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ABSTRACT

In the realm of Federated Learning (FL), the convergence and effectiveness of
learning algorithms can be severely hampered by the phenomenon of forget-
ting—where knowledge obtained in one round becomes diluted or lost in sub-
sequent rounds. Such a challenge is a result of severe data heterogeneity across
clients. Although FL algorithms like FedAvg have been pivotal, they often fal-
ter in scenarios of high data heterogeneity. This work delves into the nuances of
this problem, establishing the critical role forgetting plays in the inefficient learn-
ing of FL in the context of severe data heterogeneity. Knowledge loss occurs in
both the local update and the aggregation step; addressing one phase without con-
sidering the other will not mitigate forgetting. We introduce a novel metric that
offers a granular measurement of forgetting at every round while ensuring that the
occurrence of forgetting is distinctly recognized and not obscured by the simulta-
neous acquisition of new class-specific knowledge. Leveraging these insights, we
propose Flashback, an FL algorithm that integrates a novel dynamic distillation
approach. The knowledge of different models is estimated and the distillation loss
is adapted accordingly. This adaptive distillation is applied both at the local and
global update phases, ensuring models retain essential knowledge across rounds
while also assimilating new knowledge. Our approach seeks to robustly mitigate
the detrimental effects of forgetting, paving the way for more efficient and con-
sistent FL algorithms, especially in environments of high data heterogeneity. By
effectively mitigating forgetting, Flashback achieves faster convergence to target
accuracy outperforming baselines, by being up to 88.5⇥ faster and at least 4.6⇥
faster across the different benchmarks.

1 INTRODUCTION

Federated Learning (FL) is a distributed learning paradigm that allows training over decentralized
private data. These datasets belong to different clients that participate in training a global model.
Federated Averaging (FedAvg) (McMahan et al., 2017) is a prominent training algorithm that uses
a centralized server to orchestrate the process. At every round, the server samples a proportion
of the available clients and then distributes to them the current version of the global model. Each
client participant performs E epochs of local training using their private data; and then sends back
the updated model. Finally, the server aggregates the models by averaging them to obtain the new
global model. This process is typically repeated for many communication rounds until a desired
model performance is obtained.

A main challenge in FL is the heterogeneity in distribution between the private datasets, which are
unbalanced and non-IID (Kairouz et al., 2019). Data heterogeneity causes local model updates to
drift – the local optima are not consistent with the global optima – and can lead to slow convergence
of the global model – where more rounds of communication and local computation are needed –
or worse, when the desired performance may not be reached. Addressing data heterogeneity in FL
has been the focus of several prior studies. FedProx (Li et al., 2020) proposes a proximal term to
limit the distance between the global model and the local model updates, mitigating the drift in the
local updates. MOON (Li et al., 2021b) mitigates the local drift using a contrastive loss to minimize
the distance between the feature representation of the global model and the local model updates
while maximizing the distance between the current model updates, and the previous model updates.
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(a) Global model accuracy of FedAvg and baselines. (b) Per-class accuracy of FedAvg’s global model.

Figure 1: Performance of FedAvg and other baselines over training rounds with CIFAR10.

FedDF (Lin et al., 2020) addresses heterogeneity in local models by using ensemble distillation
during the aggregation step at the server (instead of averaging the model updates).

However, we experimentally observe that under severe data heterogeneity, these proposals provide
little or even no advantage over FedAvg. For instance, Fig. 1a illustrates the test accuracy of FedAvg
and other baselines while training a DNN model with the CIFAR10 dataset (Krizhevsky, 2009)
(details in § 5). Although this model could be trained at over 70% accuracy in a centralized setting,
training with FL methods shows a slow and oscillating convergence, which barely reaches ⇡50%
accuracy after 200 rounds.

This motivates us to better understand how data heterogeneity poses a challenge for FL and devise
a new approach of handling non-IID datasets. We investigate the evolution of the global model
accuracy broken down by its per-class accuracy. Fig. 1b presents the per-class accuracy for FedAvg;
each rectangle represents the accuracy of the global model on a class at a round. Other baseline
methods show similar results. Our key observation is that there is a significant presence of forgetting:
i.e., cases where some knowledge obtained by the global model at round t is dropped at round t+1,
causing the accuracy to drop (as shown by the prominent number of light-shaded rectangles at the
right side of darker ones in the figure).

A similar phenomenon is known as catastrophic forgetting in Continual Learning (CL) litera-
ture (Parisi et al., 2019). CL addresses the challenge of sequentially training a model on a series
of tasks, denoted as {T1, T2, . . . , Tn}, without revisiting data from prior tasks. Formally, given a
model with parameters ✓ and task-specific loss functions Lt(✓) for each task Tt, the objective in CL
is to update ✓ such that performance on the current task is optimized without significantly degrading
the model’s performance on previously learned tasks. This is non-trivial, as naı̈ve sequential training
often leads to catastrophic forgetting, where knowledge from prior tasks is overridden when learning
a new task. An inherent assumption in this paradigm is that once the model transitions from task Ti

to task Ti+1, data from Ti becomes inaccessible, amplifying the importance of knowledge retention
strategies (De Lange et al., 2021).

While the premises and assumptions of FL differ from those of traditional machine learning, for-
getting remains an issue. This can be viewed as a side effect of data heterogeneity, a commonality
it shares with CL. In FL, the global model evolves based on a fluctuating data distribution. Specif-
ically, in each communication round, a diverse set of clients, each with distinct data distributions,
contribute to the model update. This dynamic presents dual levels of data heterogeneity. Firstly,
at the intra-round level, the heterogeneity arises from the participation of clients with varied data
distributions within the same round. This diversity can inadvertently lead to “forgetting” knowledge
from certain clients. Secondly, at the inter-round level, the participating clients generally change
from one round to the next. Consequently, the global model might “forget” or dilute knowledge
obtained from clients from previous rounds.

We propose Flashback, a FL algorithm that employs a dynamic distillation approach to mitigate
the effects of both intra-round and inter-round data heterogeneity. Flashback’s dynamic distillation
ensures that the global model retains its knowledge during the local updates, and during the aggre-
gation step by adaptively adjusting the distillation loss. Flashback performs these adaptations by
estimating the knowledge in each model using label counts as a proxy. Overall, Flashback results in
a more stable and faster convergence compared to existing methods.
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Our contributions are the following:
• We investigate the forgetting problem in FL. We show that under severe data heterogeneity FL
sufferers from forgetting. Then we show how and where forgetting happens in FL (§ 3).
• We propose a new metric for measuring global forgetting and local forgetting over the rounds in
FL (§ 3).
• We introduce Flashback, a FL algorithm that employs a dynamic distillation during both local and
global updates (§ 4). By addressing the forgetting issue, Flashback not only mitigates its detrimental
effects but also converges to the desired accuracy faster than existing methods (§ 5).

2 BACKGROUND

We consider a standard cross-device FL setup in which there are N clients. Each client i has a
unique dataset Di = {(xj , yj)}ni

j=1 where xj represents the input features and yj is the ground-truth
label for j-th data point and ni represent the size of the dataset. The goal is to train a single global
model through the objective:

argminw L(w) =
PN

i=1
|Di|

|[i2[N]Di|Li(w)

Li(w) represents the local loss for client i and l(w; (xj , yj)) is the cross-entropy loss for a single
data point, both defined as:

Li(w) =
1

|Di|

|Di|X

j=1

l(w; (xj , yj)) l(w; (x, y)) = LCE(Fw(x), y)

where F denotes the model function parameterized by weights w.

FedAvg provides a structured approach to this decentralized training. Starting with the global model
w0, it randomly selects K clients from the available N clients. In each round t, these chosen clients
receive the previous global model, wt�1, and optimize it based on their local data using Li(wk,t).
Post-optimization, every client sends their updated model, wk,t, back to the server. The global model
is then updated by aggregating the model updates as:

wt =
PK

i=1
|Di|

|[i2[K]Di|wk,t

To accommodate the intrinsic heterogeneity in client data, various FL algorithms introduce mod-
ifications either at the local update level or during the global aggregation. The nuances of these
variations are further explored in § 6.

Knowledge Distillation is a training method wherein a smaller model, referred to as the student,
is trained to reproduce the behavior of a more complex model or ensemble, called the teacher. Let
Fws denote the student model with weights ws and Fwt represent the teacher model with weights
wt. For a given input x, the student aims to minimize the following distillation loss:

LKD((x, y);ws, wt) = ↵LCE(Fws(x), y) + (1� ↵)LKL(Fwt(x), Fws(x)) (1)

Here, LCE is the standard cross-entropy loss with true label y, and LKL represents the Kullback-
Leibler (KL) divergence between the teacher’s and the student’s output probabilities. It is defined
as LKL(p, q) =

PC
c=1 p

c log
⇣

pc

qc

⌘
, where C is the number of classes, p is the target output prob-

ability vector, and q is the predicted output probability vector. The hyperparameter ↵ balances the
importance between the true labels and the teacher’s outputs.

While distillation originally emerged as a method for model compression, its utility extends to FL.
In the federated context, distillation can combat challenges like data heterogeneity Lin et al. (2020);
Lee et al. (2021) and communication efficiency Jeong et al. (2018). Specifically, the global model
can act as a guiding teacher during local updates, directing the training process for each client. Addi-
tionally, distillation techniques streamline the aggregation step, assisting in the incorporation of var-
ied knowledge from diverse clients to update the global model. Furthermore, employing distillation
for aggregation mitigates model heterogeneity, allowing for the use of different model architectures.
Perhaps most interestingly, by using distillation, FL systems can potentially bypass the traditional
method of transmitting weight updates. This is accomplished by sending soft labels that encapsulate
the essence of local updates–communication becomes more efficient, reducing bandwidth usage.
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3 FORGETTING IN FL

We now investigate where forgetting happens and devise a metric to quantify this phenomenon.
Recall that in FL, the models are updated in two distinct phases: 1) during local training – when
each client k starts from global model wt�1 and locally trains wk,t – and 2) during the aggregation
step – when the server combines the client models to update the new global model wt.

We observer that forgetting may occur in both phases. We refer to the former case as local forget-
ting, where some knowledge in the global model will be lost during the local training wt�1 ! wk,t.
This is due to optimizing for the clients’ local objectives, which depend on their datasets. Lo-
cal forgetting is akin to the form of forgetting seen in CL, where tasks (and clients in FL) change
over time, and consequently, the data distribution. We refer to the latter case as global forget-
ting, where some knowledge contained in the clients’ model updates will be lost during aggregationP

{wk,t | k 2 St} ! wt. This might be due to the coordinate-wise aggregation of weights as
opposed to matched averaging in the parameter space of DNNs (Wang et al., 2020a).

We provide an illustration of forgetting in Fig. 2 based on actual experiments with several baseline
methods. The figure shows the per-class accuracy of wt�1, all local models wk,t, and the new global
model wt. The local forgetting is evident in the drop in accuracy (lighter shade of blue) of the local
models wk,t compared to the global model wt�1. The global forgetting is evident in the drop in
accuracy of the global model wt compared to the local models wk,t. The figure also previews a
result for our method, Flashback, which shows a significant mitigation of forgetting.

Moreover, local forgetting and global forgetting are intertwined, which means addressing the issue
at only one of the phases will not be sufficient, since it will happen at the next phase, and therefore
have a cascading effect into the same phase at the next round.

Figure 2: Local (client) & Global Forgetting in all the baselines using CIFAR10. The first row
represents the global model per-class test accuracy at round t�1; then the rows in the middle are all
the clients that participated in round t, and finally in the last row the global model at the end of round
t. Local forgetting happens when clients at round t lose the knowledge that the global model had at
round t � 1. The global forgetting happens when the global model at round t loses the knowledge
that in the clients’ models at round t. Similarly results with other datasets are in Fig. 10.

In CL, forgetting is often quantified using Backward Transfer (BwT) (Chaudhry et al., 2018). Lee
et al. (2021) adapted this metric for FL as:

F = 1
C

PC
c=1 argmaxt21,T�1(A

c
t �Ac

T ), (2)

where C is the number of classes and Ac
t is the global model accuracy on class c at round t.

However, F is a coarse-grain score that evaluates forgetting in aggregate across all rounds. We seek
a finer-grain metric that can measure forgetting at any given round. Further, we wish to account
for knowledge replacement scenarios such as when a decline in accuracy for one class might be
accompanied by an increase in another, essentially masking the negative impact of forgetting in
aggregate measures. Thus, for our evaluation results (§ 5), we propose to measure forgetting across
consecutive rounds by focusing only on drops in accuracy using the following metric:

Ft =
1
C

PC
c=1 min(0,�(Ac

t �Ac
t�1))

where t > 1 is the round at which forgetting is measured. Moreover, client k’s local forgetting Fk,t

can be measured by substituting Ac
t with Ac

k,t (the accuracy of client k’s local model for class c).
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4 FORGETTING ROBUST FL

Our key idea to mitigate both local and global forgetting is to leverage a dynamic form of knowledge
distillation, which is fine-tuned in response to the evolving knowledge captured by the models.
During local training, distillation ensures that each local model learns from the client’s local dataset
while retaining knowledge from the current global model. The aggregation step follows the approach
of FedAvg to produce the new global model. However, this is followed by a distillation step where
the new global model is treated as a student, learning from the previous version of the global model
and the ensemble of local model updates, which are treated as teachers. Similar to the proximal
term adopted by FedProx, which constrains the global model’s evolution in the parameter space, our
approach can be viewed as a way to ensure that the new global model is not too far from the previous
one in the output space.

The remainder of this section discusses in detail our distillation approach and introduces the Flash-
back algorithm.

4.1 LABEL COUNT DYNAMIC DISTILLATION

In the standard knowledge distillation, all logits are treated equally since it is assumed that the
teacher model has been trained on a balanced dataset. Owing to the heterogeneity of data distribution
in local datasets, this assumption does not hold in FL. As a result, we cannot directly treat the current
global model nor the local model updates as equally reliable teachers across all classes. Instead, we
propose to weight the logits by using the label count as an approximation of the per-class knowledge
within a model. Here the label count refers to the occurrences of each class in the training data.

We now revisit the distillation loss Eq. (1) and transform the scalar ↵ to a matrix form that is auto-
matically tuned according to the label count and used directly within the KL divergence loss. We
consider a single student model Fws with weights ws and a set T of K teacher models; the i-th
teacher model is denoted as Fwi with weights wi.

Let ⌫ 2 RC be the label count vector of the student model, where ⌫c is the occurrences of class c in
the dataset. Similarly, let µi 2 RC be the label count vector of the i-th teacher model.

The dynamic ↵ 2 RK⇥C is defined as [↵|
1 , . . . ,↵

|
K ], with ↵i =

µi

⌫+
P

k µk
.

Then, we embed ↵ directly in the KL divergence loss (LKL Eq. (1)) as follows:

LdKL(p, q;↵i) =
CX

c=1

↵c
i · pc log

✓
pc

qc

◆

Finally, the dynamic knowledge distillation loss (LdKD) is:

LdKD((x, y);ws,T,↵) = LCE(Fws(x), y) +
X

wi2T
LdKL(Fwi(x), Fws(x);↵i) (3)

The dynamic ↵ will weigh the divergence between the logits of different classes making the student
model focus more on learning from the teacher’s strengths while being cautious of its weaknesses.
This is of great importance in FL because of the data heterogeneity problem.

4.2 FLASHBACK ALGORITHM

Flashback is detailed in Algorithm 1.

Note that to apply the dynamic distillation loss Eq. (3), we require to obtain the student’s and teach-
ers’ label count vectors. While the label count of local models can be easily obtained (from the
class frequency of local datasets), the label count of the global model is not readily available. We
construct ⇡, the global model’s label count, as follows. Let rk denote the number of rounds that
client k has participated in. For every client k that participates at round t, Flashback adds (Line 27)
a fraction � 2 (0, 1] of k’s label count (µk) to ⇡, unless �rk > 1, in which case ⇡ is not updated
based on k’s label count. Progressively building the global label count is crucial for ensuring a
balanced distillation weight within the Eq. (3) loss function during the local update. This gradual
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Algorithm 1: Flashback algorithm.
Input: Initial global model w0, number of rounds T , fraction of clients C, minibatch size B, number of

local epochs E, number of server epochs Es, learning rate ⌘
Output: Global model wT

1 ⇡ = 0 ; // Global model’s label count vector
2 for t 1 to T do
3 St  (Set of randomly selected C ·N clients);
4 for client k 2 St in parallel do
5 wk,t  wt�1 ; // Initialize local model with current global model
6 Bk  (Split local dataset into batches of size B);
7 Compute ↵ with ⌫ as the local label count and a single teacher µ ⇡;
8 for e 1 to E do
9 for batch b 2 Bk do

10 wk,t  wk,t � ⌘ ·rwk,tLdKD(b;wk,t, {wt�1},↵) ; // Use LCE when t = 1
11 end
12 end
13 end
14 mt  

P
k2St nk ; // Total data points in this round (nk is the number of data points at k)

15 wt  
P

k2St
nk
mt

wk,t ; // Average to obtain the new global model
16 Bs  (Split the public dataset into batches of size B);

17 T 
(
{wk,t | k 2 St} if t = 1

{wk,t | k 2 St} [ {wt�1} otherwise
;

18 Compute ↵ with ⌫  ⇡ and µi as the label count 8wi 2 T ; // If t > 1, wt�1 has µi ⌘ ⇡
19 for e 1 to Es do
20 for batch b 2 Bs do
21 wt  wt � ⌘ ·rwtLdKD(b;wt,T,↵) ; // Update global model
22 end
23 end
24 rk  (Increment rk for every client k 2 St);
25 for client k 2 St do
26 if �rk  1 then
27 ⇡  ⇡ + �µk;
28 end
29 end
30 end

integration reflects the evolving confidence in the global model, safeguarding against overwhelming
the client models with a disproportionate weight that could potentially distort the learning process.

5 EXPERIMENTS & RESULTS

We outline and analyze our experimental findings to investigate whether mitigating forgetting suc-
cessfully addresses the issues of slow and unstable convergence observed in the initial problem laid
out in § 1. The experimental results stem from six settings with three datasets: two each on CI-
FAR10 and CINIC10, where heterogeneous data partitions are created using Dirichlet distribution
with � = 0.1 and � = 0.5, and two on FEMNIST with 500 and 3,432 clients, following the natural
heterogeneity of the dataset. We use the same neural network architecture that is used in Lee et al.
(2021); McMahan et al. (2017), which is a 2-layer Convolutional Neural Network (CNN). Sum-
maries of the datasets, partitions and more details on the experimental setup, as well as additional
results are reported in Appendix B.

We compare Flashback against several baseline methods, namely: 1) FedAvg, 2) FedDF (Lin et al.,
2020), 3) FedNTD (Lee et al., 2021), 4) FedProx (Li et al., 2020), 5) FedReg (Xu et al., 2022),
6) MOON (Li et al., 2021b). It is noteworthy that both FedNTD and FedReg target forgetting in FL
(discussed further in § 6).

We explore four critical dimensions, encompassing: 1) Round Efficiency which is evaluated as the
number of rounds each method takes to reach the target accuracy; 2) Convergence Behavior in which
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CIFAR10
� = 0.1, A = 0.5

CIFAR10
� = 0.5, A = 0.59

CINIC10
� = 0.1, A = 0.46

CINIC10
� = 0.5, A = 0.48

FEMNIST
N = 500, A = 0.72

FEMNIST
N = 3, 432, A = 0.73

Method A0.75 A0.9 A1 A0.75 A0.9 A1 A0.75 A0.9 A1 A0.75 A0.9 A1 A0.75 A0.9 A1 A0.75 A0.9 A1

FedAvg 112 190 445 28 58 96 269 490 - 27 57 135 61 103 213 80 133 265
FedDF 105 - - 28 106 139 23 - - 18 57 - - -
FedNTD 71 141 302 28 96 133 41 160 224 24 59 126 177 361 - 244 - -
FedProx 141 247 441 47 105 161 269 - - 43 100 - 170 234 442 240 354 -
FedReg 126 264 - 92 158 - 236 312 - 100 - - - -
MOON 190 - - 118 178 - - - - 82 169 - - -

Flashback 11 28 49 4 12 30 5 9 17 5 11 44 2 5 16 2 6 21

Table 1: Number of rounds to reach accuracy Ax = A · x where A is the target accuracy and x is a
fraction of it. The target accuracy is set at 95% of Amax, the highest obtained accuracy by any of the
algorithms. � is the Dirichlet distribution parameter, and N is the total number of clients. A dash
(-) indicates that a method failed to reach the accuracy.

(a) CIFAR10, Dir(� = 0.1) (b) CINIC10, Dir(� = 0.1) (c) FEMNIST, N = 3, 432

(d) CIFAR10, Dir(� = 0.5) (e) CINIC10, Dir(� = 0.5) (f) FEMNIST, N = 500

Figure 3: Test accuracy (y-axis) over rounds (x-axis) for different algorithms and datasets.

we observe the rate at which an algorithm can improve its global model accuracy and the level of
oscillations in accuracy throughout the rounds; 3) Global & Local Forgetting in which we measure
how much forgetting happens for each method. 4) Knowledge Absorption in which we dissect the
accuracy metric at the class level and observe the learning behavior.

Convergence Behavior & Round Efficiency. We report accuracy over the rounds in Fig. 3 as
well as rounds to reach target accuracy in Table 1. Flashback demonstrates faster and more stable
convergence compared to the other baselines across all the experiments and the round efficiency is
improved by up to 29.5⇥, 54.4⇥, and 88.5⇥ in CIFAR10, CINIC10, and FEMNIST, respectively.
This indicates that mitigating forgetting addresses the slow convergence and oscillation problem
discussed in § 1. In CIFAR10 and CINIC10, FedNTD performs the best out of the other baselines;
moreover, when data is less heterogeneous (Dir(� = 0.5)), FedAvg is on bar with the other base-
lines. In FEMNIST, 3 of the baselines fail to converge (FedReg, FedDF, MOON), and most notably
FedAvg performs the best among the baselines; though Flashback is clearly superior with nearly one
order of magnitude fewer rounds.

Global & Local Forgetting. We measure the global and local forgetting scores over rounds as
evaluated by Eq. (2). Fig. 4 shows their distributions. We observe that Flashback achieves the
lowest global forgetting score compared to other methods while sometimes it achieves a worse local
forgetting score than other methods (this improves when data is less heterogeneous, i.e., Dir(� =
0.5); see Fig. 14). This is an interesting result, as it shows that mitigating global forgetting is
correlated with the problem of slow and unstable convergence. While mitigating local forgetting is
not. In fact, local forgetting might be necessary to obtain new knowledge from the local update as
long as the local models’ knowledge can be aggregated properly and knowledge from the previous
round global model wt�1 is not forgotten in wt, which is the case for Flashback. Therefore, global
forgetting is a more critical problem, and hence the aggregation step is more important to enhance.
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(a) CIFAR10, Dir(� = 0.1) (b) CINIC10, Dir(� = 0.1) (c) FEMNIST, N = 3, 432

(d) CIFAR10, Dir(� = 0.1) (e) CINIC10, Dir(� = 0.1) (f) FEMNIST, N = 3, 432

Figure 4: CDF of global forgetting Ft (above) and local forgetting Fk,t (below) over the rounds for
different algorithms and datasets. Legend is the same as in Fig. 3.

(a) CINIC10, Dir(� = 0.1) (b) CINIC10, Dir(� = 0.5)

(c) CIFAR10, Dir(� = 0.1) (d) CIFAR10, Dir(� = 0.5)

(e) FEMNIST, N = 3, 432 (f) FEMNIST, N = 500

Figure 5: Global model per-class accuracy over rounds.

Knowledge Absorption. We show the learning behavior of all the algorithms via the per-class
accuracy over the rounds as heatmaps shown in Fig. 5. Flashback shows more stability and fewer
light-shaded boxes, visually showing its robustness to forgetting in comparison with the baselines.

5.1 DISCUSSION

Public dataset assumption. As with prior work Huang et al. (2022); Zhang et al. (2021); Lin et al.
(2020); Cheng et al. (2021); Li et al. (2020), Flashback assumes availability of a public dataset.
This is to perform the distillation at the aggregation step of the algorithm. However, as detailed
in Appendix B.1, the requirement is minimal, that is, in the case of CIFAR10 and CINIC10, the
public dataset, comprising just 1,250 and 4,500 data points, respectively, was smaller in size than
some of the clients’ datasets. In the future, we aim to evaluate diverse public dataset distributions.

Additional computational cost. Flashback performs knowledge distillation during the local update,
which has smaller cost than doing an additional local epoch. That is because the global model logits
need to be computed once, using forward passes only. This cost is similar to FedNTD and smaller
than MOON, which does 2 additional forward passes.

6 RELATED WORK

Federated learning. FL is commonly viewed as a ML paradigm wherein a server distributes the
training process on a set of decentralized participants that train a shared global model using local
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datasets that are never shared (Konečnỳ et al., 2015; Shokri & Shmatikov, 2015; Konečnỳ et al.,
2016; Konečnỳ, 2017; Li et al., 2020; McMahan et al., 2017; Kairouz et al., 2019). FL has been
used to enhance prediction quality for virtual keyboards among other applications (Bonawitz et al.,
2019; Yang et al., 2018). A number of FL frameworks have facilitated research in this area (Caldas
et al., 2019; OpenMined, 2020; tensorflow.org, 2020; Abdelmoniem et al., 2023).

Heterogeneity in FL. A key challenge in FL systems is uncertainties stemming from learner, sys-
tem, and data heterogeneity. The non-IID distributions of Learners’ data can significantly slow down
convergence (McMahan et al., 2017; Kairouz et al., 2019) and several algorithms are proposed as
means of mitigation (Wang et al., 2020b; Karimireddy et al., 2020; Li et al., 2020; 2021a).

Forgetting in FL is an under-studied area that poses significant challenges, leading to slow model
convergence and loss of crucial knowledge acquired during the learning process (Chaudhry et al.,
2018; Dupuy et al., 2023). There have been some notable attempts to mitigate the impact of forget-
ting on the learning process (Lee et al., 2021; Xu et al., 2022).

FedReg (Xu et al., 2022) addresses the issue of slow convergence in FL, asserting it to be a result of
forgetting at the local update phase. They demonstrate this by comparing the loss of the global model
wt�1 on specific client data points with the averaged loss of updated clients’ models {wt,k | k 2 St}
on the same data points, highlighting a significant increase in the average loss, indicative of forget-
ting. However, in our work, we propose a systematic way of measuring forgetting using a metric
designed to capture it. Furthermore, we show that forgetting doesn’t only occur in the local update,
but it also happens at the aggregation step. FedReg proposes to generate fake data that carries the
previously attained knowledge. During the local update, Fast Gradient Sign Method (Goodfellow
et al., 2014) is used to generate these data using the global model wt�1 and the client data. Then, the
loss of the generated data is used to regularize the local update. While FedReg employs regulariza-
tion using synthetic data during local updates, our work, Flashback, leverages dynamic distillation
to ensure knowledge retention at both local updates and aggregation steps.

FedNTD (Lee et al., 2021) makes a connection between CL and FL, suggesting that forgetting
happens in FL as well. Similarly to FedReg, their analysis shows that forgetting happens at the
local update, where global knowledge that lies outside of the local distribution of the client is sus-
ceptible to forgetting. To address this, they propose to use a new variant of distillation Eq. (1)
named Not-True Distillation (NTD), that masks the ground-truth class logits in the KL divergence
as LKL(p, q) =

PC
i=c,c 6=y p

c log(p
c

qc ), where y is the ground-truth class. NTD is used at the local
update, while all the other steps in the algorithm remain the same as FedAvg. FedNTD aims to
preserve global knowledge during the local update.

Both FedReg and FedNTD diagnose the issue of forgetting primarily within the realm of local up-
dates, asserting that this stage risks losing valuable global knowledge. Consequently, both works
present innovative solutions specifically tailored to counteract this local update forgetting. However,
their perspective overlooks a pivotal aspect of the forgetting problem: the occurrence of forgetting
during the aggregation step. As we delve into in § 3, this oversight in recognizing and addressing
forgetting during aggregation has repercussions on the later local updates. In contrast, Flashback
takes a holistic approach, targeting forgetting comprehensively across both the local updates and the
aggregation phase, leading to faster convergence.

7 CONCLUSION

We explored the phenomenon of forgetting in FL. Our investigation revealed that forgetting occurs
during both local and global update phases of FL algorithms. We presented Flashback, a novel FL
algorithm explicitly designed to counteract forgetting by employing dynamic knowledge distillation.
Our approach leverages data label counts as a proxy for knowledge, ensuring a more targeted and ef-
fective forgetting mitigation. Our empirical results showed Flashback’s efficacy in mitigating global
forgetting, thereby supporting the hypothesis that the observed slow and unstable convergence in FL
algorithms is closely linked to global forgetting. This result underlines the importance of addressing
forgetting, paving the way for the advancement of more robust and efficient FL algorithms.
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