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Abstract

Structure-guided molecular generation plays a
key role in early drug discovery by designing
compounds for specific protein targets. While
recent 3D generative models improve docking
scores, they often generate chemically implau-
sible structures outside drug-like space. To ad-
dress this, we introduce the Molecule Reason-
able Ratio (MRR), a new metric for assessing
structural plausibility. We propose the Collabora-
tive Intelligence Drug Design (CIDD) framework,
combining 3D interaction modeling with large
language models (LLMs) and Chain-of-Thought
reasoning. CIDD generates spatially compatible,
drug-like, and synthesizable molecules. On the
CrossDocked2020 benchmark, it improves met-
rics like QED, SA, and MRR, and raises the suc-
cess rate—from 15.72% to 34.59%—by balanc-
ing binding affinity and drug-likeness, showing
the power of integrating geometry with symbolic
reasoning.

1. Introduction

Structure-based drug design (SBDD) enables the genera-
tion of compounds tailored to protein binding sites, and re-
cent 3D generative models—such as autoregressive methods
(e.g., AR (Luo et al.; 2021}, Pocket2Mol (Peng et al., 2022))
and diffusion-based approaches (e.g., TargetDiff (Guan
et al., |2023), MolCRAFT (Qu et al.| 2024)))—have made
notable progress. However, these models often produce
chemically implausible structures, including overly fused
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rings and unstable scaffolds (Figure 2h), which may boost
docking scores but harm drug-likeness and stability.

To quantify this issue, we introduce the Molecular Rea-
sonability Ratio (MRR), which measures the fraction of
chemically reasonable molecules relative to drug-like stan-
dards. Existing models show low MRRs (e.g., TargetDiff:
37.8%, MolCRAFT: 58.5%) compared to FDA-approved
drugs (85.9%), revealing a major gap. While some mod-
els (e.g., TAGMol) incorporate drug-likeness optimization
(e.g., QED (Bickerton et al., 2012)), they still underperform
in overall reasonability. In contrast, LLMs (e.g., GPT-4)
achieve high MRRs (97.5%) due to their broad chemical
knowledge, but lack the spatial awareness for affinity-driven
generation.

We propose CIDD (Collaborative Intelligence for Drug De-
sign), a framework that integrates 3D generative models
with large language models (LLMs) to combine geomet-
ric interaction modeling with chemical reasoning. Rather
than generating final molecules, 3D models provide spa-
tially meaningful proposals, which are refined through LLM-
driven Chain-of-Thought (CoT) reasoning across special-
ized modules—Interaction Analysis, Design, Reflection, and
Selection. This modular architecture enables interpretable,
chemically plausible design aligned with medicinal chem-
istry workflows.

Evaluated on CrossDocked2020 (Francoeur et al.| [2020),
CIDD improves the overall success rate—from 15.72% to
34.59 % —while consistently enhancing QED, SA, MRR,
and QikProp (Schrodinger, LLC, |2025) compliance.

Key contributions:

* Problem Identification: We identify structural irra-
tionality in 3D models and introduce MRR to quantify
drug-like plausibility.

e CIDD framework: We present the first unified ap-
proach combining spatial modeling with LLM-based
reasoning for molecule generation.

 State-of-the-art results: CIDD improves drug-
likeness and affinity, demonstrating the power of col-
laborative Al in molecular design.
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2. Preliminaries
2.1. Structure-Based Drug Design

Structure-based drug design (SBDD) aims to generate
molecules x that bind to a given protein pocket P.
Recent deep generative methods include CVAE-based
LiGAN (Ragoza et al., [2022), autoregressive models like
AR (Luo et al.,|2021) and Pocket2Mol (Peng et al.| 2022),
and diffusion models such as TargetDiff (Guan et al.| [2023)),
IPDiff (Huang et al.,|[2024), and DecompDiff (Guan et al.,
2024). TAGMol (Dorna et al., |2024) introduces gradient-
based optimization during generation. Fragment-based ap-
proaches like DrugGPS (Zhang & Liu, 2023) and Mol-
CRAFT (Qu et al.||2024) leverage modular representations
or Bayesian flows. These methods typically produce inter-
mediate 3D point clouds or graphs that are later converted
into chemically valid molecules.

2.2. Large Language Models

Large language models (LLMs) such as GPT-4 (Achiam
et al.l 2023), LLaMA (Touvron et al., [2023), and Chat-
GLM (GLM et al., [2024)) have shown strong capabilities in
language, coding, and reasoning tasks. Their application to
drug discovery is growing (Chakraborty et al., [2023)), with
models like ChatDrug (Liu et al.| [2024)) enabling molec-
ular generation and editing via natural language. How-
ever, pocket-conditioned molecular design remains chal-
lenging, as LLMs struggle to capture complex 3D spatial
and chemical features inherent in protein-ligand interac-
tions—information that goes beyond what can be conveyed
in pure textual form.

3. Methods

3.1. Evaluating the Gap Between Generated Molecules
and Real Drugs

Drug-likeness is a multidimensional property representing
the probability p(drug) that a molecule reaches its biolog-
ical target—an assessment distinct from binding affinity.
Popular proxies such as QED (Bickerton et al., 2012) and
Lipinski’s Rule of Five (Lipinski et al.,2012) face two key
limitations. First, legacy bias: these metrics were calibrated
on historical chemical space and often assign high scores
to structurally implausible molecules produced by modern
generative models. Second, oversimplification: QED uses
only seven descriptors and poorly distinguishes molecules
in DrugBank (Knox et al., [2024), whose average QED is
below 0.5.

To address these limitations, we propose a two-tiered eval-
uation framework. The first tier, structural reasonability,
assesses medicinal chemistry features such as aromaticity,
ring stability, and hybridization consistency. The second tier

evaluates physicochemical and pharmacokinetic suitabil-
ity through ADME/T-related descriptors. Together, these
tiers offer a more robust evaluation of generative models
by emphasizing both chemical plausibility and therapeutic
relevance.

Molecular Reasonability Ratio (MRR). MRR is a rule-
based metric designed to detect structural inconsistencies
in generated molecules, particularly failures in ring conju-
gation that deviate from typical medicinal chemistry pat-
terns. It analyzes hybridization states of ring atoms, ex-
cluding fully aromatic or fully saturated rings. After re-
moving peripheral substituents, the molecule is flagged if
the remaining ring atoms are neither uniformly sp? nor
sp>. For example, partially conjugated rings such as cy-
clohexene or cyclohexa-1,3-diene are marked as unreason-
able. Though not exhaustive, MRR provides interpretable,
domain-informed filtering that complements valence checks
and ADME-based screens. The full algorithm is described
in Appendix [F

QikProp Multiple Property Requirements. We further
evaluate molecular suitability using QikProp (Schrodinger)
LLC| [2025)), a predictive tool for drug-likeness based on
properties such as solubility, lipophilicity, polar surface
area, metabolic site count, and oral absorption (loakimidis
et al., 2008). A molecule passes the evaluation only if
all N predefined property constraints P, Ps, ..., Py are
satisfied:

1 if P APy A--- A Py are satisfied,
0 otherwise.

QikProp = {

3.2. Bridging the Gap with CIDD Framework

We propose the Collaborative Intelligence Drug Design
(CIDD) framework (Figure[T), a modular system for target-
specific molecule generation that combines 3D interaction
modeling with LLM-guided refinement. CIDD consists of
two stages: the Structure-Based Interaction Generator
(SBIG), which produces interaction-aware scaffolds, and
the LLM-Enhanced Drug Designer (LEDD), which re-
fines them into viable compounds:

x9 = SBIG(Target), x = LEDD(zo,Target)

Here, z captures spatial compatibility, while LEDD lever-
ages the reasoning capabilities of large language models to
generate chemically valid molecules. Inspired by medicinal
chemists’ workflows, CIDD formalizes a two-step design
process that bridges 3D structural intent with drug-likeness.

3.2.1. PIPELINE OVERVIEW

CIDD decomposes molecule generation into modular rea-
soning steps. SBIG first generates interaction-centric scaf-
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Figure 1. Overview of the CIDD framework. Top: end-to-end pipeline integrating SBIG and LEDD. Bottom: detailed view of LEDD’s
LLM-based design process, which designs and generates molecules through interaction analysis, reflection, and Chain-of-Thought-driven

reasoning.

folds, which are analyzed by the Interaction Analysis Mod-
ule to extract fragment-level binding features. The Design
Module then proposes optimized structures, guided by these
interaction profiles. Each new molecule is evaluated, and the
Reflection Module compares designs across iterations to
inform refinement. Finally, the Selection Module identifies
the optimal candidate based on interaction and drug-likeness
criteria.

3.2.2. INTERACTION ANALYSIS MODULE

This module docks a candidate x; into the protein pocket
P, fragments it via BRICS (Degen et al., | 2008), and detects
key non-covalent interactions (e.g., hydrogen bonds, 7—m
stacking). These features are summarized into an interaction
profile I; using a specialized language model:

The profile links molecular fragments to their roles in bind-
ing, guiding downstream design.

3.2.3. DESIGN MODULE

Given a scaffold z, its interaction profile Iy, and prior
feedback R, the Design Module uses an LLM to output a
refinement plan and new molecule:

LLMD(xo, Io,R) — (D“l’i)

To emulate real-world drug design workflows, we imple-
ment a Chain-of-Thought prompting strategy that guides
the LLM through a domain-informed reasoning pipeline

with four sequential stages. (1) Interaction-Critical Frag-
ment Identification: the model analyzes zy and high-
lights fragments forming key non-covalent interactions with
the target, based on Ij. (2) Detection of Unfavorable
or Atypical Substructures: chemically undesirable frag-
ments—such as synthetically inaccessible motifs, strained
rings, or poor physicochemical regions—are flagged for re-
placement. (3) Strategic Design Planning: the model pro-
poses modifications that improve chemical viability while
preserving interaction and topology, often substituting prob-
lematic regions with pharmaceutically preferred alternatives.
(4) Candidate Molecule Generation: a new structure x;
is generated based on the design plan, ensuring both target
interaction and drug-like properties.

3.2.4. REFLECTION AND SELECTION MODULES

The Reflection Module compares the design x; to the origi-
nal input:

LLMg(xo, Iy, Di, xi, I;) = R;

The Selection Module ranks all candidates {1, ...
and selects the best:

7xN}

LLMg ({(1'17]1), ey (LL'N7IN)}) — Tpest

This ensures the final molecule balances interaction strength
and chemical realism. Prompt examples are in Appendix [E]
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Table 1. Test Results on CrossDocked2020. We benchmark several evaluation metrics, including Vina docking score, QED, SA, MRR,
success ratio, and QikProp pass ratio. We also report the average molecular weight. Performance ranking per column is color-coded as

follows: 'best , second-best

Category Method ‘ Vina| QED{T SA{1 MRR1T Success? QikProp 1 ‘ MwW

VAE-based LiGAN -6.640 0394 0.601 59.08%  2.79% 17.37% | 286.44
AR-based AR -6.737  0.507 0.635 56.67% 3.28% 18.66% | 247.50
AR-based Pocket2Mol | -7.246  0.573 0.758 67.88% 14.60% 29.58% | 234.30
Diffusion-based TargetDiff -7.452 0474 0579 37.81% 3.04% 27.63% | 346.24
Diff + Inter-Guide | IPDiff -7.745 0511 0.627 29.83%  531% 25.11% | 328.34
Diff + Inter-Prior | DecompDiff | -8.260 0.444 0.609 62.60%  15.72% 29.04% | 424.09
Diff + Multi-Guide | TAGMol -7.563 0.563 0.583 37.31% 3.23% 32.31% | 325.50
Fragment-based DrugGPS -7.396  0.463 0.622 54.80%  7.17% 25.60% | 329.88
BFN-based MoICRAFT | -7.783  0.503 0.685 5847% 13.72% 22.37% | 325.63
3DSBDD + LLM | CIDD -8.496 0.576 0.735 81.74% 34.59% 35.22% | 336.70

4. Experiments 4.2. General Results

4.1. Experiment Settings

Dataset. We follow 3D-SBDD protocols and use the Cross-
Docked2020 dataset (Francoeur et al., [2020), adopting Tar-
getDiff’s train/test split (Guan et al.,2023) with 100 protein
pockets reserved for testing.

Metrics. We evaluate with standard metrics: Vina docking
score (Trott & Olson, [2010), QED (Bickerton et al., 2012},
SA score (Ertl & Schuffenhauer, 2009), and molecular diver-
sity (1 — ECFP4 similarity (Rogers & Hahn||[2010)). As 3D
conformations are not directly generated, Vina Score/Min is
omitted. Beyond these, we assess drug potential using MRR
(structural plausibility) and QikProp pass ratio (pharma-
cokinetic profiling). A molecule is counted as successful
if it meets: Vina < —8&8.18, QED > 0.25, SA > 0.59, and
passes molecular reasonability and QikProp filters (Long
et al., 2022)).

Baselines. CIDD is compared against diverse 3D gener-
ative models: VAE-based LiGAN(Ragoza et al., [2022),
autoregressive AR(Luo et al.,|2021)) and Pocket2Mol(Peng
et al., 2022)), and diffusion-based TargetDiff(Guan et al.,
2023)), IPDiff(Huang et al., 2024), DecompDiff(Guan et al.,
2024), TAGMol(Dorna et al., 2024), as well as fragment-
based DrugGPS(Zhang & Liul [2023)) and flow-based Mol-
CRAFT (Qu et al .| [2024)).

CIDD Settings. MolCRAFT is used for SBIG, with GPT-
40 powering all LEDD modules. The Design Module pro-
poses 5 candidates per round; one is selected. For each
pocket, 10 molecules are generated. SBIG models use Cross-
Docked2020 and pretrained weights.

As shown in Table 1] CIDD achieves strong and consistent
performance across key drug-likeness metrics, including
QED, MRR, SA, and QikProp pass ratio, while maintain-
ing favorable binding affinity. Compared to baselines like
IPDiff and TAGMol—which rely on predictor-guided sam-
pling—CIDD shows superior MRR and overall balance.
IPDiff improves docking scores but underperforms in MRR,
and TAGMol, while boosting QED, lags in MRR and SA,
suggesting overfitting to specific scoring functions.

CIDD’s advantage lies in combining the structural modeling
strength of 3D generative models with the chemical reason-
ing capabilities of LLMs. By leveraging expert prompts
and the LLM’s embedded domain knowledge, it generates
candidates that are not only strong binders but also synthet-
ically viable and pharmacologically realistic. This leads
to a significantly higher success ratio of 34.59 % —more
than double the best baseline (15.72%). Notably, CIDD
produces molecules that are on average 50% larger in
molecular weight than Pocket2Mol (336.70 vs. 234.30),
yet still achieves superior QED, SA, and docking scores.
This indicates that CIDD’s performance is not due to metric
overfitting via small molecules, but reflects genuine drug-
likeness in more complex structures.

5. Conclusion

We presented CIDD, a collaborative framework that uni-
fies 3D interaction modeling and LL.M-driven reasoning
for structure-based drug design. CIDD addresses a key
limitation of current generative models: the tendency to
generate interaction-compatible but chemically unreason-
able molecules. Through a modular, interpretable gener-
ation process, CIDD achieves state-of-the-art results on
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the CrossDocked2020 benchmark—substantially improv-
ing drug-likeness metrics (QED, SA, MRR, QikProp) while
maintaining high binding affinity. By bridging 3D geometric
modeling with language-guided design, our approach sets
a foundation for future directions in rational, interpretable,
and generalizable drug generation. We envision such a col-
laborative paradigm enabling broader tasks such as target
discovery and hit-to-lead optimization in early-stage drug
discovery.
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A. Problem in Current Model
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Figure 1. (a) Common errors in 3D-SBDD outputs. Minor struc- Figure 1. (b) MRR comparison. While FDA drugs reach 85.9%
tural changes can cause large deviations in 3D conformation, high- MRR, existing 3D models lag behind. LLM achieves 97.5%, and
lighting the challenge of correcting chemically uncommon struc- CIDD closes the gap with 81.7%.

tures without disrupting valid 3D shapes.

Figure 2. Comparison of 3D generative model issues and MRR performance.

B. Additional Experiment Results and Analysis
B.1. Improvements with Different Models on Multiple Metrics

CIDD is a flexible framework designed to interface smoothly with a broad spectrum of 3D SBDD models, significantly
enhancing the quality of generated molecules. As illustrated in Figure ] CIDD brings substantial and consistent improve-
ments across key drug-likeness metrics—including QED, SA Score, Reasonable Ratio, and QikProp Pass Ratio—achieving
gains of 31.4%, 20.0%, 85.2%, and 102.8%, respectively. These improvements are observed across different base models,
demonstrating CIDD’s strong generalization ability and its capacity to enhance diverse, diverse aspects of drug-likeness
simultaneously. In contrast to optimization-based methods that often overfit individual metrics, CIDD drives broad and
meaningful improvements that reflect a true advancement in the quality of generated drug candidates.
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31.4% 08

85.2% 15.3%
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v
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Reasonable Ratio (%)
QikProp Pass Ratio (%)

03 03 201 o
pocket2mol targetdiff decompdiff molcraft pocket2mol targetdiff decompdiff molcraft pocket2mol targetdiff decompdiff molcraft pocket2mol targetdiff decompdiff molcraft

Figure 2. (a) QED Figure 3. (b) SA Score Figure 3. (c) Reasonable Ratio  Figure 3. (d) QikProp Pass Ratio

Figure 4. Comparison of models using only SBIG outputs vs. CIDD (SBIG + LEDD), across various 3D-SBDD backbones and drug-
likeness metrics.

B.2. Ablation and Analysis

B.2.1. IMPACT OF DIFFERENT LLMS

We evaluate GPT-40, GPT-40-mini, DeepSeek-v3 (DeepSeek-Al et al.,2024), and DeepSeek-rl 2025) using
MOoICRAFT as the SBIG module (Table[Zh). All models improve drug-likeness metrics (MRR, QikProp) and docking scores.

7
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Table 2. Ablation studies on LLM variants and pure LLM-based SBDD.

Table 2. (a) Different LLM Backends in CIDD

Table 2. (b) LLM-Only vs. CIDD Comparison

LLM | Vinal MRR?T  Similarity? | Vinal MRR?T  Success Ratiot
- \ =778  58.47% - LLM-SBDD | -6.244 97.45% 5.95%
GPT-40-mini | -8.29 80.02% 0.220 CIDD-LLM | -7.230 90.97% 17.59%
GPT-40 -8.50  81.37%  0.296 CIDD | -8.496 81.74% 35.22%
DeepSeek-v3 | -8.49 76.00% 0.379
DeepSeek-rl | -8.57 79.17% 0.182
(a) Supporting molecule CIDD strategy Interaction analysis
............................... . 1.Stability and Simplicity: Replace X
! Unreasonable ) unstable or complex fragments (e.g., Reasonable
¢ Vina:-7.796 conjugated dienes, highly fluorinated Vina: -11.383
QED: 0.202 chains) with more stable, common, QED: 0.860
I SA:0.52 SA: 0.83

and drug-like alternatives.
2.Key Interactions: Retain critical 9

interaction points with residues like N N OH
**GLN316, TRP164, VAL294, VAL315 | H/\C[

. i ~
S and ILE319**.
H N/ J\/ 3.Synthetic Feasibility: ...

H 4.Drug-Likeness: ...

o 5.Limited Modifications: ...

Target: IDHP_HUMAN_40_452_0
v’

...............................

40% o /\ Potency
(b) —e— Success Rat!o (Line) 36.4% (C) AG = AH-TAS;
Success Ratio (Bar) Estimated by Vina Drug
35% o, Safe, Effective,
_ . 33.0% \OP > Controliable
g 30.5% 31.2% : Y
s . 3D-SBDD Model Outputs :
. H
.ﬁ 30% < > Traditional
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A L
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Figure 5. (a) A generation case and corresponding interpretable design strategy produced by CIDD, resulting in a structurally similar yet
better compound. (b) CIDD demonstrates the ability to evolve by leveraging previous design experiences as context, improving generation
success rates. (c) CIDD integrates the strengths of 3D-SBDD models and LLMs to enable practical drug design with both high potency
and drug-likeness.

DeepSeek-v3 achieves property gains with minimal edits, while GPT-40-mini struggles with similarity, and DeepSeek-r1
makes broader, less controllable changes. GPT-40 and DeepSeek-v3 best support CIDD’s goal of generating similar yet
improved molecules. Smaller models like LLAMA-7B fail to follow design instructions. CIDD remains plug-and-play,
benefiting from future LLM advances.

B.2.2. USING PURE LLM FOR SBDD

LLMs alone struggle with 3D protein pocket interpretation in structure-based drug design (SBDD). To test this, we prompted
an LLM with PDB-format pocket data and also evaluated CIDD-LLM, which uses LLM-SBDD within the CIDD framework.
As shown in Table 2b, LLM-SBDD generates chemically reasonable molecules but performs poorly on binding affinty,
leading to a lower success rate than standard CIDD. This highlights the need for combining 3D models’ interaction modeling
with LLMs’ reasoning.
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B.3. Advantages and Impact of the CIDD Framework

Interpretable Molecule Design. Figure [Sh illustrates the CIDD generation process. The LLM-powered modules analyze
and refine the raw supporting molecule (green), producing a high-quality final structure (blue). Problematic fragments—such
as an unreasonable diene or an uncommon fluorinated chain—are automatically identified and replaced (e.g., with a benzene
ring), while side chains are adjusted to preserve key hydrogen bonds with GIn316 on both Chain A and B. These edits
improve docking scores and enhance drug-relevant properties. CIDD performs this refinement through localized fragment
substitutions, maintaining the core structure while improving overall drug potential. Notably, the process is inherently
interpretable: each design step is traceable, with explicit rationales highlighting structural strengths and weaknesses. This
transforms conventional opaque SBDD into a transparent, expert-assisting workflow. CIDD also enables the automated
creation of molecule pairs that differ in drug-likeness with minimal structural edits. These pairs effectively capture how
small chemical changes influence pharmaceutical viability, offering high-quality, distributionally aligned data for fine-tuning.
Compared to random sampling, they provide more meaningful supervision and help mitigate data scarcity in 3D-SBDD (see
Appendix [I).

Evolvement Ability. One key advantage of LLMs is their ability to leverage prior experience, provided as context, to
generate insightful outputs. To illustrate this, we conducted a proof-of-concept experiment using a relatively lightweight
LLM: GPT-40-mini. The model was given varying numbers of previous design reports and results (0, 5, 10, and 15) as
contextual input and tasked with generating insights to support the design module of CIDD. As shown in Figure[Sp, the
success rate improved as more prior reports were included. These results demonstrate CIDD’s capacity for continual
evolution by incorporating accumulated experience—without requiring model retraining. This mirrors the way human
experts enhance their performance through repeated exposure and practice.

Generating Small Molecules with Both High Potency and Drug-Likeness. Drug potential hinges on two key factors:
potency and drug-likeness. While most 3D-SBDD models emphasize target fit, they often produce chemically unreasonable
structures. As shown in Figure[5k, our CIDD framework bridges this gap by combining geometric modeling with LLM-
driven reasoning. The LLM not only corrects unfavorable fragments but also plans coherent molecular edits that balance
multiple objectives. By coordinating spatial and chemical constraints within a unified generation process, CIDD effectively
overcomes the traditional trade-off between interaction strength and drug-likeness.

C. Discussion on the Pharmaceutical Terminology

In this work, we employ a comprehensive set of evaluation metrics—Vina, QED, SA, our proposed MRR, the Success Ratio,
and QikProp—to analyze different facets of molecular generation performance. Following established practices, we use Vina
scores to assess the 3D complementarity between generated molecules and their target binding sites. Meanwhile, we evaluate
broader molecular properties using standard metrics (QED and SA), the domain-informed MRR, and physicochemical and
pharmacokinetic descriptors from QikProp, which are widely used in computer-aided drug design (CADD).

To clarify the key concepts underpinning our evaluation framework, we distinguish among drug potential, drug-likeness,
molecular reasonability, and chemical validity.

Previous studies have often focused too narrowly on geometric complementarity, overlooking other essential requirements a
drug-like molecule must fulfill. We introduce the term drug potential to describe the overall suitability of a molecule as a
drug candidate, encompassing not only binding affinity but also synthetic accessibility, chemical stability, pharmacokinetics
(absorption, distribution, metabolism, and excretion), and safety. These properties are intrinsically determined by molecular
structure and collectively influence whether a molecule can reach its intended biological target and survive the drug
development process.

The term drug-likeness is widely used in medicinal chemistry to reflect the multidimensional suitability of a molecule as a
drug candidate. Drug discovery and development (DDD), however, are deeply influenced by human expertise—including
implicit preferences for molecular scaffolds and nuanced, often tacit, domain knowledge that is difficult to formalize or
quantify. As a result, even experienced medicinal chemists struggle to define or approximate the true probability function
p(drug), which represents the likelihood that a molecule will become a viable therapeutic candidate. However, the machine
learning community often oversimplifies drug-likeness to metrics such as QED or Lipinski’s Rule of Five, which capture only
a narrow range of basic physicochemical properties. This simplification overlooks critical factors such as oral bioavailability,
metabolic stability, and toxicity risks (e.g., hERG liability).
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At a more fundamental level, a molecule must be chemically valid, meaning it adheres to basic chemical rules such as proper
valence and atom types. However, we observe that many model-generated molecules—while technically valid—contain
rare or unstable structural substructures that would be flagged by human medicinal chemists. These structures are neither
common nor practically accessible and thus fall outside the bounds of what is typically accepted in pharmaceutical research.
Despite the central importance of this distinction, prior work has not proposed an effective metric to differentiate between
chemically plausible structures and those that are formally valid but unrealistic. To fill this gap, we propose MRR, a
rule-based metric that reflects medicinal chemistry heuristics. It identifies implausible features such as unstable ring systems
and uncommon conjugation patterns, offering an interpretable and practical means of identifying unrealistic model outputs.

By explicitly defining these concepts and introducing MRR, we aim to guide molecular generation efforts toward phar-
maceutically meaningful directions, bridging the gap between computational outputs and real-world drug development
feasibility.

D. Limitations

One limitation of CIDD is its dependence on pretrained LLMs, which may occasionally introduce hallucinations in
underexplored chemical regions.

E. Detailed Prompts and Responses for LEDD

In this section, we present the detailed workflow of the CIDD framework, including the prompts and example responses for
each module.

Figure [f]illustrates the complete drug design pipeline. The Interaction Module first identifies key fragments within the
supporting molecule that interact with the protein pocket. This information is then utilized by the Design Module, which
devises strategies to replace uncommon or unfavorable fragments while preserving crucial interactions. Once a new molecule
is designed, the Evaluation Phase within the Design Module assesses its viability. Finally, the Reflection Module analyzes
the design process and outcomes, highlighting both strengths and areas for improvement.

Figure [7) presents the prompt and example response for the Interaction Analysis Module.
Figures[8]and Q] display the prompt and example response for the Design Module.

Figures[I0] [T1] and[12]illustrate the prompt and example responses for the Reflection Module.
Figures T3] and [T4] show the prompt and example response for the Selection Module.
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Figure 6. Workflow of CIDD framework
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Interaction analysis

/

The interaction analysis results are as follows: [PLIP(Docking(xg, P))]
The smiles string of the molecule is: [Xg]

[Important] Using the information from the interaction analysis and the fragment labels, based on the coordinates
matching, you need to identify the key fragment on the molecule that conduct the interaction with the protein pocket.
[Important] The format should be, which fragment can interact with which residue in the protein pocket. For example:
The fragment ‘ethanol’ can interact with the residue 'ASP123' in the protein pocket.

[Important] It should be at fragment level, instead of atom level. You need use the information from the fragment labels
to identify which atom belongs to which fragment.

Query

,@, Output [/p]:

-—
LLM, : ### **Key Fragments of Importance**
Based on the analysis, the following fragments are most crucial for interactions with the protein pocket:

1. **Aromatic and Hydrophobic Core:**
- [C]C1=C[C]=[C][C]=C1" (Atoms: 5-11)

hydrophobic pocket.

2. **Carbonyl (-C=0):**
-Atoms ‘12, 13"

interaction.

3. **Oxetane Ring:**
- [C]1[C][C]O1" (Atoms: 15-18)
- Key for hydrogen bonding with TYR246, providing excellent specificity and strength.

4. **Aromatic n-System:**
- [C]1=NN[C]=C1" (Atoms: 0-4)
- Engaged in rr-stacking with TYR90, stabilizing the ligand in the binding pocket.

5. **Halogenated Group:**
- 'FC1=CC(Cl)=[C][C]=[C]1" (Atoms: 23-30)
- Responsible for halogen bonding with PHE61, contributing to unique and specific interactions.

- Critical for hydrophobic interactions with ILE113, LEU142, and LEU147. This fragment anchors the molecule in the

- Vital for hydrogen bonds, particularly with GLY63 and GLU64. This fragment contributes to the specificity of the

Figure 7. Interaction analysis module
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Design - Part 1

- N

[Instruction]
This is the original molecule: [Xo]

This is the interaction analysis: [Ip]

Based on the interaction analysis, design modifications to the original molecule. Your job is scaffold hopping: change
the core scaffold structure while retaining key pharmacophores. Query

[Design Objectives]

1. The modified molecule should be more stable and easier to synthesize than the original molecule. The new
fragments should be common, stable and not weird.

2. The modified molecule should retain key properties of the original molecule, such as shape, size, and functionality.
3. The modified molecule should contain the key interaction types with the same residues as the original molecule.

4. The original molecule may contain uncommon or unstable fragments. Identify these fragments and replace them
with more common and stable counterparts, ensuring that the modifications retain key properties of the original
molecule, such as shape, size, and functionality. For instance, you might replace cyclohexadiene with benzene.

5. The modified molecule should be more like a drug candidate than the original molecule.

[Design Requirements]

1. Do not modify the molecule too much.

2. Please only give the modification steps, do not generate smiles by yourself. We will use another agent to generate
the new molecule based on your design.

[Experience Summary]
We have done some modifications before. You can learn from the previous designs and reflections to make better
modifications.

Here is the summary of the previous designs and reflections: [ R]

Now, give us the modification suggestions and requirements.

W‘ﬁ Output [D;]:

&
-— ### **Step 1: Core Scaffold Replacement**
LLMp i **Unstable or Uncommon Scaffold.**
- The original scaffold contains an oxetane ring (‘[C]1[C][C]O1°), which, while beneficial for solubility and hydrogen
bonding, can be chemically unstable under metabolic conditions and is synthetically challenging.

**Proposed Modification:**
- Replace the oxetane ring with a **tetrahydrofuran (THF) ring**. THF is more stable, synthetically accessible, and retains
the ability to form hydrogen bonds via its oxygen atom. Importantly, it maintains a similar size, shape, and polarity.

### **Step 2: Optimize the Halogenated Region**

**Uncommon or Unstable Fragment:**

- The halogenated aromatic fragment (‘FC1=CC(Cl)=[C][C]=[C]1°) can contribute to metabolic instability or toxicity
(especially with chlorine) in some cases. The position and type of halogenation also determine interaction strength.

**Proposed Modification:**

- Replace the chlorine atom (*-CI’) in the halogenated ring with a trifluoromethyl group (*-CF3°), which is metabolically
more stable and provides similar hydrophobic character and electronic properties to maintain halogen-bonding
interactions. The fluorine atom can remain unaltered.

### **Step 3: Revise the Aromatic Core**

**Uncommon or Unstable Fragment:**

- The core ring [C]C1=C[C]=[C]J[C]=C1 " is a polycyclic conjugated system prone to oxidative metabolism. While it
provides hydrophobicity and anchors the molecule, replacing it with a more common aromatic fragment (e.g., phenyl) can
reduce metabolic liabilities without compromising interactions.

**Proposed Modification:**
- Replace [C]C1=C[C]=[C][C]=C1" with **a phenyl ring (benzene)**. Phenyl rings retain hydrophobicity and size while
reducing the likelihood of oxidation and increasing synthetic accessibility.

Figure 8. Design Module
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Design - Part 2

o \

[72 Output [D4]:

— i ### **Step 4: Replace the 1,2,4-Triazine Ring**

**Uncommon or Unstable Fragment:**
- The [C]1=NN[C]=C1" (1,2,4-triazine ring) involved in n-stacking with TYR90 can be retained, but this structure is not
very common in drug-like scaffolds and may pose synthetic challenges.

**Proposed Modification:**
- Replace the 1,2,4-triazine ring with a **pyridine ring (C5H5N)**. Pyridine maintains aromaticity and hydrogen bond
acceptor potential (via the nitrogen atom) for n-stacking but is more drug-like and easier to synthesize.

### **Step 5: Simplify Linker Chains**

**Uncommon or Unstable Fragment:**

- The linker fragment connecting the oxetane ring and other parts of the molecule may introduce unnecessary
flexibility, which can lead to entropic penalties upon binding.

**Proposed Modification:**
- Shorten the linker chain by removing or simplifying alkyl groups. Use fewer methylene groups where applicable to
reduce flexibility while maintaining shape and size for proper binding.

### **Summary of Modifications**

1. **Oxetane Ring (Unstable/Uncommon):** Replace with **THF ring™* to improve stability and synthetic accessibility
while retaining hydrogen-bonding capability.

2. **Halogenated Aromatic Ring (Metabolic Liability):** Replace chlorine (*CI) with **trifluoromethyl group (‘CF3’)** to
improve metabolic stability while maintaining hydrophobic interactions and halogen bonding.

3. **Polycyclic Aromatic Core (Oxidative Risk):** Replace [C]C1=C[C]=[C][C]=C1" with a **phenyl ring (benzene)™* to
reduce metabolic liability while retaining hydrophobicity.

4. **1,2,4-Triazine Ring (Uncommon Scaffold):** Replace with a **pyridine ring** to retain r-stacking and hydrogen-
bond acceptor potential while improving drug-likeness.

5. **Flexible Linkers (Entropic Penalty):** Simplify and rigidify linker regions by shortening alkyl chains, reducing
flexibility.

This is the original molecule: [Xg]

This is the modification designed by the design expert: [D1] 7

Change the molecule structure based on the modification designed by the design expert. Importantly, the modified
molecule should be valid and make sense in the context of medicinal chemistry. Query

Now please only return the smiles string of the generated molecule. The smiles string should be enclosed in a pair
of $$$. For example: $$$cccc$$$

[~ .
' ﬁ Output [x4]:
G— $3$$C1=CC(C(F)(F)F)=C(C(=O)NC(C2CCOC2)NC(=0)C3=CC=CN3)C=C1$$$
LLMp

Figure 9. Design Module
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Reflection - Part 1

(

[Instruction]

This is the original molecule structure: [Xg]
This is the interaction analysis of this molecule and the protein pocket: [Ig] Query

This is the modification design generated by you: [D1]
This is the molecule structure designed based on your modification: [x1]
This is the interaction analysis generated by interaction export agent: [l4]

Previously, we asked you to modify a molecule to get a new molecule that binds better to the protein pocket. We
analyzed the binding of the new molecule to the protein pocket and put it together with the binding before the
modification for comparison.

Based on these analyses, you need to reflect on the previous modification and provide feedback on the design.
Besides, we hope you can find out which fragments inside the structure of these two molecules are useful for binding
to the protein pocket.

Please use critical thinking to analyze, pointing out both the good and the bad points. Your reflection is:

Al output [R]:
&
-— ### **Strengths of the Modifications**
LLMg 1. **Improved Stability and Synthetic Accessibility:**

- Replacing the **oxetane ring** with a **tetrahydrofuran (THF) ring** is a commendable adjustment. THF rings are
more stable under metabolic conditions, while retaining key hydrogen-bonding interactions and similar steric bulk.
This was a sensible change that aligns well with drug-likeness principles.

- Removing the **chlorine atom** in favor of a **trifluoromethyl (CF3) group** was another thoughtful modification.
The CF3 group improves metabolic stability and reduces potential toxicity from reactive halogens, while maintaining
the original hydrophobicity and shape.

2. **Retention of Key Interaction Modes:**

- The redesigned molecule retains critical interactions such as hydrogen bonding with HIS117 and ARG152,
hydrophobic interactions with HIS60, LEU147, and PHE 188, and ri-stacking with TYR90. These interactions are
crucial for binding affinity and ensure the molecule continues to engage the protein pocket effectively.

- The **pyridine ring™* (replacing the less common 1,2,4-triazine ring) aligns better with drug-likeness rules while
maintaining hydrogen bonding and hydrophobic capabilities. This substitution strengthens the molecule's
pharmacokinetic prospects.

3. **Refinement of Scaffolds and Simplification:**

- Simplifying the polycyclic aromatic core into a **benzene ring** was a reasonable modification to reduce oxidation-
prone elements. This ensures the molecule is more stable and synthetically tractable without losing significant
hydrophobic interactions.

### **Weaknesses of the Modifications**
1. **Reduction in Docking Score:**

- The docking score decreased from **-11.76 (original molecule)** to **-9.215 (modified molecule)**, indicating a
clear drop in binding affinity. While the modified molecule retains key interactions, some critical binding contributions
were inadvertently weakened during redesign. The TEF reduction suggests a loss of key complementary contacts
between the ligand and protein pocket.

2. **Over-Simplification of the Aromatic Core:**

- Replacing the conjugated aromatic system ([C]C1=C[C]=[C][C]=C1°) with a simple **benzene ring** reduced the
hydrophobic surface area and n-electron system available for interactions. Consequently, hydrophobic interactions
with residues like TYR90, ILE113, and LEU142 were diminished, and the molecule lost some of its ability to stabilize
key mi-interactions within the pocket.

3. **Unutilized Potential of the Trifluoromethyl Group:**

- While the trifluoromethyl (CF3) group improved metabolic stability, it did not directly contribute to binding
interactions within the protein pocket. This functional group occupies space but does not engage with any specific
residues, effectively adding to molecular weight without enhancing binding. A better-placed or functionally active
replacement could have yielded greater interaction strength.

14
Figure 10. Reflection Module
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Reflection - Part 2

-

-

T

LLMg

Output [R4]:

4. **Reduced Hydrogen Bonds:**

- The original molecule formed **multiple strong hydrogen bonds**, particularly with residues such as GLY63,
GLU64, and TYR246 via its oxetane ring and carbonyl group. These hydrogen bonds were either weakened or lost in
the redesign, with new hydrogen bonds (forming with HIS117 and ARG 152) failing to fully compensate for this
depletion.

5. **Flexibility in the THF Ring:**

- While the THF ring is more stable than the oxetane ring, it likely introduces greater flexibility due to its sp3-
hybridized carbons. This flexibility may lead to entropic penalties upon binding, making the molecule less efficient in
achieving a preorganized, bioactive conformation.

6. **Over-Reliance on Hydrophobic Interactions:**

- Similar to the original molecule, the modified structure still relies heavily on **hydrophobic interactions™* for binding
(e.g., HIS60, TYR90, LEU147). Hydrophobic interactions are less specific than polar or ionic interactions, which are
critical for selectivity and affinity. By not introducing additional polar groups, the redesign missed an opportunity to
improve overall binding specificity.

### **Comparison of Binding Fragments**
#### **Original Molecule:**
1. **Oxetane Ring (Lost in the Redesign):**

- Forms key hydrogen bonds with TYR246 in the binding pocket, contributing significantly to specific and strong
ligand binding. Its removal weakened overall binding affinity.

2. **Conjugated Hydrophobic Core ("[C]C1=C[C]=[C][C]=C1"):**

- Provides extensive hydrophobic and ri-stacking interactions with residues such as ILE113, LEU142, and TYR90.
Replacing this rich aromatic structure with a benzene ring reduced the hydrophobic and r-electron contribution to
binding.

3. **Halogenated Aromatic Ring (‘FC1=CC(Cl)=[C][C]=[C]1’):**

- Engages the protein via halogen bonding with PHE61, adding specificity to binding interactions. Replacing chlorine

with CF3 abolished some halogen bonds, weakening protein-ligand complementarity.

#### **Modified Molecule:**
1. **THF Ring (Introduced):**

- Retains the ability to form hydrogen bonds (e.g., with ARG152). However, its introduction has caused greater
flexibility and entropic penalties that may offset its stabilizing contributions.
2. **Trifluoromethyl Group (CF3, Introduced):**

- Metabolically stable and hydrophobic but does not directly interact with the protein. Its placement on the aromatic
ring adds molecular weight but no functional enhancement to binding.
3. **Pyridine Ring (Introduced):**

- Maintains hydrogen-bonding with HIS117 and interacts hydrophobically with HIS60, performing well as a
replacement for 1,2,4-triazine. Though not as inherently diverse in interaction opportunities as its predecessor, it
improves the drug-likeness of the molecule.

4. **Benzene Ring (Simplified):**

- While it retains some hydrophobic interaction capability, this fragment no longer engages residues like TYR90 or

PHE 188 as robustly as the original conjugated aromatic system. This reduced binding affinity.

Figure 11. Reflection Module
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Reflection - Part 3

7

&F

LLMg

Output [Ry]:

### **Key Fragments Retained or Lost for Binding**

**Critical Retained Fragments:**

1. **Pyridine Ring** for r-stacking and hydrogen bonding with TYR90 and HIS117.
2. **Hydrogen Bonding Carbonyl Group** interacting with HIS117 and ARG152.

**Critical Fragments Lost:**

1. **Oxetane Ring™* contributed unusually strong hydrogen bonds to TYR246, which were lost in the redesign.

2. **Conjugated Hydrophobic Core** ensured multisite hydrophobic interactions and r-stacking with residues like
LEU142 and TYR90.

3. **Halogenated Aromatic Ring** provided halogen bonds with PHE61, contributing unique specificity lost in the
redesign.

### **Suggestions for Inprovement**
1. **Reintroduce Hydrogen Bonding Groups:**

- Add back polar fragments (e.g., hydroxyl, amide groups) to increase hydrogen-bonding capacity with residues like
TYR246, GLY63, and GLU64.

2. **Revisit the Aromatic Core:**
- Instead of oversimplifying the hydrophobic core to benzene, consider a polycyclic aromatic or heterocyclic system
to balance hydrophobicity and metabolic stability.

3. **Optimize Trifluoromethyl Group Placement:**
- Move or replace the CF3 group with a fragment that directly engages residues in the protein pocket (e.g., a
difluorophenyl or hydrophilic substituent).

4. **Rigidify the THF Ring:**
- Lock the THF ring into a constrained system (e.g., fused bicyclic rings) to reduce flexibility and entropic penalties.

### **Conclusion™*

The modifications resulted in a molecule that is synthetically and metabolically improved but less effective in binding
to the protein pocket, as indicated by the diminished docking score. While retaining important interactions, the
redesign lost too many advantageous fragments (e.g., oxetane, conjugated aromatic core). Future optimizations
should aim to restore lost interactions, improve hydrogen bonding, and balance hydrophobicity with polar contacts for
stronger and more specific binding.

Figure 12. Reflection Module
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Selection - Part 1

-~

[Instruction]

Given a protein pocket and a number of different molecules, | need you to find a molecule that is best suited to
bind this protein pocket. We will provide you with interaction reports for each molecule and protein pocket and
ask you to make choices based on this information. You should consider both the binding analysis and whether
the molecule has potential to be a real drug. You should output the reason and the smiles string of the chosen
molecule. The smiles string should be enclosed in a pair of $$$. For example: ...(The reason) The chosen smiles

is: $$8CCO$$$

This is the molecule structure: [Xp]

This is the interaction analysis of this molecule and the protein pocket: [In]

This is the molecule structure: [Xm]
This is the interaction analysis of this molecule and the protein pocket: [Im]

This is the molecule structure: [Xp]
This is the interaction analysis of this molecule and the protein pocket: [Ip]

LLMg

N

2

Query

\

Please think step by step:
o=
.@,3 The chosen molecule is:

=C(C1=CC=C(C=C1)C2=CC=CC=C2)N(C3CCOC3)C(NC4=C(F)N=CC=C4)=0
The docking score of the chosen molecule is: -12.472
The reason for choosing the molecule is: To select the best molecule for binding to the
protein pocket, we will step through the following considerations:

### **Step 1: Review Docking Scores**

The docking score is a key metric indicating the binding affinity between a molecule
and the protein pocket. Lower docking scores (more negative values) suggest stronger
binding. The docking scores for the respective molecules are as follows:

1. Molecule 1: -10.148

2. Molecule 2: -10.3

3. Molecule 3: -12.472

From this, **Molecule 3**, with the best score of **-12.472**, has the strongest binding
affinity among the candidates.

### **Step 2: Analyze Interaction Profiles**

Building off the docking scores, we now consider the rich interaction profiles of each
molecule. A molecule that forms diverse interactions will often bind more robustly and
specifically to the protein pocket.

#### **Molecule 3: Interaction Highlights**

- **Hydrophobic Interactions:** Strong and multiple hydrophobic interactions with
HIS60, TYR90, LEU147, and LEU149, anchored by the aromatic benzene ring.

- **Hydrogen Bonds:** Forms strong hydrogen bonds with key residues (e.g., SER150,
ARG152). The interaction with SER150 (1.99 A) and TYR246 (2.13 A) are particularly
stabilizing.

- **r-Stacking:** Strong ni-stacking with TYR90 (T-shaped geometry).

- **1-Cation Interactions:** Robust r-cation interaction with ARG152 (3.85 A),
stabilized further by ideal offset alignment (1.32 A).

- **Halogen Bonds:** Two halogen bonds with GLU189 (3.84 A) and ASN237 (3.40 A)
provide an additional layer of interaction, making this molecule unique in its interaction
diversity.

Figure 13. Selection Module

17



Submission and Formatting Instructions for ICML 2025 GenBio Workshop

,@,3 “*Key Strengths:**
== | - The interaction diversity and strength of Molecule 3 far surpass other molecules,
LLMs leveraging hydrophobic forces, hydrogen bonding, r-stacking, r-cation interactions, and
halogen bonding.
- The molecule effectively anchors itself to both polar and nonpolar regions, ensuring
specificity for the protein pocket.

### **Step 3: Assess Drug-Like Properties**

While binding affinity is crucial, the molecule must also exhibit potential as a drug.
Properties relevant to drug-likeness include:

- **Hydrophobic Components:** Ensure solubility and stability for membrane diffusion.

- **Hydrogen Bonding Groups:** Contribute to specificity and bioactivity.

- **Halogen Incorporation:** Enhances membrane permeability and metabolic stability.
- **Compact, Non-Bulky Structure:** Ensures the molecule fits within the protein pocket
without steric clashes.

For Molecule 3:

- The combination of aromatic rings, amide groups, and fluorine atoms supports
balanced hydrophobic and polar properties, increasing stability and bioavailability.
- The inclusion of halogens enhances drug-likeness further.

Other molecules lack some features of Molecule 3. For example:

- Molecule 2 lacks halogen bonds and achieves a lower affinity score.

- Molecule 1 have good binding but lack the breadth of interactions seen with Molecule
3.

### **Step 4: Final Recommendation**

Based on docking score, interaction diversity, and drug-likeness potential, **Molecule 3**
is the best candidate. Its strong binding affinity (-12.472), balanced polar and nonpolar
interactions, and drug-like properties make it an excellent starting point for further
optimization.

### **Chosen Molecule**

**Reason:** Molecule 3 exhibits the highest docking score, with diverse interaction types
(hydrophobic, hydrogen bonding, r-stacking, r-cation, and halogen bonding) that secure

it in critical regions of the protein pocket. Additionally, it offers promising drug-like
features such as halogen incorporation and a well-optimized molecular structure.

**Selected SMILES String:**
$$$0=C(C1=CC=C(C=C1)C2=CC=CC=C2)N(C3CCOC3)C(NC4=C(F)N=CC=C4)=0$%$

Figure 14. Selection Module

F. Algorithm for MRR and AUR

The complete calculation process for assessing the reasonability of a molecule is outlined in Algorithm 1]
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Algorithm 1: Evaluation of Molecular Reasonability

Input: Molecule object (mol)

Output: Molecular Reasonability (MRR) and Atom Unreasonable Ratio (AUR)
Step 1: Detect Carbonyl and Imine Group Carbons

Initialize an empty list for carbonyl/imine carbons.

foreach bond in mol do

if bond is double and one atom is carbon, the other is oxygen or nitrogen then
| Record the carbon atom in carbonyl/imine groups.

Step 2: Identification of Ring Systems

Identify all ring structures and their corresponding atom indices within mol.
Calculate the number of atoms in each ring.

foreach ring in the molecule do

if the ring shares one or more atoms with another ring then
| Group the connected rings into a single ring system.

Step 3: Evaluation of Molecular Reasonability
Exclude any atoms previously identified as part of carbonyl or imine groups.
Classify the remaining carbon atoms in each ring system as follows:

* sp? hybridized: Aromatic or unsaturated carbons.
s Non-sp? hybridized: Saturated carbons.

foreach ring system in the ring systems do

if the ring system contains multiple rings and all carbon atoms are non-sp® then
Mark the molecule as unreasonable.
Add the atoms to the unreasonable atom list.

foreach ring system in the remaining ring systems do

foreach ring in the ring system do

if all carbon atoms within the ring are consistent in hybridization (either all sp? or all non-sp?) then
| Mark the ring as reasonable.

else
| Add the ring to the remaining ring list.

while the remaining ring list is not empty do

foreach ring in the remaining ring list do

Exclude atoms that have already been classified as reasonable.

if all remaining carbon atoms are consistent in hybridization (either all sp? or all non-sp®) then
| Mark the ring as reasonable.

if no new reasonable rings are identified then
Mark the molecule as unreasonable.

Add the carbon atoms in the remaining rings to the unreasonable atom list.
| Exit the loop.

Calculate AUR as the ratio of unreasonable atom count to the total ring atom count.
Return MRR and AUR.

G. QikProp properties
The full set of properties used for the QikProp pass ratio analysis is presented in Table

The QikProp filter applied in the main text incorporates a comprehensive range of criteria provided by QikProp, including
“#stars”, “#amine”, “#amidine”, “#acid”, "#amide”, “#rotor”, "#rtvFG”, "mol_ MW", “dipole”, "SASA”, "FOSA”, "FISA”,
“PISA”, "WPSA”, “volume”, “donorHB”, “accptHB”, “dip?/V”’, ”ACXxDN-5/SA”, ”glob”, "QPpolrz”, "QPlogPC16”,
”QPlogPoct”, ”QPlogPw”, "QPlogPo/w”, ”QPlogS”, "CIQPlogS”, "QPPCaco”, "QPlogBB”, "QPPMDCK?”, ”QPlogKp”,
“IP(eV)”, "EA(eV)”, “#metab”, "QPlogKhsa”, ”PercentHumanOralAbsorption”, ”SAFluorine”, ”SAamideO”, "PSA”,
”#NandO”, and "RuleOfThree”.
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Table 3. QikProp Properties and Descriptors

Property or Descriptor Description Range or Recommended Values
Molecule name The molecule’s identifier derived from the title line in the input structure file. If no title
is provided, the file name is used.
#stars Count of descriptors or properties falling outside the 95% range for known drugs. A | 0-5
higher count indicates reduced drug-likeness.
#amine Total non-conjugated amine groups present in the molecule. 0-1
#amidine Number of amidine or guanidine functional groups in the structure. 0
#acid Quantity of carboxylic acid groups in the molecule. 0-1
#amide Count of non-conjugated amide groups. 0-1
#rotor Number of rotatable bonds that are neither trivial nor sterically hindered. 0-15
#1tvFG Total reactive functional groups present in the molecule, potentially affecting stability | 0 -2
or toxicity.
mol_ MW Molecular weight of the compound. 130.0 - 725.0
Dipole Calculated dipole moment of the molecule in Debye units. 1.0-12.5
SASA Solvent-accessible surface area (SASA) in square angstroms, measured with a probe of | 300.0 — 1000.0
1.4 A radius.
FOSA Hydrophobic part of the SASA, representing saturated carbon and attached hydrogen | 0.0 —750.0
atoms.
FISA Hydrophilic fraction of the SASA, encompassing polar atoms like nitrogen and oxygen. | 7.0 — 330.0
PISA SASA component attributable to w-systems. 0.0 — 450.0
WPSA Weakly polar component of the SASA, including atoms like halogens, phosphorus, and | 0.0 — 175.0
sulfur.
Volume Total solvent-accessible volume in cubic angstroms, determined with a 1.4 A radius | 500.0 —2000.0
probe.
donorHB Estimated number of hydrogen bonds donated to water in solution. 0.0-6.0
accptHB Estimated number of hydrogen bonds accepted from water. 2.0-20.0
Dip?/V Dipole moment squared divided by molecular volume, a key factor in solvation energy. | 0.0 -0.13
ACXDNU?/SA Cohesive interaction index in solids based on molecular properties. 0.0 -0.05
glob Descriptor measuring how close the shape of a molecule is to a sphere. 0.75-0.95
QPpolrz Predicted molecular polarizability in cubic angstroms. 13.0-70.0
QPlogPC16 Predicted partition coefficient between hexadecane and gas phases. 4.0-18.0
QPlogPoct Predicted partition coefficient between octanol and gas phases. 8.0-35.0
QPlogPw Predicted partition coefficient between water and gas phases. 4.0-45.0
QPlogPo/w Predicted partition coefficient between octanol and water phases. -2.0-6.5
QPlogS Predicted solubility of the molecule in water (log S, in mol/L). -6.5-0.5
CIQPlogS Conformation-independent prediction of water solubility (log S). -6.5-0.5
QPPCaco Predicted permeability through Caco-2 cells, in nm/s. <25 poor, >500 great
QPlogBB Predicted partition coefficient for brain/blood. -3.0-1.2
QPPMDCK Predicted permeability through MDCK cells, in nm/s. <25 poor, >500 great
QPlogKp Predicted skin permeability (log Kp). -8.0--1.0
IP(eV) Tonization potential calculated using PM3. 7.9-10.5
EA(eV) Electron affinity calculated using PM3. -09-1.7
#metab Predicted number of possible metabolic reactions. 1-8
QPlogKhsa Predicted binding affinity to human serum albumin. -1.5-1.5
HumanOralAbsorption Qualitative assessment of oral absorption: 1 (low), 2 (medium), or 3 (high).
PercentHumanOralAbsorption | Quantitative prediction of oral absorption percentage. >80% high, <25% poor
SAFluorine Solvent-accessible fluorine surface area. 0.0 -100.0
SAamideO Solvent-accessible surface area of amide oxygen atoms. 0.0-35.0
PSA Polar surface area, calculated for nitrogen, oxygen, and carbonyl groups. 7.0 -200.0
#NandO Total count of nitrogen and oxygen atoms. 2-15
RuleOfFive Number of Lipinski’s Rule of Five violations. Max 4
RuleOfThree Number of Jorgensen’s Rule of Three violations. Max 3
#ringatoms Count of atoms within molecular rings.
#in34 Number of atoms in 3- or 4-membered rings.
#in56 Number of atoms in 5- or 6-membered rings.
#noncon Number of ring atoms unable to form conjugated aromatic systems.
#nonHatm Count of heavy (non-hydrogen) atoms in the structure.
Jm Predicted maximum transdermal transport rate (ug cm~2 hr—1).

H. More Experiment Results

Based on the different criteria presented in Table[3] we provide additional pass ratio results in Table 4]

Filter 1 is identical to the QikProp filter used in the main text.
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Filter 2 removes some non-essential properties and focuses on well-defined physicochemical properties, including “#rtvFG”,
”QPlogS”, ”QPlogPo/w”, ”mol_-MW”, ”dipole”, "SASA”, "FOSA”, "FISA”, "IP(eV)”, "EA(eV)”, "#metab”, "PercentHu-
manOralAbsorption”, and "PSA”.

Filter 3 assesses molecular compliance with the "RuleOfFive” criterion. However, instead of allowing up to four violations
as typically recommended, this filter adopts a stricter definition, considering only molecules that fully comply (i.e., setting
the maximum allowable violations to zero).

Table 4. QikProp results for different methods with and without CIDD
Method  Filter 1  Filter2  Filter 3

Pocket2Mol
Original 29.58% 51.52% 89.58%
CIDD 56.97% 75.64% 92.24%

TargetDiff
Original 26.32% 48.20% 69.47%
CIDD 53.37% 75.60% 81.85%

DecompDiff
Original 29.04% 53.96% 55.14%
CIDD 37.54% 68.48% 65.64%

MOolCRAFT
Original 2237% 43.52% 66.45%
CIDD 3522% 63.23% 74.09%

I. More cases

More generated molecules from CIDD are presented below. For each case, we display the initial supporting molecule
derived from 3D-SBDD models alongside the final designed molecules produced by CIDD.
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Supporting molecule

CIDD output

Supporting molecule

CIDD output

OH O

od
H’“\I::J/

o
OH
ISR
H
HO m

LJOCCA

&
v

title: IDHP_HUMAN_40_452_0 title: IDHP_HUMAN_40_452_0 title: IDHP_HUMAN_40_452_0 title: IDHP_HUMAN_40_452_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -7.824 vina: -10. 106 vina: -7.941 vina: -9.66
OH OH
0l
HO' o HOP 0 H 'OH
tj:\m o HO OH
" v HO

title: NOSI_HUMAN_302_723_0
: Unreasonable
vina: -9.415

title: NOSI_HUMAN_302_723_0

: Reasonable

vina:

-10. 098

title: NOSI_HUMAN_302_723_0
: Unreasonable
vina: —8. 054

title: NOS1_HUMAN_302_723_0
: Reasonable
vina: -8.432

title: NOS1_HUMAN_302_723_0

OH
HN

title: NOSI_HUMAN_302_723_0

Myl

pes

title: NOSI_HUMAN_302_723_0

Hsz

title: NOSI_HUMAN_302_723_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -10. 069 vina: -10.22 vina: -9. 287 vina: -9.6
0 HO, OH 0 [}
H:N- 0. O u HO,
OH
Hi HO, HO,
(o]
o) 0

title: ABL2_HUMAN_274_551_0

title: ABL2Z_HUMAN_274_551_0

title: ABL2_HUMAN_274_551_0

title: ABLZ_HUMAN_274_551_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -10.007 vina: -10. 946 vina: -9.916 vina: -10.509
H
o o HO
OH

0

title: AKIBA_HUMAN_1_316_0

title: AKIBA_HUMAN_1_316_0

o
:

[4]
'OH
OH
OH
HO' lo]
\
'OH

title: NQOI_HUMAN_2_274_0

QT
N OH
HO
N?TS_&
5 HO H

title: NQO1_HUMAN_2_274_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -10.421 vina: -10. 778 vina: -8.37 vina: -9.24
HN
F QO HN 1
-‘ N HO
" OH HO o w o
~ HO. /L=N & N d N,
'OH
HO'
OH

title: NQOI_HUMAN_2_274_0
: Unreasonable
vina: —7.951

title: NQOI_HUMAN_2_274_0

: Reasonable

vina:

-9.51

title: PHP_SULSO_1_314_0
: Unreasonable
vina: -11.034

title: PHP_SULSO_1_314_0
: Reasonable
vina: -11.397
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Supporting molecule CIDD output Supporting molecule CIDD output
o
o, oH r’NH NH . o) OgOH
o
o N
HO' ~o " T\H N o 0
HO N~ " — \N)k/n
HO H OH H 0
title: title: title: BGLO7_ORYSJ_25_504_0 title: BGLO7_ORYSJ_25_504_0
PHKG1_RABIT_6_296_ATPsite_0 PHKG1_RABIT_6_296_ATPsite_0 : Unreasonable : Reasonable
: Unreasonable : Reasonable vina: -8.041 vina: -9.949
vina: —8. 548 vina: -8.727
5] HO
—OH S N
o o HO HO-J’ \:r H
Hi o HO
o
o ) — H,N’g‘a
title: CD3S_HUMAN_44_300_0 title: CD38_HUMAN_44_300_0 title: TNKS2_HUMAN_948_1162_0 | title: TNKSZ2_HUMAN_948_1162_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -7. 443 vina: -8.863 vina: -10. 284 vina: -10.974
HO, o F F
o
HO o ° OH _ HN’N -
o on o HN—=\ O e H
HO O o " N N n H 0, NHz
Hi
(LT B i

title: P2Y12_HUMAN_1_342 0
: Unreasonable
vina: —10. 463

title: P2Y12_HUMAN_1_342_0
: Reasonable
vina: -10. 674

title: HMD_METJA_1_358_0
: Unreasonable
vina: -9.259

title: HMD_METJA_1_358_0
: Reasonable
vina: —10. 458

S5

title: SQHC_ALIAD_1_631_0
: Unreasonable
vina: —14.278

o . 5D
B g o

title: SQHC_ALIAD_1_631_0
: Reasonable
vina: -17. 408

title: SQHC_ALIAD_1_631_0

: Unreasonable
vina: -13. 626

G
Oy

&

title: SQHC_ALIAD_1_631_0

title: BGAT_HUMAN_63_353_0
: Unreasonable

04

title: BGAT_HUMAN_63_353_0
: Reasonable

#

title: CHIB_SERMA_1_499_0
: Unreasonable

: Reasonable
vina: —13.825
) tl\
iH
title: CHIB_SERMA_1_499_0
: Reasonable

vina: -7.891 vina: -9.201 vina: -10. 676 vina: —13.113
ooy g O e P
H°~uzlxrf~ﬁ3 e ‘
HO 0 m\ﬁ’\) P
H

Hd

title: CHIB_SERMA_1_499_0
: Unreasonable
vina: -7.115

title: CHIB_SERMA_1_499_0
: Reasonable
vina: -8.719

HN~NH F
EJESEF:

title: NRIH4_HUMAN_258_486_0
: Unreasonable
vina: -10. 038

title: NRIH4_HUMAN_258_486_0
: Reasonable
vina: -11.021
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Supporting molecule

CIDD output

title: SDIA_ECOLI_1_171_0
: Unreasonable
vina: =11.019

Q

N

title: SDIA_ECOLI_1_171_0
: Reasonable
vina: =11.294

title: GSTP1_HUMAN_2_210_0
: Unreasonable
vina: =7.591

title: GSTP1_HUMAN_2_210_0
: Reasonable
vina: =8.725

OH H

H O, _NH;
oH

title: HDHA_ECOLI_1_255_0
: Unreasonable
vina: =-8.5

o]
HBN— HNH,

Sesge

title: HDHA_ECOLI_1_255_0
: Reasonable
vina: -8.515

Ses
o

title: IDHP_HUMAN_40_452_0
: Unreasonable
vina: -8.176

=

&

~

title: IDHP_HUMAN_40_452_0
: Reasonable

vina: =10.774

title: IDHP_HUMAN_40_452_0

: Unreasonable
vina: =7, 605

Qi h

' H
OH

title: IDHP_HUMAN_40_452_0
: Reasonable
vina: =11. 661

HO,
o
HO
H
HO

title: AKIBA_HUMAN_1_316_0
: Unreasonable
vina: =9.845

(¢
HO

<

title: AKIBA_HUMAN_1_316_0
: Reasonable
vina: =9.981

|
o]
Ho%

title: OLIAC_CANSA_1_101_0
: Unreasonable
vina: =7.631

title: OLIAC_CANSA_1_101_0
: Reasonable
vina: =8.866
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CIDD output

[

title: SDIA_ECOLI_1_171_0
: Unreasonable
vina: -8.52

hf){;

title: SDIA_ECOLI_1_171_0
: Reasonable
vina: =13.937

2

HO,

LAY

title: HDHA_ECOLI_1_255_0

title: HDHA_ECOLI_1_255_0

title: NOS1_HUMAN_302_723_0
: Unreasonable
vina: =11.943

: Unreasonable : Reasonable
vina: =7.709 vina: -8.778
o

E

title: NOSI_HUMAN_302_723_0
: Reasonable
vina: =12.979

0.

title: NRIH4_HUMAN_258_486_0

£

title: NRIH4_HUMAN_258_486_0

title: CPXB_BACMB_2_464_0
: Unreasonable
vina: =9.607

: Unreasonable : Reasonable
vina: —6.824 vina: =B.578
HO -
kY

title: CPXB_BACMB_2_464_0
: Reasonable
vina: =10.132

Quq

b

“X

title: P2Y12_HUMAN_1_342_0

]

O WO

title: P2Y12_HUMAN_1_342_0

title: SIR3_HUMAN_117_398_0
: Unreasonable
vina: =8.238

: Unreasonable Reasonable
vina: =7.75 vina: =16.253
0, OH
HO,
OH_
i

title: SIR3_HUMAN_117_398_0
: Reasonable
vina: =8, 331
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Supporting molecule  CIDD output Supporting molecule  CIDD output
o o o O HO. s

title: MCCF_ECOLX_1_344_0
: Unreasonable
vina: =8,726

title: MCCF_ECOLX_1_344_0
: Reasonable
vina: =8, 947

title: DIDH_RAT_1_319_0
: Unreasonable
vina: =8.26

title: DIDH_RAT_1_319_0
: Reasonable
vina: -8.722

QiR

title: IDHP_HUMAN_40_452_0
: Unreasonable
vina: =7.796

SRavH
)ﬁ

title: IDHP_HUMAN_40_452_0
: Reasonable
vina: =11. 383

.OH
ol

title: COAA_MYCTU_1_312_0
: Unreasonable
vina: =7.572

o . OH
HO H
OH

title: COAA_MYCTU_1_312_0
: Reasonable
vina: =8. 731

A

title: AKTI_HUMAN_1_137_0

o

title: AKT1_HUMAN_1_137_0

NH;

title: M3K14_HUMAN_321_678_0

Y )
L]

title: M3KI4_HUMAN_321_678_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.605 vina: =9.926 vina: =7.453 vina: =9, 209
OH OH

-

O

title: HMD_METJA_1_358_0

Seacgee

title: HMD_METJA_1_358_0

C\ﬂﬁo

title: CHIBI_ASPFM_39_433_0

<]
HO,
H
NH

title: CHIB1_ASPFM_39_433_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =7.825 vina: =8.55 vina: =8.054 vina: =10. 096
N H,
/ o) ! HO, oM
o, HoP o " H
OH I~
HO~d It :'N."( d d
4 OH N ih s

title: SIR3_HUMAN_117_398_0

title: SIR3_HUMAN_117_398_0

title: STR3_HUMAN_117_398_0

title: SIR3_HUMAN_117_398_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =7.93 vina: =10. 435 vina: =6.991 vina: =10. 758
HO.
" H
o

title: DYRK2_HUMAN_145_550_0
: Unreasonable
vina: =7.961

H

title: DYRK2_HUMAN_145_550_0
: Reasonable
vina: =8.399

NHz
S
I

title: NOS3_HUMAN_65_480_0
: Unreasonable
vina: =9. 583

#

title: NOS3_HUMAN_65_480_0
: Reasonable
vina: =10. 652

0,

o'd

title: DIDH_RAT_1_319_0
: Unreasonable
vina: =9. 165

ol
o

title: DIDH_RAT_1_319_0
: Reasonable
vina: =10. 631

HO,
Yoee
HO

title: DIDH_RAT_1_319_0
: Unreasonable
vina: =8.503

HO,
,(%fﬁi
H

title: DIDH_RAT_1_319_0
: Reasonable
vina: =8.895
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Supporting molecule  CIDD output Supporting molecule  CIDD output
OH 0
o P HO, W‘OH
rﬂ\/-><:%:rj:E:I:$_t§7’E:ﬂ 0, N H ’,1;iz:§
I % Hu)b
o
title: BACE2_HUMAN_76_460_0 title: BACEZ2_HUMAN_76_460_0 title: GRK4_HUMAN_1_578_0 title: GRK4_HUMAN_1_578_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.586 vina: =9.854 vina: =T7.158 vina: -8.93
Wo N om
H
OH H

title: F16P1_HUMAN_1_338_0
: Unreasonable
vina: =8.173

title: F16P1_HUMAN_1_338_0
: Reasonable
vina: =8, 633

Jea=
title: CPXB_BACMB_2_464_0

: Unreasonable
vina: =10. 201

M )
F o

.

HN

o \-\.a

title: CPXB_BACMB_2_464_0
: Reasonable
vina: -11.121

title: CAT_ECOLX_1_219_0

title: CAT_ECOLX_1_219_0

NHz
el
H
" HO o

title: BSD_ASPTE_1_130_0

O
&0

title: BSD_ASPTE_1_130_0

title: DFPA_LOLVU_2_314_0
: Unreasonable
vina: =7.208

title: DFPA_LOLVU_2_314_0
: Reasonable
vina: =8.581

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =9.838 vina: =10. 164 vina: =T7.492 vina: =8.786
o] H
o]
OH
W N
NNg N{)
o
H

title: RGI_RAUSE_1_513_0
: Unreasonable
vina: =10. 06

title: RGI_RAUSE_1_513_0
: Reasonable
vina: =11.978

=
ol
ok

SR

title: QPCT_HUMAN_33_361_0

title: QPCT_HUMAN_33_361_0

title: QPCT_HUMAN_33_361_0

title: QPCT_HUMAN_33_361_0

title: KSBA3_HUMAN_41_357_0
: Unreasonable
vina: =8.242

title: KS6A3_HUMAN_41_357_0
: Reasonable
vina: =-8.738

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.178 vina: =9.527 vina: =T7.531 vina: =8.356
:%éj
OH
N HO'
\ <
N
H
00 —-\ y /—N He
OH §

title: GUX1_HYPJE_18_451_0
: Unreasonable
vina: =7.25

title: GUXI_HYPJE_18_451_0
: Reasonable
vina: =8.375

title: AROE_THET8_1_263_0
: Unreasonable
vina: =8.741

!
HN,
o]
Bl
Z—OH
oH

title: AROE_THET8_1_263_0
: Reasonable
vina: =8.794

R A

title: UPPS_ECOLI_1_253_0
: Unreasonable
vina: =7.288

title: UPPS_ECOLI_1_253_0
: Reasonable
vina: =8.315

26



Submission and Formatting Instructions for ICML 2025 GenBio Workshop

Supporting molecule

CIDD output

Supporting molecule

CIDD output

title: CAT_ECOLX_1_219_0
: Unreasonable
vina: =9.836

e
Hi
title: CAT_ECOLX_1_219_0

: Reasonable
vina: =11.246

Og OH
o]

OH

L

title: ATS5_HUMAN_262_480_0
: Unreasonable
vina: =8.133

OH

O OH
:NH

(o]
NHz

title: ATS5_HUMAN_262_480_0
: Reasonable
vina: =8.863

title: NOS2_HUMAN_78_505_0
: Unreasonable
vina: =10. 504

w%:o

xR

title: NOS2_HUMAN_78_505_0
: Reasonable
vina: =11. 006

Y

i

H

title: NOS2_HUMAN_78_505_0
: Unreasonable
vina: =10.76

HO, H
H

Dass

title: NOS2_HUMAN_78_505_0
: Reasonable

vina: =12.037

title: BTRN_BACCI_2_250_0

%
vas

title: BTRN_BACCI_2_250_0

OH

M

title: ACE_HUMAN_650_1230_0

title: ACE_HUMAN_650_1230_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =4. 306 vina: =11.729 vina: =8, 564 vina: =10.503
H
o g 'H

HI
\—NH

title: ACE_HUMAN_650_1230_0
: Unreasonable
vina: =9. 498

title: ACE_HUMAN_650_1230_0
: Reasonable

vina: =10. 987

’“\v/”\Tfl\ﬁ N

title: ACE_HUMAN_650_1230_0
: Unreasonable
vina: -8.69

,nt;ini(\/\o :

title: ACE_HUMAN_650_1230_0

title: AKT1_HUMAN_1_137_0
: Unreasonable
vina: =11. 185

title: AKT1_HUMAN_1_137_0
: Reasonable
vina: =11.293

title: TBKI_HUMAN_1_303_0
: Unreasonable
vina: =7.693

: Reasonable
vina: =8.905
X
0
pe Al
H H
title: TBKI_HUMAN_1_303_0

: Reasonable
vina: -8.868

title: BAPA_SPHXN_30_402_0

: Unreasonable
vina: =7.681

'OH

title: BAPA_SPHXN_30_402_0
: Reasonable
vina: =8.683

O—

JVJL
HN O
d ‘\_0

title: BAPA_SPHXN_30_402_0
: Unreasonable
vina: =7.794

HaK

title: BAPA_SPHXN_30_402_0
: Reasonable

vina: =8.198
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Supporting molecule

CIDD output

Supporting molecule

Q
)
O HN
HO,
HO
H

title
PHKG1_RABIT_6_296_ATPsite_0
: Unreasonable

vina: =8.922

title:

PHKG1_RABIT_6_296_ATPsite_0
: Reasonable
vina: =9.205

title: BGLO7_ORYSJ_25_504_0
: Unreasonable
vina: =10. 446

CIDD output

title: BGLO7_ORYS]J_25_504_0
: Reasonable
vina: =10. 592

ﬁ

title: RGI_RAUSE_1_513_0
: Unreasonable
vina: =10. 484

o]
o
-giggfii:?—\ﬂi:)

title: RGI_RAUSE_1_513_0
: Reasonable
vina: =11.024

title: DPP2_HUMAN_27_492_0
: Unreasonable
vina: =9.855

HO

€

~

title: DPP2_HUMAN_27_492_0
: Reasonable
vina: =11, 224

25
%

title: CD38_HUMAN_44_300_0

e

title: CD3S_HUMAN_44_300_0

q

Q

PPN

title: PTGIS_HUMAN_20_500_0

Q

title: PTGIS_HUMAN_20_500_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8, 72 vina: =9.327 vina: =8.318 vina: =9.448
3 < '1'3
Hs NH;
o ~o -~
7 Sy e

title: XANLY_BACGL_26_777_0 title: XANLY_BACGL_26_777_0 vitle: PPIA_HUMAN_1_165_0 title: PPIA_HUMAN_1_165_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =9.053 vina: =9.483 vina: =8.777 vina: =10. 083

~~ H”j\ﬁj:l

title: PPIA_HUMAN_I_165_0
: Unreasonable
vina: =8, 023

o°
~o ’I‘N: ::: ™
H H
title: PPIA_HUMAN_1_165_0

: Reasonable
vina: =8, 605

H
HA o
5 -

title: HMD_METJA_1_358_0
: Unreasonable
vina: =8.349

o

E:):;i;jj:ﬂ
title: HMD_METJA_1_358_0

: Reasonable
vina: =9.593

Spea S

title: SQHC_ALIAD_I_631_0
: Unreasonable
vina: -11.51

o

title: SQHC_ALTAD_1_631_0
: Reasonable
vina: -14. 292

title: KS6A3_HUMAN_41_357_0
: Unreasonable
vina: =8.967

)CO’O)H
title: KS6A3_HUMAN_41_357_0

: Reasonable
vina: =11. 101
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Supporting molecule  CIDD output Supporting molecule  CIDD output
»g‘ e o i

title: KS6A3_HUMAN_41_357_0
: Unreasonable
vina: =9.414

title: KS6A3_HUMAN_41_357_0
: Reasonable
vina: =9.746

)

title: DYRKZ2_HUMAN_145_550_0

: Unreasonable

title: DYRK2_HUMAN_145_550_0
: Reasonable
vina: =9.337

Of"xm:

title: NRIH4_HUMAN_258_486_0

title: NRIH4_HUMAN_258_486_0

vina: =6.725

S

title: BACE2_HUMAN_76_460_0

HO HO
Oa NH
; H
N OH

title: BACEZ_HUMAN_76_460_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =3.528 vina: =14. 043 vina: =9. 145 vina: =9.806
N H o
o o o
N
N Hz HN Hz H_(])\N
/ o o

title: SDIA_ECOLI_1_171_0

title: SDIA_ECOLI_1_171_0

title: TRAR_RHIRD_I_234_0

Sars

0

title: TRAR_RHIRD_1_234 0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =10.997 vina: =13.15 vina: =8.935 vina: =12. 018
Q
: DG
OH
) o o
HO,
OH e
O

title: HDHA_ECOLI_1_255_0
: Unreasonable
vina: =9.845

title: HDHA_ECOLI_1_255_0
: Reasonable
vina: =9.957

o

title: UPPS_ECOLI_1_253_0

title: UPPS_ECOLI_1_253_0
: Reasonable
vina: =10. 031

0,

LA

title: IDHP_HUMAN_40_452_0

oy
<

title: IDHP_HUMAN_40_452_0

: Unreasonable
"5

vina: =7.717
title: ABLZ_HUMAN_274_551_0

F
HO,

title: ABL2_HUMAN_274_551_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.034 vina: =10. 368 vina: =10. 488 vina: =10. 776
F
O, OH
I 635;:E/:EEE;\E::]/ﬁ\E’ Jg?E;\
HOY
title: AKTI_HUMAN_1_137_0 title: AKT1_HUMAN_1_137_0 title: title:
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =10. 124 vina: =10.13 vina: =10. 487 vina: =10. 893
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Supporting molecule

CIDD output

Supporting molecule

CIDD output

o]
0 o © i OH
H HN, HO,
ot A
HO" "OH /N\
title: title: title: BGLO7_ORYSJ_25_504_0 title: BGLOT_ORYSJ_25_504_0
MURA_ECOLI_1_419_catalytic_0 MURA_ECOLI_1_419_catalytic_0 : Unreasonable : Reasonable
: Unreasonable : Reasonable vina: -8. 187 vina: =8. 434
vina: -8.295 vina: -9.241
O,_OH
/N o} 0, J o
o}
N H
0O
\A/\H ﬁ I }-NH H%/TN\ < g" )
H OH % OH

title: BGLOT_ORYSJ_25_504_0

title: BGLO7_ORYS]_25_504_0

title: PAC_ECOLX_27_846_0

title: PAC_ECOLX_27_846_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.028 vina: =9.632 vina: -8.228 vina: =8.313
HM"‘ 0
OH (o}
H "rii:l:foo ; HO—P—0H e
OH *g=NH o
g AN 2 l

8 HO
HO.
H w0 OH L

| oy

S
title: PAC_ECOLX_27_846_0 title: PAC_ECOLX_27_846_0 title: P2Y12_HUMAN_1_342_0 title: P2Y12_HUMAN_1_342_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -9.538 vina: -10.042 vina: -8.514 vina: -8.942
H HQ
0
i o
o " oL N HO,
Oy
HO (o]

title: EXGI_CANAL_41_438_0
: Unreasonable
vina: =9, 965

title: EXGI_CANAL_41_438_0
: Reasonable
vina: =10, 569

o

title: FKBIA_HUMAN_2_108_0
. Unreasonable
vina: =7.899

HO'

title: FKBIA_HUMAN_2_108_0
: Reasonable
vina: =8. 786

title: CHIB_SERMA_1_499 0
: Unreasonable
vina: =9.972

title: CHIB_SERMA_1_499_0
: Reasonable
vina: =10. 354

T
Ho=feon

A}(‘n
<
title: KSGA3_HUMAN_41_357_0

: Unreasonable
vina: =7.827

title: KS6A3_HUMAN_41_357_0
: Reasonable
vina: =8.545

title: SDIA_ECOLI_I_LT1_0
: Unreasonable
vina: =10, 933

title: SDIA_ECOLI_1_171_0
: Reasonable
vina: =11. 339

v’

title: GUX1_HYPJE_18_451_0
. Unreasonable
vina: =10, 767

title: GUXI_HYPJE_18_451_0
: Reasonable
vina: =12.3
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Supporting molecule

CIDD output

Supporting molecule

CIDD output

title: HDHA_ECOLI_1_255_0
: Unreasonable
vina: =8.511

title: HDHA_ECOLI_1_255_0
: Reasonable
vina: =9.995

title: ODBB_THETS8_1_324_0
: Unreasonable
vina: =9.002

title: ODBB_THETS_1_324_0
: Reasonable
vina: =9, 322

0,

A

o

o
HO’
0,

title: NOSI_HUMAN_302_723_0

title: NOSI_HUMAN_302_723_0

title: NOS1_HUMAN_302_723_0

title: IDHP_HUMAN_40_452_0 title: IDHP_HUMAN_40_452_0 title: CPXB_BACMB_2_464_0 title: CPXB_BACMB_2_464_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =8.039 vina: =9.819 vina: =9.196 vina: =12. 034
H H H
i HO N n
iHy

OH

title: NOS1_HUMAN_302_723_0

title: CAT_ECOLX_1_219 0

title: CAT_ECOLX_1_219_0

title: BSD_ASPTE_1_130_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =9.495 vina: =9,579 vina: =10, 062 vina: =10. 305
HO. HO,
HO.
0.1:]E::] O OH 2 H
0,
o o
oo | ~O5 || "
N
H HO

title: BSD_ASPTE_1_130_0

title: ABL2_HUMAN_274_551_0
: Unreasonable
vina: =10. 702

[+]
N
HO.

title: ABL2_HUMAN_274_551_0
: Reasonable
vina: =I11. 583

title: NQOI_HUMAN_2_274_0
: Unreasonable
vina: =9.262

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =9.2 vina: =13. 057 vina: =8.807 vina: =9.501
o o’
HO.

[:ES >
title: NQOI_HUMAN_2_274_0

: Reasonable
vina: =10. 424

H:N

title: BTRN_BACCI_2_250_0
: Unreasonable
vina: -8.786

OH
H;l 0
O
S
H:N

title: BTRN_BACCI_2_250_0
: Reasonable
vina: =8.951

title: NAGZ_VIBCH_1_330_0
: Unreasonable
vina: =7.206

HO,
H
®i§\?

title: NAGZ_VIBCH_1_330_0
: Reasonable
vina: =8. 307

title: AKTI_HUMAN_1_137_0
: Unreasonable
vina: =10.1

7
o

title: AKT1_HUMAN_1_137_0
: Reasonable
vina: =11. 478

title: AKTI_HUMAN_1_137_0
: Unreasonable
vina: =12. 405

%

title: AKTI_HUMAN_1_137_0
: Reasonable
vina: =13. (48

31




Submission and Formatting Instructions for ICML 2025 GenBio Workshop

Supporting molecule  CIDD output Supporting molecule  CIDD output
J Q

title: PAZIB_PIG_23_146_0

S

title: PAZ1B_PIG_23_146_0

OH
H
N

title:

title:

:_Lnreusonuble :_Reusonable PHKG1_RABIT_6_296_ATPsite_0 PHKG1_RABIT_6_296_ATPsite_0
vina: =8.391 vina: =10.029 : Unreasonable : Reasonable
vina: =10.937 vina: =13. 466
H WO
o HN H
Ho M H
:
HO H ;
LS S

title: M3KI4_HUMAN_321_678_0
: Unreasonable
vina: =8, 948

title: M3K14_HUMAN_321_678_0

: Reasonable
vina: =9, 001

title: M3K14_HUMAN_321_678_0
: Unreasonable
vina: =9, 44

title: M3K14_HUMAN_321_678_0
: Reasonable
vina: =9. 899

title: PTGIS_HUMAN_20_500_0

title: PTGIS_HUMAN_20_500_0

OH
(o]
o
H
H

title: PAC_ECOLX_27_846_0

title: PAC_ECOLX_27_846_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -7.955 vina: =9.193 vina: =7.907 vina: -8.704
H

N"‘
%

title: PAC_ECOLX_27_846_0
: Unreasonable
vina: =9.272

o

title: PAC_ECOLX_27_846_0

: Reasonable
vina: =9.421

HO'
0,

AT

title: TNKS2_HUMAN_948_1162_0
: Unreasonable
vina: =10.215

title: TNKS2_HUMAN_948_1162_0
: Reasonable
vina: =12.537

HO OH
C(\}w
o]

title: XANLY_BACGL_26_777_0

HO

title: XANLY_BACGL_26_777_0

0
OH

e

title: PPIA_HUMAN_1_165_0

i

title: PPIA_HUMAN_1_165_0

: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: -6.991 vina: -8.994 vina: =9.243 vina: =9.435
5] EP HO He
H H
OH O o o
HO. N OH
t t H

title: PPTA_HUMAN_I_165_0
: Unreasonable
vina: =7.765

title: PPTA_HUMAN_1_165_0

: Reasonable
vina: =8.447

title: P2Y12_HUMAN_1_342_0
: Unreasonable
vina: =8.744

title: P2Y12_HUMAN_1_342 0
: Reasonable
vina: =10.352
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Supporting molecule  CIDD output Supporting molecule  CIDD output
Ho—g-OHO . o ﬂ o HO, o R N+ o o
) r)%ED o oH L T i = : " O OH OH )

title: P2YI2_HUMAN_1_342_0

: Unreasonable

OH

title: P2Y12_HUMAN_1_342_0

Reasonable

title: EXG1_CANAL_41_438_0

: Unreasonable

title: EXGI_CANAL_41_438_0

: Reasonable

vina: -8.31 vina: =9.509 vina: =10. 072 vina: -10.17
HO_° [o]
u‘?\% HO H H o]
OH (o]
HO.
0 Ho-g” H
+. 0. o N N. _
o
HO o

title: MENE_BACSU_2_486_0
: Unreasonable
vina: =8.029

title: MENE_BACSU_2_486_0
: Reasonable
vina: =8.629

title: SQHC_ALTAD_1_631_0
¢ Unreasonable
vina: =9.519

title: SQHC_ALIAD_1_631_0
: Reasonable

vina: =12.291

title: CHIB_SERMA_1_499_0
: Unreasonable

vina: =7.389

HNn: 'OH
—,

title: CHIB_SERMA_1_499_0
: Reasonable

vina: =9. 388

H l
HR‘J_
o
title: SIR3_HUMAN_117_398_0

: Unreasonable
vina: =10. 258

title: SIR3_HUMAN_117_398_0
: Reasonable
vina: =10. 419

Hoo

=y
R0

title: DYRK2_HUMAN_145_550_0 title: DYRK2_HUMAN_145_550_0 title: NOS3_HUMAN_65_480_0 title: NOS3_HUMAN_65_480_0
: Unreasonable : Reasonable : Unreasonable : Reasonable
vina: =7.898 vina: =49.098 vina: =9.821 vina: =10. 535
F H OH
H oy

%

title: NRIH4_HUMAN_258_486_0
: Unreasonable
vina: -8.974

title: NR1H4_HUMAN_258_486_0
: Reasonable
vina: =9.969

title: BACE2_HUMAN_76_460_0
: Unreasonable
vina: =9, 302

A
o
d
W0
H;N

title: BACE2_HUMAN_76_460_0
: Reasonable
vina: =9. 947

title: BACEZ_HUMAN_76_460_0
: Unreasonable
vina: =9.473

OH OH
E::]:j:tq&;:]4*\3;;;§
Hy
title: BACEZ_HUMAN_76_460_0

: Reasonable
vina: =9.828

302
title: SDIA_ECOLI_I_171_0

: Unreasonable
vina: =8.889

title: SDIA_ECOLI_1_171_0

: Reasonable
vina: =13. 779

title: TRAR_RHIRD_1_234_0

: Unreasonable
vina: -10. 182

title: TRAR_RHIRD_1_234_0

: Reasonable
vina: =13.112

.

title: TRAR_RHIRD_I_234_0
: Unreasonable
vina: =9.69

title: TRAR_RHIRD_1_234_0
: Reasonable
vina: -15. 856
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Supporting molecule

CIDD output

Supporting molecule

CIDD output

HO™ o
O /”\Tf

N
\NH

title: POL_FOAMV_861_1060_0
: Unreasonable
vina: =7.797

title: POL_FOAMV_861_1060_0
: Reasonable
vina: =-8.475

OH HO

H \_NHz
(Y

title: HDHA_ECOLI_1_255_0
: Unreasonable
vina: -8.698

OH
O-f-O

HzN

title: HDHA_ECOLI_1_255_0
: Reasonable
vina: =9.535
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