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Abstract

The recent successful paradigm of solving log-
ical reasoning problems with tool-augmented
large language models (LLMs) leverages trans-
lation of natural language statements into
First-Order Logic (FOL) and external theorem
provers. However, the correctness of FOL state-
ments, comprising operators and text predi-
cates, often goes unverified due to the lack of
a reliable evaluation metric for comparing gen-
erated and ground-truth FOLs. In this paper,
we present a comprehensive study of sensitiv-
ity of existing metrics and their alignment with
human judgement on FOL evaluation. Using
ground-truth FOLs, we carefully designed var-
ious perturbations on the ground-truth to as-
sess metric sensitivity. We sample FOL transla-
tion candidates for natural language statements
and measure the ranking alignment between
automatic metrics and human annotators. Our
empirical findings highlight oversensitivity in
the n-gram metric BLEU for text perturbations,
the semantic graph metric Smatch++ for struc-
tural perturbations, and FOL metric for opera-
tor perturbation. We also observe a closer align-
ment between BertScore and human judgement.
Additionally, we show that combining metrics
enhances both alignment and sensitivity com-
pared to using individual metrics. !

1 Introduction

Large language models (LLMs) have advanced nat-
ural language reasoning, but logical and mathemat-
ical reasoning have long relied on formal, struc-
tured languages for proving deductions and theo-
rems, a process that predates deep neural networks
(Quifionero-Candela et al., 2006). This approach re-
mains relevant today, especially for reasoning tasks
that can be solved using formal statements. In case
of first-order logic (FOL), LLM generations are
used as intermediate steps and subsequently passed

'0ur code is available at https://anonymous.4open.
science/r/AlignmentFOL-CBFQ/

to theorem provers to solve the problem (Pan et al.,
2023; Ye et al., 2024; Olausson et al., 2023). Com-
pared to the Chain-of-Thought (CoT) approach
(Wei et al., 2022), where the model first reasons
and then solves, FOL generation demonstrated su-
perior reliability by offloading the reasoning task
to an external tool. Translating natural language
(NL) into FOL enhanced the overall rigor of the
process.

Generating FOL from NL is a challenging task
that tests the ability of LLMs to accurately interpret
and convert informal language into a formal, struc-
tured token sequence. The lack of ground truth
for FOL generations complicates direct verifica-
tion. Yang et al. (2024) addressed this challenge
by developing a system specifically for FOL gen-
eration, incorporating an operator-based evaluator
to rate the outputs. This evaluation is combined
with BLEU score, using a threshold as a metric in
a reward model. However, the reliance on thresh-
olds complicates the interpretation of translation
quality. Manually assessing formal logic genera-
tions is labor-intensive and has received relatively
less attention compared to traditional text trans-
lation metrics. In this work, we analyze existing
natural language translation, tree, and graph eval-
uation metrics, focusing on those that offer strong
sentence-level comparisons.

We establish a framework to systematically in-
troduce perturbations and analyze the existing met-
rics in the presence of these anomalies in formal
language, specifically first-order logic. To further
assess the robustness of these metrics, we sample
FOLs from NL statements in FOLIO dataset (Han
et al., 2022) using an LLM and rank them against
ground truth values. The ranking is conducted us-
ing established metrics, LLM-based evaluators, hu-
man annotations, and combinations of metrics. Our
findings provide valuable insights into the effec-
tiveness of current metrics and their applicability
to symbolic generation tasks.
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2 Closeness Metrics

Evaluation scores in natural language genera-
tion, such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), perform n-gram matching
between reference text and candidate outputs. ME-
TEOR (Banerjee and Lavie, 2005), while also
based on n-gram overlap, incorporates additional
factors known to result in improved correlation
with human judgments. BERTScore (Zhang et al.,
2019) leverages contextual embeddings generated
by a pre-trained BERT (Devlin et al., 2019) to com-
pute cosine similarity between sentences.

In contrast, logical equivalence (Yang et al.,
2024) evaluates FOL translations by comparing the
truth values of formal statements, abstracting away
from their textual semantics. Another relevant do-
main is Abstract Meaning Representation (AMR)
graph metrics, which compare the structural sim-
ilarity of semantic graphs. Given the structured
nature of FOL statements, we leverage Smatch++
(Opitz, 2023), which incorporates preprocessing,
alignment, and sub-graph scoring. These metrics
capture different dimensions of divergence between
ground truth and translations: traditional metrics
focus on surface-level and semantic discrepancies,
while formal evaluation methods assess deeper log-
ical consistency. We present results demonstrating
how a representative set of these metrics respond
to variations in logical constructs within formal
language translations.

3 Evaluation Framework

3.1 Perturbation Evaluations

The effect of perturbations measures the sensitivity
of the metrics by assessing how small changes or
variations in the FOL statements impact the metric
scores. Based on the ground-truth of the FOLIO
dataset (Han et al., 2022), we utilize nine operators
to construct a formal logic framework. Perturbation
variations are applied to assess the impact on metric
scores. To evaluate the performance of these met-
rics, we first conduct a self-matching experiment
on the statements and normalize the results based
on the variations observed in this process (Table 2).
The perturbation strategies are as following:

Quantifier: In this perturbation, we swap the
quantifiers V and 3 where applicable. For exam-
ple, the formula Vx(W(x,C) — A(x, C)) becomes
Ix(W(x,C) — A(x,C)). This subtle change al-
lows us to isolate the effect of quantifiers on the

similarity metrics, demonstrating that misidentifi-
cations in quantifier use can be detected by these
metrics.

Negation: This perturbation measures the impact
of negation on the metrics. We either remove the
negation of predicates, if present, or add it when
absent. For example, Vx(—=W(x,C) — A(x,C))
changes to Vx(W(x,C) — —A(x, C)). This modifi-
cation tests the metrics’ ability to correctly identify
the placement of negations, maintaining fidelity to
the underlying logic.

And/Or and Or/Xor: This perturbation involves
a simple swap of logical operators, such as (And,
Or) and (Or, Xor). Given that translations by the
LLMs may confuse these operators, it is important
to assess how such changes are reflected in the
metrics.

Operator: This perturbation focuses on the role
of operators in influencing similarity scores. All
logical operators are removed, and any multiple
predicates are connected by a disjunction (V) to pre-
serve the structure. For instance, Vx(—=W(x,C) —
A(x,C)) becomes W(x,C) V A(x, C).

Predicate: This perturbation modifies all pred-
icates ‘P’ containing a negation by convert-
ing them to their ‘NotP’ form. It tests
the metrics’ ability to detect variations in
both negation and semantics. For example,
(—=WantToBeAddictedTo(caffeine)) is transformed
to (NotWantToBeAddictedTo(caffeine)).

Variable: This perturbation is designed to exam-
ine the metrics’ ability to handle semantic changes.
All text values are replaced with generic variables
and compared with the ground truth. For example,
Vx(—~WantToBeAddictedTo(x, caffeine) —
AwareThatDrug(x, caffeine)) becomes
Vx(=A(x,C) — B(x,C)). 23

3.2 Sample Evaluations

Measuring the sample correctness with respect
to the ground truth allows for an assessment of

2All previous examples, except for ‘Variable” and ‘Predi-
cate’, have been shortened for space, but expanded forms are
used in the experiments

3The perturbations in the "Operator” and "Variable" sec-
tions introduce free variables that can be confusing to interpret
because of the lack of quantification. hese errors pass through
the tool without triggering any issues, making them a com-
mon occurrence in FOL generations by LLMs. Identifying
this problem highlights a significant gap in the reliability of
LLM-generated FOL translations.



alignment between different types of rankers. We
randomly sampled a small set of data from FO-
LIO dataset and implemented a sampling process
in which gpt-40 (Achiam et al., 2023) was zero-
shot prompted to generate three samples of FOLs
for each text input. For each data point, con-
sisting of a natural language text and its corre-
sponding FOL label, denoted as { NL, FOL}, the
NL was provided to gpt-4o (see Appendix B
for prompt detail) to generate three samples:
{FOLy,FOL2, FOL3}. In many cases, the LLM
produced a correct F'OL;. To introduce random-
ness, we shuffled the order of the samples before
passing them to the metrics. The shuffled FOL
samples, {FOLl, FOL,, FOLg}, were then eval-
uated by various metrics, with a score produced
for each comparison. In instances when two or
all three comparisons resulted in tied scores, the
ranks were adjusted to be equal. For example, if
the first two FOLs were the same and the third was
different, with initial ranks of [1, 2, 3], we adjusted
them to [1, 1, 3].

To compare the rankings generated by these met-
rics, we conducted a human evaluation. We enlisted
three annotators with at least a Master’s degree in
CS or Al to rank the similarity between the ground
truth FOL and the generated samples. The instruc-
tions provided to the experts were kept open-ended,
offering only a basic overview of the logic and rank-
ing criteria to avoid inducing bias (See Appendix
C). Although the instructions suggested ranking
randomly in case of a tie, we deduplicated the val-
ues and assigned the same rank to the matching
FOLs, as described in the previous passage. We
also used gpt-40 and o1-preview LLMs to rank
the samples, allowing us to form a broader per-
spective on the results (see Appendix D for prompt
details).

4 Experiments

Data Preparation. We use the training set of the
FOLIO dataset for our experiments.* The operators
are extracted from each record, and a unique set
of operators is selected. Since our focus is on indi-
vidual FOL statements, we decompose the records
into single data points. To manage generation costs,
we extract 102 records, ensuring a diverse combina-
tion of operators. Upon review, we observe that the
number of operators in the records ranges from 0 to

“We limit the data to one type and choose the training set
to ensure diversity.
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Table 1: Percentage of perturbations applied to 102
records. | indicates preference for lower values, =
requires the values to remain the same after perturbation.

7, with O representing a standalone predicate. The
detailed data statistics are provided in Appendix A.

4.1 Evaluation Preparation

Perturbation. The perturbations are evaluated
using six metrics: BLEU (BL), ROUGE (RO),
METEOR (ME), Logical Equivalence (LE),
BERTScore (BS), and Smatch++ (SP). Following
the method outlined by Yang et al. (2024), we first
convert the FOL statements into a parsable format
for each metric. For LE, an additional syntax check
is conducted to ensure the truth value of the FOL
statement is valid before comparison. Due to the
nature of the perturbations, they are applied only
to relevant records. For example, quantifier pertur-
bation is possible only if the statement contains a
quantifier. The percentage of data used for each
perturbation is provided in Table 1.

LLM Samples. We use gpt-4o with temperature
0.8 to generate three samples for each input (Ap-
pendix B). Samples that do not adhere to correct
syntax or where all three generations are identical
are discarded, reducing the dataset to 87 records.
The rankings are based on a scale of [1, 2, 3], where
1 represents the best match and 3 the least match to
the ground-truth. The LLM evaluation is conducted
using gptd4o and ol-preview, where the model is
prompted to rank the three samples in the same
format as the human evaluators (Appendix C and
Appendix D).

Pairwise Ranking. A pairwise comparison is per-
formed between the three human annotations to
determine the final rankings. For each pair of an-
notations, we compare their relative rankings and
use these comparisons to establish the overall or-
der. This approach ensures that the final ranking is
derived by consistently evaluating each annotation
against the others in a pairwise manner. Addition-
ally, perturbation and sample evaluations are con-
ducted using a combination of metrics to assess the
effect of metric mixtures. To do this, we calculate



Perth BL LE RO ME BS SP RMSE BL LE RO ME BS SP

Match = 100 1.00 1.00 1.00 1.00 1.00 BLEU 090 085 071 078 066 0.79
5 Quantifier | 096 1.00 0.96 0.96 1.00 0.99 LE 0.85 105 078 083 076 0.84
& Negation | 0.69 0.73 0.93 0.85 0.97 037 ROUGE 071 078 069 0.69 0.60 0.79
8 AndOr] 088 0.72 095 096 1.00 0.96 METEOR 078 083 069 0.81 066 0.76
©  OrXor| 095 092 098 0.98 1.00 0.99 BERTScore 0.66 0.76 0.60 066 0.64 0.73
- Operator | 020 0.62 053 042 089 0.44 Smatch++ 079 084 079 076 0.73 0.83
e Pre(.hcate: 094 093 097 098 1.00 0.92 gpt-do: 0.86 ol-preview: 0.69

Variable |, 028 1.00 0.74 0.68 0.92 0.76

Table 2: Evaluation Metrics Result on the comparison
between ground-truth and perturbations performed un-
der each corresponding row. The bold values indicate
the best-performing metric score for each perturbation.

Quant) BL LE RO ME BS SP

BL 096 094 096 096 097 093
LE 094 1.00 095 094 096 092
RO 096 095 096 096 098 094
ME 096 094 096 096 097 093
BS 097 096 098 097 1.00 095
SP 093 092 094 093 095 099

Table 3: The values along the diagonal (highlighted)
represent individual scores for quantifier perturbation,
while the off-diagonal values correspond to combined
evaluators. ‘BL-BL’ indicates the use of the BLEU
score metric alone, whereas ‘BL-RO’ represents the
combination of BLEU and ROUGE.

the scores for each FOL and compute the average
score for each sentence. These averages are then
processed to obtain the final value.

5 Results and Discussion
We present results from the two variations.

Perturbation Analysis. From Table 2, we ob-
serve that quantifier perturbations have minimal im-
pact overall. However, when metrics are combined
(Table 3), Smatch++ proves to be a more sensitive
metric for detecting changes in quantifiers. This
trend is also evident in other metrics, where the use
of combined metrics results in more distinct and
consistent scores (discussed in Appendix E). Nega-
tion perturbations, applied to nearly all records, ex-
hibit a pronounced effect on the BL score, with SP
scores showing the highest sensitivity to negation
changes. Operator swap perturbations predomi-
nantly affect LE scores, which is expected due to
LE’s reliance on operator structures. Among text-
based metrics, BL is the most sensitive to operator
perturbations.

Ideally, text-based perturbations should influ-
ence translation metric scores, and this is evident
in the case of operator and variable perturbations.
In contrast, predicate perturbations cause only a

Table 4: Results on the alignment of metric-based
and LLM-based ranking of 87 records (each having
1 ground-truth and 3 FOL candidates) against the 3
human annotators consensus. Diagonal values (high-
lighted) show individual metrics vs. human rankings;
off-diagonal values show combined metrics vs. human.

minimal drop in scores, as they impact a smaller
portion of the dataset, as outlined in Table 1.

Sample Analysis. Human rankings are used
to compare against metric rankings. The inter-
annotator agreement between the three annotators,
measured using Kendall’s tau, shows a correlation
of 0.35. We use Root Mean Square Error (RMSE)
to evaluate the alignment between human prefer-
ences and metric scores. As shown in Table 4,
Bertscore demonstrates a stronger alignment with
human rankings, even surpassing o1-preview. LE
score shows the weakest alignment, indicating the
importance of semantics for evaluation of FOL
statements. The results suggest that, despite the
low alignment of structured evaluators such as LE
score and Smatch++, using other metrics alongside
help with improving their alignment.

6 Conclusion

This study has explored the effectiveness of various
metrics in evaluating the correctness of First-Order
Logic (FOL) translations of natural language state-
ments. By carefully analyzing the sensitivity of
existing metrics through perturbations of ground-
truth FOLs, we identified critical gaps in commonly
used metrics. Commonly used FOL metrics such
as Logical Equivalency and BLEU scores are not
insufficient for handling anomalies in FOL gen-
eration. To our surprise even LLM-based evalu-
ations via gpt-4o0 model fell short of alignment
with human annotation compared with BertScore
and combination metrics, suggesting the need for
better-suited metrics for evaluating FOL transla-
tions, which is essential for advancing the use of
LLMs in logical reasoning tasks. Future work can
focus on applying these findings to tasks involving
sample-based generation methods.



Limitations

We recognize that GPT models used in our exper-
iments are continually evolving, which may lead
to variations in results over time. To manage the
computational cost of generating multiple samples,
we limited the data sample used in the experiments.
This could ideally be extended to a larger dataset or
used as a reference for achieving high performance
in existing methodologies, but not as a standalone
solution. The FOLIO dataset, despite being widely
used, may contain errors inherent to human judge-
ment.
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A Data Statistics

We aim to ensure diversity in the data used for
this study. The FOLIO training set contains 1001
records with ground truth FOLs. The operators
used in these FOLs are noted, and we select a
unique combination of operators (regardless of
their order) for our dataset. By expanding the data,
we observe additional operator combinations for
a given sentence. For each set of operators, we
generate four sentence variations. The details on
the data size are provided in are in Table 5, and
the distribution of operators can be referred to in
Figure 1.
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Figure 1: Plot showing the distribution of the operators
in each records. The majority of records contain 2-3
operators. Records with 0 operators reflect the presence
of a single predicate, indicating no logical connections,
while records with 7 operators represent complex state-
ments.

B Sample Generation

We generate samples using the prompt “Given a
natural language sentence, your task is to convert
the sentence into first-order logic statements using
the following operators: \,V,—, —, <>V, 3, =, &.
The output is a single first-order statement repre-
senting the sentence with no additional tasks. Gen-
erate 3 different samples of output.”, where gpt4
provides 3 samples in the form presented in Fig-
ure 2.

Size Operators Unique Duplicates
102 [AV- =< VIi=4a] 52 4

Table 5: Dataset statistics used in the sample data for
FOLIO dataset

Given a natural language sentence, your task
is to convert the sentence into first-order logic
statements using the following operators:

Ay V7, =, H7v7 Ela =, ®.

The output is a single first-order statement
representing the sentence with no additional
tasks. Generate 3 different samples of output.

Text: All eels are fish.

Output: 1.  Vz(Eel(z) — Fish(x))
2. Vz(E(z) — F(z) 3.
Vx(IsEel(z) — IsFish(z))

Figure 2: Example of sample generation using gpt-4o.
The highlighted text is the output from the LLM.

C Annotator Instruction

The task is to rank the first-order logic (FOL) trans-

lations for a given ‘gold label’ a rank of [1,2,3],

where 1 represents the best match and 3 represents

a comparatively bad match to the gold FOL. You

are given 3 variations of FOL for each sentence.

Please feel free to rank based on your preference.
Few good-to-know instructions:

* I A\ F5: Logical AND, True only if both F}
and F5 are true

* IV Fy: Logical OR, False if both F} and F»
are false

* —: Negation
* —: Implies

* & Double Implies

V: For All quantifier
* 3: There Exists quantifier

» =: Equals

Fy & F>: XOR, True only if F or F3 are true

If two FOLs are the ‘same’, randomly number
them. Ex: F: AN BRank 3, Fr: AN B Rank 2,
F5: A — B Rank 1.

You can lower the rank for structure (syntax) or
grammar (semantic) errors. Please do not change
the format of the file. Just add the rank next to
‘Rank’ for each FOL.



Given a ground truth first-order logic
statement and three variations of samples,
your task is to rank the samples in order
of similarity with the label. The output
should be a single list with 3 integers,
including [1, 2, 3], where 1 represents the
closest match and 3 is the least match. Do
not include any other explanation and the
output form is [rank_samplel, rank_sample?2,
rank_sample3].

Label: Vz(Eel(x) — Fish(z))
Sample 1: Vz(E(z) — F(z))
Sample 2: Vz(IsEel(z) — IsFish(z))
Sample 3: Vz(Eel(z) — Fish(z))
Output: [1, 3, 2]

Figure 3: Example of prompt used for ranking the sam-
ples using gpt-40 and ol1-preview. The highlighted
text is the output from the LLM.

There are one or more correct rankings. In case
of ‘all incorrect’, pick the rank based on the closest
match to the gold FOL.

Example (put your ranking at the end of each
statement after “Rank”):

e label: V x (Square(x) — Shape(x))
* FOLI1: V x (Square(x) — Shape(x)) Rank: 1

e FOL2: ¥x (=Shape(x) — —Square(x)) Rank:
2

e FOL3: V x (Square(x) — Shape(x)) Rank: 3

D LLM Ranker

We generate ranks using the prompt “Given a
ground truth first-order logic statement and three
variations of samples, your task is to rank the sam-
ples in order of similarity with the label. The output
should be a single list with 3 integers including [1,
2, 3], where I represents the closest match and 3
is the least match. Do not include any other ex-
planation and the output form is [rank_samplel,
rank_sample2, rank_sample3].”, where gpt4o and
ol-preview provide a list of ranking in the form
presented in Figure 3.

E Pairwise Perturbations

To study the effect of perturbation on the combina-
tions, we obtain sensitivity scores as shown across
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Negation Perturbation & - & = ) 2
BLEU 0.69 0.69 081 0.77 0.82 0.52
LE 069 0.73 0.80 0.76 0.82 0.51
ROUGE 0.81 0.80 093 0.89 096 0.63
METEOR 0.77 0.76 0.89 0.85 090 0.59
BERTScore 0.82 0.82 096 0.90 097 0.65
Smatch++ 0.52 0.51 0.63 059 0.65 0.37

Table 6: Negation perturbation scores
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AndOr Perturbation &8 = & = & &
BLEU 0.88 0.77 091 091 093 0.88
LE 0.77 072 0.81 0.81 0.83 0.78
ROUGE 091 081 095 095 097 092
METEOR 091 081 095 096 097 092
BERTScore 093 083 097 097 1.00 094
Smatch++ 0.88 0.78 092 092 094 0.96

Table 7: AndOr perturbation scores

Table 3 to Table 11. When compared to a single
metric, the combination helps with improving the
sensitivity of the metric.

F Package Usage

This paper utilizes automatic evaluation metrics
and datasets in compliance with their respective li-
censes. Specifically, we employ BLEU, BertScore
(MIT License), ROUGE (Apache-2.0 License),
METEOR (MIT License), Logical Equivalence
(Apache-2.0 License), and Smatch++ (GNU Gen-
eral Public License). The dataset FOLIO, used in
this research, is open-sourced under the CC-BY-
SA-4.0 license.

The packages used in this paper are primarily
sourced from the evaluation metrics provided by
Hugging Face’s Evaluate library. Additionally, the
source code for Logical Equivalence and Smatch++
was utilized.
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OrXor Perturbation & = &~ = m ©n
BLEU 095 091 096 096 097 0.93
LE 091 092 0.92 092 093 0.89
ROUGE 096 092 098 098 099 0.95
METEOR 096 092 098 098 098 0.95
BERTScore 097 093 099 098 1.00 0.95
Smatch++ 093 089 095 095 095 0.99

Table 8: OrXor perturbation scores


https://github.com/huggingface/evaluate/tree/main/metrics
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o= m S H = g
Operator Perturbation & = & = =3 ©n
BLEU 020 0.39 037 031 054 032
LE 039 0.62 0.56 0.50 0.73 0.52
ROUGE 037 056 053 048 0.71 049
METEOR 0.31 050 048 042 065 044
BERTScore 054 0.73 0.71 0.65 0.89 0.66
Smatch++ 032 052 049 044 066 044
Table 9: Operator perturbation scores
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. . = R B 9 F =
Predicate Perturbation =/ - &~ = /m ©n
BLEU 094 090 095 096 0.97 0.90
LE 090 093 092 092 093 0.86
ROUGE 095 092 097 097 098 0091
METEOR 096 092 097 098 098 0091
BERTScore 097 093 098 098 1.00 0.92
Smatch++ 090 0.86 091 091 092 092

Table 10: Predicate perturbation scores
. o2 £
= S B2 £ £
= = = & ]

. . - R S B g =
Variable Perturbation & - &~ = =) ©n
BLEU 028 0.61 0.51 047 059 049
LE 0.61 1.00 0.84 0.80 092 0.82
ROUGE 051 084 0.74 070 0.82 0.72
METEOR 047 080 0.70 0.68 0.79 0.68
BERTScore 059 092 0.82 079 092 0.81
Smatch++ 049 082 0.72 0.68 0.81 0.76

Table 11: Variable perturbation scores
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