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Abstract

Structure-guided molecular generation plays a
key role in early drug discovery by designing
compounds for specific protein targets. While
recent 3D generative models improve docking
scores, they often generate chemically implau-
sible structures outside drug-like space. To ad-
dress this, we introduce the Molecule Reason-
able Ratio (MRR), a new metric for assessing
structural plausibility. We propose the Collabora-
tive Intelligence Drug Design (CIDD) framework,
combining 3D interaction modeling with large
language models (LLMs) and Chain-of-Thought
reasoning. CIDD generates spatially compatible,
drug-like, and synthesizable molecules. On the
CrossDocked2020 benchmark, it improves met-
rics like QED, SA, and MRR, and raises the suc-
cess rate—from 15.72% to 34.59%—by balanc-
ing binding affinity and drug-likeness, showing
the power of integrating geometry with symbolic
reasoning.

1. Introduction
Structure-based drug design (SBDD) enables the genera-
tion of compounds tailored to protein binding sites, and re-
cent 3D generative models—such as autoregressive methods
(e.g., AR (Luo et al., 2021), Pocket2Mol (Peng et al., 2022))
and diffusion-based approaches (e.g., TargetDiff (Guan
et al., 2023), MolCRAFT (Qu et al., 2024))—have made
notable progress. However, these models often produce
chemically implausible structures, including overly fused
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rings and unstable scaffolds (Figure 2a), which may boost
docking scores but harm drug-likeness and stability.

To quantify this issue, we introduce the Molecular Rea-
sonability Ratio (MRR), which measures the fraction of
chemically reasonable molecules relative to drug-like stan-
dards. Existing models show low MRRs (e.g., TargetDiff:
37.8%, MolCRAFT: 58.5%) compared to FDA-approved
drugs (85.9%), revealing a major gap. While some mod-
els (e.g., TAGMol) incorporate drug-likeness optimization
(e.g., QED (Bickerton et al., 2012)), they still underperform
in overall reasonability. In contrast, LLMs (e.g., GPT-4)
achieve high MRRs (97.5%) due to their broad chemical
knowledge, but lack the spatial awareness for affinity-driven
generation.

We propose CIDD (Collaborative Intelligence for Drug De-
sign), a framework that integrates 3D generative models
with large language models (LLMs) to combine geomet-
ric interaction modeling with chemical reasoning. Rather
than generating final molecules, 3D models provide spa-
tially meaningful proposals, which are refined through LLM-
driven Chain-of-Thought (CoT) reasoning across special-
ized modules—Interaction Analysis, Design, Reflection, and
Selection. This modular architecture enables interpretable,
chemically plausible design aligned with medicinal chem-
istry workflows.

Evaluated on CrossDocked2020 (Francoeur et al., 2020),
CIDD improves the overall success rate—from 15.72% to
34.59%—while consistently enhancing QED, SA, MRR,
and QikProp (Schrödinger, LLC, 2025) compliance.

Key contributions:

• Problem Identification: We identify structural irra-
tionality in 3D models and introduce MRR to quantify
drug-like plausibility.

• CIDD framework: We present the first unified ap-
proach combining spatial modeling with LLM-based
reasoning for molecule generation.

• State-of-the-art results: CIDD improves drug-
likeness and affinity, demonstrating the power of col-
laborative AI in molecular design.
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2. Preliminaries
2.1. Structure-Based Drug Design

Structure-based drug design (SBDD) aims to generate
molecules x that bind to a given protein pocket P.
Recent deep generative methods include CVAE-based
LiGAN (Ragoza et al., 2022), autoregressive models like
AR (Luo et al., 2021) and Pocket2Mol (Peng et al., 2022),
and diffusion models such as TargetDiff (Guan et al., 2023),
IPDiff (Huang et al., 2024), and DecompDiff (Guan et al.,
2024). TAGMol (Dorna et al., 2024) introduces gradient-
based optimization during generation. Fragment-based ap-
proaches like DrugGPS (Zhang & Liu, 2023) and Mol-
CRAFT (Qu et al., 2024) leverage modular representations
or Bayesian flows. These methods typically produce inter-
mediate 3D point clouds or graphs that are later converted
into chemically valid molecules.

2.2. Large Language Models

Large language models (LLMs) such as GPT-4 (Achiam
et al., 2023), LLaMA (Touvron et al., 2023), and Chat-
GLM (GLM et al., 2024) have shown strong capabilities in
language, coding, and reasoning tasks. Their application to
drug discovery is growing (Chakraborty et al., 2023), with
models like ChatDrug (Liu et al., 2024) enabling molec-
ular generation and editing via natural language. How-
ever, pocket-conditioned molecular design remains chal-
lenging, as LLMs struggle to capture complex 3D spatial
and chemical features inherent in protein-ligand interac-
tions—information that goes beyond what can be conveyed
in pure textual form.

3. Methods
3.1. Evaluating the Gap Between Generated Molecules

and Real Drugs

Drug-likeness is a multidimensional property representing
the probability p(drug) that a molecule reaches its biolog-
ical target—an assessment distinct from binding affinity.
Popular proxies such as QED (Bickerton et al., 2012) and
Lipinski’s Rule of Five (Lipinski et al., 2012) face two key
limitations. First, legacy bias: these metrics were calibrated
on historical chemical space and often assign high scores
to structurally implausible molecules produced by modern
generative models. Second, oversimplification: QED uses
only seven descriptors and poorly distinguishes molecules
in DrugBank (Knox et al., 2024), whose average QED is
below 0.5.

To address these limitations, we propose a two-tiered eval-
uation framework. The first tier, structural reasonability,
assesses medicinal chemistry features such as aromaticity,
ring stability, and hybridization consistency. The second tier

evaluates physicochemical and pharmacokinetic suitabil-
ity through ADME/T-related descriptors. Together, these
tiers offer a more robust evaluation of generative models
by emphasizing both chemical plausibility and therapeutic
relevance.

Molecular Reasonability Ratio (MRR). MRR is a rule-
based metric designed to detect structural inconsistencies
in generated molecules, particularly failures in ring conju-
gation that deviate from typical medicinal chemistry pat-
terns. It analyzes hybridization states of ring atoms, ex-
cluding fully aromatic or fully saturated rings. After re-
moving peripheral substituents, the molecule is flagged if
the remaining ring atoms are neither uniformly sp2 nor
sp3. For example, partially conjugated rings such as cy-
clohexene or cyclohexa-1,3-diene are marked as unreason-
able. Though not exhaustive, MRR provides interpretable,
domain-informed filtering that complements valence checks
and ADME-based screens. The full algorithm is described
in Appendix F.

QikProp Multiple Property Requirements. We further
evaluate molecular suitability using QikProp (Schrödinger,
LLC, 2025), a predictive tool for drug-likeness based on
properties such as solubility, lipophilicity, polar surface
area, metabolic site count, and oral absorption (Ioakimidis
et al., 2008). A molecule passes the evaluation only if
all N predefined property constraints P1, P2, . . . , PN are
satisfied:

QikProp =

{
1 if P1 ∧ P2 ∧ · · · ∧ PN are satisfied,
0 otherwise.

3.2. Bridging the Gap with CIDD Framework

We propose the Collaborative Intelligence Drug Design
(CIDD) framework (Figure 1), a modular system for target-
specific molecule generation that combines 3D interaction
modeling with LLM-guided refinement. CIDD consists of
two stages: the Structure-Based Interaction Generator
(SBIG), which produces interaction-aware scaffolds, and
the LLM-Enhanced Drug Designer (LEDD), which re-
fines them into viable compounds:

x0 = SBIG(Target), x = LEDD(x0,Target)

Here, x0 captures spatial compatibility, while LEDD lever-
ages the reasoning capabilities of large language models to
generate chemically valid molecules. Inspired by medicinal
chemists’ workflows, CIDD formalizes a two-step design
process that bridges 3D structural intent with drug-likeness.

3.2.1. PIPELINE OVERVIEW

CIDD decomposes molecule generation into modular rea-
soning steps. SBIG first generates interaction-centric scaf-
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Figure 1. Overview of the CIDD framework. Top: end-to-end pipeline integrating SBIG and LEDD. Bottom: detailed view of LEDD’s
LLM-based design process, which designs and generates molecules through interaction analysis, reflection, and Chain-of-Thought-driven
reasoning.

folds, which are analyzed by the Interaction Analysis Mod-
ule to extract fragment-level binding features. The Design
Module then proposes optimized structures, guided by these
interaction profiles. Each new molecule is evaluated, and the
Reflection Module compares designs across iterations to
inform refinement. Finally, the Selection Module identifies
the optimal candidate based on interaction and drug-likeness
criteria.

3.2.2. INTERACTION ANALYSIS MODULE

This module docks a candidate xi into the protein pocket
P , fragments it via BRICS (Degen et al., 2008), and detects
key non-covalent interactions (e.g., hydrogen bonds, π–π
stacking). These features are summarized into an interaction
profile Ii using a specialized language model:

LLMI(xi, P ) → Ii

The profile links molecular fragments to their roles in bind-
ing, guiding downstream design.

3.2.3. DESIGN MODULE

Given a scaffold x0, its interaction profile I0, and prior
feedback R, the Design Module uses an LLM to output a
refinement plan and new molecule:

LLMD(x0, I0, R) → (Di, xi)

To emulate real-world drug design workflows, we imple-
ment a Chain-of-Thought prompting strategy that guides
the LLM through a domain-informed reasoning pipeline

with four sequential stages. (1) Interaction-Critical Frag-
ment Identification: the model analyzes x0 and high-
lights fragments forming key non-covalent interactions with
the target, based on I0. (2) Detection of Unfavorable
or Atypical Substructures: chemically undesirable frag-
ments—such as synthetically inaccessible motifs, strained
rings, or poor physicochemical regions—are flagged for re-
placement. (3) Strategic Design Planning: the model pro-
poses modifications that improve chemical viability while
preserving interaction and topology, often substituting prob-
lematic regions with pharmaceutically preferred alternatives.
(4) Candidate Molecule Generation: a new structure xi

is generated based on the design plan, ensuring both target
interaction and drug-like properties.

3.2.4. REFLECTION AND SELECTION MODULES

The Reflection Module compares the design xi to the origi-
nal input:

LLMR(x0, I0, Di, xi, Ii) → Ri

The Selection Module ranks all candidates {x1, . . . , xN}
and selects the best:

LLMS ({(x1, I1), . . . , (xN , IN )}) → xbest

This ensures the final molecule balances interaction strength
and chemical realism. Prompt examples are in Appendix E.
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Table 1. Test Results on CrossDocked2020. We benchmark several evaluation metrics, including Vina docking score, QED, SA, MRR,
success ratio, and QikProp pass ratio. We also report the average molecular weight. Performance ranking per column is color-coded as
follows: best , second-best

Category Method Vina ↓ QED ↑ SA ↑ MRR ↑ Success ↑ QikProp ↑ MW

VAE-based LiGAN -6.640 0.394 0.601 59.08% 2.79% 17.37% 286.44
AR-based AR -6.737 0.507 0.635 56.67% 3.28% 18.66% 247.50
AR-based Pocket2Mol -7.246 0.573 0.758 67.88% 14.60% 29.58% 234.30
Diffusion-based TargetDiff -7.452 0.474 0.579 37.81% 3.04% 27.63% 346.24
Diff + Inter-Guide IPDiff -7.745 0.511 0.627 29.83% 5.31% 25.11% 328.34
Diff + Inter-Prior DecompDiff -8.260 0.444 0.609 62.60% 15.72% 29.04% 424.09
Diff + Multi-Guide TAGMol -7.563 0.563 0.583 37.31% 3.23% 32.31% 325.50
Fragment-based DrugGPS -7.396 0.463 0.622 54.80% 7.17% 25.60% 329.88
BFN-based MolCRAFT -7.783 0.503 0.685 58.47% 13.72% 22.37% 325.63

3DSBDD + LLM CIDD -8.496 0.576 0.735 81.74% 34.59% 35.22% 336.70

4. Experiments
4.1. Experiment Settings

Dataset. We follow 3D-SBDD protocols and use the Cross-
Docked2020 dataset (Francoeur et al., 2020), adopting Tar-
getDiff’s train/test split (Guan et al., 2023) with 100 protein
pockets reserved for testing.

Metrics. We evaluate with standard metrics: Vina docking
score (Trott & Olson, 2010), QED (Bickerton et al., 2012),
SA score (Ertl & Schuffenhauer, 2009), and molecular diver-
sity (1− ECFP4 similarity (Rogers & Hahn, 2010)). As 3D
conformations are not directly generated, Vina Score/Min is
omitted. Beyond these, we assess drug potential using MRR
(structural plausibility) and QikProp pass ratio (pharma-
cokinetic profiling). A molecule is counted as successful
if it meets: Vina < −8.18, QED > 0.25, SA > 0.59, and
passes molecular reasonability and QikProp filters (Long
et al., 2022).

Baselines. CIDD is compared against diverse 3D gener-
ative models: VAE-based LiGAN(Ragoza et al., 2022),
autoregressive AR(Luo et al., 2021) and Pocket2Mol(Peng
et al., 2022), and diffusion-based TargetDiff(Guan et al.,
2023), IPDiff(Huang et al., 2024), DecompDiff(Guan et al.,
2024), TAGMol(Dorna et al., 2024), as well as fragment-
based DrugGPS(Zhang & Liu, 2023) and flow-based Mol-
CRAFT (Qu et al., 2024).

CIDD Settings. MolCRAFT is used for SBIG, with GPT-
4o powering all LEDD modules. The Design Module pro-
poses 5 candidates per round; one is selected. For each
pocket, 10 molecules are generated. SBIG models use Cross-
Docked2020 and pretrained weights.

4.2. General Results

As shown in Table 1, CIDD achieves strong and consistent
performance across key drug-likeness metrics, including
QED, MRR, SA, and QikProp pass ratio, while maintain-
ing favorable binding affinity. Compared to baselines like
IPDiff and TAGMol—which rely on predictor-guided sam-
pling—CIDD shows superior MRR and overall balance.
IPDiff improves docking scores but underperforms in MRR,
and TAGMol, while boosting QED, lags in MRR and SA,
suggesting overfitting to specific scoring functions.

CIDD’s advantage lies in combining the structural modeling
strength of 3D generative models with the chemical reason-
ing capabilities of LLMs. By leveraging expert prompts
and the LLM’s embedded domain knowledge, it generates
candidates that are not only strong binders but also synthet-
ically viable and pharmacologically realistic. This leads
to a significantly higher success ratio of 34.59%—more
than double the best baseline (15.72%). Notably, CIDD
produces molecules that are on average 50% larger in
molecular weight than Pocket2Mol (336.70 vs. 234.30),
yet still achieves superior QED, SA, and docking scores.
This indicates that CIDD’s performance is not due to metric
overfitting via small molecules, but reflects genuine drug-
likeness in more complex structures.

5. Conclusion
We presented CIDD, a collaborative framework that uni-
fies 3D interaction modeling and LLM-driven reasoning
for structure-based drug design. CIDD addresses a key
limitation of current generative models: the tendency to
generate interaction-compatible but chemically unreason-
able molecules. Through a modular, interpretable gener-
ation process, CIDD achieves state-of-the-art results on
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the CrossDocked2020 benchmark—substantially improv-
ing drug-likeness metrics (QED, SA, MRR, QikProp) while
maintaining high binding affinity. By bridging 3D geometric
modeling with language-guided design, our approach sets
a foundation for future directions in rational, interpretable,
and generalizable drug generation. We envision such a col-
laborative paradigm enabling broader tasks such as target
discovery and hit-to-lead optimization in early-stage drug
discovery.
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A. Problem in Current Model

Figure 1. (a) Common errors in 3D-SBDD outputs. Minor struc-
tural changes can cause large deviations in 3D conformation, high-
lighting the challenge of correcting chemically uncommon struc-
tures without disrupting valid 3D shapes.

Figure 1. (b) MRR comparison. While FDA drugs reach 85.9%
MRR, existing 3D models lag behind. LLM achieves 97.5%, and
CIDD closes the gap with 81.7%.

Figure 2. Comparison of 3D generative model issues and MRR performance.

B. Additional Experiment Results and Analysis
B.1. Improvements with Different Models on Multiple Metrics

CIDD is a flexible framework designed to interface smoothly with a broad spectrum of 3D SBDD models, significantly
enhancing the quality of generated molecules. As illustrated in Figure 4, CIDD brings substantial and consistent improve-
ments across key drug-likeness metrics—including QED, SA Score, Reasonable Ratio, and QikProp Pass Ratio—achieving
gains of 31.4%, 20.0%, 85.2%, and 102.8%, respectively. These improvements are observed across different base models,
demonstrating CIDD’s strong generalization ability and its capacity to enhance diverse, diverse aspects of drug-likeness
simultaneously. In contrast to optimization-based methods that often overfit individual metrics, CIDD drives broad and
meaningful improvements that reflect a true advancement in the quality of generated drug candidates.
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Figure 3. (d) QikProp Pass Ratio

Figure 4. Comparison of models using only SBIG outputs vs. CIDD (SBIG + LEDD), across various 3D-SBDD backbones and drug-
likeness metrics.

B.2. Ablation and Analysis

B.2.1. IMPACT OF DIFFERENT LLMS

We evaluate GPT-4o, GPT-4o-mini, DeepSeek-v3 (DeepSeek-AI et al., 2024), and DeepSeek-r1 (Guo et al., 2025) using
MolCRAFT as the SBIG module (Table 2a). All models improve drug-likeness metrics (MRR, QikProp) and docking scores.
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Table 2. Ablation studies on LLM variants and pure LLM-based SBDD.

Table 2. (a) Different LLM Backends in CIDD

LLM Vina↓ MRR↑ Similarity↑
- -7.78 58.47% -

GPT-4o-mini -8.29 80.02% 0.220
GPT-4o -8.50 81.37% 0.296

DeepSeek-v3 -8.49 76.00% 0.379
DeepSeek-r1 -8.57 79.17% 0.182

Table 2. (b) LLM-Only vs. CIDD Comparison

Vina↓ MRR↑ Success Ratio↑
LLM-SBDD -6.244 97.45% 5.95%
CIDD-LLM -7.230 90.97% 17.59%

CIDD -8.496 81.74% 35.22%

Figure 5. (a) A generation case and corresponding interpretable design strategy produced by CIDD, resulting in a structurally similar yet
better compound. (b) CIDD demonstrates the ability to evolve by leveraging previous design experiences as context, improving generation
success rates. (c) CIDD integrates the strengths of 3D-SBDD models and LLMs to enable practical drug design with both high potency
and drug-likeness.

DeepSeek-v3 achieves property gains with minimal edits, while GPT-4o-mini struggles with similarity, and DeepSeek-r1
makes broader, less controllable changes. GPT-4o and DeepSeek-v3 best support CIDD’s goal of generating similar yet
improved molecules. Smaller models like LLAMA-7B fail to follow design instructions. CIDD remains plug-and-play,
benefiting from future LLM advances.

B.2.2. USING PURE LLM FOR SBDD

LLMs alone struggle with 3D protein pocket interpretation in structure-based drug design (SBDD). To test this, we prompted
an LLM with PDB-format pocket data and also evaluated CIDD-LLM, which uses LLM-SBDD within the CIDD framework.
As shown in Table 2b, LLM-SBDD generates chemically reasonable molecules but performs poorly on binding affinty,
leading to a lower success rate than standard CIDD. This highlights the need for combining 3D models’ interaction modeling
with LLMs’ reasoning.
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B.3. Advantages and Impact of the CIDD Framework

Interpretable Molecule Design. Figure 5a illustrates the CIDD generation process. The LLM-powered modules analyze
and refine the raw supporting molecule (green), producing a high-quality final structure (blue). Problematic fragments—such
as an unreasonable diene or an uncommon fluorinated chain—are automatically identified and replaced (e.g., with a benzene
ring), while side chains are adjusted to preserve key hydrogen bonds with Gln316 on both Chain A and B. These edits
improve docking scores and enhance drug-relevant properties. CIDD performs this refinement through localized fragment
substitutions, maintaining the core structure while improving overall drug potential. Notably, the process is inherently
interpretable: each design step is traceable, with explicit rationales highlighting structural strengths and weaknesses. This
transforms conventional opaque SBDD into a transparent, expert-assisting workflow. CIDD also enables the automated
creation of molecule pairs that differ in drug-likeness with minimal structural edits. These pairs effectively capture how
small chemical changes influence pharmaceutical viability, offering high-quality, distributionally aligned data for fine-tuning.
Compared to random sampling, they provide more meaningful supervision and help mitigate data scarcity in 3D-SBDD (see
Appendix I).

Evolvement Ability. One key advantage of LLMs is their ability to leverage prior experience, provided as context, to
generate insightful outputs. To illustrate this, we conducted a proof-of-concept experiment using a relatively lightweight
LLM: GPT-4o-mini. The model was given varying numbers of previous design reports and results (0, 5, 10, and 15) as
contextual input and tasked with generating insights to support the design module of CIDD. As shown in Figure 5b, the
success rate improved as more prior reports were included. These results demonstrate CIDD’s capacity for continual
evolution by incorporating accumulated experience—without requiring model retraining. This mirrors the way human
experts enhance their performance through repeated exposure and practice.

Generating Small Molecules with Both High Potency and Drug-Likeness. Drug potential hinges on two key factors:
potency and drug-likeness. While most 3D-SBDD models emphasize target fit, they often produce chemically unreasonable
structures. As shown in Figure 5c, our CIDD framework bridges this gap by combining geometric modeling with LLM-
driven reasoning. The LLM not only corrects unfavorable fragments but also plans coherent molecular edits that balance
multiple objectives. By coordinating spatial and chemical constraints within a unified generation process, CIDD effectively
overcomes the traditional trade-off between interaction strength and drug-likeness.

C. Discussion on the Pharmaceutical Terminology
In this work, we employ a comprehensive set of evaluation metrics—Vina, QED, SA, our proposed MRR, the Success Ratio,
and QikProp—to analyze different facets of molecular generation performance. Following established practices, we use Vina
scores to assess the 3D complementarity between generated molecules and their target binding sites. Meanwhile, we evaluate
broader molecular properties using standard metrics (QED and SA), the domain-informed MRR, and physicochemical and
pharmacokinetic descriptors from QikProp, which are widely used in computer-aided drug design (CADD).

To clarify the key concepts underpinning our evaluation framework, we distinguish among drug potential, drug-likeness,
molecular reasonability, and chemical validity.

Previous studies have often focused too narrowly on geometric complementarity, overlooking other essential requirements a
drug-like molecule must fulfill. We introduce the term drug potential to describe the overall suitability of a molecule as a
drug candidate, encompassing not only binding affinity but also synthetic accessibility, chemical stability, pharmacokinetics
(absorption, distribution, metabolism, and excretion), and safety. These properties are intrinsically determined by molecular
structure and collectively influence whether a molecule can reach its intended biological target and survive the drug
development process.

The term drug-likeness is widely used in medicinal chemistry to reflect the multidimensional suitability of a molecule as a
drug candidate. Drug discovery and development (DDD), however, are deeply influenced by human expertise—including
implicit preferences for molecular scaffolds and nuanced, often tacit, domain knowledge that is difficult to formalize or
quantify. As a result, even experienced medicinal chemists struggle to define or approximate the true probability function
p(drug), which represents the likelihood that a molecule will become a viable therapeutic candidate. However, the machine
learning community often oversimplifies drug-likeness to metrics such as QED or Lipinski’s Rule of Five, which capture only
a narrow range of basic physicochemical properties. This simplification overlooks critical factors such as oral bioavailability,
metabolic stability, and toxicity risks (e.g., hERG liability).
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At a more fundamental level, a molecule must be chemically valid, meaning it adheres to basic chemical rules such as proper
valence and atom types. However, we observe that many model-generated molecules—while technically valid—contain
rare or unstable structural substructures that would be flagged by human medicinal chemists. These structures are neither
common nor practically accessible and thus fall outside the bounds of what is typically accepted in pharmaceutical research.
Despite the central importance of this distinction, prior work has not proposed an effective metric to differentiate between
chemically plausible structures and those that are formally valid but unrealistic. To fill this gap, we propose MRR, a
rule-based metric that reflects medicinal chemistry heuristics. It identifies implausible features such as unstable ring systems
and uncommon conjugation patterns, offering an interpretable and practical means of identifying unrealistic model outputs.

By explicitly defining these concepts and introducing MRR, we aim to guide molecular generation efforts toward phar-
maceutically meaningful directions, bridging the gap between computational outputs and real-world drug development
feasibility.

D. Limitations
One limitation of CIDD is its dependence on pretrained LLMs, which may occasionally introduce hallucinations in
underexplored chemical regions.

E. Detailed Prompts and Responses for LEDD
In this section, we present the detailed workflow of the CIDD framework, including the prompts and example responses for
each module.

Figure 6 illustrates the complete drug design pipeline. The Interaction Module first identifies key fragments within the
supporting molecule that interact with the protein pocket. This information is then utilized by the Design Module, which
devises strategies to replace uncommon or unfavorable fragments while preserving crucial interactions. Once a new molecule
is designed, the Evaluation Phase within the Design Module assesses its viability. Finally, the Reflection Module analyzes
the design process and outcomes, highlighting both strengths and areas for improvement.

Figure 7 presents the prompt and example response for the Interaction Analysis Module.

Figures 8 and 9 display the prompt and example response for the Design Module.

Figures 10, 11, and 12 illustrate the prompt and example responses for the Reflection Module.

Figures 13 and 14 show the prompt and example response for the Selection Module.

Figure 6. Workflow of CIDD framework
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Figure 7. Interaction analysis module
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Figure 8. Design Module
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Figure 9. Design Module
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Figure 10. Reflection Module
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Figure 11. Reflection Module
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Figure 12. Reflection Module
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Figure 13. Selection Module
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Figure 14. Selection Module

F. Algorithm for MRR and AUR
The complete calculation process for assessing the reasonability of a molecule is outlined in Algorithm 1.
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Algorithm 1: Evaluation of Molecular Reasonability
Input: Molecule object (mol)
Output: Molecular Reasonability (MRR) and Atom Unreasonable Ratio (AUR)
Step 1: Detect Carbonyl and Imine Group Carbons
Initialize an empty list for carbonyl/imine carbons.
foreach bond in mol do

if bond is double and one atom is carbon, the other is oxygen or nitrogen then
Record the carbon atom in carbonyl/imine groups.

Step 2: Identification of Ring Systems
Identify all ring structures and their corresponding atom indices within mol.
Calculate the number of atoms in each ring.
foreach ring in the molecule do

if the ring shares one or more atoms with another ring then
Group the connected rings into a single ring system.

Step 3: Evaluation of Molecular Reasonability
Exclude any atoms previously identified as part of carbonyl or imine groups.
Classify the remaining carbon atoms in each ring system as follows:

• sp2 hybridized: Aromatic or unsaturated carbons.
• Non-sp2 hybridized: Saturated carbons.

foreach ring system in the ring systems do
if the ring system contains multiple rings and all carbon atoms are non-sp2 then

Mark the molecule as unreasonable.
Add the atoms to the unreasonable atom list.

foreach ring system in the remaining ring systems do
foreach ring in the ring system do

if all carbon atoms within the ring are consistent in hybridization (either all sp2 or all non-sp2) then
Mark the ring as reasonable.

else
Add the ring to the remaining ring list.

while the remaining ring list is not empty do
foreach ring in the remaining ring list do

Exclude atoms that have already been classified as reasonable.
if all remaining carbon atoms are consistent in hybridization (either all sp2 or all non-sp2) then

Mark the ring as reasonable.

if no new reasonable rings are identified then
Mark the molecule as unreasonable.
Add the carbon atoms in the remaining rings to the unreasonable atom list.
Exit the loop.

Calculate AUR as the ratio of unreasonable atom count to the total ring atom count.
Return MRR and AUR.

G. QikProp properties
The full set of properties used for the QikProp pass ratio analysis is presented in Table 3.

The QikProp filter applied in the main text incorporates a comprehensive range of criteria provided by QikProp, including
”#stars”, ”#amine”, ”#amidine”, ”#acid”, ”#amide”, ”#rotor”, ”#rtvFG”, ”mol MW”, ”dipole”, ”SASA”, ”FOSA”, ”FISA”,
”PISA”, ”WPSA”, ”volume”, ”donorHB”, ”accptHB”, ”dip2/V ”, ”ACxDN.5/SA”, ”glob”, ”QPpolrz”, ”QPlogPC16”,
”QPlogPoct”, ”QPlogPw”, ”QPlogPo/w”, ”QPlogS”, ”CIQPlogS”, ”QPPCaco”, ”QPlogBB”, ”QPPMDCK”, ”QPlogKp”,
”IP(eV)”, ”EA(eV)”, ”#metab”, ”QPlogKhsa”, ”PercentHumanOralAbsorption”, ”SAFluorine”, ”SAamideO”, ”PSA”,
”#NandO”, and ”RuleOfThree”.
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Table 3. QikProp Properties and Descriptors
Property or Descriptor Description Range or Recommended Values
Molecule name The molecule’s identifier derived from the title line in the input structure file. If no title

is provided, the file name is used.
#stars Count of descriptors or properties falling outside the 95% range for known drugs. A

higher count indicates reduced drug-likeness.
0 – 5

#amine Total non-conjugated amine groups present in the molecule. 0 – 1
#amidine Number of amidine or guanidine functional groups in the structure. 0
#acid Quantity of carboxylic acid groups in the molecule. 0 – 1
#amide Count of non-conjugated amide groups. 0 – 1
#rotor Number of rotatable bonds that are neither trivial nor sterically hindered. 0 – 15
#rtvFG Total reactive functional groups present in the molecule, potentially affecting stability

or toxicity.
0 – 2

mol MW Molecular weight of the compound. 130.0 – 725.0
Dipole Calculated dipole moment of the molecule in Debye units. 1.0 – 12.5
SASA Solvent-accessible surface area (SASA) in square angstroms, measured with a probe of

1.4 Å radius.
300.0 – 1000.0

FOSA Hydrophobic part of the SASA, representing saturated carbon and attached hydrogen
atoms.

0.0 – 750.0

FISA Hydrophilic fraction of the SASA, encompassing polar atoms like nitrogen and oxygen. 7.0 – 330.0
PISA SASA component attributable to π-systems. 0.0 – 450.0
WPSA Weakly polar component of the SASA, including atoms like halogens, phosphorus, and

sulfur.
0.0 – 175.0

Volume Total solvent-accessible volume in cubic angstroms, determined with a 1.4 Å radius
probe.

500.0 – 2000.0

donorHB Estimated number of hydrogen bonds donated to water in solution. 0.0 – 6.0
accptHB Estimated number of hydrogen bonds accepted from water. 2.0 – 20.0
Dip2/V Dipole moment squared divided by molecular volume, a key factor in solvation energy. 0.0 – 0.13
ACxDN0.5/SA Cohesive interaction index in solids based on molecular properties. 0.0 – 0.05
glob Descriptor measuring how close the shape of a molecule is to a sphere. 0.75 – 0.95
QPpolrz Predicted molecular polarizability in cubic angstroms. 13.0 – 70.0
QPlogPC16 Predicted partition coefficient between hexadecane and gas phases. 4.0 – 18.0
QPlogPoct Predicted partition coefficient between octanol and gas phases. 8.0 – 35.0
QPlogPw Predicted partition coefficient between water and gas phases. 4.0 – 45.0
QPlogPo/w Predicted partition coefficient between octanol and water phases. -2.0 – 6.5
QPlogS Predicted solubility of the molecule in water (log S, in mol/L). -6.5 – 0.5
CIQPlogS Conformation-independent prediction of water solubility (log S). -6.5 – 0.5
QPPCaco Predicted permeability through Caco-2 cells, in nm/s. <25 poor, >500 great
QPlogBB Predicted partition coefficient for brain/blood. -3.0 – 1.2
QPPMDCK Predicted permeability through MDCK cells, in nm/s. <25 poor, >500 great
QPlogKp Predicted skin permeability (log Kp). -8.0 – -1.0
IP(eV) Ionization potential calculated using PM3. 7.9 – 10.5
EA(eV) Electron affinity calculated using PM3. -0.9 – 1.7
#metab Predicted number of possible metabolic reactions. 1 – 8
QPlogKhsa Predicted binding affinity to human serum albumin. -1.5 – 1.5
HumanOralAbsorption Qualitative assessment of oral absorption: 1 (low), 2 (medium), or 3 (high).
PercentHumanOralAbsorption Quantitative prediction of oral absorption percentage. >80% high, <25% poor
SAFluorine Solvent-accessible fluorine surface area. 0.0 – 100.0
SAamideO Solvent-accessible surface area of amide oxygen atoms. 0.0 – 35.0
PSA Polar surface area, calculated for nitrogen, oxygen, and carbonyl groups. 7.0 – 200.0
#NandO Total count of nitrogen and oxygen atoms. 2 – 15
RuleOfFive Number of Lipinski’s Rule of Five violations. Max 4
RuleOfThree Number of Jorgensen’s Rule of Three violations. Max 3
#ringatoms Count of atoms within molecular rings.
#in34 Number of atoms in 3- or 4-membered rings.
#in56 Number of atoms in 5- or 6-membered rings.
#noncon Number of ring atoms unable to form conjugated aromatic systems.
#nonHatm Count of heavy (non-hydrogen) atoms in the structure.
Jm Predicted maximum transdermal transport rate (µg cm−2 hr−1).

H. More Experiment Results
Based on the different criteria presented in Table 3, we provide additional pass ratio results in Table 4.

Filter 1 is identical to the QikProp filter used in the main text.
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Filter 2 removes some non-essential properties and focuses on well-defined physicochemical properties, including ”#rtvFG”,
”QPlogS”, ”QPlogPo/w”, ”mol MW”, ”dipole”, ”SASA”, ”FOSA”, ”FISA”, ”IP(eV)”, ”EA(eV)”, ”#metab”, ”PercentHu-
manOralAbsorption”, and ”PSA”.

Filter 3 assesses molecular compliance with the ”RuleOfFive” criterion. However, instead of allowing up to four violations
as typically recommended, this filter adopts a stricter definition, considering only molecules that fully comply (i.e., setting
the maximum allowable violations to zero).

Table 4. QikProp results for different methods with and without CIDD

Method Filter 1 Filter 2 Filter 3

Pocket2Mol
Original 29.58% 51.52% 89.58%
CIDD 56.97% 75.64% 92.24%

TargetDiff
Original 26.32% 48.20% 69.47%
CIDD 53.37% 75.60% 81.85%

DecompDiff
Original 29.04% 53.96% 55.14%
CIDD 37.54% 68.48% 65.64%

MolCRAFT
Original 22.37% 43.52% 66.45%
CIDD 35.22% 63.23% 74.09%

I. More cases
More generated molecules from CIDD are presented below. For each case, we display the initial supporting molecule
derived from 3D-SBDD models alongside the final designed molecules produced by CIDD.
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