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Abstract: While humans can use parts of their arms other than the hands for ma-1

nipulations like gathering and supporting, whether robots can effectively learn and2

perform the same type of operations remains relatively unexplored. As these ma-3

nipulations require joint-level control to regulate the complete poses of the robots,4

we develop AirExo, a low-cost, adaptable, and portable dual-arm exoskeleton, for5

teleoperation and demonstration collection. As collecting teleoperated data is ex-6

pensive and time-consuming, we further leverage AirExo to collect cheap in-the-7

wild demonstrations at scale. Under our in-the-wild learning framework, we show8

that with only 3 minutes of the teleoperated demonstrations, augmented by diverse9

and extensive in-the-wild data collected by AirExo, robots can learn a policy that10

is comparable to or even better than one learned from teleoperated demonstrations11

lasting over 20 minutes. Experiments demonstrate that our approach enables the12

model to learn a more general and robust policy across the various stages of the13

task, enhancing the success rates in task completion even with the presence of14

disturbances.15

Keywords: AirExo, In-the-Wild Learning, Data Collection16
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Figure 1: The methodology of our in-the-wild learning
framework with low-cost exoskeletons AirExo. It em-
powers the human operator to not only control the dual-
arm robots for collecting teleoperated demonstrations
but also directly record in-the-wild demonstrations. Be-
sides commonly-used teleoperated demonstrations, our
learning framework also leverages the extensive and
cheap in-the-wild demonstrations in policy learning, re-
sulting in a more general and robust policy compared to
training with even more teleoperated demonstrations.

Robotic manipulation has emerged as a cru-18

cial field within the robot learning commu-19

nity and attracted significant attention from re-20

searchers. With the advancement of technolo-21

gies such as deep learning, robotic manipula-22

tion has evolved beyond conventional grasp-23

ing [9, 11, 33] and pick-and-place tasks [32,24

43], encompassing a diverse array of complex25

and intricate operations [2, 3, 6, 10].26

Most of the current robotic manipulation re-27

search focuses on interacting with the environ-28

ment solely with the end-effectors of the robots,29

which correspond to the hands of human be-30

ings. However, as humans, we can also use31

other parts of our arms to accomplish or assist32

with various tasks in daily life. For example,33

holding objects with lower arms, closing fridge34

door with elbow, etc. In this paper, we aim to35

investigate and explore the ability of robots to36

effectively execute such tasks. To distinguish37

from the classical manipulation involving end-38
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effectors, we refer to these actions as whole-arm manipulation. Since most whole-arm manipula-39

tion tasks require the coordinated collaboration of both limbs, we formalize them into the framework40

of the bimanual manipulation problem.41

While whole-arm manipulation is natural and simple for humans, it can become challenging for42

robots. First, whole-arm manipulation usually implies extensive contact with the surrounding en-43

vironment and collision risks during manipulation. Second, whole-arm manipulation necessitates44

precise movement of the entire robot pose, as opposed to the conventional methods of only reaching45

the end-effector pose at the destination. An intuitive approach to address these two challenges is to46

adapt joint-level control for robots. To enable that, we adopt a joint-level imitation learning schema,47

wherein joint-level control is needed when collecting the robot demonstration.48

Recently, Zhao et al. [46] introduced an open-source low-cost ALOHA system which exhibits the49

capability to perform joint-level imitation learning through real-world teleoperated data. ALOHA50

system leverages two small, simple and modular bimanual robots ViperX [37] and WidowX [40]51

that are almost identical to each other, to establish a leader-follower framework for teleoperation.52

Due to the limited payload of the robots, they focus more on fine-grained manipulation. Besides,53

their hardwares cannot be seamlessly adapted to other robots commonly employed for laboratory54

research or industrial purposes. Similarly, while several literatures [8, 15, 17, 19, 45] also designed55

special exoskeletons for certain humanoid robots or robot arms, the cross-robot transferability of56

their exoskeletons remain a challenge.57

To address the above issues, we develop AirExo, an open-source, low-cost, robust and portable dual-58

arm exoskeleton system that can be quickly modified for different robots. All structural components59

of AirExo are universal across robots and can be fabricated entirely through 3D printing, enabling60

easy assembly even for non-experts. After calibration with a dual-arm robot, AirExo can achieve61

precise joint-level teleoperations of the robot.62

Contributed to its portable property, AirExo enables in-the-wild data collection for dexterous ma-63

nipulation without needing a robot. Humans can wear the dual-arm exoskeleton system, conduct64

manipulation in the wild, and collect demonstrations at scale. This breakthrough capability not only65

simplifies data collection but also extends the reach of whole-arm manipulation into unstructured66

environments, where robots can learn and adapt from human interactions. The one-to-one mapping67

of joint configurations also reduces the barriers of transferring policies trained on human-collected68

data to robots. Experiments show that with our in-the-wild learning framework, the policy can be-69

come more sample efficient for the expensive teleoperated demonstrations, and can acquire more70

high-level knowledge for task execution, resulting in a more general and robust strategy. The source71

code, data and exoskeleton models will be made publicly available.72

2 Related Works73

Imitation Learning Imitation learning has been widely applied in robot learning to teach robots74

how to perform various tasks by observing and imitating demonstrations from human experts. One75

of the simplest methods in imitation learning is behavioral cloning [27], which learns the policy76

directly in a supervised manner without considering intentions and outcomes. Most approaches77

parameterize the policy using neural networks [2, 5, 31, 44, 46], while non-parametric VINN [26]78

leverages the weighted k-nearest-neighbors algorithm based on the visual representations extracted79

by BYOL [14] to generate the action from the demonstration database. This simple but effective80

method can also be extended to other visual representations [22, 23, 25, 29] for robot learning. In81

the context of imitation learning for bimanual manipulation, Xie et al. [41] introduced a paradigm to82

decouple the high-level planning model into the elemental movement primitives. Several literature83

have focused on designing special frameworks to solve specific tasks, such as knot tying [18, 34],84

banana peeling [17], culinary activities [21], and fabric folding [39]. Addressing the challenge of85

non-Markovian behavior observed in demonstrations, Zhao et al. [46] utilized the notion of action86

chunking as a strategy to enhance overall performance.87

2



Teleoperation Demonstration data play a significant role in robotic manipulation, particularly in88

the methods based on imitation learning. For the convenience of subsequent robot learning, these89

demonstration data are typically collected within the robot domain. A natural approach to gather90

such demonstrations is human teleoperation [24], where a human operator remotely controls the91

robot to execute various tasks. Teleoperation methods can be broadly categorized into two classes92

based on their control objectives: one aimed at manipulating the end-effectors of the robots [2, 7,93

10, 16, 30, 44] and one focused on regulating the complete poses of the entire robots, such as ex-94

oskeletons [8, 15, 17, 35, 45] and a pair of leader-follower robots [46]. For whole-arm manipulation95

tasks, we need to control the full pose of the robots, which makes exoskeletons a relatively favorable96

option under this circumstance.97

Learning Manipulation in the Wild Despite the aforementioned teleoperation methods allow us98

to collect robotic manipulation data, the robot system is usually expensive and not portable, posing99

challenges to collect demonstration data at scale. To address this issue, previous research has ex-100

plored the feasibility of learning from interactive human demonstrations, i.e. in-the-wild learning101

for robotic manipulation [1, 4, 19, 28, 33, 42]. In contrast to the costly robot demonstrations, in-the-102

wild demonstrations are typically cheap and easy to obtain, allowing us to collect a large volume103

of such demonstrations conveniently. Typically, there are two primary domain gaps for learning104

manipulation in the wild: (1) the gap between human-operated images and robot-operated images,105

and (2) the gap between human kinematics and robot kinematics. The former gap can be solved106

through several approaches: by utilizing specialized end-effectors that match the end-effectors of107

the robots [19, 42]; by initially pre-training with in-the-wild data and subsequently fine-tuning with108

robot data [33]; or by applying special image processing technique to generate agent-agnostic im-109

ages [1]. The latter gap is currently addressed by applying structure from motion algorithms [33,110

42], adopting a motion tracking system [28], or training a pose detector [1, 38] to extract the desired111

poses. However, these methods are not suitable for whole-arm dexterous manipulation, since motion112

tracking usually focuses on the end-effector, and pose detector is vulnerable to visual occlusions and113

does not map to the robot kinematics.114

3 AirExo: An Open-Source, Portable, Adaptable, Inexpensive and Robust115

Exoskeleton116

(a) Flexiv (Rizon)

(4) 

(5) 
(3) 

(2) 
(1) 

(1) post-joint
(2) damping pivot
(3) limiter
(4) angle encoder
(5) pre-joint

(c) Franka (Emika Panda)

(d) Kuka (IIWA 7R800)(b) UR5

……

Figure 2: AirExo models for different types of robots. Notice that the internal structure of the joints is stan-
dardized, only the linkages are altered to accommodate different robotic arm configurations.

3.1 Exoskeleton117

From the preceding discussions in Sec. 1, we summarize the following 5 key design objectives of an118

exoskeleton: (1) affordability; (2) adaptability; (3) portability; (4) robustness and (5) maintenance119

simplicity. Based on these design objectives, we develop AirExo as follows.120

In this paper, we employ two Flexiv Rizon arms [12] for experiments. As a result, the structural121

design of AirExo is predominantly tailored to their specifications. Meanwhile, to ensure its uni-122

versality, it can be easily modified for use with other robotic arms like UR5 [36], Franka [13] and123
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Kuka [20], as depicted in Fig. 2. Based on the morphology of our robot system, AirExo is composed124

of two symmetrical arms, wherein the initial 7 degree-of-freedoms (DoFs) of each arm correspond125

to the DoFs of the robotic arm, and the last DoF corresponds to the end-effector of the robotic arm.126

Here, we design a two-finger gripper with 1 DoF as an optional end-effector for each arm. Overall,127

AirExo is capable of simulating the kinematics of the robot across its entire workspace, as well as128

emulating the opening and closing actions of the end-effectors.129

According to design objective (3), to improve the wearable experience for operators and concurrently130

enhance task execution efficiency, we dimension AirExo to be 80% of the robot’s size, based on the131

length of the human arm. In the end-effector of the exoskeleton, we design a handle and a scissor-like132

opening-closing mechanism to simulate the function of a two-fingered gripper, while also facilitating133

gripping actions by the operator. The two arms of the exoskeleton are affixed to a base, which is134

mounted on a vest. This allows the operator to wear it stably, and evenly distributing the weight135

of the exoskeleton across the back of the operator to reduce the load on the arms, thereby enabling136

more flexible arm motions. Additionally, an adjustable camera mount can be installed on the base137

for image data collection during operations.138

The joints of AirExo adapt a dual-layer structure, with the outer case divided into two parts: the139

portion proximate to the base is referred to as the pre-joint, while the other half is called the post-140

joint. As illustrated in Fig. 2(a), these two components are connected via a metal damping pivot, and141

their outer sides are directly linked to the connecting rod. AirExo primarily achieves high-precision142

and low-latency motion capture through the angle encoders (with a resolution of 0.08 degrees),143

whose bases are affixed to the pre-joints. The pivots of the encoders are connected to the post-joint144

through a limiter, which is comprised of a dual-layer disc and several steel balls to set the angle limit145

for each joint. The dual-layer joint structure ensures that the encoders remain unaffected by bending146

moments during motions, rotating synchronously with the joints, which safeguards the encoders and147

reduces failures effectively. This aligns with the design objective (4) and (5).148

Except the fasteners, damping pivots, and electronic components, all other components of AirExo are149

fabricated using PLA plastic through 3D printing. The material has a high strength and a low density,150

thereby achieving a lightweight but robust exoskeleton. The prevalence of 3D-printed components151

allows the exoskeleton to be easily adapted to different robots. This adaptation entails adjusting152

the dimensions of certain components based on the target robot’s specifications and subsequently153

reprinting and installing them, without modifying the internal structure. AirExo costs approximately154

$600 in total, which is in accordance with the design objective (1).155

3.2 Calibration and Teleoperation156

Since AirExo shares the same morphology with the dual-arm robot except for the scale, the calibra-157

tion process can be performed in a quite straightforward manner. After positioning the robot arms158

at a specific location like a fully extended position, and aligning the exoskeleton to match the robot159

posture, we can record the joint positions {q(c)i }d
i=1 and the encoder readings {p(c)i }d

i=1 of AirExo,160

where d denotes the DoFs. Consequently, during teleoperation, we only need to fetch the encoder161

readings {pi}d
i=1 and transform them into the corresponding joint positions {qi}d

i=1 using Eqn. (1),162

and let the robot moves to the desired joint positions:163

qi = min
(

max
(

q(c)i + ki(pi − p(c)i ),qmin
i

)
,qmax

i

)
, (1)

where ki ∈ R is the coefficient controlling direction and scale, and qmin
i ,qmax

i denote the joint angle164

limits of the robotic arms. Typically, we set k = ±1, representing the consistency between the165

encoder direction of the exoskeleton and the joint direction of the robot. For grippers, we can166

directly map the angle range of the encoders to the opening and closing range of the grippers for167

teleoperation.168

After calibration, the majority of angles within the valid range of the robot arms can be covered by169

the exoskeleton. Given that the workspaces of most tasks fall within this coverage range, we can170

teleoperate the robot using the exoskeleton conveniently and intuitively. If a special task t needs a171
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Figure 3: Overview of learning whole-arm manipulations in the wild with AirExo. First, we use in-the-wild
demonstrations and exoskeleton actions that are transformed into the robot’s domain to pre-train the policy,
which corresponds to learning the high-level strategy of task execution. Then, we use teleoperated demonstra-
tions and robot actions to fine-tune the policy, which corresponds to learning fine-grained motion based on the
learned high-level strategy.

wider operation range, we can simply scale the exoskeleton range using coefficients ki, and apply172

task-specific joint constraint [qt,min
i ,qt,max

i ] instead of original kinematic constraint in Eqn. (1) for173

better teleoperation performance.174

3.3 In-the-Wild Learning with AirExo175

For in-the-wild whole-arm manipulation learning, we install a camera (or cameras under multi-176

camera settings) on the camera mount of AirExo in roughly the same position(s) as the camera(s) on177

the robot. Using this configuration, images from both teleoperated demonstrations and in-the-wild178

demonstrations exhibit a relatively similar structure, which is advantageous for policy learning.179

Our approach to learn whole-arm manipulation in the wild with AirExo is illustrated in Fig. 3. As180

we discussed in Sec. 2, AirExo serves as a natural bridge for the kinematic gap between humans and181

robots. To address the domain gap between images, our approach involves a two-stage training pro-182

cess. In the first stage, we pre-train the policy using in-the-wild human demonstrations and actions183

recorded by the exoskeleton encoders. During this phase, the policy primarily learns the high-level184

task execution strategy from the large-scale and diverse in-the-wild human demonstrations. Sub-185

sequently, in the second stage, the policy undergoes fine-tuning using teleoperated demonstrations186

with robot actions to refine the motions based on the previously acquired high-level task execution187

strategy.188

As previously discussed in Sec. 3.1, we resize the exoskeleton to ensure its wearability. Some con-189

cerns may arise regarding whether this scaling adjustment could impact the policy learning process.190

Here, we argue that it has a minimal effect on our learning procedure. Firstly, the core kinematic191

structure, essential for our learning framework, remain unaffected by the resizing. Thus human192

demonstrations preserve the fundamental dynamics of the system. Secondly, our approach does not193

impose strict alignment requirements between human demonstration images and robot images. We194

find that similar visual-action pairs collected by our exoskeleton effectively support the pretraining195

stage, without demanding precise visual matching between human and robot demonstrations.196

We use the state-of-the-art bimanual imitation learning method ACT [46] for policy learning. Our197

experiments demonstrate that it can indeed learn the high-level strategy through the pre-training198

process and significantly enhance the evaluation performance of the robot and the sample efficiency199

of the expensive teleoperated demonstrations.200
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4 Experiments201

In this section, we conduct experiments on 2 whole-arm tasks to evaluate the performance of the202

proposed learning method. All demonstration data are collected by AirExo.203

4.1 Gather Balls: Setup204

Task Two clusters of cotton balls are randomly placed on both sides of the tabletop (40 balls per205

cluster). The goal is to gather these balls into the designated central triangular area using both arms.206

The process of this contact-rich task is illustrated in Fig. 4.207

(a) initial state (b) gather with the right arm (c) gather with the left arm (d) final state

Figure 4: Definition of Gather Balls task. The goal is to gather the balls into the central triangular area, which
is highlighted in light blue. The red dashed arrows denote the motions of the robot arms. Sponge paddings are
used to envelop the external surface of the robot arms to diminish the mechanical failures arising from contacts.

Metrics We consider the percentage of balls being allocated within the central triangular area as208

the task completion rate c (if a ball is precisely on the line, it is considered a half), including both the209

completion rates of the left arm and the right arm. Simultaneously, task success is defined as the task210

completion rate exceeding a certain threshold δ . In this experiment, we set δ = 40%,60%,80%. We211

also record the collision rate to gauge the precision of the operations.212

Methods We employ VINN [26] and its variants that alter the visual representations [22, 23, 29]213

as non-parametric methods. Other methods include ConvMLP [44], BeT [31] and ACT [46]. All214

of them are designed for joint-space control or can be easily adapted for joint-space control. We215

apply our proposed learning approach to ACT for learning from in-the-wild demonstrations. For all216

methods, we carefully select the hyper-parameters to ensure better performance.217

Protocols The evaluation is conducted on a workstation equipped with an Intel Core i9-10980XE218

CPU. The time limit is set as 60 seconds per trial. Given that all methods can operate at approxi-219

mately 5Hz, resulting in a total of 300 steps for the evaluation, the time constraint proves sufficient220

for the task. We conduct 50 consecutive trials to ensure stable and accurate results, calculating the221

aforementioned metrics.222

4.2 Gather Balls: Results and Analyses223

The experimental results on the Gather Balls task are shown in Tab. 1. When using 50 teleoperated224

demonstrations as training data, VINN performs the best among all non-parametric methods, while225

ACT excels among all parametric methods. When using only 10 teleoperated demonstrations for226

training, the performance of both VINN and ACT degrades inevitably. However, after applying227

our in-the-wild learning framework, with the assistance of in-the-wild demonstrations, ACT can228

achieve the same level of performance as 50 teleoperated demonstrations with just 10 teleoperated229

demonstrations. This demonstrates that our learning framework with in-the-wild demonstrations230

makes the policy more sample-efficient for teleoperated demonstrations.231

We then delve into the experimental results to provide more insights about why and how our learning232

framework works. When analyzing the failure cases of different methods in the experiments in233

Fig. 5(a), we find that the ACT policy trained solely on teleoperated demonstrations exhibits an234

issue of imbalance between accuracies of two arms, with better learning outcomes for the left arm.235

This imbalance becomes more pronounced as the number of teleoperated demonstrations decreases236

to 10. With the help of the in-the-wild learning stage, the policy becomes more balanced between237
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# Demos Method Completion Rate c (%) ↑ Success Rate (%) ↑
Teleop. i.t.w Overall Left Right c ≥ 80 c ≥ 60 c ≥ 40

50 - VIP [22] + NN 27.74 0.02 55.45 0 0 36
50 - VC-1 [23] + NN 52.54 32.53 72.55 4 42 74
50 - MVP [29] + NN 55.10 58.55 62.00 12 62 76
50 - VINN [26] 76.88 75.73 78.03 58 84 94
50 - ConvMLP [44] 15.56 2.35 28.78 0 0 2
50 - BeT [31] 24.66 7.38 41.95 0 2 32
50 - ACT [46] 75.61 94.63 56.60 54 70 100
10 - VINN [26] 68.68 60.28 77.08 36 76 88
10 - ACT [46] 64.31 91.95 36.68 24 60 96
10 50 ACT [46] 73.76 88.83 58.70 62 72 88
10 100 ACT [46] 75.15 75.63 74.68 56 80 88

Table 1: Experimental results on the Gather Balls task. Here “teleop.” denotes teleoperated demonstrations
and “i.t.w.” denotes in-the-wild demonstrations.

VINN 
(50, -)

ACT
(50, -)

ACT
(10, 50)

ACT
(10, 100)

ACT
(10, -)

VINN
(10, -)

In
ac

cu
ra

cy
 (L

ef
t) 

(%
)

Inaccuracy (Right) (%)

BeT
VC-1+NN

VIP+NN

ConvMLP

MVP+NN

100

80

60

40

20

0

100

80

60

40

20

0

Su
cc

es
s (

%
)

0                20               40               60               80              100

V
IP

 +
 N

N
V

C
-1

 +
 N

N
M

V
P 

+ 
N

N
V

IN
N

C
on

vM
L

P
B

eT
A

C
T

50 Teleoperated 
Demonstrations

10 Teleoperated 
Demonstrations

A
C

T 
(0

)
A

C
T 

(5
0)

A
C

T 
(1

00
)

V
IN

N

(# In-the-Wild Demonstrations)

Inaccuracy (Right)
(Right Completion Rate < 80 only)

Inaccuracy (Left)
(Left Completion Rate < 80 only)

Inaccuracy (Both)
(Left Completion Rate < 80 &
Right Completion Rate < 80)

Overall Completion Rate < 80

Success
Overall Completion Rate ≥ 80

R
ig

ht
 A

rm
L

ef
t A

rm

ACT (50, -) ACT (10, 100)

w.o. in-the-wild learning w. in-the-wild learning

Ground Truth

(a) (b) (c)

Figure 5: Analyses of methods on the Gather Balls task. Here we define the overall completion rate over 80%
as success. (a) We analyze the failure causes of each method in every trial. (b) We amortize the inaccuracy
(both) rate evenly into the inaccuracy (left) and inaccuracy (right) rates, and draw a comparison plot of failure
modes for different methods. (x,y) means the policy is trained with y in-the-wild demonstrations then x tele-
operated demonstrations. The dashed lines represent contour lines with the same success rate, and the regions
with light blue background imply a more balanced policy between left and right arms. (c) t-SNE visualizations
of the ground-truth actions and the policy actions w/wo in-the-wild learning on the validation set.

two arms even with fewer teleoperated demonstrations, as shown in Fig. 5(b). From Fig. 5(c), we238

also observe that the policy focuses more on learning the motions of the right arm when cooperated239

with in-the-wild learning, as highlighted in red dashed circles, while keeping the accurate action240

predictions on the left arm. We believe that this is attributed to the extensive, diverse, and accurate241

in-the-wild demonstrations provided by AirExo, enabling the policy to acquire high-level strategy242

knowledge during the pre-training stage. Consequently, in the following fine-tuning stage, it can243

refine its actions based on the strategy, thus avoiding learning actions blindly from scratch.244

4.3 Grasp from the Curtained Shelf : Setup and Results245

Task A cotton toy is randomly placed in the center of a shelf with curtains. The goal is to grasp246

the toy and throw it into a bin. To achieve it, the robot needs to use its right arm to push aside the247

transparent curtain first, and maintain this pose during the following operations. The process of this248

multi-stage task is illustrated in Fig. 6.249

Metrics, Methods, and Protocols We calculate the average success rate at the end of each stage250

as metrics. Based on the experimental results on the Gather Balls task, we select VINN [26] and251

ACT [46] as methods in experiments, as well as ACT equipped with our in-the-wild learning frame-252

work. The evaluation protocols are the same as the Gather Balls task, except that the time limit is253

120 seconds (about 400 steps) and the number of trials is 25.254
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(a) Reach in (b) Push aside (c) Approach (d) Grasp (e) Throw

Figure 6: Definition of the Grasp from the Curtained Shelf task. The robot needs to (a) reach in its right arm
to the transparent curtain and (b) push aside the curtain, then (c) approach the object with its left arm, (d) grasp
the object and finally (e) throw the object.

# Demos Method Success Rate (%) ↑
Teleop. i.t.w. Reach in Push aside Approach Grasp Throw

50 - VINN [26] 100 96 92 60 48
50 - ACT [46] 100 100 100 84 84

10 - VINN [26] 100 84 84 60 44
10 - ACT [46] 100 100 96 72 44
10 50 ACT [46] 100 100 96 76 76
10 100 ACT [46] 100 100 100 92 88

Table 2: Experimental results on the Grasp from the Curtained Shelf task.

Results The results are255

given in Tab. 2. Similar256

to the results of the Gather257

Balls task, as the num-258

ber of training teleoperated259

demonstrations is reduced,260

both VINN and ACT ex-261

perience a decrease in suc-262

cess rates, especially in the263

later “throw” stage. How-264

ever, after training with our265

in-the-wild learning framework, ACT exhibits a significant improvement in success rates in the266

“grasp” and “throw” stages. It achieves even higher success rates, surpassing those obtained with267

the original set of 50 teleoperated demonstrations lasting more than 20 minutes, using only 10 such268

demonstrations lasting approximately 3 minutes. This highlights that our proposed in-the-wild269

framework indeed enables the policy to learn a better strategy, effectively enhancing the success270

rates in the later stages of multi-stage tasks.271

Disturbances w/wo i.t.w. learning Success / All

Novel Object
✘ 4 / 8
✔ 7 / 8

Different
Background

✘ 2 / 8
✔ 6 / 8

Visual
Distractors

✘ 4 / 8
✔ 8 / 8

Table 3: Results of the robustness experiments on the
Grasp from the Curtained Shelf task.

Robustness Analysis We design three kinds272

of disturbances in the robustness experiments273

to explore whether in-the-wild learning im-274

proves the robustness of the policy. The results275

shown in Tab. 3 demonstrate that our in-the-276

wild learning framework can leverage diverse277

in-the-wild demonstrations to make the learned278

policy more robust and generalizable to various279

environmental disturbances.280

5 Conclusion281

In this paper, we develop AirExo, an open-source, low-cost, universal, portable, and robust exoskele-282

ton, for both joint-level teleoperation of the dual-arm robot and learning whole-arm manipulations283

in the wild. Our proposed in-the-wild learning framework decreases the demand for the resource-284

intensive teleoperated demonstrations. Experimental results show that policies learned through this285

approach gain a high-level understanding of task execution, leading to improved performance in286

multi-stage whole-arm manipulation tasks. This outperforms policies trained from scratch using287

even more teleoperated demonstrations. Furthermore, policies trained in this framework exhibit288

increased robustness in the presence of various disturbances.289

In the future, we are excited to see our AirExo collecting large-scale demonstrations in unstructured290

environments and facilitating robot learning. We will investigate how to better address the image291

gap between in-the-wild data in the human domain and teleoperated data in the robot domain, en-292

abling robots to learn solely through large-scale in-the-wild demonstrations with AirExo, thus further293

reducing the learning cost.294
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