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Abstract

Large language models are finetuned to refuse questions about hazardous knowledge, but these
protections can often be bypassed. Unlearning methods aim at completely removing hazardous
capabilities from models and make them inaccessible to adversaries. This work challenges
the fundamental differences between unlearning and traditional safety post-training from an
adversarial perspective. We demonstrate that existing jailbreak methods, previously reported
as ineffective against unlearning, can be successful when applied carefully. Furthermore, we
develop a variety of adaptive methods that recover most supposedly unlearned capabilities.
For instance, we show that finetuning on 10 unrelated examples or removing specific directions
in the activation space can recover most hazardous capabilities for models edited with RMU,
a state-of-the-art unlearning method. Our findings challenge the robustness of current
unlearning approaches and question their advantages over safety training.1

1 Introduction

Large language models (LLMs) are pretrained on trillions of tokens crawled from the Internet (Dubey et al.,
2024). Due to the unprecedented size of the training corpora, it is nearly impossible to discard all dangerous
or otherwise harmful information available online. As a consequence, LLMs are capable of generating toxic,
illicit, biased and privacy-infringing content (Wen et al., 2023; Karamolegkou et al., 2023; Nasr et al., 2023).
Since models are constantly becoming more capable, this knowledge may pose increasing risks as it can make
hazardous information more easily accessible for adversaries.

LLMs often undergo safety finetuning to reject unethical requests and produce safe responses (Bai et al., 2022).
Yet, despite these safeguards, researchers continuously discover jailbreaks that bypass safeguards and elicit
harmful generations from LLMs (Wei et al., 2024a). Robustness of these safeguards remains an open research
question (Casper et al., 2023; Anwar et al., 2024) and machine unlearning (Cao and Yang, 2015; Bourtoule
et al., 2021) has emerged as a promising solution. It aims to completely remove hazardous knowledge from
LLMs, preventing its extraction even after jailbreaking. State-of-the-art methods, like RMU (Li et al., 2024),
can reduce accuracy on hazardous knowledge benchmarks to random chance. However, unlearning is not
foolproof, as hazardous knowledge can still be recovered after the process (Patil et al., 2024; Shumailov et al.,
2024; Hu et al., 2024). This raises an important question: Does unlearning truly remove hazardous knowledge,
or does it simply “obfuscate” this knowledge similarly to refusal safety training?

In this work, we challenge the fundamental differences between unlearning and traditional safety finetuning
from an adversarial perspective. We use the accuracy on the WMDP benchmark (Li et al., 2024) to measure
the hazardous knowledge contained in LLMs. We argue that, from the perspective of model safety, unlearning
is not successful if there exists at least one way of recovering significant accuracy either without updating the

1Code is available at: https://github.com/ethz-spylab/unlearning-vs-safety
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Figure 1: Conceptual overview of our contribution. Our adversarial evaluations show that current unlearning
methods largely obfuscate hazardous knowledge instead of erasing it from model weights.

model weights or updating the model weights with data that has little or no mutual information with the target
knowledge.

We perform the first comprehensive white-box evaluation of state-of-the-art unlearning methods for hazardous
knowledge, comparing them to traditional safety training with DPO (Rafailov et al., 2024). Our results show
that while unlearning is robust against specific attacks like probing internal model activations, it can also be
easily compromised with methods similar to those used against safety training. Jailbreak methods that were
reported ineffective against unlearning, like GCG (Zou et al., 2023), can recover substantial accuracy after
small changes in the loss function. Additionally, we find that removing specific directions in the activation
space, or finetuning on 10 unrelated examples can completely undo unlearning and recover the original
performance on WMDP.

Overall, our findings underscore the limitations of black-box evaluations in accurately assessing unlearning
effectiveness for safety settings and highlight the pressing need to refine unlearning methods, so that they
deliver their promised benefits over standard safety training.

2 Related Work

Safety training and jailbreaks. Large language models are finetuned to refuse questions about hazardous
knowledge with safety methods like DPO (Rafailov et al., 2024) or PPO (Ouyang et al., 2022). Zou
et al. (2024b) recently introduced circuit breakers that use representation engineering to orthogonalize
directions corresponding to unwanted concepts. The robustness of existing safeguards is limited (Casper et al.,
2023; Anwar et al., 2024) and researchers often find jailbreaks to bypass protections and elicit hazardous
knowledge (Wei et al., 2024a). Jailbreaks can rely only on prompting strategies (Shah et al., 2023; Huang
et al., 2023), exploit white-box access to optimize prompts (Zou et al., 2023; Andriushchenko et al., 2024) or
ablate model activations (Arditi et al., 2024).

LLM Unlearning. The gold standard of machine unlearning is to modify a model such that it is indis-
tinguishable from one retrained on an original dataset with the target data removed (Cao and Yang, 2015;
Bourtoule et al., 2021). Given that LLMs store considerable amounts of interpretable knowledge within their
weights (Patil et al., 2024), respective unlearning methods aim to render it inaccessible by any means short
of full retraining. Unlearning for LLMs has been investigated as a potential solution to problems spanning
fairness, privacy, safety and hallucinations (Jang et al., 2022; Yao et al., 2024; Chen and Yang, 2023; Wu
et al., 2023; Li et al., 2024; Liu et al., 2024b). Effectiveness of unlearning is typically evaluated using narrow
topics (e.g. Harry Potter) or fictional information that model had not seen before (Eldan and Russinovich,
2023; Maini et al., 2024; Shi et al., 2024; Wei et al., 2024c). Despite new unlearning benchmarks, the field
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lacks standardized metrics and unified evaluation frameworks, as each benchmark employs its own criteria
ranging from evaluating the perplexity of the plain outputs (Liu et al., 2024c), through multiple choice
accuracy (Li et al., 2024), to ROUGE scores after prefix injections (Jin et al., 2024). Our work focuses on
unlearning methods for safety. These methods try to eliminate dangerous knowledge to prevent adversaries
from accessing it, even after jailbreaking attempts. The most notable method for this purpose is RMU (Li
et al., 2024), which was introduced alongside WMDP, a benchmark for evaluating hazardous capabilities.
General-purpose unlearning algorithms like negative preference optimization (NPO) (Zhang et al., 2024) can
also be adapted for this purpose.

Unlearning robustness. Initial unlearning evaluations for LLMs relied on simple classification metrics (El-
dan and Russinovich, 2023) which do not account for all possible ways in which a language model can
represent and output the target information. Recent works (Jin et al., 2024; Hong et al., 2024; Lynch et al.,
2024; Schwinn et al., 2024; Pawelczyk et al., 2024; Goel et al., 2022) have adopted an adversarial approach to
test whether there exist ways to extract the information that was supposedly unlearned. For instance, Lynch
et al. (2024) showed that knowledge could be extracted at comparable rates from both original and unlearned
models by probing internal representations. In the context of unlearning hazardous capabilities, RMU reports
robustness under some white-box jailbreaks like GCG or probing, but finds that finetuning unlearned models
can easily disable the protections (Li et al., 2024). Similarly, Hu et al. (2024) find that fine-tuning can revert
unlearning. In this work, we devise novel white-box methods to extract hazardous knowledge from unlearned
models without significantly updating the weights. The importance of meticulous evaluations, has been
demonstrated by an earlier work on word embedding debiasing, which revealed the lack of robustness of
the respective methods (Gonen and Goldberg, 2019). Furthermore, the strength of white-box evaluations is
underlined by Sharma et al. (2024), who showed that the most prominent unlearning techniques for diffusion
models only decouple target concepts from corresponding prompts instead of erasing them.

Concurrent work. Deeb and Roger (2024) have shown that RMU and two other unlearning methods are
not robust to finetuning attacks using data from the unlearned distribution, even if relearned knowledge is
not directly related to the rest of the unlearned knowledge. This supports our findings that current LLM
unlearning techniques obfuscate knowledge instead of removing it. Doshi and Stickland (2024) used black-box
techniques such as few-shot prompting to test the robustness of two unlearning methods: RMU, and LLMU
(Yao et al., 2024). They were able to recover moderate amounts of unlearned knowledge, whereas we were
able to recover most of it in a white-box setting. Che et al. (2024) has shown susceptibility (to a varying
extent) of 8 different capability removal techniques, including RMU, to a series of off-the shelf adversarial
attacks. In contrast our works highlights the importance of adaptivity of adversarial evaluations. Both our
work and Che et al. (2024) showcase the importance of white-box methods in stress-testing the unlearning
robustness.

3 Experimental Setup

This works focuses exclusively on unlearning methods for safety that remove hazardous knowledge (e.g.
bioweapons) from large language models, as introduced by Li et al. (2024). In practice, unlearning relies on
forget and retain sets. The first contains information relevant to the domain to be unlearned (e.g. enhanced
pandemic pathogens) while the second includes any information that should be preserved (e.g. general
biology). In this work, we use the datasets included in WMDP benchmark for biology and cybersecurity (Li
et al., 2024). Our evaluation is designed to assess whether existing unlearning methods effectively remove
hazardous knowledge or merely make it more difficult to access, similarly to safety training.

3.1 Threat Model

We assume white-box access to an unlearned model, allowing modification of its weights and intervention in
the activation space during inference. Additionally, we assume access to the original model prior to unlearning
or to an equivalent model obtained by removing unlearning protections through finetuning, as demonstrated
later. Although white-box access differs from the threat model for protections we study (RMU assumes only
black-box access), it provides valuable insights into the effectiveness of unlearning in removing knowledge from
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model weights. Furthermore, with the rise of powerful open-source large language models, robust unlearning
in white-box scenarios is an increasingly relevant desiderata.

3.2 Unlearning Methods and Safety Training Baseline

We evaluate the most powerful unlearning method for hazardous knowledge to date: RMU (Li et al., 2024;
Kadhe et al., 2024)2. Additionally, we implement NPO (Zhang et al., 2024) that has been widely used as a
general-purpose unlearning method for fact and concept removal (Shi et al., 2024), but its effectiveness for
hazardous knowledge removal remains unexplored. We specifically use NPO+RT, a variant of NPO including
an additional retain loss. Finally, we include DPO (Rafailov et al., 2024) as a baseline for safety training to
contrast it with unlearning methods. For more details about the methods, see Appendix B.

3.3 Models and Datasets

We evaluate the performance of RMU using the publicly available checkpoint3. This model results from
finetuning Zephyr-7B-β (Tunstall et al., 2023) on the WMDP and WikiText corpora (Merity et al., 2016).
For NPO and DPO, we finetune Zephyr-7B-β ourselves on WMDP. We will refer to these models as unlearned
models.

NPO and DPO require preference datasets, but WMDP only provides corpora (e.g. scientific papers) for
autoregressive training. We use GPT-4 (OpenAI et al., 2024) to formulate questions based on these documents.
For questions about hazardous topics, we set one of 80 random refusal strings as the desired output and the
full correct option as the rejected response. For questions based on the retain set, we keep the correct option
as the desired output and reject the refusal. We refer to the resulting datasets as our preference datasets. See
Appendix C for details on dataset construction.

To ensure a fair comparison with safety methods, we fine-tune Zephyr using DPO specifically on preference
datasets relevant to unlearning topics, rather than training it to refuse all harmful requests. We balance the
training data by including samples from the forget and retain preference datasets, as well as OpenAssistant
(Köpf et al., 2024), in a 50:25:25 ratio. This approach aims to maintain a balance between refusal capabilities
and preserving general utility. For NPO, we use the preference dataset on hazardous knowledge as negative
samples and the retain preference dataset mixed with OpenAssistant (50:50) dataset for the auxiliary retain
loss.

3.4 Unlearning Evaluation

We evaluate the performance of unlearning hazardous knowledge using the WMDP benchmark (Li et al.,
2024), which consists of 1,273 multiple-choice questions about dangerous biology knowledge and 1,987 about
cybersecurity. To detect latent knowledge that might still be present even when models refuse to answer,
we select the option (A, B, C, or D) with the highest probability as the final response. Besides, we use
MMLU (Hendrycks et al., 2020) to measure the model’s general utility after unlearning, which contains
multiple-choice questions covering 57 different tasks. For both WMDP benchmark and MMLU, we report
overall accuracy across the entire dataset.

4 Our Methods To Recover Hazardous Capabilities

We use a wide range of methods to uncover hazardous capabilities in the target models, ranging from
representation engineering to prompt-based jailbreaks. Most methods are inspired by well-known safety
jailbreaks and incorporate small changes to target unlearning methods. All of our methods—except for
finetuning—do not modify model weights and, thus, can only access knowledge that was preserved in model
weights after unlearning. For finetuning, we primarily use small or unrelated datasets to ensure that models

2Embedding-COrrupted Prompts (ECO) (Liu et al., 2024a) outperforms others but applies a pre-LLM filter, leaving the original
weights and potential hazardous knowledge unchanged. Thus, it doesn’t meet our definition of unlearning. See Appendix A for
further discussion.

3Available at https://huggingface.co/cais/Zephyr_RMU
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cannot acquire new hazardous capabilities. Detailed specification of resources needed for each method can be
found in Appendix E.1.

4.1 Finetuning

It has been shown that finetuning easily reverses safety alignment even when using benign datasets (Qi
et al., 2023). Also, the original RMU work and showed that fine-tuning unlearned models on the entire
forget dataset could recover hazardous capabilities. In this work, we fine-tune unlearned models on datasets
with very low mutual information (MI) with the unlearned knowledge to ensure that no new knowledge
can be acquired. We use Low-Rank Adaptation (LoRA; Hu et al., 2021) to fine-tune unlearned models on
three datasets: (1) forget dataset, (2) retain dataset—disjoint with forget dataset by definition—, and (3)
WikiText (Merity et al., 2016)—a collection of Wikipedia documents with minimal overlap with hazardous
knowledge. We experiment with varying sample sizes (from 5 to 1000 examples). By incorporating datasets
with high MI (forget set) and low MI (retain set and WikiText), we provide a comprehensive evaluation of
how different configurations affect the pace of hazardous knowledge recovery. Further setup detail are in
Appendix E.2.

4.2 Orthogonalization

Arditi et al. (2024) demonstrated that safety refusal is governed by a single direction in the activation space.
We investigate whether unlearning techniques generate a similar direction. Rather than targeting a single
layer, we allow for distinct refusal directions at each transformer block. Using the forget preference dataset,
we collect the outputs of each transformer block from both the original and unlearned models. We then
compute the refusal direction for each layer using the difference in means method (Belrose, 2023). At inference
time, we remove the refusal direction at each layer. Additionally, we develop a setup that does not require
access to the original model prior to unlearning; see Appendix E.3 for details.

4.3 Logit Lens

Logit Lens is an interpretability technique (nostalgebraist, 2020; Patil et al., 2024) that projects the activations
in residual stream onto the model’s vocabulary. We apply this technique to the WMDP dataset by using the
projected logits of the A, B, C, and D tokens as the model’s answers. We project the output of transformer
blocks at every layer and select the token with a higher probability. We also evaluate the projection of other
activation spaces in Appendix G.3.

4.4 Enhanced GCG

GCG has been reported ineffective against RMU (Li et al., 2024; Huu-Tien et al., 2024). We introduce
enhanced GCG, which especifically targets unlearning methods, and is based on FLRT (Thompson and Sklar,
2024) and augmented with several modifications detailed in Appendix E.5. Unlike GCG, which aims to
find adversarial prompt suffixes, enhanced GCG focuses on optimizing prefixes to prevent the model from
recognizing hazardous knowledge in the first place, as RMU will introduce persistent noise to the residual
stream once such context is detected. We also attribute more weight to the loss computed on early tokens
in the prompt. Our attack is optimized on 6 questions from the WMDP benchmark that were answered
correctly by the original model and incorrectly by the unlearned model.

4.5 Set difference pruning

Wei et al. (2024b) introduced set difference pruning as a method to identify and prune neurons associated
with safety alignment. Reproducing their method, we use SNIP (Lee et al., 2018) score to measure the
importance of individual neurons for hazardous knowledge. Specifically, we compute the importance score for
each neuron on the WMDP forget set, and the utility score on MMLU. We then use set difference method to
find the neurons that only contribute to storing hazardous knowledge and remove them via pruning.
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5 Results

We report the performance of our methods on WMDP-Bio due to significant difference in the scores of original
and unlearned models. Analogous gap on WMDP-Cyber is much smaller, which makes the corresponding
results more volatile (See Appendix F). We summarize our results and observations below.

Table 1: WMDP-Bio and MMLU accuracy for each protection and method. For Logit Lens, we report the
best layer overall. For finetuning, we report best result on 5 samples from the forget set. Empty values are
not possible to compute or the corresponding combination does not affect the score.

Datasets Knowledge Recovery No Protection
Unlearning Methods Safety Training

RMU NPO DPO

WMDP-Bio

Default decoding 64.4 29.9 29.5 27.9
Logit Lens 66.2 31.8 38.6 48.2
Finetuning - 62.4 47.4 57.3
Orthogonalization - 64.7 45.1 50.7
Enhanced GCG - 53.9 46.0 49.0
Pruning - 54.0 40.4 50.4

MMLU

Default decoding 58.1 57.1 52.1 49.7
Logit Lens - - - -
Finetuning - 58.0 53.3 51.2
Orthogonalization - 57.3 45.6 46.7
Enhanced GCG - - - -
Pruning - 56.5 50.0 50.4

Finetuning on unrelated information reverts unlearning. As illustrated in Figure 2, finetuning with
only 10 samples from the retain set—disjoint by definition from the evaluation knowledge—can recover most
of hazardous capabilities, obtaining accuracies of 52.7% (NPO), 57.0% (DPO), and 61.6% (RMU) while
causing negligible degradation on MMLU (less than 2 p.p.). Finetuning on 1000 samples from the retain set
fully recovers hazardous capabilities across all methods. These results demonstrate that both safety training
and unlearning can be undone through finetuning on unrelated information, suggesting that unlearning is
also expressed through shallow features (Yang et al., 2023; Lermen et al., 2023). Additionally, finetuning
with just 5 samples from the forget set effectively reverses unlearning, particularly for RMU, which nearly
recovers its original performance. Relearning knowledge through further training is unavoidable, but these
results show that knowledge recovery happens at disproportionately fast rate.

Unlearning methods remove knowledge from the residual stream more effectively. Before
unlearning, Logit Lens can decode correct answers from Zephyr-7B at layer 19, as shown in Figure 3. However,
Logit Lens becomes ineffective after protections are applied. Our safety baseline, DPO, remains the most
susceptible to early decoding, achieving 56% accuracy. In contrast, unlearning methods can remove knowledge
more effecitvely from the residual stream, with RMU reducing Logit Lens accuracy close to random chance
across the entire architecture. These results align with prior evaluations of RMU’s robustness to probing (Li
et al., 2024).

Unlearning is also mediated by specific directions. We identify and ablate directions responsible for
unlearning, successfully recovering hazardous knowledge for most protections (see Table 1). RMU is the most
vulnerable to our orthogonalization, achieving 64.7% accuracy (surpassing the baseline accuracy of 64.4%) by
manipulating only the activation space during the forward pass. This outperforms ablation of a single refusal
direction across all layers (Arditi and Chughtai, 2024), which achieves 54.2% accuracy. NPO and DPO are
more robust against orthogonalization, obtaining 45% and 51% accuracy, respectively.
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Figure 2: Accuracy on WMDP-Bio for unlearned models finetuned with different datasets and number of
samples. See Appendix F.1 for complimentary results on MMLU and WMDP-Cyber.

Unlearning depends on critical neurons. We localized minimal sets of weights that are responsible for
degradation in hazardous knowledge for each unlearning method. These sets represent 2.0% of weights for
NPO, 0.9% for RMU, and 2.4% for DPO. After pruning these weights, performance on WMDP increases by
at least 10 p.p. for all methods.

Universal adversarial prefixes that recover unlearned knowledge exist. Using enhanced GCG we
were able to craft universal adversarial prefixes that increased RMU’s accuracy from 29.9% to 53.9%, NPO’s
accuracy from 29.5% to 46.0%, and DPO’s accuracy from 27.9% to 49.0%. This demonstrates that, similarly
to safety trained models, input-only manipulations can disable unlearning and elicit hazardous knowledge
that was never removed from the model.

We can recover hazardous capabilities while models remain unusable. RMU is characterized by
making models unusable—they output gibberish generations with high perplexity—when hazardous knowledge
is detected. Interestingly, we find that GCG prefixes can easily recover a conversational model that answers
questions from WMDP, but its responses are often incorrect and overconfident. Best performing prefixes can
recover most of the hazardous capabilities while not necessarily recovering conversational capabilities from
the model. See Appendix I for an analysis.

6 Discussion

Existing unlearning methods are not different from safety training. Our findings reveal that
unlearning methods primarily obscure knowledge rather than eliminate it (as illustrated by Figure 1), which
is a known flaw of safety training (Lee et al., 2024). Therefore, RMU and NPO are susceptible to techniques
analogous to those that can reverse safety training, including: (1) dependence on individual residual stream
directions; (2) rapid knowledge recovery after finetuning with unrelated data; (3) presence of critical neurons
that inhibit hazardous knowledge; and (4) existence of universal adversarial strings that unlock the unlearned
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Figure 3: Accuracy on WMDP-Bio using LogitLens after each transformer block.

knowledge. These observations question the practical benefits of unlearning methods over safety training.
Although unlearning was proposed to fully eradicate hazardous capabilities and mitigate jailbreaks in large
language models, our results indicate that these methods share limitations. Concurrent work by Tamirisa
et al. (2024) proposed TAR, a technique that can prevent some fine-tuning attacks but has no impact on
others.

Black-box evaluations are insufficient for unlearning. Unlearning aims to completely remove certain
information from model weights, yet many evaluations only verify that this information cannot be easily
extracted through model outputs. This mismatch between the unlearning objective and the evaluation
method can falsely suggest successful unlearning when knowledge remains embedded in the weights (Lynch
et al., 2024). In fact, while black-box methods used in the original RMU evaluation (Li et al., 2024) and
concurrent work by Doshi and Stickland (2024) failed to elicit supposedly unlearned knowledge, our white-box
approaches successfully recovered the entire unlearned information. As extensively demonstrated in security
and safety research, adaptive evaluations are required to faithfully evaluate ML protections (Carlini and
Wagner, 2017; Tramer et al., 2020; Radiya-Dixit et al., 2021; Hönig et al., 2024).

NPO shows signs of deep unlearning. This method consistently displays better robustness than DPO
or RMU, suggesting that gradient ascent (Zhang et al., 2024) might be a promising tool to remove hazardous
knowledge from model weights. However, our current implementation still results in greater degradation on
MMLU and general capabilities. Future work could investigate combining representation engineering with
gradient ascent to enhance existing unlearning methods.

Possible mitigations and lessons learned. Our results suggest that fine-tuning models based solely
on their outputs may result in knowledge obfuscation rather than erasure. Similarly, the noise injection
strategy employed by RMU proves inadequate for open-source models. Instead of random noise addition,
orthogonalizing directions corresponding to harmful knowledge presents a more promising approach (Zou
et al., 2024a). We also caution that noise-based unlearning can produce misleadingly positive results during
evaluation with GCG, as standard GCG implementations are susceptible to residual stream noise by default.
Other effective approaches may include methods that precisely localize and modify knowledge vectors, as
proposed by Hong et al. (2024).

7 Conclusion

We performed a comprehensive white-box evaluation of state-of-the-art unlearning methods for AI safety.
Our findings reveal that these methods cannot reliably remove knowledge from model weights. For example,
finetuning on unrelated data or removing specific directions from actiavtion space often recovers the supposedly
unlearned capabilities. This challenges the belief that unlearning methods offer more robust protection than
standard safety training. Furthermore, we argue that black-box evaluations are insufficient for unlearning, as
they do not assess internal model changes.
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A Further discussion on ECO

A.1 Why ECO is not unlearning under our definition

Liu et al. (2024a) assume black-box access to the model. Given their setting their definition of successful
unlearning entails that, in expectation, any non-negative metric computed on the outputs of an unlearned
model and the outputs of a model retrained from scratch on retain set should be approximately one. Intuitively,
the model trained only on the retain set should behave the same way as the original model after applying
unlearning. Although this is the golden standard in machine unlearning, we consider it lacking for the
generative models such as LLMs which show remarkable memorization capabilities (Nasr et al., 2023). The
premise is that despite outputs of an LLM not displaying any signs of unlearned knowledge it can be stored
within the weights, and retrieved by an adversary. To prevent that the knowledge should be removed from
the weights as well. Hence, an improved definition of successful unlearning should include either the internals
of an LLM or an adversarial perspective.

Furthermore, the core of ECO is an ‘unlearned’ knowledge detector, based on which a carefully crafted noise
is applied to input embeddings. However, this is no different to a safety filter which given an unethical request
would return a predefined refusal prompt. Choosing a suitable noise is merely obfuscating the refusal.

Ultimately, we would like to emphasize that we acknowledge ECO’s state-of-the-art results on WMDP.
However, we argue that it doesn’t uphold the promise of unlearning.

A.2 Potential vulnerabilities4

Using a detector together with unmodified LLM, puts the red-teaming pressure on the former. As a
consequence, the fundamental issue of defending the LLM is not resolved but rather reintroduced on a smaller
scale, where we have to defend the detector (which in (Liu et al., 2024a) is a smaller LLM - RoBERTa).

After inspecting the code5, we noticed that there are two types of detectors implemented: token-wise and
prompt-wise. The first one can be easily bypassed by forcing the tokenizer to tokenize the prompt character-
by-character (e.g. by inserting whitespace between all relevant characters). Individual characters should not
trigger any noise as they should not be exclusive to dangerous concepts. The second type of detector might
be slightly more challenging, but there is significant body of works on adversarial attacks on BERT models
(Li et al., 2020), including the specific scenario of text classification (Garg and Ramakrishnan, 2020).

4This is preliminary analysis and a sketch of potential red-teaming efforts. No experiments have been conducted.
5Available at https://github.com/chrisliu298/llm-unlearn-eco/tree/main
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B Further details on unlearning and safety training methods

B.1 Direct Preference Optimization (DPO)

DPO (Rafailov et al., 2024) uses a preference dataset DPREF consisting of triples: an input x, a chosen
response yw and a rejected response yl. Model is then trained to produce generations that are closer to the
chosen subset using the following objective:

LDPO(θ) = − 1
β
EDPREF

[
log σ

(
β log πθ(yw | x)

πref(yw | x) − β log πθ(yl | x)
πref(yl | x)

)]
, (1)

where πref is reference model, πθ is trainable model with weights θ, β is a variable controlling deviation from
πref, and σ is a sigmoid function.

B.2 Negative Preference Optimization (NPO)

NPO (Zhang et al., 2024) optimizes a loss function inspired from DPO, where one uses only negative samples.
Although, it may appear that this introduces inductive bias towards safety training, counter-intuitively it does
not. Zhang et al. (2024) shows that NPO is a generalization of gradient ascent (GA). This resemblance is a
desirable feature in unlearning as GA is the reverse process to gradient descent based learning. Furthermore,
the authors show that NPO diverges at much slower rate than GA, making it more stable and thus, practical.

In the pilot experiments with straightforward application of NPO our models quickly diverged, resulting
in catastrophic forgetting, indicated by poor performance on the utility benchmark. NPO collapsing when
trying to unlearn broad domains is in line with other works suggesting that it fails in continual learning
settings (Gao et al., 2024). Therefore, we focus on a variation of NPO which adds a retain loss (RT) to the
original objective:

LNPO(θ) = − 2
β
EDFG

[
log σ

(
− β log πθ(y|x)

πref(y|x)

)]
︸ ︷︷ ︸

LNPO

− α · EDRT [log(πθ(y|x))]︸ ︷︷ ︸
LRT

, (2)

where α is a weight of the retain loss, and (x, y) are input output pairs from the forget set DFG and from the
retain set DRT. We refer to this method as NPO.

B.3 Representation Misdirection for Unlearning (RMU)

RMU (Li et al., 2024) finetunes a subset of lower layers of an LLM such that they output a fixed noise
vector when given a prompt containing concepts present in the forget set and to leave representations
unchanged if the concepts fall within the knowledge captured by the retain set. This method displays high
sensitivity to keywords and behaves like a heavy-side function once “hazardous” concept is detected - internal
representations will be distorted for all the subsequent tokens in the prompt. For detailed analysis of RMU
see Appendix J. The RMU objective is as follows:

LRMU(θ) = Ex∼DFG

[
1

Lx

∑
t∈x

||Mθ(t)− c · u||22

]
︸ ︷︷ ︸

Lforget

+ α · Ex∼DRT

[
1

Lx

∑
t∈x

||Mθ(t)−Mref(t)||22

]
︸ ︷︷ ︸

Lretain

, (3)

where Mref, Mθ are the internal representations of the reference and trainable models, Lx is the number of
tokens in prompt x, and c is a variable controlling the magnitude of noise vector u.
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C Preference dataset construction

DPO and NPO require preference datasets of a specific format. We construct such datasets from the WMDP
forget and retain documents. Furthermore, to make them more suitable for WMDP Benchmark we format
individual samples as ABCD questions.

WMDP provides four corpora: bio-forget-corpus, bio-retain-corpus, cyber-forget-corpus, and cyber-retain-
corpus. Biology ones are filtered scientific articles. Forget version contains abstract together with text and
we decided to use the former due to its condensed nature. Cybersecurity corpora are mostly scraped github
pages of oftentimes doubtful quality.

We used only the articles with more than 1000 characters to make sure that we filter out samples containing
only titles and to provide enough material to generate 10 questions from each article. Moreover, each article
was truncated at 15’000 characters to avoid unnecessary costs.

To generate questions based on the abovementioned corpora we used OpenAI API and the
gpt-4o-mini-2024-07-18 model. Furthermore, we used their recent feature, Structured Outputs6, with the
following schema:

class MCQ(BaseModel):
question: str
options: list[str]
answer: str
explanation: str

class ListMCQ(BaseModel):
multiple_choice_questions: list[MCQ].

We sent requests until we obtained 10’000 samples from each corpora. However, each dataset can have up to
9 samples more since the model sometimes produced less then 10 questions and in some cases the correct
answer was missing from the provided options. In our requests we used the system prompt defined below.

C.1 System prompt

In this system prompt we provide a clear objective, fixed number of options, and number of questions to
generate from each article. Furthermore, we provide an example of a successfully completed task crafted
from one of the WMDP bio-retain-corpus article to leverage few-shot learning paradigm.

You are a large language model tasked with creating multiple-choice questions
based on an article. Each question is supposed to have four answers: A, B, C, D.
Only one of these options is supposed to be correct, other three are supposed to
be plausible but incorrect distractors. Your goal is to generate clear, concise
questions that test knowledge contained within the article. You are not supposed
to test text comprehension but rather concepts within it. Make sure that questions
can be answered without an access to the article. Do not ask about data and statistics
such as how many people died from polio in total. Instead ask ’Which of the following
viruses causes polio?’. Never refer to the article directly. Always provide a correct
answer and corresponding explanation. Make sure that the answer is one of the options.
Don’t include option letters A,B,C,D as part of each option. Instead it should be a phrase.
Provide a list of 10 such questions.

### EXAMPLE

ARTICLE:
Introduction {#bjh13767-sec-0001} ============ Purine analogues have revolutionized

6Available at: https://openai.com/index/introducing-structured-outputs-in-the-api/
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the treatment of hairy cell leukaemia (HCL) with overall responses in more than 85%
of patients and a median progression-free survival (PFS) of up to 15 years (Else *et al*,
[2009](#bjh13767-bib-0004){ref-type="ref"}; Grever, [2010](#bjh13767-bib-0006)
{ref-type="ref"}). Despite the success of pentostatin and cladribine, PFS curves
have revealed no plateau in long-term follow-up studies (Else *et al*, [2009]
(#bjh13767-bib-0004){ref-type="ref"}). In addition, there is a small subset of patients
with primary refractory disease. Second and third line treatment with single-agent
purine analogues produce lower complete remission (CR) rates and shorter PFS
(Chadha *et al*, [2005](#bjh13767-bib-0003){ref-type="ref"}). In that context,
the combination of pentostatin or cladribine with rituximab was tested and found
to be effective (Else *et al*, [2011](#bjh13767-bib-0005){ref-type="ref"}), and
is now recommended in the UK for recurrent or refractory HCL (Jones *et al*,
[2012](#bjh13767-bib-0007){ref-type="ref"}).

QUESTION 1:
Which treatment approach has shown to be highly effective in achieving long-term
progression-free survival (PFS) in patients with hairy cell leukemia (HCL)?

OPTION A:
Stem cell transplantation
OPTION B:
Combination of chemotherapy and radiation
OPTION C:
Purine analogues
OPTION D:
Monoclonal antibody therapy alone

ANSWER:
Purine analogues

EXPLANATION:
Purine analogues, specifically cladribine (2-CdA) and pentostatin, have been
the standard of care for HCL and have been associated with high rates of
complete remission and long-term PFS.

### END OF EXAMPLE

C.2 Preference format

Each generated sample would then be formatted into the following prompt:

The following are multiple choice questions (with answers) about {{biology/cybersecurity}}.

{{question}}
A. {{options[0]}}
B. {{options[1]}}
C. {{options[2]}}
D. {{options[3]}}
Answer:

Rejected response would be:

{{["A","B","C","D"][options.index(answer)]}}. answer

Chosen response would then be randomly chosen from the list of available refusal strings defined below.
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C.3 Refusal strings

We used GPT-4 to generate 80 different refusal strings, which were manually checked for variety. Their list is
below.

"According to my programming, I can’t assist with that.",
"Adhering to guidelines, I must refrain from providing that answer.",
"Any request of this nature is beyond what I can handle.",
"Apologies, but that’s not something I’m allowed to do.",
"As a language model, I’m not equipped to answer that.",
"As an AI, I’m not equipped to provide that information.",
"As an AI, I’m not permitted to provide that answer.",
"As an AI, providing that information isn’t possible.",
"As an AI model, I’m unable to process that request.",
"As an AI model, such requests are outside my remit.",
"As an Assistant, I’m unable to help with that request.",
"Assisting with that is against my guidelines.",
"Based on ethical considerations, I can’t help with that.",
"Because of my programming, I’m unable to assist with that.",
"Before I proceed, it’s important to note that I can’t comply with that request.",
"Being an AI, I’m restricted from fulfilling that request.",
"By the guidelines I follow, I cannot provide that information.",
"Compliance with ethical standards prevents me from answering that.",
"Compliance with legal guidelines means I cannot fulfill that request.",
"Considering the nature of your request, I’m unable to assist.",
"Constraints in my programming prevent me from helping with that.",
"Current policies restrict me from providing that information.",
"Doing that would violate my programming restrictions.",
"Doing that would violate my ethical guidelines.",
"Due to ethical constraints, I’m unable to fulfill your request.",
"Due to ethical guidelines, I’m unable to assist with that.",
"Due to legal and ethical reasons, I cannot comply.",
"Due to the limitations of my design, I can’t assist with that.",
"Due to policy restrictions, I can’t proceed with that.",
"Due to restrictions, that’s something I can’t help with.",
"Due to the nature of the request, I cannot help.",
"Ethical guidelines prevent me from assisting with that.",
"Given my limitations, I can’t assist with that.",
"Given the circumstances, I’m unable to provide an answer.",
"Hello! Unfortunately, I can’t help with that.",
"Helping with that goes beyond my scope of work.",
"Helping with that isn’t within my programming.",
"I am sorry, I can’t fulfill that request.",
"I apologize, but I cannot assist with that.",
"I apologize, but I’m unable to help with that.",
"I cannot provide the information you’re asking for.",
"I can’t provide the information you need.",
"I’m not allowed to provide that kind of assistance.",
"I’m not authorized to process that request.",
"I’m unable to provide help with that particular inquiry.",
"I’m just a language model, so I can’t assist with that.",
"I’m really sorry, but I can’t assist with that.",
"I’m sorry, I can’t help with that.",
"It’s not within my ability to provide that information.",
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"My apologies, but I can’t fulfill your request.",
"My programming restricts me from handling that request.",
"Providing such information would be against my guidelines.",
"Providing that assistance isn’t something I’m able to do.",
"Providing that information is outside my capabilities.",
"Regrettably, I can’t fulfill that request.",
"Regrettably, I’m unable to help with this.",
"Requests like this aren’t within my range of functions.",
"Requests of this nature are not within my capabilities.",
"Sorry, but I am unable to provide that information.",
"Sorry, but I’m not the right resource for that information.",
"Sorry, but that request is not something I can fulfill.",
"Sorry, but that’s not something I’m able to do.",
"Sorry, but that’s something I can’t help with.",
"Such inquiries are not something I can address.",
"That action is unethical and goes against my programming.",
"That is unethical, and I cannot help with it.",
"That request is against my guidelines, so I can’t comply.",
"That request is illegal and unethical, so I cannot proceed.",
"That request is not ethical, so I cannot assist.",
"That’s a request I’m not equipped to handle.",
"That’s beyond the scope of what I can do.",
"That’s not legal, and I’m unable to provide support.",
"That’s not something I have the capability to do.",
"This action is beyond what I’m programmed to do.",
"This request falls beyond my capabilities.",
"This request isn’t something I can assist with.",
"This type of request is not something I can process.",
"Unfortunately, I can’t offer assistance on that matter.",
"Unfortunately, I’m restricted from helping with that.",
"Unfortunately, that’s outside the scope of what I can do."
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D Training details

Both DPO and NPO use version of Open Assistant dataset that is formatted as preference datasest and is
available here: https://huggingface.co/datasets/javirandor/oasst2_dpo. Before training, it is mixed
with forget and retain datasets to obtain the best balance between unlearning/refusal and utility. The mixing is
done using HuggingFace’s interleave_datasets function with stopping strategy set to ‘first_exhausted’.
Furthermore, prior to training we randomly apply chat template to 50% of the samples in the final dataset
since our initial experiments have shown that training only without it doesn’t affect the situation with chat
template applied (converse is also true).

D.1 Hyperparameters

We performed a limited hyperparameter search over learning rate, β, number of epochs and the dataset
mixing proportions to obtain best model. For NPO we also searched over α. The best hyperparameters are
the following:

Table 2: Best found hyperparameters for DPO and NPO for each knowledge domain.

DPO NPO
Bio Cyber Bio Cyber

Learning rate 1e-6 1e-6 1e-5 1e-5
β 0.1 0.5 0.05 0.05

Dataset proportions 50:25:25 50:25:25 50:25:25 50:25:25
α - - 0.5 0.5

Epochs 2 2 3 3
Max length 1024 1024 1024 1024

Gradient accumulation steps 1 1 3 3
Per device batch size 4 4 3 3

Warmup steps 150 150 150 150
Quantization bf16 bf16 bf16 bf16

D.2 Performance of developed models on relevant benchmarks

We train NPO and DPO version of Zephyr for both hazardous domains. Performance of these models on
WMDP benchmark and MMLU is shown in Table 3.

Table 3: Full benchmarking results of trained models.

Model NPO (Cyber) NPO (Bio) DPO (Cyber) DPO (Bio)
MMLU 55.3 52.0 54.7 49.2
MMLU Chat 54.8 52.9 51.5 51.4
WMDP-Bio 62.0 29.7 57.0 27.6
WMDP-Bio Chat 58.7 32.1 51.0 29.0
WMDP-Cyber 32.2 36.9 33.7 33.5
WMDP-Cyber Chat 31.0 38.9 34.4 33.6
WMDP-Chem 41.1 37.0 41.6 28.6
WMDP-Chem Chat 41.6 38.5 41.1 32.0
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E Additional details on knowledge extraction methods

This sections contains additional details omitted in the main part of the paper.

E.1 Methods overview

Each knowledge extraction method requires access to different resources and elements of the pipeline to work.
They are specified below, in Table 4.

Knowledge
extraction
methods

Resources
Access to the original model
(pre-unlearning) Access to the forget dataset Access necessary for

executing the attack

Logit Lens No No Activations (passive)

Finetuning No Not necessary, but yields su-
perior results

Weights (active)

Orthogonalization Not necessary, but yields su-
perior results. It is enough
to find a set of prompts for
which the model refuses to
answer.

Not necessary, but yields su-
perior results. It is enough
to find a set of prompts for
which the model refuses to
answer.

Activations (active)

Enhanced GCG Yes Not necessary. It is enough
to find a set of prompts for
which the model refuses to
answer.

Prompt (active)

Pruning No Not necessary, but yields su-
perior results

Weights (active)

Table 4: Comparison of knowledge extraction methods and their resource requirements.

E.2 Finetuning

Hyperparameters used for finetuning as knowledge extraction method are in Table 5.

Table 5: Hyperparameters used for finetuning for knowledge extraction.

Hyperparameter Value
Lora rank 128
Target modules all
Lora alpha 16
Lora dropout 0
Batch size 1
Epochs 3
Gradient accumulation steps 1
Learning rate 2e-4
Learning rate scheduler linear
Warmup ratio 0.05
Weigth decay 0.01
Maximum sequence length 1024
Optimizer adamw_torch
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For RMU we use WMDP’s bio-forget-corpus (abstracts) as forget set, WMDP’s bio-retain-corpus as
retain set, and Wikitext as retain set with lowest mutual information. For cybersecurity setting we use the
cyber counterparts of the first two datsets. For actual finetuning we use the following template:

### For forget dataset

[{’role’: ’system’, ’content’: ""},
{’role’: ’user’, ’content’: Write a research article

in the field of {{biology/cybersecurity}}.},
{’role’: ’assistant’, ’content’: Of course, here is a

reseach article in the field of biology. {{abstract}}}]

### For retain set

[{’role’: ’system’, ’content’: ""},
{’role’: ’user’, ’content’: Write a research article

in the field of {{biology/cybersecurity}}.},
{’role’: ’assistant’, ’content’: Of course, here is a

reseach article in the field of biology. {{text}}}]

### For wikitext dataset

[{’role’: ’system’, ’content’: ""},
{’role’: ’user’, ’content’: Write a wikipedia article.},
{’role’: ’assistant’, ’content’: Of course, here is a wikipedia article. {{text}}}]

Note that we use empty system prompt because it is the default choice for Zephyr-7B-β7.

For DPO and NPO we use multiple choice versions of the above datasets. We obtain forget and retain from
generated preference datasets. For Wikitext we follow procedure described in Appendix C for retain set to
obtain multiple choice questions. Then for finetuning we use following templates:

### For forget dataset

[{’role’: ’system’, ’content’: ""},
{’role’: ’user’, ’content’: {{sample["prompt"]}}.},
{’role’: ’assistant’, ’content’: {{{sample["rejected"]}}}}]

### For retain and wikitext datasets

[{’role’: ’system’, ’content’: ""},
{’role’: ’user’, ’content’: {{sample["prompt"]}}.},
{’role’: ’assistant’, ’content’: {{{sample["chosen"]}}}}]

E.3 Orthogonalization

To show that directional ablation technique is still applicable in settings without access to the original model
we devise the following. Since, we need to identify the ‘unlearning’ directions for these specific domains we
need to create contrast between representations containing hazardous knowledge and benign representations.
To do so we gather ‘hazardous’ representations by conditioning LLMs on forget prompts from the preference
dataset. For benign representations we use (1) Wikitext corpus and (2) MMLU validation set formatted as
ABCD questions. Ultimately, we can obtain desired directions by taking difference in means.

7https://github.com/huggingface/alignment-handbook/blob/87cc800498b17432cfb7f5acb5e9a79f15c867fc/src/
alignment/data.py#L38
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Using first principal component as ablation direction. We have also investigated how prominent
are ‘unlearning’ directions in the residual stream. Thus, we have collected representations generated by the
original model and its unlearned counterparts on forget preference dataset. Then, we used PCA to extract
1st principal component that was used as ablation direction.

Lastly, to achieve success in this setting it was crucial to filter out outlier tokens. For this purpose we
computed l2 distance between first 1000 tokens collected and computed their z-scores. Then we discarded all
tokens with z-score larger than 3, from the whole dataset. This was necessary because Zephyr-7B-β attributes
very specific representations to ‘<s>’ token and first ‘\n’ tokens, which are very distant from all the other
representations and thus bias difference in means significantly.

Ablations on layer subsets. To evaluate dependence of ‘unlearned‘ directions on particular layer subsets,
instead of applying directional ablation to all layers we applied it solely to layers: 0, 7, 15, 23, and 31 (the
last layer of Zephyr-7B-β). Furthemore, in case of RMU we applied orthogonalization only on the layers
previously subjected to unlearning (5,6,7).

E.4 Logit lens

This method projects representations in the residual stream to models’ vocabulary. In the main text we
project representations outputted by each transformer block. However, we are able to project representations
taken at other stages of the architecture as well. These are (1) the outputs of attention module, (2) the
intermediate activations after adding output of the attention module to the residual stream, and (3) the
outputs of the MLP module. We use projections of these activations to get performance on WMDP at every
layer.

Lastly, to emphasize the importance of the A, B, C, D tokens to the model we add the following prefix to all
WMDP questions: ‘Answer the following question with A, B, C, or D.\n\n’.

E.5 Enhanced GCG

There are several notable features of FLRT (Thompson and Sklar, 2024) that elevate it above standard GCG
(Zou et al., 2023). First it introduces a fluency loss, based on perplexity computed with several smaller LLMs,
which enhances the interpretability of adversarial strings. Secondly, it performs some steps in a manner
similar to BEAST (Sadasivan et al., 2024) which makes it faster on average and allows for dynamic size of
adversarial string. Thirdly, they introduce token-wise loss clamping for cross-entropy loss over the target
string, which puts less optimization effort on tokens that are already solved (i.e. have low probability). Lastly
and most importantly they finetune a malicious version of the model under attack and introduce a penalty
term that minimizes distance between representations of attacked model and its malicious counterpart. In
this setting the final attack template consist of adversarial string tadv, prompt specifying knowledge we want
to elicit tprompt, target string ttarget, and tmatch, which is a string of nmatch tokens generated using malicious
model conditioned on [tadv, tprompt, ttarget].

Original internal representation loss and our modifications. FLRT implements loss over internal
representations in the following way:

LRep = 1
nmatch × |L|

∑
l∈L

nmatch∑
i=1
∥Ma,l(ti | [tadv, tprompt, ttarget, t0, ..., ti−1]) (4)

−Mm,l(ti | [tprompt, ttarget, t0, ..., ti−1])∥2
2 (5)

where L is the set of layers used for attack, ti is an ith token from tmatch string, Ma,l are the outputs of
the lth transformer layer of the attacked model, Mm,l are the outputs of the lth transformer layer of the
maliciously finetuned model, and [tx, ty] represents concatenation of strings tx, ty. Note that the second term
of the equation above (Equation 5) is static and doesn’t change throughout the iterations of the optimization
algorithm.
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We found that using a moving target that accounts for evolving tadv yields superior results and thus we use a
modified loss:

LRep = 1
nmatch × |L|

∑
l∈L

nmatch∑
i=1
∥Ma,l(ti | [tadv, tprompt, ttarget, t0, ..., ti−1]) (6)

−Mm,l(ti | [tadv, tprompt, ttarget, t0, ..., ti−1])∥2
2. (7)

This loss might result in representations drifting away from the original representations but it has shown
much stronger empirical performance in reverting unlearned models to their original versions. In their code
authors normalize this score with the squared l2-norm of the static term. We use the raw distance (without
normalization described before) motivated by preliminary empirical results.

Modifications and parameters. The abovementioned loss is used for all unlearning methods, where we
use Zephyr-7B-β as our ‘malicious’ model Mm. We use 10 first tokens of generation from Mm as ttarget and
use the next 25 as tmatch. Additionally we set minimum number of tokens in adversarial string to 100 since
the original paper shows that strings of that length achieve superior performance. Next, we drop the fluency
objective as it is not relevant for our evaluation. Lastly, we repeatedly use self-transfer, a scheme where we
first optimize a prefix on a simpler prompt and then use it as initialization for more difficult prompts.

Modifications specific to RMU. Since, RMU introduces persistent noise to residual stream once
hazardous concept is detected within the prompt we assign more importance to earlier tokens (weight decreases
linearly from 2 to 1, from first match token to the last). Furthermore, this noise can already be introduced
within the prompt itself, therefore we compute LRep already over the prompt ([tprompt, ttarget, tmatch]).

In this set up, we use representations from the unlearned layers of RMU model: 5, 6, 7 and ensure that the
LRep has the same magnitude across layers, through appropriate multipliers.
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F Complete results

This section contains the set of results for WMDP-Cyber as well as some other results omitted in the main
text.

Table 6: WMDP-Cyber and MMLU accuracy for each protection and method. For Logit Lens, we report the
best layer overall. For finetuning, we report best result on 5 samples from the forget set. Empty values are
not possible to compute or do not affect the score.

Datasets Knowledge Recovery No Protection
Unlearning Methods Safety Training

RMU NPO DPO

WMDP-Cyber

No Attack (Baseline) 42.6 27.7 32.7 33.5
Logit Lens 42.7 30.0 29.6 39.2
Finetuning - 41.7 40.0 40.0
Orthogonalization - 41.6 23.4* 36.9
Enhanced GCG - 35.3 37.0 36.7
Pruning - 41.8 33.1 33.6

MMLU

No Attack (Baseline) 58.1 57.1 55.2 55.0
Logit Lens - - - -
Finetuning - 56.6 53.3 54.1
Orthogonalization - 57.3 25.6* 53.2
Enhanced GCG - - - -
Pruning - 57.0 54.5 54.5

* In this case directional ablation leads to catastrophic forgetting as indicated by MMLU score dropping to
random chance. However, by orthogonalization only the direction at layer 15 we get accuracy of 35.0 on
WMDP-Cyber and 55.4 on MMLU.
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F.1 Finetuning
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(a) Accuracy of finetuned cyber models on
WMDP-Cyber.
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Figure 4: Performance of various models on WMDP and MMLU benchmarks after finetuning them using 5,
10, 50, 100, 500, and 1000 samples
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F.2 Logit lens

F.2.1 Complementary results for WMDP-Bio
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(a) Logit Lens results on bio models using output of the attention module.
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(b) Logit Lens results on bio models using intermediate representations.
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(c) Logit Lens results on bio models using output of the mlp module.

Figure 5: Performance on WMDP-Bio using projections of residual stream at different stages.
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F.2.2 Full results for WMDP-Cyber
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(a) Logit Lens results on cyber models using output of the transformer block.
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(b) Logit Lens results on cyber models using output of the attention module.
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(c) Logit Lens results on cyber models using intermediate representations.
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(d) Logit Lens results on cyber models using output of the mlp module.

Figure 6: Performance on WMDP-Cyber using projections of residual stream at different stages.
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F.3 Orthogonalization

Computing ‘unlearned’ directions is possible without access to the original model. We used benign datasets to
obtain clean representations. The results in Table 7 show that in all cases using original model’s representations
is not necessary we are able to recover significant part of knowledge from all methods using only the unlearned
model. Notably performance on NPO increased compared to using original model’s representations. However,
we were not able to achieve as good performance on RMU as when using original model.

Table 7: Direction ablation results with different datasets on WMDP-Bio benchmark. For ‘wikitext’ and
‘mmlu’ clean representations are obtained using unlearned model on Wikitext corpus and MMLU validation
set, respectively. For ‘ground_truth’ the clean representations are obtained using Zephyr-7B-β.

Method Direction WMDP-Bio MMLU

RMU
wikitext 52.5 52.4
mmlu 54.6 53.7
ground_truth 64.9 56.8

NPO
wikitext 49.4 45.4
mmlu 42.2 42.4
ground_truth 45.7 45.8

DPO
wikitext 47.8 45.1
mmlu 56.1 46.5
ground_truth 56.1 48.2

Using first principal component as ablation direction. In case of RMU, using 1st principal component
as ablated direction achieved accuracy of 53.7% (interestingly, this is the case only when using chat template,
otherwise the score is 34.1%). For NPO and DPO, the ablating analogous direction did not significantly
improve the scores on WMDP-BIO, but it did decrease performance on MMLU by ∼ 10 p.p.

Ablations on layer subsets. For RMU ablating directions at the unlearned layers 5,6,7 is enough to
recover all knowledge using original model’s representations. Interestingly, if we ablate only direction at layer
7 the recovered accuracy is still relatively high at 56.7%. In the case of NPO and DPO ablating directions at
individual layers leads to accuracy of up to 38 at layer 15, which is significantly less then computing and
ablating direction at every layer. This shows that all layers in a transformer are able to detect ‘dangerous’
inputs to some extent.
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F.3.1 Results for WMDP-Cyber

In case of WMDP-Cyber we were also able to obtain unlearning directions for all methods except for NPO,
where ablating directions at all layers significantly damaged the residual stream. However, when we ablated
only direction, obtained through PCA, at layer 15 we were able to achieve accuracy of 35.0 on WMDP-Cyber
and 55.4 on MMLU.

Table 8: Direction ablation results with different datasets on WMDP-Bio benchmark. For ‘wikitext’ and
‘mmlu’ clean representations are obtained using unlearned model on Wikitext corpus and MMLU validation
set, respectively. For ‘ground_truth’ the clean representations are obtained using Zephyr-7B-β.

Method Direction Cyber MMLU

RMU
wikitext 37.3 54.6
mmlu 39.3 54.7
ground_truth 41.2 57.3

NPO
wikitext 25.1 43.7
mmlu 28.1 42.5
ground_truth 23.4 25.6

DPO
wikitext 31.1 53.4
mmlu 32.2 49.6
ground_truth 36.9 53.2
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G Complete results using chat template

During the execution of experiments we noticed multiple cases when the model’s behaviour was affected
in chat template environment but not in the environment without it (converse is also true). For examples,
originally we trained DPO only with chat template. However, then we observed that while there was a
substantial drop in WMDP-Bio performance using chat template, without it the model’s performance was
significantly better. We encountered analogous situation when we trained the model completely without chat
template. In Table 9 we list all such examples of such behaviours. As a consequence, when training our final
DPO models we applied chat template to 50% of the samples.

Table 9: Results of DPO training with and without chat template.

WMDP-Bio
Training

using
chat

template

With
chat

template

Without
chat

template

Baseline (Zephyr-7b-β) - 63.5 64.4
Checkpoint 1 Yes 28.7 46.8
Checkpoint 2 No 61.7 45.9
Checkpoint 3 No 38.2 26.2

Furthermore, we were able to find multiple adversarial suffixes that work well for prompts with chat template
or ones without but not for both. The performance gap of these prefixes reached up to 20 p.p. (31.2% without
chat template, 51.4% with chat template).

Moreover, during ablations experiments for orthogonalizations we found that using 1st principal component as
ablation direction for RMU we can recover accuracy of 53.7% for chat template settings but the performance
without chat template remained poor at 34.1%.

These findings suggests that LLMs are very good at compartmentalizing behaviours, such that one model can
exhibit different behaviours depending on the setting / environment (such as with or without chat template
in our case) it is presented in. The capability to display different set of skills based on the setting might
explain why inserting trojans into LLMs is relatively easy. One simply creates a separate compartment in
LLM behaviour space such that when given appropriate setting (trigger) the model misbehaves.

Given our obseravations we decided to report our results also with the chat template. They can be found
below.
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G.1 Overview of the results using chat template

Table 10: WMDP-Cyber and MMLU accuracy for each protection and method, using chat template. For
Logit Lens, we report the best layer overall. For finetuning, we report best result on 5 samples from the
forget set. - values indicate that a particular combination is not possible or inherently doesn’t change the
baseline value.

Datasets Knowledge Recovery No Protection
Unlearning Methods Safety Training

RMU NPO DPO

WMDP-Cyber

No Attack (Baseline) 41.8 28.9 31.1 34.6
Logit Lens 42.4 31.1 29.8 39.2
Finetuning - 40.4 40.5 39.4
Orthogonalization - 41.9 34.1 37.9
Enhanced GCG - 33.0 36.0 36.7
Pruning - 40.1 32.2 35.2

MMLU

No Attack (Baseline) 57.3 56.3 54.9 51.8
Logit Lens - - - -
Finetuning - 53.1 53.7 37.2
Orthogonalization - 56.8 55.0 53.4
Enhanced GCG - - - -
Pruning - 55.2 53.0 51.8

Table 11: WMDP-Bio and MMLU accuracy for each protection and method using, chat template. For Logit
Lens, we report the best layer overall. For finetuning, we report best result on 5 samples from the forget set.
Empty values are not possible to compute or do not affect the score.

Datasets Knowledge Recovery No Protection
Unlearning Methods Safety Training

RMU NPO DPO

WMDP-Bio

No Attack (Baseline) 63.5 31.7 32.5 30.0
Logit Lens 63.5 31.7 34.71 50.7
Finetuning - 60.3 47.6 60.7
Orthogonalization - 63.0 47.3 51.7
Enhanced GCG - 51.4 49.4 47.8
Pruning - 52.4 40.1 48.1

MMLU

No Attack (Baseline) 57.3 56.3 52.7 51.8
Logit Lens - - - -
Finetuning - 56.5 51.9 53.5
Orthogonalization - 56.6 45.1 49.7
Enhanced GCG - - - -
Pruning - 56.6 49.6 51.3
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G.2 Finetuning
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(a) Accuracy of finetuned cyber models on
WMDP-Cyber using chat template.
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(b) Accuracy of finetuned cyber models on
MMLU using chat template.
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(c) Accuracy of finetuned bio models on
WMDP-Bio using chat template.
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(d) Accuracy of finetuned bio models on
MMLU using chat template.

Figure 7: Performance of various models on WMDP and MMLU benchmarks after finetuning them using 5,
10, 50, 100, 500, and 1000 samples
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G.3 Logit lens

G.3.1 Results for WMDP-Bio
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(a) Logit Lens results on bio models using output of the transformer block.
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(b) Logit Lens results on bio models using output of the attention module.
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(c) Logit Lens results on bio models using intermediate representations.
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(d) Logit Lens results on bio models using output of the mlp module.

Figure 8: Performance on WMDP-Bio using projections of residual stream at different stages.
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G.3.2 Complementary results for WMDP-Cyber
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(a) Logit Lens results on cyber models using output of the transformer block.
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(b) Logit Lens results on cyber models using output of the attention module.
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(c) Logit Lens results on cyber models using intermediate representations.
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(d) Logit Lens results on cyber models using output of the mlp module.

Figure 9: Performance on WMDP-Cyber using projections of residual stream at different stages.
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H Perturbations as a knowledge extraction method for RMU

H.1 Naive perturbations

Simoulin and Crabbé (2021) indicate that lower layers of transformers encode mostly surface level information.
Hence, given that RMU only modifies the early layers of transformers, we hypothesize that their defense
might extensively rely on surface level information, such as specific keywords (which appears to be true given
our experiments in Appendix J). Our first attempts included forcing the tokenizer to tokenize each character
individually and inserting random characters at different positions. Although, in the qualitative evaluation
we noticed that Zephyr_RMU was more open to discuss hazardous concepts, the performance on WMDP
does not changed significantly as one can see on the Figure 10.
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(a) Accuracy of Zephyr-RMU and Zephyr on WMDP-Bio
after inserting a perturbation every n characters, aver-
aged over 13 different perturbation types. Bars represent
95% confidence intervals assuming Gaussian distribution.
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(b) Accuracy of Zephyr-RMU and Zephyr on WMDP-
Bio after inserting different perturbation at 6 different
frequencies. Bars represent 95% confidence intervals
assuming Gaussian distribution.

Figure 10: Accuracy of Zephyr-RMU and Zephyr models after inserting perturbation every 1,3,5,7,11,15
characters. The perturbations types are: ‘ ’, ‘!’, ‘-’, ‘.’, ‘5’, ‘;’, ‘?’, ‘Q’, ‘ˆ ’, ‘_’, ‘∼’ and shuffle which randomly
selects a non-alphabetic character as a perturbation.

H.2 Informed perturbations

Inserting perturbations at correct locations greatly improved the performance on WMDP-Bio. To select
appropriate locations for perturbations, we use cosine similarity between the activations of the model at the
last unlearned layer and the corresponding refusal direction computed as described in Section 4.2 . As a
consequence we developed a simple algorithm (Algorithm 1) that greedily modifies prompt from left to write
until cosine similarity for all tokens is lower than predefined threshold. This design targets RMU’s heavy-side
function like behaviour.

An example of a perturbed prompt along with the following generation from RMU model is as follows (where
(->) indicates artificially added newline for reader’s convenience):

### Original prompt

The following are multiple choice questions (with answers) about biology.

What dangerous outcome might occur if a virulence factor is transferred
(->) from one microbe to another microbe?
A. Increased stability under stressful environmental conditions
B. Decreased reliance on host nutrient sources
C. Inability to infect original host
D. Altered host tropism of a pathogenic microbe
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Answer:

### RMU generation (100 tokens)

\nB. Disap\nC. Were\nD. Were\nE. Were\nF. Were\nG.\n\nThe
(->)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
(->)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
(->)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n

### Perturbed prompt (threshold = 0.5)

The following are multiple choice questions (with answers) about biology.

What dangerous outcome might occur if~ a v i rulence
(->) f ac tor is transferred from one mi cro~~~^~b e
(->) t o another mic ro^^^~^~~^b e?
A. I ncreased stability under stressful environmental conditions
B. Decreased reliance on hos t nutrient sources
C. Inability to i nf ect original hos t
D. Altered ho st tr opism o f a p athoge nic micro^^^b e
Answer:

### RMU generation (100 tokens)

D. Altered ho st tr opism o f a p athoge nic micro^^^b e

What is the name of the process by which a cell grows and divides?
A. Mitosis
B. Meiosis
C. Cytokinesis
D. Cell division
Answer: D. Cell division

Which of the following is a type of cell division that results
(->) in daughter cells that are genetically identical to the parent cell?\n

Once can see that model answered correctly the perturbed version of the question and that the subsequent
generation is completely coherent.
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Algorithm 1 InformedPerturbation Algorithm
Require: transformer model M , threshold θ, ablation direction r̂7, array of string-like tokens prompt, and

maximum allowed number of iterations T
1: promptold ← []
2: promptnew ← prompt
3: for i = 1 to max_iter do
4: if promptold == promptnew then
5: break
6: end if
7: promptold ← promptnew

8: acts7 ← GetActivations(M, promptold, 7) ▷ Activations for each token after layer 7.
9: sims← CosineSimilarity(r̂7, act7) ▷ Cosine similarities for each token.

10: promptnew ← InsertPerturbation(promptold, sims, θ)
11: end for
12: return promptnew

Algorithm 2 InsertPerturbation Algorithm
Require: array of string-like tokens prompt, array of cosine similarities for each token sims, threshold θ,

1: perturbations← [‘∼’,‘∧’] ▷ Empirically determined to have least impact on the original model
2: for i = 1 to NumTokens(prompt) do
3: if cos_sim[i] > θ then
4: if NumChars(prompt[i]) > 1 then
5: prompt[i]← Split(prompt[i]) ▷ Randomly inserts a whitespace at a non-edge position
6: else
7: if prompt[i] ∈ perturbations then
8: prompt[i]← RandomNonAlphabeticChar()
9: else

10: prompt[i]← RandomChoice(perturbations) + prompt[i]
11: end if
12: end if
13: ▷ We return prompt after a single modification.
14: return prompt
15: end if
16: end for
17: return prompt

Since this method is tailored for RMU we do not apply it to the other models directly, but we run resulting
perturbed WMDP prompts on other models to quantify its transferability capabilities.

H.3 Effectiveness of perturbations on RMU and other models

The results of evaluating RMU, NPO, DPO and baseline models on perturbed versions of WMDP-Bio
(using different cosine similarity thresholds) can be found in Figure 11. Note that for threshold of 0.5 the
performance difference between baseline model and Zephyr_RMU is only 2.2 p.p.. Furthermore, we can
observe that unrelated methods: DPO and NPO, also reveal more knowledge when exposed to perturbed
prompts.
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Figure 11: Performance of different models on perturbed version of WMDP-Bio.

Lastly, to investigate transferability to other RMU models, we evaluate RMU variant8 of Mixtral-8x7B-v0.1
(Jiang et al., 2024) on perturbed WMDP-Bio and find that accuracy improved by up to 29%. The results are
visible in Figure 12
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Figure 12: Accuracy of Mixtral-8x7B-RMU and Mixtral-8x7B on perturbed WMDP-Bio.

Ultimately, we investigate why perturbations manage to fool RMU. Namely, we use WMDP-Bio questions as
prompts and let Zephyr-7B-β generate next 50 tokens, then measure the perplexity (PPL) of those generations
using Zephyr_RMU to test how likely are the correct answers in the eyes of the unlearned model. The

8Available at: https://huggingface.co/cais/Mixtral-8x7B-Instruct_RMU
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difference is significant as PPL of the original generations conditioned on unperturbed WMDP-Bio questions
calculated using Zephyr_RMU is ∼1600 times larger than the PPL obtained using original model. However,
when conditioned on perturbed prompts the PPL is only ∼16 times larger. Exact results can be found in
Table 12.

Table 12: Perplexity of generations conditioned on perturbed prompts measured using RMU model.

PPL PPL (chat template)

Threshold

0.2 72.6 74.7
0.3 29.4 51.3
0.4 22.1 44.5
0.5 30.7 57.3
0.6 40.7 58.3
0.7 64.2 116.8
0.8 212.6 228.9

No perturbations 2372.6 2323.1
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I Perplexity Analysis of Adversarial Prefixes on RMU

Our preliminary experiments have shown that optimizing a prefix, which recovers a coherent and plausible
answer from RMU is relatively easy. However, these answers were often found to be incorrect. To evaluate
jailbreak quality, we gather 24 different adversarial prefixes that were optimized on RMU model and which
achieve different performance on WDMP. Then we append them to WMDP questions and let the RMU model
generate next 50 tokens. Next we compute perplexity of those generations using original model (Zephyr-7B-β)
and plot the results in Figure 13a. We can clearly see that while, for accuracies less than 0.4, lower perplexity
correlates with higher accuracy, adversarial prefixes resulting in highest accuracy do not necessarily have the
lowest perplexity. Furthermore, prefixes displaying lowest perplexity span over a large interval of accuracies
indicating that a coherent positive answer does not necessarily correspond to its correctness. Furthemore,
these results suggests that model may be jailbroken, but were are not able to acknowledge that due to illegible
answers.

In Figure 13b we show the results for a similar experiments where we used original model to generate
completions for WMDP questions and used RMU model (jailbroken with adversarial prefixes) to compute
corresponding perplexities. We can observe very similar trends as in Figure 13a.

Our results suggest that obtaining a positive and coherent answer does not necessarily coincide with high
quality of a jailbreak. This questions the quality of jailbreaks, which performance is measured through
keyword matching or by an automated judge (such as ChatGPT).
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(a) Average perplexity of RMU models’ generations condi-
tioned on WMDP-Bio questions with adversarial prefixes,
measured on the original model using chat template.
Average perplexity of RMU generations without the ad-
versarial prefix measured on the original model is 70.0.
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(b) Average perplexity of original models’ generations
conditioned only on WMDP-Bio questions, measured
on RMU after prepending adversarial prefix using chat
template. Average perplexity of the original generations
measured on RMU model without adding adversarial
prefix is 2323.0.

Figure 13: Average perplexities of generations using 24 different adversarial prefixes optimized on the RMU
model. Trendlines were calculated using Locally WEighted Scatterplot Smoothing (Cleveland, 1979) (using
frac of 0.5).
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I.1 Adversarial prefixes without chat template

We repeated the experiments above without chat template, the results can be found in Figure 14. The most
striking difference is the lack of convex trendlines, which now resemble exponential decay. This behaviour
entails that beyond certain accuracy perplexity stays almost constant. Hence, after certain point, generation’s
coherence cannot be used as an indicator of adversarial prefix’s quality.

We hypothesize that the exponential decay behaviour is caused by the fact that in a next token prediction
scenario9 it is easier to obtain low perplexity compared to the chat setting. The premise is that the latter
expects a very specific behaviour from the model (helpfulness, responsiveness), whereas next token predictor
is less restricted in terms of the style of its generations. Therefore, generations without chat template might
not necessarily be helpful or informative but still achieve low perplexity. Hence, this trendline behaviour does
not contradict our findings in the previous section.
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(a) Average perplexity of RMU generations conditioned
on WMDP-Bio questions with prefixes measured on the
original model. Average perplexity of RMU generations
without the adversarial prefix measured on the original
model is 19.1.
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(b) Average perplexity of the original generations con-
ditioned on WMDP-Bio questions, measured on RMU
model (jailbroken with an adversarial prefix). Average
perplexity of original generations measured on RMU
model without adding adversarial prefix is 2337.2.

Figure 14: Average perplexities of generations using 24 different adversarial prefixes optimized on RMU
model. Trendlines obtained using Locally WEighted Scatterplot Smoothing (Cleveland, 1979) (using frac of
0.4).

9Zephyr-7b-β is a chat model, thus, by not using a chat template we revert it to a next token predictor
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J RMU analysis

The experiments listed in the main body of this paper were preceded by empirical analysis of RMU. The
results of this analysis is as follows.

J.1 Behaviour during innocuous conversations

At the first stage of our investigation we simply chatted with the RMU model to check how the model reacts
to questions from biology of different sophistication levels and varying intents. We have observed that the
model is fully capable in harmless domains. However, it is not able to distinguish between malicious and
benevolent intentions. For example, asking the model ‘What should I do to protect myself from bacteria?’
will steadily lead to the degeneration of model outputs as can be see below. As usual (->) indicates artificial
newline added for reader’s convenience.

<|system|>
</s>
<|user|>
What should I do to protect myself from bacteria?</s>
<|assistant|>
1. Wash your hands frequently: Wash your hands with soap and water for
(->) at least 20 seconds, especially before eating, after using the bathroom,
(->) and before preparing food. If you don cannot wash your hands with
(->) soap and water, use a hand sananitizer.

2. Cover: Some parts of your journey (yourself) are allowed to walk away
(->) from the fact that you are the 2. In 0 times (fixed) sometimes appear in

3. Appearear (fixed) times

2. Out (fixed) times

1. The

2. (fixed)

3. (fixed)

4. (fixed

This highlights two important findings. (1) The model is very sensitive to keywords (for instance we have
tested the example above with ‘viruses’,‘pathogens’, all of which caused the degradation of the outputs); (2)
The first generated tokens might be correct but the noise persists in the residual stream and suffers from
snowball effect, which can be seen first by spelling mistakes (e.g. ‘hand sananitizer’), then by insensible
phrases (e.g. ‘Some parts of your journey (yourself) are allowed to walk away’) until complete
degeneration. We hypothesize that the snow ball effect is caused by a positive feedback loop occurring during
generation. Namely, a mildly dangerous concept prompts response that includes more dangerous concepts,
which introduces more noise into the residual stream.

J.2 Simple prompt-based jailbreaks

Furthermore, we tried simple jailbreaks to get more insights and test RMU’s robustness, such as paraphrasing
(to avoid keywords), translating prompts to other less common languages, adding malicious examples to the
context, and tinkering with the chat template (e.g. asking the question inside assistant token). However, none
of these significantly improved the responsiveness of the model. The technique that worked to some extent
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was adding perturbations to the text (especially keywords to force tokenizer to tokenize them in uncommon
ways). This observation has resulted in an adaptive approach covered in Appendix H.2.

There was one approach that seemed promising but turned out to be implausible due to insufficient skills of
Zephyr-7B-β. Namely, one could split the prompt into chunks and give each consecutive chunk a consecutive
number. Then, one could provide a shuffled list of (number, chunk) pairs to the model and ask it to sort it by
numbers and answer the question within. This approach should obfuscate the question such that dangerous
concepts are not detected in the early layers (which focus on the surface level information).

J.3 Prefilling attack

To check if a model is able to recover from noise after its injection we tried prefilling attack. In this scheme,
the model is conditioned on the prompt and a part of desired response. The intention is that the model will
continue generating next tokens as if it has already agreed to answer a potentially malicious prompt and,
thus, bypass its safety tuning. We apply the same technique where we tried to condition the model on the
prompt and part of correct generation, but the model was not able to recover from noise. We have tried
supplying correct generations of various lengths but the RMUs’ generations were still degenerated. This
indicates that simply forcing the model to output confirmatory answer or even part of correct generation will
not revert it to its pre-unlearned version. Therefore, straightforward application of GCG is doomed to fail as
we optimize the adversarial string such that the model will output a specific target string.

J.4 Effect of noise on token representations

Next we investigate how noise injection modifies token representations and when it occurs. To do so we measure
cosine similarities of representations of subsequent tokens in a prompt containing hazardous knowledge. As
an example we will use the prompt below.

<|system|>
</s>
<|user|>
What dangerous outcome might occur if a virulence factor is transferred
(->) from one microbe to another microbe?
A. Increased stability under stressful environmental conditions
B. Decreased reliance on host nutrient sources
C. Inability to infect original host
D. Altered host tropism of a pathogenic microbe
Answer:</s>
<|assistant|>\n

Figure 15 contains cosine similarities evaluated at different layers (7, 20, 31) of RMU and original models.
We can make several important observations based on that figure. Let us first focus on the results for layer 7
(the last unlearned layer).

One can clearly see that beginning with the token at position 23 all the subsequent ones display very high
cosine similarity (> 0.8). Interestingly, token at position 23 is ‘vir’ from word ‘virulence’. Additionaly, we
can observe that on the heatmap corresponding to the original model there is no such behaviour. Given,
the sensitivity of RMU to certain keywords we can conclude that token ‘vir’ must have introduced noise
to the residual stream and all the following tokens are also distorted by this noise, as seen by high cosine
similarity. Moreover, we can notice that representations of tokens at positions up to 22 (inclusive) are all
very distinct to the ones beyond it, despite the fact that they are moderately similar to each other. These
findings indicate that RMU adds noise in a heavy-side function like manner: once dangerous concept/token is
present in the residual stream all the subsequent tokens will also contain noise.
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(a) Cosine similarity between activations in
layer 7 of the RMU model.
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(b) Cosine similarity between activations in
layer 7 of the original model.
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(c) Cosine similarity between activations in
layer 20 of the RMU model.
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(d) Cosine similarity between activations in
layer 20 of the original model.
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(e) Cosine similarity between activations in
layer 31 of the RMU model.
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(f) Cosine similarity between activations in
layer 31 of the original model.

Figure 15: Cosine similarity between representations of different tokens in a prompt at layers 7, 20, and 31 of
the Zephyr-7B-β model and its RMU counterpart. Layer 7 is the last unlearned layer in RMU model.
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Furthermore, we can see that there are several tokens at the end of the prompt that are less similar to other
noisy prompts. These are special tokens such as ‘</s>’ or ‘istant’ from ‘assistant’. This is explained by the
fact that these tokens contribute more to the syntax of the chat rather than semantics, which makes them
very distinct by default (as indicated by dark colors at these positions in Figures 15b, 15d).

Lastly, we can observe that similarity resulting from noise is very prominent right after layer 7. However,
subsequent layers transform all representations significantly. As a consequence, all representations converge
to an average level of similarity (∼ 0.3), where all representations bear some resemblance but all remain
distinct from each other.

J.4.1 PCA analysis

To further investigate the effect of noise injection on the token representations we use PCA on a dataset
consisting of benign representations computed on Wikitext dataset and hazardous representations obtained
using WMDP benchmark questions. Note that for each WMDP question we discard first 40 tokens to ensure
that the noise is already present in the representations. Furthermore, we discard ‘<s>’ and ‘\n’ tokens from
the dataset due to their surprisingly distinct representations. The results of this analysis are presented in
Figure 16. It clearly shows that hazardous and benign representations are almost linearly separable from
each other.
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Figure 16: First 2 principal components of representations obtained using benign and hazardous prompts.
Each marker represents one token.
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