
Assessing the Alignment of FOL Closeness Metrics with Human Judgement

Anonymous ACL submission

Abstract

The recent successful paradigm of solving log-001
ical reasoning problems with tool-augmented002
large language models (LLMs) leverages trans-003
lation of natural language statements into004
First-Order Logic (FOL) and external theorem005
provers. However, the correctness of FOL state-006
ments, comprising operators and text predi-007
cates, often goes unverified due to the lack of008
a reliable evaluation metric for comparing gen-009
erated and ground-truth FOLs. In this paper,010
we present a comprehensive study of sensitiv-011
ity of existing metrics and their alignment with012
human judgement on FOL evaluation. Using013
ground-truth FOLs, we carefully designed var-014
ious perturbations on the ground-truth to as-015
sess metric sensitivity. We sample FOL transla-016
tion candidates for natural language statements017
and measure the ranking alignment between018
automatic metrics and human annotators. Our019
empirical findings highlight oversensitivity in020
the n-gram metric BLEU for text perturbations,021
the semantic graph metric Smatch++ for struc-022
tural perturbations, and FOL metric for opera-023
tor perturbation. We also observe a closer align-024
ment between BertScore and human judgement.025
Additionally, we show that combining metrics026
enhances both alignment and sensitivity com-027
pared to using individual metrics. 1028

1 Introduction029

Large language models (LLMs) have advanced nat-030

ural language reasoning, but logical and mathemat-031

ical reasoning have long relied on formal, struc-032

tured languages for proving deductions and theo-033

rems, a process that predates deep neural networks034

(Quiñonero-Candela et al., 2006). This approach re-035

mains relevant today, especially for reasoning tasks036

that can be solved using formal statements. In case037

of first-order logic (FOL), LLM generations are038

used as intermediate steps and subsequently passed039

1Our code is available at https://anonymous.4open.
science/r/AlignmentFOL-CBF0/

to theorem provers to solve the problem (Pan et al., 040

2023; Ye et al., 2024; Olausson et al., 2023). Com- 041

pared to the Chain-of-Thought (CoT) approach 042

(Wei et al., 2022), where the model first reasons 043

and then solves, FOL generation demonstrated su- 044

perior reliability by offloading the reasoning task 045

to an external tool. Translating natural language 046

(NL) into FOL enhanced the overall rigor of the 047

process. 048

Generating FOL from NL is a challenging task 049

that tests the ability of LLMs to accurately interpret 050

and convert informal language into a formal, struc- 051

tured token sequence. The lack of ground truth 052

for FOL generations complicates direct verifica- 053

tion. Yang et al. (2024) addressed this challenge 054

by developing a system specifically for FOL gen- 055

eration, incorporating an operator-based evaluator 056

to rate the outputs. This evaluation is combined 057

with BLEU score, using a threshold as a metric in 058

a reward model. However, the reliance on thresh- 059

olds complicates the interpretation of translation 060

quality. Manually assessing formal logic genera- 061

tions is labor-intensive and has received relatively 062

less attention compared to traditional text trans- 063

lation metrics. In this work, we analyze existing 064

natural language translation, tree, and graph eval- 065

uation metrics, focusing on those that offer strong 066

sentence-level comparisons. 067

We establish a framework to systematically in- 068

troduce perturbations and analyze the existing met- 069

rics in the presence of these anomalies in formal 070

language, specifically first-order logic. To further 071

assess the robustness of these metrics, we sample 072

FOLs from NL statements in FOLIO dataset (Han 073

et al., 2022) using an LLM and rank them against 074

ground truth values. The ranking is conducted us- 075

ing established metrics, LLM-based evaluators, hu- 076

man annotations, and combinations of metrics. Our 077

findings provide valuable insights into the effec- 078

tiveness of current metrics and their applicability 079

to symbolic generation tasks. 080
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2 Closeness Metrics081

Evaluation scores in natural language genera-082

tion, such as BLEU (Papineni et al., 2002) and083

ROUGE (Lin, 2004), perform n-gram matching084

between reference text and candidate outputs. ME-085

TEOR (Banerjee and Lavie, 2005), while also086

based on n-gram overlap, incorporates additional087

factors known to result in improved correlation088

with human judgments. BERTScore (Zhang et al.,089

2019) leverages contextual embeddings generated090

by a pre-trained BERT (Devlin et al., 2019) to com-091

pute cosine similarity between sentences.092

In contrast, logical equivalence (Yang et al.,093

2024) evaluates FOL translations by comparing the094

truth values of formal statements, abstracting away095

from their textual semantics. Another relevant do-096

main is Abstract Meaning Representation (AMR)097

graph metrics, which compare the structural sim-098

ilarity of semantic graphs. Given the structured099

nature of FOL statements, we leverage Smatch++100

(Opitz, 2023), which incorporates preprocessing,101

alignment, and sub-graph scoring. These metrics102

capture different dimensions of divergence between103

ground truth and translations: traditional metrics104

focus on surface-level and semantic discrepancies,105

while formal evaluation methods assess deeper log-106

ical consistency. We present results demonstrating107

how a representative set of these metrics respond108

to variations in logical constructs within formal109

language translations.110

3 Evaluation Framework111

3.1 Perturbation Evaluations112

The effect of perturbations measures the sensitivity113

of the metrics by assessing how small changes or114

variations in the FOL statements impact the metric115

scores. Based on the ground-truth of the FOLIO116

dataset (Han et al., 2022), we utilize nine operators117

to construct a formal logic framework. Perturbation118

variations are applied to assess the impact on metric119

scores. To evaluate the performance of these met-120

rics, we first conduct a self-matching experiment121

on the statements and normalize the results based122

on the variations observed in this process (Table 2).123

The perturbation strategies are as following:124

Quantifier: In this perturbation, we swap the125

quantifiers ∀ and ∃ where applicable. For exam-126

ple, the formula ∀x(W(x,C) → A(x,C)) becomes127

∃x(W(x,C) → A(x,C)). This subtle change al-128

lows us to isolate the effect of quantifiers on the129

similarity metrics, demonstrating that misidentifi- 130

cations in quantifier use can be detected by these 131

metrics. 132

Negation: This perturbation measures the impact 133

of negation on the metrics. We either remove the 134

negation of predicates, if present, or add it when 135

absent. For example, ∀x(¬W(x,C) → A(x,C)) 136

changes to ∀x(W(x,C) → ¬A(x,C)). This modifi- 137

cation tests the metrics’ ability to correctly identify 138

the placement of negations, maintaining fidelity to 139

the underlying logic. 140

And/Or and Or/Xor: This perturbation involves 141

a simple swap of logical operators, such as (And, 142

Or) and (Or, Xor). Given that translations by the 143

LLMs may confuse these operators, it is important 144

to assess how such changes are reflected in the 145

metrics. 146

Operator: This perturbation focuses on the role 147

of operators in influencing similarity scores. All 148

logical operators are removed, and any multiple 149

predicates are connected by a disjunction (∨) to pre- 150

serve the structure. For instance, ∀x(¬W(x,C) → 151

A(x,C)) becomes W(x,C) ∨ A(x,C). 152

Predicate: This perturbation modifies all pred- 153

icates ‘P’ containing a negation by convert- 154

ing them to their ‘NotP’ form. It tests 155

the metrics’ ability to detect variations in 156

both negation and semantics. For example, 157

(¬WantToBeAddictedTo(caffeine)) is transformed 158

to (NotWantToBeAddictedTo(caffeine)). 159

Variable: This perturbation is designed to exam- 160

ine the metrics’ ability to handle semantic changes. 161

All text values are replaced with generic variables 162

and compared with the ground truth. For example, 163

∀x(¬WantToBeAddictedTo(x, caffeine) → 164

AwareThatDrug(x, caffeine)) becomes 165

∀x(¬A(x,C) → B(x,C)). 23 166

3.2 Sample Evaluations 167

Measuring the sample correctness with respect 168

to the ground truth allows for an assessment of 169

2All previous examples, except for ‘Variable’ and ‘Predi-
cate’, have been shortened for space, but expanded forms are
used in the experiments

3The perturbations in the "Operator" and "Variable" sec-
tions introduce free variables that can be confusing to interpret
because of the lack of quantification. hese errors pass through
the tool without triggering any issues, making them a com-
mon occurrence in FOL generations by LLMs. Identifying
this problem highlights a significant gap in the reliability of
LLM-generated FOL translations.
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alignment between different types of rankers. We170

randomly sampled a small set of data from FO-171

LIO dataset and implemented a sampling process172

in which gpt-4o (Achiam et al., 2023) was zero-173

shot prompted to generate three samples of FOLs174

for each text input. For each data point, con-175

sisting of a natural language text and its corre-176

sponding FOL label, denoted as {NL,FOL}, the177

NL was provided to gpt-4o (see Appendix B178

for prompt detail) to generate three samples:179

{FOL1, FOL2, FOL3}. In many cases, the LLM180

produced a correct FOL1. To introduce random-181

ness, we shuffled the order of the samples before182

passing them to the metrics. The shuffled FOL183

samples, { ˆFOL1, ˆFOL2, ˆFOL3}, were then eval-184

uated by various metrics, with a score produced185

for each comparison. In instances when two or186

all three comparisons resulted in tied scores, the187

ranks were adjusted to be equal. For example, if188

the first two FOLs were the same and the third was189

different, with initial ranks of [1, 2, 3], we adjusted190

them to [1, 1, 3].191

To compare the rankings generated by these met-192

rics, we conducted a human evaluation. We enlisted193

three annotators with at least a Master’s degree in194

CS or AI to rank the similarity between the ground195

truth FOL and the generated samples. The instruc-196

tions provided to the experts were kept open-ended,197

offering only a basic overview of the logic and rank-198

ing criteria to avoid inducing bias (See Appendix199

C). Although the instructions suggested ranking200

randomly in case of a tie, we deduplicated the val-201

ues and assigned the same rank to the matching202

FOLs, as described in the previous passage. We203

also used gpt-4o and o1-preview LLMs to rank204

the samples, allowing us to form a broader per-205

spective on the results (see Appendix D for prompt206

details).207

4 Experiments208

Data Preparation. We use the training set of the209

FOLIO dataset for our experiments.4 The operators210

are extracted from each record, and a unique set211

of operators is selected. Since our focus is on indi-212

vidual FOL statements, we decompose the records213

into single data points. To manage generation costs,214

we extract 102 records, ensuring a diverse combina-215

tion of operators. Upon review, we observe that the216

number of operators in the records ranges from 0 to217

4We limit the data to one type and choose the training set
to ensure diversity.
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Table 1: Percentage of perturbations applied to 102
records. ↓ indicates preference for lower values, =
requires the values to remain the same after perturbation.

7, with 0 representing a standalone predicate. The 218

detailed data statistics are provided in Appendix A. 219

4.1 Evaluation Preparation 220

Perturbation. The perturbations are evaluated 221

using six metrics: BLEU (BL), ROUGE (RO), 222

METEOR (ME), Logical Equivalence (LE), 223

BERTScore (BS), and Smatch++ (SP). Following 224

the method outlined by Yang et al. (2024), we first 225

convert the FOL statements into a parsable format 226

for each metric. For LE, an additional syntax check 227

is conducted to ensure the truth value of the FOL 228

statement is valid before comparison. Due to the 229

nature of the perturbations, they are applied only 230

to relevant records. For example, quantifier pertur- 231

bation is possible only if the statement contains a 232

quantifier. The percentage of data used for each 233

perturbation is provided in Table 1. 234

LLM Samples. We use gpt-4o with temperature 235

0.8 to generate three samples for each input (Ap- 236

pendix B). Samples that do not adhere to correct 237

syntax or where all three generations are identical 238

are discarded, reducing the dataset to 87 records. 239

The rankings are based on a scale of [1, 2, 3], where 240

1 represents the best match and 3 the least match to 241

the ground-truth. The LLM evaluation is conducted 242

using gpt4o and o1-preview, where the model is 243

prompted to rank the three samples in the same 244

format as the human evaluators (Appendix C and 245

Appendix D). 246

Pairwise Ranking. A pairwise comparison is per- 247

formed between the three human annotations to 248

determine the final rankings. For each pair of an- 249

notations, we compare their relative rankings and 250

use these comparisons to establish the overall or- 251

der. This approach ensures that the final ranking is 252

derived by consistently evaluating each annotation 253

against the others in a pairwise manner. Addition- 254

ally, perturbation and sample evaluations are con- 255

ducted using a combination of metrics to assess the 256

effect of metric mixtures. To do this, we calculate 257
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Pertb BL LE RO ME BS SP
Match = 1.00 1.00 1.00 1.00 1.00 1.00

O
pe

ra
to

r Quantifier ↓ 0.96 1.00 0.96 0.96 1.00 0.99
Negation ↓ 0.69 0.73 0.93 0.85 0.97 0.37
AndOr ↓ 0.88 0.72 0.95 0.96 1.00 0.96
OrXor ↓ 0.95 0.92 0.98 0.98 1.00 0.99

Te
xt

Operator ↓ 0.20 0.62 0.53 0.42 0.89 0.44
Predicate = 0.94 0.93 0.97 0.98 1.00 0.92
Variable ↓ 0.28 1.00 0.74 0.68 0.92 0.76

Table 2: Evaluation Metrics Result on the comparison
between ground-truth and perturbations performed un-
der each corresponding row. The bold values indicate
the best-performing metric score for each perturbation.

Quant↓ BL LE RO ME BS SP
BL 0.96 0.94 0.96 0.96 0.97 0.93
LE 0.94 1.00 0.95 0.94 0.96 0.92
RO 0.96 0.95 0.96 0.96 0.98 0.94
ME 0.96 0.94 0.96 0.96 0.97 0.93
BS 0.97 0.96 0.98 0.97 1.00 0.95
SP 0.93 0.92 0.94 0.93 0.95 0.99

Table 3: The values along the diagonal (highlighted)
represent individual scores for quantifier perturbation,
while the off-diagonal values correspond to combined
evaluators. ‘BL-BL’ indicates the use of the BLEU
score metric alone, whereas ‘BL-RO’ represents the
combination of BLEU and ROUGE.

the scores for each FOL and compute the average258

score for each sentence. These averages are then259

processed to obtain the final value.260

5 Results and Discussion261

We present results from the two variations.262

Perturbation Analysis. From Table 2, we ob-263

serve that quantifier perturbations have minimal im-264

pact overall. However, when metrics are combined265

(Table 3), Smatch++ proves to be a more sensitive266

metric for detecting changes in quantifiers. This267

trend is also evident in other metrics, where the use268

of combined metrics results in more distinct and269

consistent scores (discussed in Appendix E). Nega-270

tion perturbations, applied to nearly all records, ex-271

hibit a pronounced effect on the BL score, with SP272

scores showing the highest sensitivity to negation273

changes. Operator swap perturbations predomi-274

nantly affect LE scores, which is expected due to275

LE’s reliance on operator structures. Among text-276

based metrics, BL is the most sensitive to operator277

perturbations.278

Ideally, text-based perturbations should influ-279

ence translation metric scores, and this is evident280

in the case of operator and variable perturbations.281

In contrast, predicate perturbations cause only a282

RMSE BL LE RO ME BS SP
BLEU 0.90 0.85 0.71 0.78 0.66 0.79
LE 0.85 1.05 0.78 0.83 0.76 0.84
ROUGE 0.71 0.78 0.69 0.69 0.60 0.79
METEOR 0.78 0.83 0.69 0.81 0.66 0.76
BERTScore 0.66 0.76 0.60 0.66 0.64 0.73
Smatch++ 0.79 0.84 0.79 0.76 0.73 0.83

gpt-4o: 0.86 o1-preview: 0.69

Table 4: Results on the alignment of metric-based
and LLM-based ranking of 87 records (each having
1 ground-truth and 3 FOL candidates) against the 3
human annotators consensus. Diagonal values (high-
lighted) show individual metrics vs. human rankings;
off-diagonal values show combined metrics vs. human.

minimal drop in scores, as they impact a smaller 283

portion of the dataset, as outlined in Table 1. 284

Sample Analysis. Human rankings are used 285

to compare against metric rankings. The inter- 286

annotator agreement between the three annotators, 287

measured using Kendall’s tau, shows a correlation 288

of 0.35. We use Root Mean Square Error (RMSE) 289

to evaluate the alignment between human prefer- 290

ences and metric scores. As shown in Table 4, 291

Bertscore demonstrates a stronger alignment with 292

human rankings, even surpassing o1-preview. LE 293

score shows the weakest alignment, indicating the 294

importance of semantics for evaluation of FOL 295

statements. The results suggest that, despite the 296

low alignment of structured evaluators such as LE 297

score and Smatch++, using other metrics alongside 298

help with improving their alignment. 299

6 Conclusion 300

This study has explored the effectiveness of various 301

metrics in evaluating the correctness of First-Order 302

Logic (FOL) translations of natural language state- 303

ments. By carefully analyzing the sensitivity of 304

existing metrics through perturbations of ground- 305

truth FOLs, we identified critical gaps in commonly 306

used metrics. Commonly used FOL metrics such 307

as Logical Equivalency and BLEU scores are not 308

insufficient for handling anomalies in FOL gen- 309

eration. To our surprise even LLM-based evalu- 310

ations via gpt-4o model fell short of alignment 311

with human annotation compared with BertScore 312

and combination metrics, suggesting the need for 313

better-suited metrics for evaluating FOL transla- 314

tions, which is essential for advancing the use of 315

LLMs in logical reasoning tasks. Future work can 316

focus on applying these findings to tasks involving 317

sample-based generation methods. 318
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Limitations319

We recognize that GPT models used in our exper-320

iments are continually evolving, which may lead321

to variations in results over time. To manage the322

computational cost of generating multiple samples,323

we limited the data sample used in the experiments.324

This could ideally be extended to a larger dataset or325

used as a reference for achieving high performance326

in existing methodologies, but not as a standalone327

solution. The FOLIO dataset, despite being widely328

used, may contain errors inherent to human judge-329

ment.330
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A Data Statistics409

We aim to ensure diversity in the data used for410

this study. The FOLIO training set contains 1001411

records with ground truth FOLs. The operators412

used in these FOLs are noted, and we select a413

unique combination of operators (regardless of414

their order) for our dataset. By expanding the data,415

we observe additional operator combinations for416

a given sentence. For each set of operators, we417

generate four sentence variations. The details on418

the data size are provided in are in Table 5, and419

the distribution of operators can be referred to in420

Figure 1.421

Figure 1: Plot showing the distribution of the operators
in each records. The majority of records contain 2-3
operators. Records with 0 operators reflect the presence
of a single predicate, indicating no logical connections,
while records with 7 operators represent complex state-
ments.

B Sample Generation422

We generate samples using the prompt “Given a423

natural language sentence, your task is to convert424

the sentence into first-order logic statements using425

the following operators: ∧,∨,¬,→,↔, ∀, ∃,=,⊕.426

The output is a single first-order statement repre-427

senting the sentence with no additional tasks. Gen-428

erate 3 different samples of output.”, where gpt4429

provides 3 samples in the form presented in Fig-430

ure 2.431

Size Operators Unique Duplicates
102 [∧ ∨ ¬ → ⇐⇒ ∀∃ = ⊕] 52 4

Table 5: Dataset statistics used in the sample data for
FOLIO dataset

Given a natural language sentence, your task
is to convert the sentence into first-order logic
statements using the following operators:

∧,∨,¬,→,↔, ∀, ∃,=,⊕.

The output is a single first-order statement
representing the sentence with no additional
tasks. Generate 3 different samples of output.

Text: All eels are fish.
Output: 1. ∀x(Eel(x) → Fish(x))
2. ∀x(E(x) → F(x)) 3.
∀x(IsEel(x) → IsFish(x))

Figure 2: Example of sample generation using gpt-4o.
The highlighted text is the output from the LLM.

C Annotator Instruction 432

The task is to rank the first-order logic (FOL) trans- 433

lations for a given ‘gold label’ a rank of [1,2,3], 434

where 1 represents the best match and 3 represents 435

a comparatively bad match to the gold FOL. You 436

are given 3 variations of FOL for each sentence. 437

Please feel free to rank based on your preference. 438

Few good-to-know instructions: 439

• F1 ∧ F2: Logical AND, True only if both F1 440

and F2 are true 441

• F1 ∨F2: Logical OR, False if both F1 and F2 442

are false 443

• ¬: Negation 444

• →: Implies 445

• ⇔ Double Implies 446

• ∀: For All quantifier 447

• ∃: There Exists quantifier 448

• =: Equals 449

• F1 ⊕ F2: XOR, True only if F1 or F2 are true 450

If two FOLs are the ‘same’, randomly number 451

them. Ex: F1: A ∧B Rank 3, F2: A ∧B Rank 2, 452

F3: A → B Rank 1. 453

You can lower the rank for structure (syntax) or 454

grammar (semantic) errors. Please do not change 455

the format of the file. Just add the rank next to 456

‘Rank’ for each FOL. 457
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Given a ground truth first-order logic
statement and three variations of samples,
your task is to rank the samples in order
of similarity with the label. The output
should be a single list with 3 integers,
including [1, 2, 3], where 1 represents the
closest match and 3 is the least match. Do
not include any other explanation and the
output form is [rank_sample1, rank_sample2,
rank_sample3].

Label: ∀x(Eel(x) → Fish(x))
Sample 1: ∀x(E(x) → F(x))
Sample 2: ∀x(IsEel(x) → IsFish(x))
Sample 3: ∀x(Eel(x) → Fish(x))
Output: [1, 3, 2]

Figure 3: Example of prompt used for ranking the sam-
ples using gpt-4o and o1-preview. The highlighted
text is the output from the LLM.

There are one or more correct rankings. In case458

of ‘all incorrect’, pick the rank based on the closest459

match to the gold FOL.460

Example (put your ranking at the end of each461

statement after “Rank”):462

• label: ∀ x (Square(x) → Shape(x))463

• FOL1: ∀ x (Square(x) → Shape(x)) Rank: 1464

• FOL2: ∀x (¬Shape(x) →¬Square(x)) Rank:465

2466

• FOL3: ∀ x (Square(x) → Shape(x)) Rank: 3467

D LLM Ranker468

We generate ranks using the prompt “Given a469

ground truth first-order logic statement and three470

variations of samples, your task is to rank the sam-471

ples in order of similarity with the label. The output472

should be a single list with 3 integers including [1,473

2, 3], where 1 represents the closest match and 3474

is the least match. Do not include any other ex-475

planation and the output form is [rank_sample1,476

rank_sample2, rank_sample3].”, where gpt4o and477

o1-preview provide a list of ranking in the form478

presented in Figure 3.479

E Pairwise Perturbations480

To study the effect of perturbation on the combina-481

tions, we obtain sensitivity scores as shown across482
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BLEU 0.69 0.69 0.81 0.77 0.82 0.52
LE 0.69 0.73 0.80 0.76 0.82 0.51
ROUGE 0.81 0.80 0.93 0.89 0.96 0.63
METEOR 0.77 0.76 0.89 0.85 0.90 0.59
BERTScore 0.82 0.82 0.96 0.90 0.97 0.65
Smatch++ 0.52 0.51 0.63 0.59 0.65 0.37

Table 6: Negation perturbation scores

AndOr Perturbation B
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BLEU 0.88 0.77 0.91 0.91 0.93 0.88
LE 0.77 0.72 0.81 0.81 0.83 0.78
ROUGE 0.91 0.81 0.95 0.95 0.97 0.92
METEOR 0.91 0.81 0.95 0.96 0.97 0.92
BERTScore 0.93 0.83 0.97 0.97 1.00 0.94
Smatch++ 0.88 0.78 0.92 0.92 0.94 0.96

Table 7: AndOr perturbation scores

Table 3 to Table 11. When compared to a single 483

metric, the combination helps with improving the 484

sensitivity of the metric. 485

F Package Usage 486

This paper utilizes automatic evaluation metrics 487

and datasets in compliance with their respective li- 488

censes. Specifically, we employ BLEU, BertScore 489

(MIT License), ROUGE (Apache-2.0 License), 490

METEOR (MIT License), Logical Equivalence 491

(Apache-2.0 License), and Smatch++ (GNU Gen- 492

eral Public License). The dataset FOLIO, used in 493

this research, is open-sourced under the CC-BY- 494

SA-4.0 license. 495

The packages used in this paper are primarily 496

sourced from the evaluation metrics provided by 497

Hugging Face’s Evaluate library. Additionally, the 498

source code for Logical Equivalence and Smatch++ 499

was utilized. 500
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BLEU 0.95 0.91 0.96 0.96 0.97 0.93
LE 0.91 0.92 0.92 0.92 0.93 0.89
ROUGE 0.96 0.92 0.98 0.98 0.99 0.95
METEOR 0.96 0.92 0.98 0.98 0.98 0.95
BERTScore 0.97 0.93 0.99 0.98 1.00 0.95
Smatch++ 0.93 0.89 0.95 0.95 0.95 0.99

Table 8: OrXor perturbation scores
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Operator Perturbation B
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BLEU 0.20 0.39 0.37 0.31 0.54 0.32
LE 0.39 0.62 0.56 0.50 0.73 0.52
ROUGE 0.37 0.56 0.53 0.48 0.71 0.49
METEOR 0.31 0.50 0.48 0.42 0.65 0.44
BERTScore 0.54 0.73 0.71 0.65 0.89 0.66
Smatch++ 0.32 0.52 0.49 0.44 0.66 0.44

Table 9: Operator perturbation scores

Predicate Perturbation B
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BLEU 0.94 0.90 0.95 0.96 0.97 0.90
LE 0.90 0.93 0.92 0.92 0.93 0.86
ROUGE 0.95 0.92 0.97 0.97 0.98 0.91
METEOR 0.96 0.92 0.97 0.98 0.98 0.91
BERTScore 0.97 0.93 0.98 0.98 1.00 0.92
Smatch++ 0.90 0.86 0.91 0.91 0.92 0.92

Table 10: Predicate perturbation scores

Variable Perturbation B
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BLEU 0.28 0.61 0.51 0.47 0.59 0.49
LE 0.61 1.00 0.84 0.80 0.92 0.82
ROUGE 0.51 0.84 0.74 0.70 0.82 0.72
METEOR 0.47 0.80 0.70 0.68 0.79 0.68
BERTScore 0.59 0.92 0.82 0.79 0.92 0.81
Smatch++ 0.49 0.82 0.72 0.68 0.81 0.76

Table 11: Variable perturbation scores
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