
Under review as a conference paper at ICLR 2024

PEACH: PRETRAINED-EMBEDDING EXPLANATION
ACROSS CONTEXTUAL AND HIERARCHICAL STRUC-
TURE

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we propose a novel tree-based explanation technique, PEACH
(Pretrained-embedding Explanation Across Contextual and Hierarchical Struc-
ture), that can explain how text-based documents are classified by using any pre-
trained contextual embeddings in a tree-based human-interpretable manner. Note
that PEACH can adopt any contextual embeddings of the PLMs as a training input
for the decision tree. Using the proposed PEACH, we perform a comprehensive
analysis of several contextual embeddings on nine different NLP text classifica-
tion benchmarks. This analysis demonstrates the flexibility of the model by ap-
plying several PLM contextual embeddings, its attribute selections, scaling, and
clustering methods. Furthermore, we show the utility of explanations by visual-
ising the feature selection and important trend of text classification via human-
interpretable word-cloud-based trees, which clearly identify model mistakes and
assist in dataset debugging. Besides interpretability, PEACH outperforms or is
similar to those from pretrained models1.

1 INTRODUCTION

Large Pretrained Language Models (PLMs), like BERT, RoBERTa, or GPT, have made signifi-
cant contributions to the advancement of the Natural Language Processing (NLP) field. Those
offer pretrained continuous representations and context models, typically acquired through learn-
ing from co-occurrence statistics on unlabelled data, and enhance the generalisation capabilities of
downstream models across various NLP domains. PLMs successfully created contextualised word
representations and are considered word vectors sensitive to the context in which they appear. Nu-
merous versions of PLMs have been introduced and made easily accessible to the public, enabling
the widespread utilisation of contextual embeddings in diverse NLP tasks.

However, the aspect of human interpretation has been rather overlooked in the field. Instead of un-
derstanding how PLMs are trained within specific domains, the decision to employ PLMs for NLP
tasks is often solely based on their state-of-the-art performance. This raises a vital concern: Al-
though PLMs demonstrate state-of-the-art performance, it is difficult to fully trust their predictions
if humans cannot interpret how well they understand the context and make predictions. To address
those concerns, various interpretable and explainable AI techniques have been proposed in the field
of NLP, including feature attribution-based (Ribeiro et al., 2016; Sha et al., 2021; Ribeiro et al.,
2018; Luo et al., 2018; He et al., 2019), language explanation-based (Ling et al., 2017; Ehsan et al.,
2018) and probing-based methods (Sorodoc et al., 2020; Prasad & Jyothi, 2020; Klafka & Ettinger,
2020). Among them, feature attribution based on attention scores has been a predominant method
for developing inherently interpretable PLMs. Such methods interpret model decisions locally by
explaining the prediction as a function of the relevance of features (words) in input samples. How-
ever, these interpretations have two main limitations: it is challenging to trust the attended word or
phrase as the sole responsible factor for a prediction (Serrano & Smith, 2019; Pruthi et al., 2020),
and the interpretations are often limited to the input feature space, requiring additional methods
for providing a global explanation (Han et al., 2020; Rajagopal et al., 2021). Those limitations
of interpretability are ongoing scientific disputes in any research fields that apply PLMs, such as

1Code and Implementation details will be provided via GitHub after the acceptance.
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Figure 1: A PEACH is a globally interpretable model that faithfully explains the pretrained mod-
els’ reasoning using the pretained contextual embedding (left, on MR dataset). Additionally, the
decision-making process for a single prediction can be detailed presented (right, partially shown).
The detailed description can be found in Section 5.

Computer Vision (CV). However, the CV field has relatively advanced PLM interpretability strate-
gies since it is easier to indicate or highlight the specific part of the image. While several post-hoc
methods (Zhou et al., 2018a; Fong & Vedaldi, 2017; Bach et al., 2015; Yeh et al., 2018) give an
intuition about the black-box model, decision tree-based interpretable models such as prototype tree
(Nauta et al., 2021) have been capable of simulating context understanding, faithfully displaying
the decision-making process in image classification, and transparently organising decision rules in
a hierarchical structure. However, the performance of these decision tree-based interpretations with
neural networks is far from competitive compared to state-of-the-art PLMs (Devlin et al., 2019; Liu
et al., 2020).

For NLP, a completely different question arises when we attempt to apply this decision tree interpre-
tation method: What should be considered a node of the decision tree in NLP tasks? The Computer
Vision tasks typically use the specific image segment and indicate the representative patterns as a
node of the decision tree. However, in NLP, it is too risky to use a single text segment (word/phrase)
as a representative of decision rules due to semantic ambiguity. For example, if we have a single
word ‘party’ as a representative node of the global interpretation decision tree, its classification into
labels like ‘politics’, ‘sports’, ‘business’ and ‘entertainment’ would be highly ambiguous.

In this work, we propose a novel decision tree-based interpretation technique, PEACH (Pretrained-
embedding Explanation Across Contextual and Hierarchical Structure), that aims to explain how
text-based documents are classified using any pretrained contextual embeddings in a tree-based
human-interpretable manner. We first finetune PLMs for the input feature construction and adopt
the feature processing and grouping. Those grouped features are integrated with the decision tree al-
gorithms to simulate the decision-making process and decision rules, by visualising the hierarchical
and representative textual patterns. In this paper, our main contributions are as follows:

• Introducing PEACH, the first model that can explain the text classification of any pretrained
models in a human-understandable way that incorporates both global and local interpreta-
tion.

• PEACH can simulate the context understanding, show the text classification decision-
making process and transparently arrange hierarchical-structured decision rules.

• Conducting comprehensive evaluation to present the preservability of the model prediction
behaviour, which is perceived as trustworthy and understandable by human judges com-
pared to widely-used benchmarks.

2 PEACH

The primary objective of PEACH (Pretrained-embedding Explainable model Across Contextual and
Hierarchical Structure) is to identify a contextual and hierarchical interpretation model that eluci-
dates text classifications using any pretrained contextual embeddings. To accomplish this, we outline
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the construction process, which includes input representation, feature selection and integration, tree
generation, as well as interpretability and visualisation of our tree-based model.

Preliminary Setup Before delving into the components of the proposed explanation model PEACH,
it is crucial to distinguish between the pretrained model, fine-tuned model, and its contextual em-
bedding. Figure 4 in the Appendix illustrates the pretraining and fine-tuning step. The pretraining
step involves utilising a large amount of unlabelled data to learn the overall language representation,
while the fine-tuning step further refines this knowledge and generates better-contextualised em-
beddings on task-specific labelled datasets. Fine-tuned contextual pretrained embeddings typically
serve as a valuable resource for representing the text classification capabilities of various deep learn-
ing models. Therefore, PEACH leverages these contextualised embeddings to explain the potential
outcomes of a series of related choices using a contextual and hierarchical decision tree.

2.1 INPUT EMBEDDING CONSTRUCTION

We first wrangle the extracted pretrained contextual embeddings in order to demonstrate the con-
textual understanding capability of the fine-tuned model. Note that we use fine-tuned contextual
embedding as input features by applying the following two steps.

2.1.1 STEP 1: FINE-TUNING

Given a corpus with n text documents, denoted as T = {t1, t2, . . . , tn}, where each ta represents a
document instance from a textual dataset. Note each document can be from any text-based corpus,
such as news articles, movie reviews, or medical abstracts, depending on the specific dataset or
task. Each document can be represented as a semantic embedding by pretrained models. In order
to retrieve the contextual representation, we firstly tokenise ta for a ∈ [1, n] with the pretrained
model tokeniser and finetune the PLMs on the tokenised contents of all documents, with the goal of
predicting the corresponding document label. Then, we extract the d-dimensional embedding of the
PLMs [CLS] token as the contextualised document embedding ea ∈ E for a ∈ [1, n] (d = 768).

2.1.2 STEP 2: FEATURE PROCESSING

By using all the embeddings in E as row vectors, we construct a feature matrix M ∈ Rn∗d. This
feature matrix can be represented as [c1 c2 . . . cd] where each ci corresponds to the column feature
vector along the i-th dimension, which contains embedding values for the i-th dimension from all
document embeddings. To optimise the utilisation of the embedding feature matrix in decision tree
training, we experiment with various feature selection methods, including the following statistical
approaches and a deep learning approach, to extract the most informative features.

Statistical Approaches We first employ statistical approaches to extract informative features from
the column features of M . We calculate the correlation between each pair of dimensions using
the Pearson correlation coefficient. For dimensions i and j (i, j ∈ [1, d]), the correlation Ri,j is
computed as:

Ri,j = Pearson(ci, cj) (1)

for each i, j ∈ [1, d].

Dimensions with high Pearson correlation values indicate similar semantic features during fine-
tuning. To identify those similar dimensions, we use a percentile v to find the correlation threshold.
The threshold t is calculated as

t = Pv(R) (2)
which gives us the v-th percentile value in R. Using this threshold, we cluster the 768 dimensions
and take the average to reduce the number of features we will have eventually.

We divide the set of column features {c1, c2, . . . , cd} into m exclusive clusters. Starting from c1, we
find all the dimensions having correlations greater than t with c1 and collect them as a new cluster
C1. Among the remaining dimensions, we take the first column feature (e.g. ck /∈ C1) as the new
cluster centre and find all the dimensions correlating greater than t with ck, and consider them as
the new cluster C2. This process is repeated iteratively until all dimensions are assigned to a certain
cluster. In this way, we re-arranged all the dimensions into a set of clusters C = {C1.C2, . . . , Cm}
where the column vectors in each cluster have correlations greater than t with the cluster centre.
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In addition to Pearson, we explore K-means Clustering as an alternative method to cluster the
dimension vectors. The K-means aims to minimise the objective function given by:

L(M) =

m∑
i=1

d∑
j=1

(||vi − cj ||)2 (3)

where vi is the cluster centre for each cluster Ci. After clustering, we merge the features in each
cluster as a single feature vector by taking their average since they exhibit high correlation. By
combining the representations from each cluster, we obtain the final feature matrix F ∈ Rn∗m. This
successfully reduces the number of features from the original embedding dimension d to the number
of clusters m. The resulting feature matrix F can be directly used as input for training decision trees
using ID3/C4.5/CART algorithms.

Deep Learning Approach We also apply a Convolutional Neural Network (CNN) to extract the
input feature matrix F from the initial embedding feature matrix E. Our CNN consists of two
blocks, each comprising a 1D convolutional layer followed by a 1D pooling layer. The network is
trained to predict the document class based on the output of the last pooling layer, minimising the
cross-entropy loss. The filter of each layer reduces the dimension according to the following way,
ensuring the last pooling layer has dimension m:

Dout =
Din − f + 2p

s
− 1 (4)

where Din is the input feature dimension of the convolution/pooling layer, Dout is the output feature
dimension of the convolution/pooling layer, f is the filter size, p is the padding size, and s is the
stride size for moving the filter.

2.2 DECISION TREE GENERATION

We apply the feature matrix F to construct various types of decision trees. In this section, we
describe several traditional decision tree training algorithms that we adopted for our model. The
ID3 algorithm calculates the information gain to determine the specific feature for splitting the data
into subsets. For each input feature fi ∈ F that has not been used as a splitting node previously, the
information gain (IG) is computed as follows to split the current set of data instances S:

IG(S, fi) = H(S)−
∑
t∈T

p(t)H(t)

= H(S)−H(S|fi)
(5)

where H(S) is entropy of the current set of data S, T is the subsets of data instances created from
splitting S by fi and p(t) is the proportion of the number of elements in t to the number of elements
in S and H(t) is the entropy of subset t. The feature with the maximum information gain is selected
to split S into two different splits as the child nodes. The C4.5 algorithm calculates the gain ratio to
select the specific feature to split the data into subsets. It is similar to ID3 but instead of calculating
information gain, it calculates the gain ratio to select the splitting feature. The gain ratio is calculated
as follows:

GainRatio(S, fi) =
IG(S, fi)

SplitInfo(S, fi)
(6)

where
SplitInfo(S, fi) =

∑
t∈T

p(t)log2(t) (7)

The CART algorithm calculates the Gini index to select the specific feature for splitting the data
into subsets. The Gini index is defined as:

Gini(S, fi) = 1−
n∑

x=1

(Px)
2 (8)

where Px is the probability of a data instance being classified to a particular class. The feature with
the smallest Gini is selected as the splitting node. The Random Forest (RF) algorithm functions
as an ensemble of multiple decision trees, where each tree is generated using a randomly selected
subset of the input features. The individual trees in the forest can be constructed using any of the
aforementioned algorithms.
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2.3 INTERPRETABILITY AND VISUALISATION

As mentioned earlier, PEACH aims to foster global and local interpretability for text classification
by arranging hierarchical-structured decision rules. Note that PEACH aims to simulate the context
understanding, show the text classification decision-making process and transparently present a hier-
archical decision tree. For the decision tree, the leaves present the class distributions, the paths from
the root to the leaves represent the learned classification rules, and the nodes contain representative
parts of the textual corpus. In this section, we explain the way of representing the node in the tree
structure and which way of visualisation presents a valuable pattern for human interpretation.

2.3.1 INTERPRETABLE PROTOTYPE NODE

The aim of the decision tree nodes in PEACH is to visualise the context understanding and the
most common words in the specific decision path, and simulate the text classification decision-
making process. Word clouds are great visual representations of word frequency that give greater
prominence to words that appear more frequently in a source text. These particular characteristics
of word clouds would be directly aligned with the aim of the decision tree nodes. For each node
in the tree, we collect all the documents going through this specific node in their decision path.
These documents are converted into lowercase, tokenised, and the stopwords in these documents are
removed. Then, Term Frequency Inverse Document Frequency (TFIDF) of the remaining words is
calculated and sorted. We take the 100 distinct words with the top TFIDF values to be visualized as
a word cloud. This gives us an idea of the semantics that each node of the tree represents and how
each decision path evolves before reaching the leaf node (the final class decision).

2.3.2 VISUALISATION FILTER

The more valuable visualisation pattern the model presents, the better the human-interpretable mod-
els are. We apply two valuable token/word types in order to enhance the quality of visualisation of
the word cloud node in the decision tree. First, we adopt Part-of-Speech (PoS) tagging, which takes
into account which grammatical group (Noun, Adjective, Adverb, etc.) a word belongs to. With this
PoS tagging, it is easy to focus on the important aspect that each benchmark has. For example, the
sentiment analysis dataset would consider more emotions or polarities so adjective or adverb-based
visualisation would be more valuable. Secondly, we also apply a Named Entity Recognition (NER),
which is one of the most common information extraction techniques and identifies relevant nouns
(person, places, organisations, etc.) from documents or corpus. NER would be a great filter for
extracting valuable entities and the main topic of the decision tree decision-making process.

3 EVALUATION SETUP2

3.1 DATASETS3

We evaluate PEACH with 5 state-of-the-art PLMs on 9 benchmark datasets. Those datasets encom-
pass five text classification tasks, including Natural Language Inference (NLI), Sentiment Analysis
(SA), News Classification (NC), Topic Analysis (TA), and Question Type Classification (QC). 1)
Natural Language Inference (NLI) Microsoft Research Paraphrase (MSRP) (Dolan et al., 2004)
contains 5801 sentence pairs with binary labels. The task is to determine whether each pair is a
paraphrase or not. The training set contains 4076 sentence pairs and 1725 testing pairs for gener-
ating decision trees. During PLM finetuning, we randomly split the training set with a 9:1 ratio so
3668 pairs are used for training and 408 pairs are used for validation. Sentences Involving Compo-
sitional Knowledge (SICK) (Marelli et al., 2014) dataset consists of 9840 sentence pairs that involve
compositional semantics. Each pair can be classified into three classes: entailment, neutral or con-
tradiction. The dataset has 4439, 495, and 4906 pairs for training, validation and testing sets. For
both MSRP and SICK, We combine each sentence pair as one instance when finetuning PLMs. 2)
Sentiment Analysis (SA) The sentiment analysis datasets in this study are binary for predicting
positive or negative movie reviews. Standford Sentiment Treebank (SST2) (Socher et al., 2013) has
6920, 872 and 1821 documents for training, validation and testing. The MR (Pang & Lee, 2005)

2The baseline description can be found in the Appendix B
3The statistics can be found in the Table 4
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Table 1: Classification performance comparison between fine-tuned contextual embeddings and
those with PEACH. Best performances among the baselines are underscored, and the best perfor-
mances among our PEACH variants are bolded.

Model MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
BERT (Devlin et al., 2019) 0.819 0.909 0.857 0.870 0.853 0.969 0.870 0.855 0.658
RoBERTa (Liu et al., 2020) 0.824 0.932 0.867 0.892 0.881 0.959 0.972 0.802 0.655
ALBERT (Lan et al., 2020) 0.665 0.907 0.821 0.879 0.838 0.917 0.938 0.794 0.518
XLNet (Yang et al., 2019) 0.819 0.907 0.879 0.905 0.727 0.959 0.950 0.799 0.669
ELMo (Peters et al., 2018) 0.690 0.806 0.751 0.804 0.608 0.845 0.790 0.537 0.359
PEACH (BERT) 0.816 0.885 0.853 0.871 0.837 0.975 0.978 0.849 0.649
PEACH (RoBERTa) 0.819 0.938 0.872 0.893 0.877 0.947 0.968 0.800 0.651
PEACH (ALBERT) 0.650 0.885 0.804 0.878 0.834 0.921 0.942 0.783 0.497
PEACH (XLNet) 0.809 0.903 0.790 0.899 0.832 0.964 0.966 0.776 0.638
PEACH (ELMo) 0.638 0.632 0.510 0.725 0.565 0.900 0.702 0.164 0.284

Table 2: The effects of feature processing approach.

Model MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
PEACH (Pearson) 0.817 0.913 0.862 0.892 0.867 0.972 0.978 0.845 0.645
PEACH (K-means) 0.819 0.938 0.869 0.893 0.877 0.975 0.974 0.849 0.651
PEACH (CNN) 0.817 0.936 0.872 0.890 0.870 0.974 0.974 0.801 0.621

has 7108 training and 3554 training documents. IMDB (Maas et al., 2011) and 25000 training and
25000 training documents. For MR and IMDB, since no official validation split is provided, the
training sets are randomly split into a 9:1 ratio to obtain a validation set for finetuning PLMs. 3)
News Classification (NC) The BBCNews is used to classify news articles into five categories: en-
tertainment, technology, politics, business, and sports. There are 1225 training and 1000 testing
instances, and we further split the 1225 training instances with 9:1 ratio to get the validation set for
finetuning PLMs. 20ng is for news categorization with 11314 training and 7532 testing documents
and aims to classify news articles into 20 different categories. Similar to BBCNews, the training set
is split with 9:1 ratio to obtain the finetuning validation set. 4) Topic Analysis (TA) The Ohsumed
provides 7400 medical abstracts, with 3357 train and 4043 test, to categorise into 23 disease types.
5) Question Type Classification (QC) The Text REtrieval Conference (TREC) Question Classifica-
tion dataset offers 5452 questions in the training and 500 questions in the testing set. This dataset
categorises different natural language questions into six types: abbreviation, entity, description and
abstract, human, location, and numbers.

3.2 IMPLEMENTATION DETAILS

We perform finetuning of the PLMs and then construct the decision tree-based text classifica-
tion model for the evaluation. We initialise the weights from five base models: bert-base-
uncased, roberta-base, albert-base-v2, xlnet-base-cased and the original 93.6M ELMo for
BERT, RoBERTa, ALBERT, XLNet, and ELMo respectively. A batch size of 32 is applied for all
models and datasets. The learning rate is set to 5e-5 for all models, except for the ALBERT model
of SST2, 20ng and IMDB datasets, where is set to 1e-5. All models are fine-tuned for 4 epochs,
except for the 20ng, which used 30 epochs. To extract the features from learned embedding and re-
duce the number of input features into the decision tree, we experiment with quantile thresholds of
0.9 and 0.95 for correlation methods. For k-means clustering, we search for the number of clusters
from 10 to 100 (step size: 10 or 20), except for IMDB where we search from 130 to 220 (step size:
30). For CNN features, we use kernel size 2, stride size 2, and padding size 0 for two convolution
layers. The same hyperparameters are applied to the first pooling layer, except for IMDB where
stride size 1 is used to ensure we can have enough input features for the next convolutional block
and get enough large number of features from the last pooling layer. Kernel size and stride size
for the last pooling layer are adjusted to maintain consistency with the number of clusters used in
k-means clustering. Decision trees are trained using the chefboost library with a maximum depth of
95. We used em core web sm model provided by spaCy library to obtain the NER and POS tags for
visualization filters. All experiments are conducted on Google Colab with Intel(R) Xeon(R) CPU
and NVIDIA T4 Tensor Core GPU. Classification accuracy is reported for comparison.
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(a) MSRP (b) BBCNews (c) 20ng

Figure 2: The effects of input feature dimension with PEACH on three datasets, including MSRP,
BBCNews, and 20ng

4 RESULTS

4.1 OVERALL CLASSIFICATION PERFORMANCE

We first evaluate the utility of PLMs after incorporating PEACH in Table 1. As shown in the table,
our proposed PEACH with PLMs (rows 7-11) outperforms or performs similarly to the fine-tuned
PLMs (rows 2-6) in all benchmark datasets. It is worth noting that our model outperforms the
baselines in all binary sentiment analysis datasets (SST2, MR, IMDB) when utilising RoBERTa
features in our PEACH model. Furthermore, our model outperforms the baselines in more general
domain datasets with multiple classes, such as BBC News, TREC, and 20ng, when BERT features
are employed in PEACH. We also experimented with various types of PLMs, other than BERT
and RoBERTa, on our PEACH, including BERT-based (ALBERT), generative-based (XLNet), and
LSTM-based model (ELMo). In general, RoBERTa and BERT performed better across all datasets,
except IMDB, where XLNet and its PEACH model showed superior performance. This observation
is attributed to the larger corpus of IMDB, which requires more features for an accurate explanation.

4.2 ABLATION AND PARAMETER STUDIES4

The effects of Feature Processing All three feature processing methods we propose in Section 2.1.2
work well overall. Table 2 shows that K-means demonstrated the best across most datasets, except
for MR and TREC. CNN worked better on the MR dataset. Conversely, Pearson correlation group-
ing worked better for TREC. The fine-tuned BERT model captured features that exhibited stronger
correlations with each other rather than clustering similar question types together.

The effects of Input Dimension We then evaluate the effects of input feature dimension size with
PEACH. We selected three datasets, including BBCNews (the largest average document length with
a small data size), 20ng (a large number of classes with a larger dataset size) and MSRP (a moderate
number of documents and a moderate average length). We present macro F1 and Accuracy to analyse
the effects of class imbalance for some datasets. Figure 2 shows there is no difference in the trend for
F1 and the trend for accuracy on these datasets; especially the relatively balanced dataset BBCNews
provides almost identical F1 and accuracy. The binary dataset MSRP does not lead to large gaps in
the performance of different input dimensions, however, for those with more classes (BBCNews and
20ng), there is a noticeable performance drop when using extremely small input dimensions like 10.
The performance difference becomes less significant as the input dimension increases beyond 20.

The Maximum Tree Depth Analysis was conducted to evaluate the visualisation of the decision-
making pattern. The result can be found in Appendix C.

4The effects of the Decision Tree is in Appendix A

7



Under review as a conference paper at ICLR 2024

Table 3: Human evaluation results. Pairwise comparison between PEACH with LIME and Anchor
across the interpretability. The ‘Agree’ column shows the Fleiss’ Kappa results.

MR SST2 TREC BBCNews

PEACH LIME Tie Agree PEACH LIME Tie Agree PEACH LIME Tie Agree PEACH LIME Tie Agree
92.3 1.3 6.4 0.83 88.4 1.8 9.8 0.78 96.1 1.2 2.7 0.81 84.6 3.9 11.5 0.75

PEACH Anchor Tie Agree PEACH Anchor Tie Agree PEACH Anchor Tie Agree PEACH Anchor Tie Agree
94.6 2.1 3.3 0.85 87.2 2.5 10.3 0.76 95.4 1.8 2.8 0.83 85.3 3.5 11.2 0.71

4.3 HUMAN EVALUATION: INTERPRETABILITY AND TRUSTABILITY

To assess interpretability and trustability, we conducted a human evaluation5, 26 human judges6

annotated 75 samples from MR, SST2, TREC, and BBC News. Judges conducted the pairwise com-
parison between local and global explanations generated by PEACH against two commonly used
text classification-based interpretability models, LIME (Ribeiro et al., 2016) and Anchor (Ribeiro
et al., 2018). The judges were asked to choose the approach they trusted more based on the inter-
pretation and visualisation provided. We specifically considered samples, where both LIME and
PEACH or Anchor and PEACH predictions were the same, following Wan et al. (2021). Among 26
judges, our PEACH explanation evidently outperforms the baselines by a large margin. All percent-
ages in the first column of all four datasets are over 84%, indicating that the majority of annotators
selected our model to be better across interpretability and trustability. The last column (‘Agree’)
represents results from the Fleiss’ kappa test used to assess inter-rater consistency (Fleiss, 1971),
and all the agreement scores are over 0.7 which shows a strong level of agreement between anno-
tators. Several judges commented that the visualisation method of PEACH allows them to see the
full view of the decision-making process in a hierarchical decision path and check how the context
is trained in each decision node. This indicates a higher level of trust in PEACH than in the saliency
technique commonly employed in NLP.

5 ANALYSIS AND APPLICATION

Visualisation Analysis Figure 1 in Section 1 shows the sample interpretations by PEACH on MR, a
binary dataset predicting positive or negative movie reviews. The global explanation in Figure 1(left)
faithfully shows the entire classification decision-making behaviour in detail. Globally, the decision
tree and its nodes cover various movie-related entities and emotions, like DOCUMENTARY, FUN,
FUNNY, ROMANTIC, CAST, HOLLYWOOD, etc. In addition, final nodes (leaves) are passed via
the clear path with definite semantic words, distinguishing between negative and positive reviews.
In addition to the global interpretation, our PEACH can produce a local explanation (Figure 1,
right). By applying generated decision rules to the specific input text, a rule path for the given input
simulates the decision path that can be derived to the final classification (positive or negative).

We also present how PEACH can visualise the interpretation by comparing the successful and unsuc-
cessful pretrained embeddings in Figure 3. While the successful one (RoBERTa with MR - Figure 3
left) shows a clear and traceable view of how they can classify the positive samples by using adjec-
tives like moving and engaging, the unsuccessful one (ELMo with MR - Figure 3 right) has many
ambiguous terminologies and does not seem to understand the pattern in both positive and negative
classes, e.g. amusing is in the negative class. More visualisations on different datasets and models
are shown in Appendix D and E.

Application: PEACH We developed an interactive decision tree-based text classification decision-
making interpretation system for different PLMs. The user interface and detailed description are in
Appendix F and Figure 5.

5Sample Cases for the Human Evaluation is in the Appendix Figure 26
6Annotators are undergraduates and graduates in computer science; 6 females and 20 males. The number

of human judges and samples is relatively higher than other NLP interpretation papers (Rajagopal et al., 2021)
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Figure 3: The local explanation decision trees generated for a positive review in MR dataset based
on fine-tuned RoBERTa embedding compared to fine-tuned ELMo embedding.

6 RELATED WORKS

Interpretable Models in NLP Among interpretable NLP models, feature attribution-based methods
are the most common7. There are mainly four types, including Rationale Extraction (Lei et al.,
2016; Bastings et al., 2019; Yu et al., 2019; Sha et al., 2021), Input Perturbation (Ribeiro et al.,
2016; 2018; Feng et al., 2018; Slack et al., 2020), Attention Methods (Luo et al., 2018; Mao et al.,
2019), and Attribution Methods (He et al., 2019; Du et al., 2019). Such models locally explain the
prediction based on the relevance of input features (words). However, global explainability is crucial
to determine how much each feature contributes to the model’s predictions of overall data. A few
recent studies touched on the global explanation idea and claimed they have global interpretation
by providing the most relevant concept (Rajagopal et al., 2021) or the most influential examples
(Han et al., 2020) searched from the corpus to understand why the model made certain predictions.
However, such global explanations do not present the overall decision-making flow of the models.

Tree-structured Model Interpretation The recent studies adopting decision-tree into neural net-
works (Irsoy et al., 2012; Zharmagambetov & Pak, 2015; Humbird et al., 2019; Frosst & Hinton,
2018; Fuhl et al., 2020; Lee & Jaakkola, 2020; Wang et al., 2020; Tanno et al., 2019) introduced
neural trees compatible with the state-of-the-art of CV and NLP downstream tasks. Such models
have limited interpretation or are only suitable to the small-sized dataset. Tree-structured neural
models have also been adopted in syntactic or semantic parsing (Shen et al., 2019; Cheng et al.,
2018; Le et al., 2018; Nguyen et al., 2020; Wang* et al., 2020; Zhou et al., 2018b; Dong et al.,
2019; Yu et al., 2021; Zhang et al., 2021). Few decision-tree-based approaches show the global and
local explanations of black-boxed neural models. NBDT (Wan et al., 2021) applies a sequentially
interpretable neural tree and uses parameters induced from trained CNNs and requires WordNet
to establish the interpretable tree. ProtoTree (Nauta et al., 2021) and ViT-NeT (Kim et al., 2022)
construct interpretable decision trees for visualising decision-making with prototypes for CV appli-
cations. Despite their promise, those have not yet been adopted in NLP field.

7 CONCLUSION

This study introduces PEACH, a novel tree-based explanation technique for text-based classification
using pretrained contextual embeddings. While many NLP applications rely on PLMs, the focus
has often been on employing them without thoroughly analysing their contextual understanding for
specific tasks. PEACH addresses this gap by providing a human-interpretable explanation of how
text-based documents are classified, using any pretrained contextual embeddings in a hierarchical
tree-based manner. The human evaluation also indicates that the visualisation method of PEACH
allows them to see the full global view of the decision-making process in a hierarchical decision
path, making fine-tuned PLMs interpretable. We hope that the proposed PEACH can open avenues
for understanding the reasons behind the effectiveness of PLMs in NLP.

7Some studies cover the language explanation-based, probing-based or counterfactual explanation-based
methods, but the text-based model interpretation methods are dominant by feature attribution-based approaches.
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A THE EFFECTS OF DECISION TREE ALGORITHM

In order to evaluate the effect of the decision tree algorithm to generate the tree for PEACH, we
tested several decision tree algorithms, including ID3, C4.5, CART, and those with Random Forest.
Table 5 shows that the overall performance between different decision tree algorithms is very similar
to each other. Generally, the Random forests worked better than single trees most of the time, except
for SST2 and BBCNews. However, the Random Forest is too crowded and too many rules in the
PEACH decision tree output. Hence, it is better to visualise the decision-making path of the specific
PLMs in a single decision tree.

Table 4: Detailed Dataset Statistics

Method MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
# Class 2 2 2 2 3 5 6 20 23
# Docs 5801 8741 10662 50000 9345 2225 5952 18846 7400
# Train Docs 4076(70.3%) 6920(79.2%) 7108(66.7%) 25000(50%) 4439(47.5%) 1225(55.1%) 5452(91.6%) 11314(60.0%) 3357(45.4%)
# Test Docs 1725(29.7%) 1821(20.8%) 3554(33.3%) 25000(50%) 4906(52.5%) 1000(44.9%) 500(8.4%) 7532(40.0%) 4043(54.6%)
# Words 17873 15481 18334 181061 2318 32772 8900 42106 14127
Avg Length 37.7 17.5 19.4 230.3 19.3 388.3 8.7 189.0 121.6
Task NLI SA SA SA NLI NC QC NC TA

Table 5: The effects of Decision Tree Algorithm

Method MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
ID3 0.797 0.931 0.860 0.874 0.848 0.969 0.958 0.815 0.561
C4.5 0.796 0.925 0.856 0.884 0.847 0.963 0.956 0.810 0.566
CART 0.784 0.938 0.856 0.871 0.851 0.975 0.960 0.813 0.561
RF(ID3) 0.809 0.935 0.868 0.891 0.872 0.970 0.968 0.845 0.651
RF(C4.5) 0.814 0.934 0.872 0.891 0.877 0.968 0.966 0.849 0.649
RF(CART) 0.819 0.936 0.864 0.893 0.870 0.963 0.978 0.841 0.640
Rule number (best single tree) 341 38 176 702 244 7 92 119 616
Max depth (best one) 22 11 17 30 25 5 9 12 11
Max depth (best single tree) 29 11 18 95 18 5 12 10 80
Max depth (best forest) 22 6 17 30 25 3 9 12 11
Input dimension) 70 70 70 220 90 71 31 50 80
Tree number 5 1 5 5 5 1 5 10 10

B BASELINE

For PEACH with the fine-tuned PLMs, we compare ours with the original PLMs. As our PEACH
involves finetuning pretrained models to extract embedding features, we finetune a linear classifi-
cation layer based on the [CLS] token of the pretrained language models, and report the results on
the fine-tuned BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2020), ALBERT (Lan et al., 2020),
XLNet(Yang et al., 2019) and ELMo(Peters et al., 2018) models to compare with our PEACH.

C MAXIMUM DEPTH ANALYSIS

To visualise the decision-making pattern clearly, we limit the maximum depth of the generated tree.
However, it is crucial to keep the classification performance and behaviour similar to the original
fine-tuned contextual embedding. Table 6 shows that increasing the tree depth from 3 to 15 has lit-
tle effect on binary datasets. However, for datasets with multiple classes, decreasing the maximum
depth leads to a significant decrease in performance. Insufficient rules to cover all classes, espe-
cially at a depth of 3, greatly affect these datasets. Adequate rule coverage is crucial for effectively
handling datasets with more classes.

D GLOBAL INTERPRETATION AND LOCAL EXPLANATION VISUALISATION
AND ANALYSIS

In Section 5, we conducted the qualitative analysis of the interpretation and visualisation. In this
Appendix, we would like to present more cases on different datasets, including BBC News, MR,
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Table 6: The effects of maximum depth on PEACH. The following tests are conducted on the best
setting for each dataset. For MSRP, RoBERTa embedding and K-means clustering is applied to train
the decision tree with different maximum depth limit; RoBERTa embedding with CNN is applied
for MR; BERT embedding with K-means is applied for BBCNews and 20ng.

Depth MSRP MR BBCNews 20ng
3 0.825 0.869 0.806 0.492
5 0.824 0.866 0.975 0.706
10 0.823 0.869 0.975 0.841
15 0.834 0.867 0.975 0.849

Figure 4: Architecture of pretrained model and fine-tuning process. We extracted the fine-tuned
contextual embedding (orange-coloured) as an input of PEACH

and SST. Figures 6 and 7 show the global interpretation decision tree generated on BBC News,
while Figures 8, 9 and 10, 11, 12, 13 presents the local explanation for each test document. The
figure captions explain the detailed information for each figure. For SST, the global interpretations
are in Figures 20 and 21, and the local explanations are in Figures 22 and 23. For MR, the global
interpretations are in Figures 14 and 15, and the local explanations are in Figures 16, 17, 18, 19. The
important points and remarkable patterns are described in the captions for each figure.

E LOCAL EXPLANATION COMPARISON ON PLMS

In Section 5, we conducted the qualitative analysis of the interpretation and visualisation. In this
Appendix, we would like to show some examples presented in 24 and 25 to compare how PEACH
explained the best-performing PLM and the worst performing PLM for BBCNews and MR. The
figure captions explain the detailed information for each figure.

F APPLICATION USER INTERFACE

As shown in Figure 5, we developed an interactive decision tree-based text classification decision-
making interpretation system for different PLMs. The application would be helpful for anyone
who would like to apply PLMs in their text-based prediction/classification tasks. The followings
describe the main components of the developed PEACH application. The PEACH application is
developed by Python, CSS, and JQuery with the Flask environment. The application has four main
components: 1) Dataset Navigator, 2) Parameter Visualisation Panel, 3) Decision Tree Visualisation,
and 4) Visualisation Filter.
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Figure 5: User Interface of the Application PEACH

Figure 6: The global explanation decision tree generated on BBCNews dataset based on fine-tuned
BERT embedding, where the prototype nodes show the decision path based on the global context
for each class. We can observe that Technology news and Business news are grouped together in
the first step of the reasoning, before further distinguishing between them. This is probably because
there are quite some new articles related to technological corporates, making those two classes share
some commonality in the concepts.
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Figure 7: The global explanation decision tree generated on BBCNews dataset based on fine-tuned
BERT embedding, with NER filters to display only words with NER tags for organizations and
locations, labelled by spaCy library. We can see some country names, sports team names, and
company names are coming out more in the prototype nodes to distinguish different types of news.
Errors inherited from the NER tagging model will lead to some non-location or non-organisation
concepts remaining in the filtered global tree.

Figure 8: The local explanation decision tree generated for a correctly predicted Business news
article in BBCNews dataset based on fine-tuned BERT embedding. We can observe that lots of
business-related concepts or keywords can be matched from the global trend decision path (high-
lighted with green squares) to this specific article (highlighted as bolded words).
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Figure 9: The local explanation decision tree generated for a correctly predicted Business news
article in BBCNews dataset based on fine-tuned BERT embedding, with NER filters to display only
words with NER tags for organizations and locations, labelled by the spaCy library. Business-related
concepts or keywords can be matched from the global trend decision path (highlighted with green
squares) to this specific article (highlighted as bolded words).

Figure 10: The local explanation decision tree generated for a correctly predicted Entertainment
news article in BBCNews dataset based on fine-tuned BERT embedding. We can find music-related
concepts in this specific news article (highlighted as bolded words), which also come out in the
decision path, either as exact matching (highlighted with green squares) or similar concepts like
musician vs music (highlighted with yellow squares).
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Figure 11: The local explanation decision tree generated for a correctly predicted Entertainment
news article in BBCNews dataset based on fine-tuned BERT embedding, with NER filters to display
only words with NER tags for organizations and locations, labelled by the spaCy library. Not many
organization or location names are coming out in this music-related article, as well as the decision
path, indicating that the other aspects can be further investigated for more obvious patterns.

Figure 12: The local explanation decision tree generated for a correctly predicted Politics news
article in BBCNews dataset based on fine-tuned BERT embedding. We can observe that government
people’s names or positions from the text (highlighted as bolded text) can be mapped to the decision
path (highlighted as green squares for exact mapping, yellow squares for similar concepts).
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Figure 13: The local explanation decision tree generated for a correctly predicted Politics news
article in BBCNews dataset based on fine-tuned BERT embedding, with NER filters to display only
words with NER tags for organizations and locations, labelled by the spaCy library. In this case,
important countries and government departments stand out more in the decision in the presence of
the NER filter.

Figure 14: The global explanation decision tree generated on MR dataset based on fine-tuned
RoBERTa embedding. Please take note that we explicitly limit the maximum depth of the tree dur-
ing the training to prevent further branching out beyond 3rd children’s level for better performance
as well as interpretability, therefore the two children with the same class can be present. We can
see words with negative connotations in human understanding tend to appear more in the prototype
nodes or decision paths for the negative class, and similarly for the positive class.
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Figure 15: The global explanation decision tree generated on MR dataset based on fine-tuned
RoBERTa embedding, with the POS filter to display only words which can be labelled as adjectives
by the spaCy library. People tend to use adjectives when giving out movie reviews so investigating
the adjectives for this dataset shows a clear pattern for classifying positive or negative reviews. Er-
rors inherited from the POS tagging model will lead to some non-adjectives remaining in the filtered
global tree.

Figure 16: The local explanation decision tree generated for a correctly predicted Negative review
in MR dataset based on fine-tuned RoBERTa embedding. Concepts related to judging whether
something is interesting or not can be found in the decision path and negative word worst similar to
the concept of poorly can be found as well.
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Figure 17: The local explanation decision tree generated for a correctly predicted Negative review
in MR dataset based on fine-tuned RoBERTa embedding, with the POS filter to display only words
which can be labelled as adjectives by the spaCy library. We can see concepts related to the cast or
action is no longer found, leaving only important adjectives for decision-making.

Figure 18: The local explanation decision tree generated for a correctly predicted Positive review in
MR dataset based on fine-tuned RoBERTa embedding. Multiple positive comments like good, fun,
engaging, enjoyable can be found in decision-making for the text describing something as playful
and appropriate.

23



Under review as a conference paper at ICLR 2024

Figure 19: The local explanation decision tree generated for a correctly predicted Positive review
in MR dataset based on fine-tuned RoBERTa embedding, with the POS filter to display only words
which can be labelled as adjectives by the spaCy library.

Figure 20: The global explanation decision tree generated on SST2 dataset based on fine-tuned
RoBERTa embedding. Please take note that we explicitly limit the maximum depth of the tree during
the training to prevent further branching out beyond 3rd children’s level for better performance as
well as interpretability, therefore the two children with the same class can be present. Words with
negative connotations like mess, worst in human understanding tend to appear more in the prototype
nodes or decision paths for the negative class, and similarly for the positive class with concepts like
worth, deliciously.
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Figure 21: The global explanation decision tree generated on SST2 dataset based on fine-tuned
RoBERTa embedding, with the POS filter to display only words which can be labelled as adjectives
by spaCy library. More variations are of judgment other than common words like good or bad
can be found when emphasising adjectives, such as tragic, pretentious, dreadful for the help of
understanding the decision-making process. Errors inherited from the POS tagging model will lead
to some non-adjectives remaining in the filtered global tree.

Figure 22: The local explanation decision tree generated for a correctly predicted Positive review
in SST2 dataset based on fine-tuned RoBERTa embedding. Several positive concepts similar to
admirable can be found in the decision path.

Figure 23: The local explanation decision tree generated for a correctly predicted Positive review in
SST2 dataset based on fine-tuned RoBERTa embedding, with the POS filter to display only words
which can be labelled as adjectives by spaCy library. Several positive concepts similar to admirable
can be found in the decision path.
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Figure 24: The local explanation decision trees generated for a Tech news article in BBCNews
dataset based on fine-tuned BERT embedding compared to fine-tuned ELMo embedding, where
PEACH(BERT) predicted correctly but PEACH(ELMo) predicted wrongly. While the BERT em-
bedding fine-tuned by BBCNews has a clear decision-making path with exception nodes for tech-
nology classification, those with ELMo have the node that is lop-sided by the term ‘players’ and
classified into either sports or entertainment.

Figure 25: The local explanation decision trees generated for a Positive review in MR dataset
based on fine-tuned RoBERTa embedding compared to fine-tuned ELMo embedding, where
PEACH(RoBERTa) predicted correctly but PEACH(ELMo) predicted wrongly. While the success-
ful embedding (RoBERTa) tends to have several adjectives that can highlight positive aspect (e.g.
moving, engaging, romantic) or negative aspect (e.g. horrible, tedious), Elmo embedding does not
understand the pattern of both with any remarkable adjectives patterns.
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Figure 26: A sample case in the human evaluation to LIME and Anchor interpretation with our
PEACH interpretation.
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