowNet (Ours) 100 362.03 (↓24.8%) 1.71 (↓38.1%) No 4

Reference — -19.41 — —
DiffAb 128 — -0.96 No 4
AbX(Zhu et al., 2024) 128 — 4.79 (↑31.2%) No 12 (+ ESM-3B)
AbNovo(Ren et al., 2025) 128 — -12.05 (↓60.1%) No 12 (+ ESM-3B)

†AbDPO is not open-sourced and cannot be independently reproduced. Results are shown for reference only.
Improvements for AbDPO and AbFlowNet are relative to DiffAb under the same sampling budget.
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The H3 region is especially difficult for all models to generate because the H3 loop undergoes inde-
pendent mutation before joining the rest of the antibody sequence (Graves et al., 2020), introducing
variability and significantly affecting the structure and function of the antibody.

Table 1 shows that AbFlowNet is competitive with AbDPO without relying on test-set struc-
tures. Specifically, AbFlowNet significantly outperforms DiffAb at N = 100, achieving perfor-
mance gains comparable to those reported by AbDPO (Zhou et al., 2024), despite not using test-set
complexes to generate preference datasets. To evaluate relative improvement, we apply the formula
(METHOD - BASELINE) / (REFERENCE - BASELINE), which normalizes performance gains with re-
spect to the baseline and reference. We further validate our findings on the DiffAb test bench-
mark (Luo et al., 2022), which includes 19 complexes with antigens from SARS-CoV-2, MERS,
and influenza; full results are provided in Appendix Table 5.

Compared to AbDPO (Zhou et al., 2024), which is an online RL method that post-trains a DiffAb
model to optimize CDR binding energy, AbFlowNet offers several advantages. AbDPO samples
10,122 CDRs per test complex to construct a preference dataset, and updates the model via Direct
Preference Optimization (DPO) (Rafailov et al., 2024). This approach has two main limitations: (1)
sampling at this scale and computing binding energies is computationally expensive, and (2) using
test-set antibody–antigen complexes during RL introduces potential bias. In contrast, AbFlowNet
relies solely on precomputed binding energies from the 9,410 training examples, eliminating the
need for expensive sampling and reward computation during optimization.

Finally, we note that both CDR Etotal and CDR-Ag ∆G are Top-1 metrics that select the best-scoring
sample among N generated CDR-H3s. These metrics are inherently sensitive to the sampling bud-
get. For example, DiffAb’s Etotal improves significantly from 480.25 kcal/mol at N = 100 to 211.00
kcal/mol at N = 2, 528. While our evaluation of AbFlowNet uses a modest budget of 100 samples
for efficiency, increasing N would likely yield even better results. This suggests that AbFlowNet’s
performance could scale further with additional samples—without relying on test-set structures or
incurring the computational cost of online reward evaluation.

6.2 JOINT OPTIMIZATION OUTPERFORMS DIFFUSION-ONLY BASELINE

While CDR Etotal and CDR-Ag ∆G measure only binding energy, we evaluate three metrics that
compare the generated CDRs to the reference CDR in the dataset. We find that AbFlowNet out-
performs DiffAb in all three metrics: +3.06% in AAR, +20.40% in RMSD and +3.60% in IMP
when averaged over all 6 CDR regions. We include detailed results in Appendix A. For the CDR-L3
chain, in particular, the RMSD achieved by AbFlowNet is considerably lower than those of other
methods. This shows that our Diffusion-GFlowNet Joint Optimization framework maintains strong
reconstruction performance, whereas DPO-based post-training RL reduces it. AbDPO, which post-
trains only on binding energy, does not preserve the training distribution as well and leads to a 9.96%
reduction in average AAR and an increase in RMSD by 0.14 Å. Therefore, AbFlowNet improves
binding energy without sacrificing structural accuracy. We find consistent improvements in most
CDR regions when using the test set proposed by DiffAb (Luo et al., 2022), shown in Appendix 4.

6.3 QUALITATIVE EXAMPLE

(a) DiffAb H3
∆G = −7.82 kcal/mol

(b) AbFlowNet H3
∆G = −7.90 kcal/mol

(c) Reference H3
∆G = −7.93 kcal/mol

(d) Reference
All CDRs

Figure 3: De novo Generated and Reference CDR-H3s for 5MES complex. For DiffAb and
AbFlowNet, we generated 100 CDRs and selected the one with the highest ∆G.
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Figure 3 (d) shows Protein Data Bank entry 5MES is a complex where a chimeric mouse-human Fab
antibody fragment chaperon is bound to the Mcl-1 antigen. The antigen, a chimeric human/mouse
Mcl-1 homolog is over-expressed in various tumors and prevents tumor cells from undergoing apop-
tosis. The Fab antibody serves to stabilize the complex, allowing researchers to resolve at at 2.24
Å resolution by X-ray diffraction (Johannes et al., 2017). Figure 3 (a) and (b) show that the CDR-
H3 region designed by AbFlowNet establishes tighter adhesion between the antibody and antigen.
However, de novo generation methods still underperform the reference H3, in which side chains
contribute a significant fraction of binding affinity. Indeed, CDR side chains may account for the
majority of an antibody’s binding affinity and specificity (Peng et al., 2014; Robin et al., 2014).
Because diffusion-based generators produce only the backbone, we rely on a side-chain packing
algorithm (e.g., PyRosetta PackRotamerMover) to place geometrically plausible side-chain orienta-
tions. This key limitation of diffusion models is discussed further in Appendix E.

7 DISCUSSION

On the Use of Rosetta InterfaceAnalyzer AbFlowNet does not strictly require the use of the
energy estimators such PyRosetta InterfaceAnalyzer (Chaudhury et al., 2010) and could
in principle work with only the reliable measurements from in vitro experiments. This is particularly
relevant because prior works have raised concerns about the accuracy of energy estimators (Vreven
et al., 2012; Chaves et al., 2023; Conti et al., 2022). In contrast to RL-based approaches such as Ab-
DPO (Zhou et al., 2024), AlignAb (Wen et al., 2024) and AbNovo (Ren et al., 2025), which require
energy estimates for thousands of potentially implausible de novo CDRs, AbFlowNet needs ener-
gies only for existing reference CDRs. However, of the 9410 complexes in the SAbDab database,
only 736 have experimental affinity data available. As such, we used InterfaceAnalyzer to
estimate the energies for our training set. We opted for InterfaceAnalyzer to maintain parity
with existing baselines (Luo et al., 2022; Zhou et al., 2024; Wen et al., 2024).

Experimental affinities are typically measured using label-free biophysical techniques such as
isothermal titration calorimetry (Boudker and Oh, 2015), surface plasmon resonance (Hearty et al.,
2012; Murali et al., 2022) or bio-layer interferometry (Abdiche et al., 2008), each with its own ad-
vantages and trade-offs. GPU-accelerated programs such as OpenMM Yank (Rizzi et al., 2020)
are more accurate but require hours to process a single complex. AbFlowNet makes it feasible to
augment experimental data with GPU-accelerated simulations because these simulations need to be
computed only once for authentic CDRs, rather than iteratively for synthetic CDRs.

Comparison with State-of-the-art methods Both the DPO-trained AbDPO (Zhou et al., 2024)
and our diffusion-GFlowNet optimized AbFlowNet are based on the same DiffAb (Luo et al., 2022)
model as the diffusion backbone, which has 4M parameters, with the key difference being the train-
ing framework. While AbFlowNet improves markedly over DiffAb and matches the performance
of AbDPO, state-of-the-art methods for CDR design rely on large, billion-scale Protein Language
Models to guide the diffusion process while also having a much larger diffusion backbone. This
class of models that use Protein LMs, including AbX (Zhu et al., 2024), AbNovo (Ren et al., 2025),
and IgGM (Wang et al., 2024), greatly outperforms DiffAb and the models based on it.

In principle, our Diffusion-GFlowNet framework should be compatible with any baseline diffusion
model. We selected DiffAb as the backbone for AbFlowNet since we require a lightweight model
to sample a complex denoising trajectory and backpropagate through it (We discuss the efficiency
considerations of implementing Diffusion-GFlowNet fusion in Appendix F). We attempted pilot
experiments by pruning the protein LM component in AbX; however, this caused a complete per-
formance collapse, and the training code for AbX was not publicly available.

8 CONCLUSION

We presented AbFlowNet, a novel framework integrating Diffusion Models and GFlowNets for
antibody CDR design. AbFlowNet directly incorporates binding energy signals throughout training,
jointly optimizing sequence/structure generation and binding affinity. This approach avoids the
trade-offs seen in RL-based methods such as strong reliance on in silico binding energy estimation
and usage of test set data. AbFlowNet outperforms its base diffusion model (DiffAb) in all metrics
and is competitive with expensive RL approaches while only using precomputed rewards.
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Technical Appendices and Supplementary Material

A PERFORMANCE ON REFERENCE CDR RECONSTRUCTION

Table 2: Evaluation of the generated antibody CDRs (sequence-structure co-design) on the RAbD
test dataset (60 sequences) using AAR (%), RMSD (Å) and IMP (%) metrics.

CDR Method AAR↑ RMSD↓ IMP↑
H1 Diffab 64.23% 1.153Å 69.27%

AbFlowNet 63.49% 0.974Å 73.66%

H2 Diffab 35.87% 1.095Å 46.79%
AbFlowNet 38.06% 0.848Å 60.07%

H3 Diffab 24.34% 3.236Å 14.38%
AbFlowNet 25.08% 3.194Å 12.65%

CDR Method AAR ↑ RMSD ↓ IMP ↑
L1 DiffAb 53.69% 1.153Å 55.51%

AbFlowNet 55.62% 0.974Å 56.83%

L2 DiffAb 50.46% 0.795Å 68.78%
AbFlowNet 54.09% 0.782Å 70.64%

L3 DiffAb 44.87% 3.840Å 36.98%
AbFlowNet 44.68% 1.310Å 34.70%

Table 2 shows the performance of AbFlowNet and the baseline diffusion model DiffAb on the RaBD
dataset. Both models were trained with identical hyperparameters and the same number of gradient
updates; the only difference is that AbFlowNet incorporates the TB objective from Eq. 18.

B EXPERIMENTAL SETUP DETAILS

B.1 HARDWARE SPECIFICATIONS AND RUNTIME

We conduct all experiments using a Linux machine with Intel(R) Xeon(R) Silver 4314 CPU with
512GB memory and one NVIDIA RTX A6000 48GB GPU. Training the first 195, 000 steps without
the GFlowNet TB objective took ∼ 27 hours and training the last 5, 000 steps took ∼ 18 hours.
Sampling 100 times for each CDR regions for every complex in the RAbD test dataset took ∼ 12
hours.

B.2 BALANCING BETWEEN DIFFUSION AND TRAJECTORY BALANCE OBJECTIVES

Although the method for computing the forward and backward flow of rewards is computationally
expensive, the final trajectory balance loss is simply added to the diffusion reconstruction losses, as
shown in Eqn. 18. The Trajectory Balance (TB) loss is typically ranges from 104 to 106, while the
three diffusion losses have magnitudes between 0 and 1 after 195000 training steps. This necessitates
a TB loss weight w to balance between the flow matching and reconstruction objectives. We train
and test AbFlowNet with w ranging from 5e−5 to 1e−7 and find that learning rates between 1e−5
and 1e − 6 are consistently better than the baseline set by DiffAb. Detailed results are shown in
Figure 4.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

H1 H2 H3 L1 L2 L3
CDR Region

0

10

20

30

40

50

60

AA
R 

(%
)

DiffAb (Baseline)
w=5e-5
w=1e-5
w=5e-6
w=1e-6
w=5e-7
w=1e-7

(a) Amino Acid Recovery (ARR) Rate Comparison. Higher is better.
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(b) Root Mean Square Deviation (RMSD) Comparison. Lower is better.

Figure 4: Hyperparameter search for TB loss weight w in Eqn. 18 on the RAbD (Adolf-Bryfogle
et al., 2018b) dataset. The RMSD of DiffAb on L3 CDR region is significantly worse than
AbFlowNet. We repeated the retrained DiffAb using a different seed to confirm this discrepancy
(RMSD 4.06 Å).
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B.3 POST-TRAINING WITH TRAJECTORY BALANCE

So far, we have focused on matching the number of gradient updates between the DiffAb baseline
and AbFlowNet to isolate the effect of optimizing binding energy via trajectory balance.

However, training with sparse feedback is often framed as a separate stage after unsupervised learn-
ing (Zhou et al., 2024; Zhang et al., 2024b). We test this setup by first training the diffusion model
on only the reconstruction objectives for 200K steps and a further 10K steps with the weighted TB
loss enabled (w = 5e− 6). We find that training beyond 200K steps with reconstruction objectives
enables generally tends to overfit the dataset while training with only the TB loss objective harms
metrics such as AAR and RMSD, similar to the findings of Zhou et al. (2024). Detailed results are
shown in Figure 5.
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Figure 5: Training Diffusion+GFlowNet models with different training steps on the RAbD dataset
(Adolf-Bryfogle et al., 2018b). Separating the reconstruction and flow matching steps do not mean-
ingfully improve performance over AbFlowNet.
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C COMPARISON WITH STATE-OF-THE-ART CDR DESIGN METHODS

Table 3: Evaluation of state-of-the-art CDR design methods on the RAbD test dataset. The DiffAb
baseline has been independently benchmarked using different parameters by AbDPO (Zhou et al.,
2024), AbNovo (Ren et al., 2025) and IgGM (Wang et al., 2024) which we denote in parenthesis.

CDR Method AAR↑ RMSD↓
H1 DiffAb (Ours) 64.23 1.153

AbFlowNet 63.49 0.974

DiffAb (AbDPO) - -
AbDPO - -

DiffAb (AbNovo) 70.01 0.88
AbX 80.92 0.85
AbNovo 85.25 0.66

DiffAb (IgGM) 63.7 0.623
IgGM 74.0 0.555

H2 DiffAb (Ours) 35.87 1.095
AbFlowNet 38.06 0.848

DiffAb (AbDPO) - -
AbDPO - -

DiffAb (AbNovo) 38.52 0.78
AbX 70.73 0.76
AbNovo 78.56 0.76

DiffAb (IgGM) 39.4 0.586
IgGM 64.4 0.486

H3 DiffAb (Ours) 24.34 3.236
AbFlowNet 25.08 3.194

DiffAb (AbDPO) 36.42 2.34
AbDPO 26.48 2.48

DiffAb (AbNovo) 28.05 2.86
AbX 44.18 2.50
AbNovo 49.93 2.19

DiffAb (IgGM) 22.6 2.646
IgGM 36.0 2.131

CDR Method AAR↑ RMSD↓
L1 DiffAb (Ours) 53.69 1.153

AbFlowNet 55.62 0.974

DiffAb (AbDPO) - -
AbDPO - -

DiffAb (AbNovo) 61.07 0.85
AbX 80.37 0.80
AbNovo 84.34 0.66

DiffAb (IgGM) 60.8 0.749
IgGM 75.0 0.589

L2 DiffAb (Ours) 50.46 0.795
AbFlowNet 54.09 0.782

DiffAb (AbDPO) - -
AbDPO - -

DiffAb (AbNovo) 58.58 0.55
AbX 84.53 0.45
AbNovo 88.25 0.32

DiffAb (IgGM) 59.9 0.466
IgGM 74.3 0.378

L3 DiffAb (Ours) 44.86 3.840
AbFlowNet 44.68 1.310

DiffAb (AbDPO) - -
AbDPO - -

DiffAb (AbNovo) 47.57 1.39
AbX 65.89 1.21
AbNovo 73.88 0.86

DiffAb (IgGM) 42.4 1.017
IgGM 63.5 0.847
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D DIFFAB TEST SET PERFORMANCE

The authors of DiffAb (Luo et al., 2022) proposed a test set consisting of 19 complexes with antigens
from several well-known pathogens including SARS-CoV-2, MERS, influenza, and so on. Since
these complexes are part of the SAbDab dataset (Dunbar et al., 2014) used for training, we filter
our training complexes against the test set using a CDR-H3 sequence identity threshold of 50%. We
retrain both DiffAb and AbFlowNet with this new filtered training set.

Table 4: Evaluation of the generated antibody CDRs (sequence-structure co-design) on the DiffAb
test dataset (19 sequences).

CDR Method AAR↑ RMSD↓ IMP↑
H1 DiffAb 68.29% 1.090Å 53.96%

AbFlowNet 69.41% 0.944Å 63.50%

H2 DiffAb 35.94% 0.804Å 55.60%
AbFlowNet 36.39% 0.862Å 54.38%

H3 DiffAb 26.53% 3.183Å 12.75%
AbFlowNet 26.66% 3.321Å 8.75%

CDR Method AAR↑ RMSD↓ IMP↑

L1 DiffAb 54.40% 0.960Å 62.48%
AbFlowNet 55.97% 1.019Å 64.84%

L2 DiffAb 42.55% 0.735Å 80.61%
AbFlowNet 45.52% 0.757Å 84.47%

L3 DiffAb 46.15% 1.127Å 37.07%
AbFlowNet 46.19% 1.180Å 37.26%

Table 5: Summary of Top-1 CDR Etotal and CDR-Ag ∆G (kcal/mol) of CDR-H3’s designed by
DiffAb and AbFlowNet on the DiffAb Test Dataset. ( ↓ ) denotes a smaller number is better.

Methods # Samples CDR +Etotal CDR-Ag +∆G Test Set
Etotal ( ↓ ) (%) ∆G ( ↓ ) (%) Used

Reference 1.63 -4.80

DiffAb 100 26.33 11.50
AbFlowNet (Ours) 4.23 89.5 1.47 149.7 No

E APPROACHES TO DETERMINING SIDE-CHAIN ORIENTATION WITH
NEURAL NETWORKS

Most generative methods—including DiffAb, AbDPO, AbFlowNet, AlignAb (Wen et al., 2024),
AbX (Zhu et al., 2024), AbNovo (Ren et al., 2025), etc.—generate only the backbone structure.
The orientation of the amino-acid chains isn’t generated through a diffusion process, since it must
follow structural constraints such as avoiding overlaps. Instead, we rely on a side-chain packing al-
gorithm such as PyRosetta PackRotamerMover to find the ideal orientation of side-chains.
The GNN based dyMEAN (Kong et al., 2023) jointly generates the backbone and side-chain orien-
tations jointly but Table 1 shows that this approach under-performs using PyRosetta. There has
been notable research into generating only side-chains conditioned on the backbone with diffusion
neural networks (Zhang et al., 2023; 2024c) and given the limitations, it is a critical direction of
future research.
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F EFFICIENCY CONSIDERATIONS OF DIFFUSION-GFLOWNET FUSION

Computing the Trajectory Balance (TB) objective requires complete trajectories, i.e., sampling from
the initial Gaussian state to the final denoised CDR conditioned on the antigen-antibody complex.
Following (Luo et al., 2022; Zhou et al., 2024; Zhu et al., 2024), we use 100 denoising steps. The
wall-clock time for 100 denoising steps with a batch size of 16 is ∼20 seconds which dominates the
run-time of training AbFlowNet. Furthermore, we do backward propagation for only one random
time step since storing the activations for all 100 steps is computationally infeasible. This deviates
from the original TB (Bengio et al., 2021) formulation and hence is only as approximation. Fol-
lowing (Zhang et al., 2024b), we discuss our attempt at using an alternative GFlowNet optimization
objective, Detailed Balance, in Appendix G.

G DETAILED BALANCE OBJECTIVE

Detailed Balance (DB) (Bengio et al., 2021) is an alternative training objective to the standard flow
matching constraint and Trajectory Balance which doesn’t require enumerating states or sampling
complete trajectories. Rather, DB requires the forward flow from state s to s′, F (s)PF (s

′|s) to
match the backward flow F (s′)PB(s|s′). Concretely the DB objective is

F (s)PF (s
′|s) = F (s′)PB(st−1|st) (19)

However, the flow of a nonterminal state s is generally not tractable, and hence it is parameterized
with a neural network Fϕ(·). The forward and backward transition probabilities of the entire CDR St

are p(St−1|St) =
∏l+m

j=l p(stj |s
t−1
j ) and q(St|St−1) =

∏l+m
j=l q(stj |s

t−1
j ) respectively. Therefore,

the final DB objective is:

Lt
DB =

(
log

Fϕ(S
t)p(St|St−1; θ)

Fϕ(St−1)q(St−1|St)

)2

(20)

Pilot Attempt Using DB Objective In the GFlowNet framework, there are three equivalent op-
timization objectives: Flow Matching (FM), Detailed Balance (DB) and Trajectory Balance (TB)
- each with their own tradeoffs. Flow Matching requires enumerating states and enforcing parity
between incoming and outgoing flow. FM is not applicable since the number of states in diffusion
models is infinite. We attempt using DB which only requires computing the forward and backward
flow between two states and enforcing parity.

Similar to optimizing the TB objective outlined in Section 4.2, we uniformly sample a timestep
t to compute Lt

type, Lt
pos and Lt

ori. Since we require adjacent state pairs to compute DB, we do a
single step of denoising to obtain St−1 from St. To enforce the DB objective 19, we must compute
F (St) and F (St−1). However, intermediate states St−1 and St are noisy and therefore are not
appropriate to be evaluated by a reward function, which would give noisy results. Following Zhang
et al. (2024b), we define the linearization.

Fϕ(S
t) = F̃ϕ(S

t)R(Ŝ0) = F̃ϕ(S
t)R(FullDenoiseθ(S

t)) (21)

where F̃ϕ() is a scalar function that scales the reward of the estimated fully denoised state. Being a
diffusion model, we can fully denoise any noisy state albeit with a sacrifice in quality.

Key Bottlenecks At this stage, we run into the key issue that precludes the use of DB
in CDR design. We need to compute the energy of the designed CDR using a tool such
as InterfaceAnalyzer in the Rosetta (Chaudhury et al., 2010) software package.
InterfaceAnalyzer requires the designed antigen-antibody structure to be complete with side-
chains. However, diffusion models generally generate only the backbone and rely on a search-based
side-chain packing algorithms such as PackRotamerMover. Both PackRotamerMover and
InterfaceAnalyzer are CPU-based utilities and it takes 10.81 seconds to process a single CDR
.pdb file. Determining the energy for the two states for each item in the mini-batch (16 in our exper-
iments) requires ∼ 93 seconds even when parallelized over a 32+ core machine, including multiple
data migration costs between the GPU, CPU and disk. This is in contrast to the millisecond-scale
time required for the forward and backward passes.
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Therefore, the training runtime is dominated by the time it takes to compute the binding energy
reward and training becomes infeasible.

Neural Surrogate for Rosetta’s InterfaceAnalyzer To the best of our knowledge, a neural net-
work alternative to PackRotamerMover and InterfaceAnalyzer does not exist. We tried
to train a transformer-based neural network to simulate the function of InterfaceAnalyzer
directly from the output of the diffusion model. However, this neural network had very low agree-
ment with the InterfaceAnalyzer tool (Pearson’s coefficient 0.21), which itself is unreliable
(Vreven et al., 2012). This is expected since side-chains play a central role in determining bind-
ing affinity (Polonelli et al., 2008). Another drawback of the DB objective is the need to compute
binding energy of generated CDRs which are not guaranteed to be geometrically plausible.

In light of our findings, we finally committed to Trajectory Balance as the only feasible objective
for training AbFlowNet despite the need to sample full trajectories.

H LIMITATION

1) The Trajectory Balance objective requires fully generating a CDR, which in our setup requires
100 forward passes with the neural network for each gradient update. 2) As the in vitro affinity data
for all training complexes is not available and for fair comparison with existing methods, we used
Pyrosetta InterfaceAnalyzer which is an unreliable estimator of binding energy. 3) Due
to compute constraints, we sampled 100 CDRs per complex in Table 6.1. Sampling at higher rates
would potentially increase Top-1 metrics.

I ACKNOWLEDGMENT REGARDING USE OF LARGE LANGUAGE MODELS
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