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Abstract

We propose a new language representation method that generalizes all types of tokenization
into a unified framework called elementwise language representation. This method represents
each token using N low-dimensional byte embeddings, which are concatenated into a single
vector. Using this framework, models can process text regardless of the tokenization applied.
Most notably, by matching the number of attention heads in a Transformer architecture with
N, we can reduce its self-attention complexity proportional to the model size. This technique
requires no architectural modifications of the backbone Transformer or additional overhead.
Through experiment, we demonstrate that existing Transformer architectures trained within
the proposed framework are improved in terms of efficiency, robustness and inference speed.
These observations suggest the potential for an optimal pre-training objective built upon the
elementwise language representation, guiding future works to focus on refining this approach.

1 Introduction
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Figure 1: Visualization of the elementwise language representation. Any semantic unit is first encoded into
a fixed number of bytes. The resulting bytes are projected into low-dimensional byte embeddings, and then
concatenated back into a single vector, thereby forming the latent representation of the given semantic unit.

We understand text from various aspects of linguistics, but existing methodologies for language representation
leverage tokenization which depends on a certain level of semantics exclusively, thereby ignoring many crucial
parts of natural languages. Within these representations, text is encoded into a sequence of symbolic integers
and transformed into latent embeddings with constant dimensionality (Bengio et al.,2000). This fundamental
approach has been at the core of modern language representation, but cannot model the hierarchical structure
between different levels of semantic units. This seemingly minor drawback leads to a major trade-off between
vocabulary size and sequence length. Neural word-level models (Mikolov et al., [2013 Pennington et al.,[2014)
effectively maintain reasonable sequence length by aggregating several characters into a symbolic word token,
but create a challenge in balancing out-of-memory and out-of-vocabulary problems. Although character-level
models (Graves, [2013; [Kim, 2014; Xue et al.||2022)) avoid vocabulary-related issues, they embed each character
into the same dimensional vector as word embeddings, thereby resulting in longer input sequences, increasing
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computational complexity and long-range dependency. Subword-level tokenization (Sennrich et al.l 2015; 'Wu
et al.,|2016; Kudo & Richardsonl [2018) provides a good compromise between these two approaches, however,
it still cannot model character-level information explicitly and faces the vocabulary problem in a multilingual
setting again. While recent character-level models try to emulate word-level segmentation via downsampling
input sequences (Tay et al., 2021; |Clark et al., [2022}; |Godey et al.l|2022]), their acceptable downsampling rate
is limited due to the issue of oversmoothing. We have now reached the time to explore a better representation.

In this paper, we propose a new framework called elementwise language representation, wherein each semantic
unit is represented as a fixed number of low-dimensional byte embeddings. Each byte embedding corresponds
to each letter of the semantic unit, which are concatenated into a single vector to form a latent representation.

Using this simple approach, we can represent any level of semantics of any type of natural language within a
unified framework, regardless of the tokenization applied, utilizing only 256 low-dimensional byte embeddings.
The character-level information of each semantic unit is modeled explicitly with its lexical properties. Because
larger models with higher dimensionality can represent more letters jointly as a single latent embedding, the
self-attention complexity on character sequences is reduced, in proportion to the number of byte embeddings
per semantic unit. This implies that by simply matching the number of attention heads with the number of
characters per each semantic unit, we can improve the computational efficiency of any Transformer (Vaswani
et al [2017) proportional to its model scale. No architectural modification or additional overhead is required.

This is the first part of the two-paper research on the elementwise language representation: we first introduce
the framework for elementwise representation with theoretical and practical advantages in supervised learning
in this article, and then explore an optimal pre-training objective across diverse scales in the follow-up study.

2 Background

In the real world, concepts are often composed of smaller sub-components hierarchically. Similarly, computers
process data as sequences of bits, organized into bytes. The 118 elements serve as the fundamental building
blocks of matter in this universe. Each element can be encoded using a single byte, which offers 256 possible
values, enabling the representation of all known elements. Based on this intuition, we can represent everything
within a unified framework called elementwise representation as follows:

1. Encode the given data into N bytes
2. Project each byte into a low-dimensional embedding
3. Concatenate N byte embeddings into a single latent vector

This latent representation separates the neural network architecture from the inductive bias of the data, and
allows the data to be embedded while preserving its inherent hierarchical structure. See the examples below.

Text modality. A semantic unit can be encoded into a sequence of UTF-8 bytesﬂ The encoded bytes are
transformed into low-dimensional byte embeddings, and then concatenated into a single token representation.

Image modality. An (r,g,b) pixel is itself a length-3 byte tuple, each in range of [0, 255]. 3 color channels
are projected into 3 low-dimensional byte embeddings, then concatenated into a single pixel representation.

Sensor modality. An (z,y, z) coordinate in a LIDAR point cloud is a length-3 float tuple. Each coordinate
can be encoded into 4 or 8 bytes E| with following projection, then concatenated into a single representation.

Because the same set of elements on different combinations can result in different materials, naively arranging
byte embeddings might not be sufficient. We can derive unique representations from an identical set of bytes,
by differently weighting each of the N bytes utilizing self-attention with A" heads. As a single representation
embeds N bytes jointly, each corresponding to a concept or element, a Transformer using N attention heads
can align sequences N times longer, while maintaining its self-attention complexity fixed. This implies that
the computational efficiency of the Transformer architecture improves as models scale, in proportion to the

LA text can be encoded into UTF-8 bytes via list(bytes("text/to/encode", "utf-8")) in Python3.
2A floating point number can be encoded into 4 or 8 bytes via struct.pack("format", float) in Python3.
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Figure 2: Visualization of the elementwise language representation framework. The proposed framework is
designed to be generalized to all types of tokenization. Its explanation is most straightforward when applied
with whitespace tokenization, wherein each semantic unit becomes a word consisting of A/ letters. First, the
given text is tokenized into M words and each word is encoded into N bytes, with the hyperparameters M
and . Words shorter than N are padded with integer zeros, longer ones are truncated. The byte encoding
matrix of shape (M, N) is projected into a byte embedding tensor (M, N, C), and then reshaped into a word
embedding matrix of shape (M, D = NC). C and D are the sizes of byte and word embeddings, respectively.

number attention heads. Using this simple approach, we believe that a universal representation for all kinds
of modalities can be developed. By introducing the elementwise representation for the text modality in this
paper, we take the first step towards this new research direction.

3 Elementwise Language Representation

The key idea behind the elementwise language representation is to represent each letter as a low-dimensional
byte embedding and form a larger semantic unit by concatenating these byte embeddings into a single vector.
Our approach is based on the assumption that the entropy of a semantic unit is proportional to the number
of its letters. In other words, we use entropy as a criterion for determining the size of the byte embeddings.

Consider a word “App__e” with the missing spelling “/”. The missing letter has low entropy since it is easily
inferable. For a sentence with a missing word, such as “__ brought a basket of apples,” the entropy increases
because the possible substitutions depend on the spellings of the subject. Similarly, the entropy will escalate
when considering a missing sentence within a paragraph, as there are more cases to replace a sentence than
a word within a sentence. Given this assumption, individual characters convey the simplest information and
have the lowest entropy, enabling their representation using lower-dimensional embeddings than higher-level
semantic units. See Figure [2| for the explanation below.
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For an input sequence of M tokens (i.e., a sequence of semantic units), our method encodes each token into
N bytes, with A as a hyperparameter. The selection of tokenization is irrelevant as our primary focus is on
encoding each token into a byte sequence. Tokens with fewer than A letters are padded with integer zeros,
while those with more are truncated. Shorter sequences are padded with blocks of A/ zeros. This technique
facilitates the representation of any tokenization type within a unified framework, allowing neural networks
to process input texts independently of the applied tokenization. Encoded N bytes are transformed into N/
low-dimensional byte embeddings and concatenated into a single vector through a tensor reshaping operation
achievable in most contemporary deep learning libraries and frameworks. This operation is called Reshaping.

As N byte embeddings are concatenated to form a larger semantic unit, the resulting entropy increases again
proportionally to N'. To reduce it back, we employ self-attention with A/ heads to attend on all MN bytes,
thereby concentrating the distributed probabilities on the most important semantic units. This approach is
feasible since the representation and attention weights of each semantic unit are determined by both its A/
letters and the entire MN letters via joint projection through a shared feed-forward layer. This operation is
referred to as Focus wherein each of A attention heads explicitly focuses on latent space of byte embeddings
rather than arbitrary subspaces of a symbolic embedding as in the original intuition of multi-head attention.

Although Focus attends on M\ byte tokens using a self-attention, its computational complexity is O(M?),
not O((MN)?), fully ignoring the complexity of A/. This is because the representation of each semantic unit
is composed of N byte embeddings, and each nt"* head of the A/ attention heads aligns each n*" letter of all
M semantic units with the following joint projection. Via backpropagation, we can assign attention weights
to each nt" letter in the corresponding n'” attention head, jointly incorporating information from letters in
different positions aligned in other attention heads. Regardless of the value of A/, which denotes the number
of letters in each semantic unit, the complexity of Focus remains fixed to the number of semantic units, M.

This leads to a reduction in self-attention complexity for an MAN -length byte sequence, proportional to the
choice of N'. As long as each byte embedding has sufficient dimensionality to represent individual characters,
increasing N allows us to embed not only words but also higher-level semantic units such as phrases, sentences
and even paragraphs into a single embedding. It indicates that larger models with higher-dimensional hidden
layers can process longer texts than smaller ones with the same self-attention complexity. As any Transformer
is itself stacked self-attention layers and the number of letters A also corresponds to the number of attention
heads, larger Transformers with more attention heads can handle much longer sequences with reduced costs,
compared to their smaller-sized equivalents without any architectural modification or additional overhead.

Within this simple “Reshape, then Focus” framework, our elementwise language representation embeds all
kinds of text modalities jointly utilizing a tiny lookup table consisting of 256 low-dimensional byte embeddings
and improves the computational efficiency of the Transformer architecture in proportion to the model scale.
We believe this approach provides more natural and reasonable method for representing natural languages,
in contrast to the traditional symbolic latent representations wherein different embedding tables are required
for different types of tokenization and the computational costs of neural networks do not improve, no matter
how large the models become.

3.1 Comparing the Representations

In this section, we elaborates the advantages of the proposed elementwise language representation compared
to symbolic latent representations. We consider a BERTgasg (Devlin et al.,[2018) as a backbone architecture.

Versus character-level models. Given an input text that consists of X = M\ characters, it is converted
into K character tokens and then transformed into a (K, 768) character embedding matrix via character-level
model. The resulting self-attention complexity is O(K?) and the character-level model adopts a (256, 768) size
embedding table, assuming a byte-level vocabulary for fair comparison with the elementwise representation.

By applying elementwise language representation, the K characters are encoded into K bytes. When N = 16,
the K bytes are projected into a (K,48 = 768/A\) byte embedding matrix, then reshaped into an embedding
matrix of shape (M = K /N, 768) wherein each row represents a semantic unit consisting of 16 letters. This
results in the O(M?) self-attention complexity and the size of the elementwise embedding becomes (256, 48).
Hence, the model trained with elementwise language representation processes the same length byte sequence
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with A2 times lower self-attention complexity, using N times fewer embedding parameters compared to the
character-level model. Unlike recent studies that employ the sequence downsampling and rescale parameters
to compensate for the downscaled embedding table (Tay et al., 2021} |Clark et al.,|2022), applying elementwise
language representation does not entail modifying the backbone architecture or incurring additional overhead.

Versus subword-level models. Given an input text comprising M words, a subword-level model converts
it into K = M + «a subword tokens and then projects them into a (K, 768) subword embedding matrix. The
arbitrary length « is added to M due to the subword tokenization of each word. This results in the O(K?)
self-attention complexity and the subword-level model employs a subword embedding table of size (30k, 768).

By applying elementwise language representation, the M words are converted into an (M, ') byte encoding
matrix with each row representing a semantic unit of N bytes. As A/ = 16, the matrix is transformed into a
byte embedding tensor of shape (M, N, 48 = 768/N), and then reshaped into a subword embedding matrix
of shape (M, 768), where each row corresponds to a subword representation consisting of A byte embeddings.
The resulting self-attention complexity is O(M?) and the size of embedding table becomes (256, 48). In this
case, the reduction in computational complexity may vary depending on the counts of subword tokenization,
denoted by a. Since « tends to be larger for longer texts with more words, the improvement in computational
cost will be significant proportionally to the sequence length M. When A grows substantially beyond 16, a
single token represents a larger semantic unit such as phrases, sentences or paragraphs with the same O(M?)
self-attention complexity, hence improving the computational efficiency of larger Transformers dramatically.

3.2 Implementation Details

The elementwise representation of the mt" semantic unit that consists of A letters is implemented as follows:
em < Concat(el? @ g0, ... eN=1 g gy g f(m)

Consider that the input text is tokenized into M semantic units as (S, ..., Saq—1). The m!”* semantic unit
Si, is encoded into N bytes as Sy, < (B, ..., By—1). The number of the special tokens, such as [PAD] and
[CLS], is added to each byte integer. If there are a total three special tokens, each byte is 3 greater than its
original value. Shorter semantic units S, than A are padded with integer zeros, longer units are truncated.

The byte encoding of each S,, is projected into a byte embedding sequence (eSS), e e%\/_l)), where egﬁ) € RS,
and concatenated back into a single vector e,, € RP=NC which constitutes the latent representation of S,,.
The concatenation of the byte embeddings can be achieved via tensor reshaping from (M, N, C) to (M, NC).

Additionally, we can add two positional embeddings, ¢ € R® and f("™) e RP, to egff ) and em respectively,
in order to manually encode positions that can be attended by the Focus operation. These embeddings are
referred to as focus embeddings. The global focus embedding ¢(®) encodes the position of n'" byte embedding
in the m*" semantic unit. The index p is computed by the equation p = (m x N) + n, where m € [0, M) is
the absolute position of each m*”* semantic unit, and n € [0,\) is the relative position of the nt? letter in a
semantic unit. On the other hand, the local focus embedding f(™) jointly encodes the positions of A letters
in the m*" semantic unit. Although the concept of elementwise language representation is well implemented
without focus embeddings, we found that these are helpful for the stability and quality of model convergence.

Since the Focus on a sequence of A/-letter semantic units can be executed via Transformer with A attention
heads, implementing the elementwise language representation entails simply replacing the existing embedding
table of any Transformer model with 256 C-dimensional byte embeddings. We abstract these byte embeddings
with the following tensor reshaping operation from (M, N, C) to (M, NC) into an integrated embedding table
called elementwise embedding. No other components of the backbone Transformer architecture are modified.

4 Experimental Setup

4.1 Dataset

We use patent documents published by the United States Patent and Trademark Office (USPTO) to evaluate
different Transformers trained with the elementwise language representation in multi-label text classification.
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Table 1: Reduced standard deviations of dataset splits used in the experiment. SD is the standard deviation
between all CPC codes (the class labels), and SDaajor refers to the standard deviation between CPC codes
dominating over 90% of the entire labels in training examples. Standard deviations in all three dataset splits
are significantly reduced after the proposed relabeling, thus implying that the class imbalances are alleviated.

Labelin Train 20154 2015

g Samples SD SDMajor Samples SD  SDyajor Samples SD SDwajor
Original 21k 35.4k 1.8k 3k 1.9k 3.2k
Relabeled  *9M 12,6k 21k 14.5k Lik 1.9k 154k 19k %k

This custom dataset consists of 664 class labels, each representing a specific technical category of any patent.
It features a highly imbalanced class distribution and includes a wide range of domain-specific lexicon related
to each class label. A patent is a multimodal document written by expert applicant and maintained by patent
office which is reliable. It consists of a title, abstract, claim, descriptions with figures and a set of classification
symbols called Cooperative Patent Classification (CPC) codes. We utilize the claim section of each document
as input text and use its associated CPC codes as labels. The objective of patent classification is multi-label
prediction of the classes among 664 technical categories for the given patent claim that is usually a long text.

A single CPC code consists of five hierarchical levels of Section, Class, Subclass, Main Group and Subgroup.
Among these, we use the slice from Section to Subclass as label. For instance, consider the CPC code A0O1N
53/12, which consists of [Section: A, Class: 01, Subclass: N, Main Group: 53/00, Subgroup: 53/12]. In this
case, we utilize the concatenated slice [Section: A, Class: 01, Subclass: N], resulting in the label AOIN. Each
patent is assigned a sequence of CPC codes, with the primary CPC code indicating the main invention, and
subsequent codes providing additional context. Hence, directly one-hot encoding the CPC codes may lead to
skewed labels, as an identical CPC code can be used both as the primary and a subsequent code within the
same label. For example, two different labels [A01B, G06Q, A01B], [G06Q, A01B] have an identical one-hot
encoding [A01B:1, G06Q: 1]. This wrong labeling confuses models to think of different patents as the same.

To address the order-dependent meaning of CPC codes and tackle the skewed label distribution, we prepend
First to the primary CPC code and Later to the subsequent codes. The above labels [A01B, G06Q, A01B]
and [GO6Q), A01B] are reassigned as [First-A01B, Later-G06Q, Later-A01B| and [First-G06Q, Later-A01B],
respectively. These labels result in two separate encodings [1, 0, 1, 1] and [0, 1, 1, 0], where the placeholder
is [First-A01B, First-G06Q, Later-A01B, Later-G06Q)]. Although this is in accordance with the official CPC
documentation (USPTO|[2022), to the best of our knowledge, there have been no previous studies on patent
classification that have followed this guidance. In addition to correcting the labels of the dataset for accurate
evaluation, this modification mitigates dataset imbalance by dividing the frequency of each CPC code into
First and Later categories, as evidenced by the reduced standard deviations between class labels in Table

For training, we use patents published between 2006 and 2014 and ones published in 2015 for testing, divided
into two splits 20154 and 2015g. To prevent the models from overfitting on short claim segments that may
not properly express the invention, we concatenate the first 20 claims of each patent into a single paragraph,
rather than sampling the first ones only as in (Lee & Hsiang} 2020). All patent documents are utility patents
published in the United States and collected using the BigQuery table called Google Patents Public Dataﬂ

4.2 Training Details

We trained models for text classification using the USPTO patent document dataset to benchmark robustness
against domain specificity and imbalanced class distribution. Since the classification objective is multi-label,
the binary cross-entropy loss with sigmoid activation is used for training. The threshold for prediction is 0.3.

As there is no known optimizer that is specifically tailored for patent data, we utilized the AdamW (Loshchilov
& Hutter,2017) which has demonstrated strong generalization for diverse applications and reduced sensitivity
to different hyperparameter settings. It is configured using 81 = 0.9, B2 = 0.999, eps = le — 8 and A = 0.01.

Shttps://github.com/google/patents-public-data
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Table 2: Main differences between model configurations used in the experiments. Hyperparameters M and
N refer to the number of tokens and of bytes comprising each token, respectively. D and C denote the sizes of
token representations and their byte embeddings. Hyperparameter A means the number of attention heads.

Parameters
Model Total Embedding M N p ¢ A
BERTgwE 87M (0.8x) 12k (0.0005x) 128 16 (=.A) 768 (=NC) 48 16 (=N)
BERToRrIG 110M (1x) 23M (1x) 128 1 768 768 (=D) 12
ALBERTEwr 9M (0.7x) 2k (0.0005x) 128 16 (=.A) 128 (=NC) 8 16 (= N)
ALBERTogric 12M (1x) 4M (1x) 128 1 128 768 (=D) 12
CANINEgwg  110M (0.8x) 1M (0.05x) 128 16 (=A) 768 (=NC) 48 16 (= N)
CANINEoric  130M (1x) 25M (1x) 128 1 768 768 (=D) 12

Table 3: Superiority of transformers trained with elementwise embedding in multilabel patent classification.

20154 20155
Model Speed(Samples/s) Fq Precision Recall F, Precision Recall
BERTgwE 629 (1.7x) 64.30 66.02 62.66 63.94 66.55 61.53
BERToric 366 (1x) 63.68 65.59 61.82 63.35 67.16 59.95
CANINEgwg 339 (1.4x) 64.30  65.86 62.82  63.95  66.43 61.64
CANINEoric 242 (1x) 60.40 64.08 57.12 59.97 64.52 56.01
ALBERTEwr 638 (1.9x) 63.18 65.84 60.73 62.91 66.47 59.71
ALBERToRric 338 (1x) 63.15 65.82 60.70 62.79 66.36 59.59

We applied the learning rate decay to the initial learning rate of 2e — 5 without a warmup period. The batch
size is set to 32. These small values are chosen to mitigate overfitting caused by the imbalanced training data.
We trained all models for 10 epochs under a fully supervised learning setting without language pre-training.

4.3 Performance Measures

We leveraged three metrics: Precision, Recall and F; to evaluate the multi-label classification performance on
the technical categories of patent documents. Precision captures how well a model identifies the unique label
of each patent document. Recall measures how well a model distinguishes patents with different inventions.

The primary objective of patent classification is the optimization of the patent search engine, where Precision
and Recall are equally important. Therefore, we use F; as the main metric to take into account both scores.
We use these metrics to evaluate the model robustness to domain-specific and imbalanced patent documents.

Because our dataset exhibits extreme class imbalance with regard to the frequency of each technical category,
all metrics are computed based on the micro-averaged scores over the entire class labels. The dataset contains
664 subclass-level CPC codes each corresponding to a single technical category and each code is divided into
two labels by the prefixes First and Later (see Section, thereby creating 1,328 class labels to be averaged.

5 Results

In this experiment, we demonstrate the practical effectiveness of the elementwise language representation in
terms of efficiency, robustness and inference speed. To isolate its effectiveness as a standalone representation
technique from any enhancements introduced by various pre-training methodologies, we trained models from
scratch, under fully supervised learning setting. Our goal is to show that existing Transformer architectures
are improved by using the proposed representation, therefore the baselines are their original implementations.

To demonstrate the advantage in robustness by the elementwise language representation, we evaluate models
on multi-label patent classification. Because the dataset used has a very long tail with regard to the frequency
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of the class labelﬂ the models should strive for high Recall to better classify the sparse classes without being
biased towards the dominant categories in training examples, while maintaining a good balance with Precision
to optimize the main metric F;. This experimental setting is well-aligned with the previous studies on patent
classification (Lee & Hsiang |2020; Haghighian Roudsari et al.| 2022, where established Transformers achieve
poor recall with very high precision. The balanced scores in Table[3|are the result of mitigated class imbalance
by the relabeling in Section [£.I} which further supports our usage of Recall with F; as a robustness measure.

We trained a BERTgasE replacing its embedding table with elementwise embedding (see Section7 referred
to as BERTgwg and compared with its original implementation BERT ogrig as a baseline. The only difference
of BERTgwEg from BERT orig is its use of elementwise embedding instead of the original subword embedding
table and the number of attention heads, without any modification to the Transformer architecture (see Table
[3). Via replacement from the (30k, D = 768) subword embedding table to the (256,C = 48) sized elementwise
embedding, BERTgwg has 0.0005 times fewer embedding parameters than BERT or1g, resulting in 0.8 times
smaller model size. As shown in Table [3, BERTgwg outperforms BERT orig in both Recall and F; in every
test-set split. The improvement in BERTgwg is not due to the increased number of attention heads, because
using 16 attention heads in BERT gr1g did not result in a meaningful difference in classification performance,
only leading to unstable convergence. These enhancements are well-generalized to other Transformer models.

We generalize the elementwise language representation to two differently architected Transformers, ALBERT
(Lan et al.,[2019) and CANINE (Clark et al., |2022)). As in BERTgwg, their embedding tables are substituted
with elementwise embedding table: the (30k, D = 128) subword embedding table of ALBERTgasE is replaced
with the (256,C = 8) elementwise embedding and the (16k, D = 768)E| character embedding table of CANINE-
C is swapped with the (256,C = 48) elementwise embedding table. Both outperform their baseline equivalents
ALBERTorig and CANINEQR1¢ using 0.7 times and 0.8 times smaller model sizes respectively, maintaining
their unique architectural components. This demonstrates the generalizability of elementwise representation.
Though the improvement by the elementwise embedding is the largest in CANINEgwg, it is still at the same
level of classification performance as BERTgwg using 0.4 times fewer parameters (see Table and. Hence,
we need to consider whether the character encoding and sequence downsampling of the CANINE architecture
are effective when the elementwise language representation is already applied to the Transformer architecture.

Since a single token representation consists of 16 byte embeddings via hyperparameter A" = 16, Transformers
trained using elementwise language representation can process up to 16 times more letters than their original
implementations at the same self-attention complexity. See Table[2|for reference. Compared to CANINEogic
where 512 character embeddings are downsampled into M = 128 input representations processing 512 letters
with O(M?) self-attention complexity, CANINEgwg processes 512 x N' = 8192 letters with the same O(M?)
complexity. In comparison to BERTor1c and ALBERT ogr1G, which handle 4 x M = 512 characters assuming
4 letters per subword, BERTgwg and ALBERTEwg both compute MN = 2048 letters with the same O(M 2)
self-attention complexity. In any case, as N grows, each token representation embeds more characters jointly,
thus improving the computational efficiency of the backbone Transformer further, as explained in Section [3]
So long as each byte embedding has sufficient dimensionality of C to encode the entropy of a byte, increasing
N enables representation of larger semantic units with more letters, with lower computational burden. Based
on the observation that the performance gain is less significant in ALBERTgwg utilizing the smallest C = 8,
we estimate the maximum number of characters a Transformer can embed into a single token representation
to N = D/8, for embedding size D. This is the reason why the elementwise language representation reduces
the self-attention complexity of the Transformer proportional to its scale over the number of attention heads.

We applied the proposed language representation with whitespace tokenization in this experiment and suggest
using it as the default approach also in practical applications, with a reasonable selection of the hyperparmeter
N. Even in a multilingual setting encompassing languages without whitespace-based word segmentation, we
can simply increase N to make a single token embedding represent a larger semantic unit such as a sentence,
or a paragraph. If a model cannot be sufficiently large to accommodate the necessary N, we recommend to
apply the tokenization-free approach as introduced in Section [5.1] Thanks to the removal of overheads from
subword tokenization in BERTgwg and ALBERTgwEg and from character-level encoding with downsampling
in CANINEgwg, every EWE model predict faster than its ORIG counterpart. Table [3|presents the improved

4 Approx. 30% of dominant CPC codes account for 90% of the entire training examples.
SCANINE-C uses 8 (16k, 96) sized Unicode character embedding tables.
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Table 4: Effect of other tokenization on the convergence of transformers trained with elementwise embedding.

.. . 20154 2015y
Model Tokenization Applied Fq Precision Recall F, Precision Recall
None 60.01 63.77 56.67 59.80 64.49 55.75
BERTgwr Gradient 64.14 65.91 62.45 63.75 66.41 61.29
Whitespace 64.30 66.02 62.66 63.94 66.55 61.53

Table 5: Effect of focus embeddings on the convergence of transformers trained with elementwise embedding.

20154 20155

Model Ablated Components Fq Precision Recall F; Precision Recall

BERT None 64.30  66.02 62.66 63.94  66.55 61.53
EWE " Focus embeddings 63.22  66.14 60.55  62.91  66.69 59.54

inference speed in EWE models when fully processing the test-set split 20154 utilizing a batch size of 64 on
a single RTX Titan GPU. Since there are no architectural differences between EWE and ORIG models and
the tensor reshaping from (M, N, C) to (M, D = NC) in the elementwise embedding entails trivial overhead
compared to the subword tokenization and sequence downsampling, EWE models predict at least as quickly
as ORIG models, if not slightly faster, using a batch size of 1. As a result, our proposed elementwise language
representation enhances existing Transformer architectures with respect to robustness, efficiency and speed.

5.1 Effect of Tokenization

This section compares the efficacy of different tokenization applied with elementwise language representation.

We first train a BERTgwE using a tokenization-free approach. Unlike when applying whitespace tokenization,
this version of elementwise language representation encodes text into an MAN -length byte sequence directly.
The resulting bytes are then projected into an (MN,C) byte embedding matrix, then reshaped into an input
embedding matrix of shape (M, D = NC). The hyperparameters used are the same as in the BERTgwg in
Section (see Table|2)) and the two focus embeddings ¢® and £ are incorporated as introduced in Section
[3:2] Due to the lack of whitespace segmentation, this tokenization-free BERTgwg performs much poorer in
every metric for every test-set (see the first row of Table[4]) even compared to the baseline model BERT ogric.
Despite this performance degradation, it still achieves the same level of metrics as the CANINEgg1g having
0.5 times more parameters, thereby demonstrating again the effectiveness of the elementwise representation.

To provide an option for handling multilingual applications using small-sized backbones, we suggest applying
gradient-based tokenization to the above tokenization-free BERTgwg. For the hyperparameter A/, this model
aggregates the A/-gram of each byte embedding via sum-pooling with softmax normalization. This approach
aims to compensate for the missing segmentation by leveraging the information of neighborhood characters.

This gradient-based tokenization-free BERTgwg uses N' = 8, smaller than in the BERTgwg with whitespace
tokenizer, to avoid oversmoothing of each byte embedding and does not leverage any type of focus embedding.
Other hyperparamters did not change. This model recovers the same level of performance as the BERTgpwg
using whitespace tokenizer (see the second row of Table [4)), proving that the performance enhancement from
the elementwise language representation is not due to the increased number of attention heads, once again.

5.2 Effect of Focus Embeddings

As mentioned in Section the main objective of focus embeddings is for stabilizing the model convergence.
While elementwise language representation works well without these supplementary embeddings, its training
can be somewhat tricky depending on the configuration of hyperparameters and random seeds. Incorporating
the two levels of focus embeddings: global and local enables to ensure the reproducibility of model training.
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In addition to providing enhanced stability, we found that focus embeddings also improve convergence quality.
As shown in Table[5] BERTgwg shows better classification performance when trained with focus embeddings
in terms of F; and Recall for both test-set splits. The slight decrease in Precision can be disregarded, because
it does not substantially affect the main metric, F;. Furthermore, the improvement in Recall is more valuable
in patent classification, as the class imbalance of the dataset makes the model prone to being biased towards
dominant class labels, so it is reasonable to see the enhancement in Precision alone as a result of overfitting.

We believe the efficacy of focus embeddings are not merely due to the naive addition of embedding parameters,
as the increased amount is triviaﬂ and adding more types of position embeddings was not found to be helpful.

6 Related Work

Character-level Models The majority of past and current state-of-the-art and influential research in the
field of natural language understanding has been built upon subword tokenization (Sennrich et al., [2015;
let al., [2016; Kudo & Richardson| 2018). This widespread adoption of subword tokenization can be attributed
to the reasonable balance between robustness and efficiency, however, their inconsistency in tokenization and
inefficient encoding of character-level information still remain as challenges to be addressed. Some follow-up
studies have proposed improved technique for subword tokenization (Provilkov et al.l [2019} [He et al.l [2020}
Hiraoka et al.,|2021} Wang et al., 2021)) but many of these entail significant expenses and engineering efforts.

Character-level models have long been proposed as a promising alternative to the word-level representations.
Although the chronic long-range dependency of character-level models (Sutskever et al.l [2011; |Graves|, [2013
Zhang et al., 2015) have been solved by the adoption of the Transformer architecture as in (Belouadi & Eger’
2022; Xue et al., 2022), the quadratic complexity of self-attention mechanism has become a new bottleneck
for character-level language representation. Some recently proposed studies attempt to address this problem
by employing the sequence downsampling technique (Tay et all 2021 |Clark et al., 2022} |Godey et al., |2022).
These approaches are promising, but their downsampling rates are limited by the problem of oversmoothing.
Additionally, the overheads and engineering challenges associated with their unique design choices can hinder
their widespread adoption in various application areas. Our proposed elementwise language representation
models any level of semantics maintaining the information of characters with lower self-attention complexity.

Efficient Transformers The primary challenge of the Transformer architecture is to mitigate its quadratic
self-attention complexity. Various promising approaches have been suggested. proposed to
enhance self-attention complexity by computing attentions within chunked embedding matrices.
(2019)) estimated full attention by mixing a sparse number of local attentions. Beltagy et al.|(2020) extended
this finding using a dilated sliding window technique to cover a wider range of attention. Zaheer et al.| (2020)
achieved similar results via attending on three different types of attentions: global, windowed, and random.
[Kitaev et al.| (2020)) alleviated memory complexity utilizing locally sensitive hashing and reversible residual
layers|Gomez et al.| (2017). Wang et al.| (2020) enhanced overall attention complexity to linear time reducing
dimensionality of embeddings along the length axis. Katharopoulos et al.| (2020) improved the self-attention
complexity to linear time using kernel-based formulation and causal masking. To the best of our knowledge,
the proposed elementwise representation is the first efficient method reducing the self-attention complexity of
the Transformer proportional to the model size, without architectural modifications or additional overhead.

Approaches built upon architectural modifications other than attention mechanism have also been proposed.
reduced the size of its BERT backbone significantly via parameter sharing between attention
layers. The effectiveness of knowledge distillation (Hinton et al.| [2015) has been demonstrated by
[2019; [Sanh et al., 2019; Tang et all [2019). Approaches to improve inference-time efficiency include pruning
away unimportant attention heads (Michel et al., |2019; [Voita et al., 2019) or pruning blocks
. As a standalone representation technique, our elementwise language representation can be potentially
applied with those efficient modeling methodologies in conjunction, without harming their own contributions.

6 Approx. 200k parameters are added for 128 local focus embeddings f() and 2048 global focus embeddings g().
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7 Conclusion and Future Work

So far, we introduced a new language representation which embeds semantic units in an elementwise manner.
This representation offers the following advantages:

o It generalizes every tokenization into a unified framework
e It reduces self-attention complexity proportionally to the model scale
o It reduces the number of embedding parameters of a Transformer by under 1%

These are achieved without requiring architectural modification to the Transformer or additional overheads.
This representation remains the following challenges:

e It does not account for various linguistic components other than semantics
o It has not yet proposed an optimal pretraining objective for language modeling
e It has not yet been tested across various scales, applications, and learning paradigms

This representation suggests new research directions, which can be extended as follows:

1. Pretraining a language model that deals with all types of tokenization
2. Pretraining a language model with various levels of semantics simultaneously
3. Pretraining a multimodal language model understanding every modality using bytes

Recent groundbreaking studies (Brown et al.| [2020; [Raffel et al., 2020; Jaegle et al., 2021} Reed et al. |2022])
have successfully demonstrated the potential of pretraining multimodal, multitasking models. By expanding
their contributions with these research directions, computers may eventually be able to understand the world
solely based on their native language, bytes. We explore these topics in follow-up studies in the near future.

8 Broader Implication

The framework for the elementwise language representation has the potential to be generalized for universal
representation in multimodal settings. Consider a GPT-3 with 96 attention heads and 12, 288 dimensionality.
Please note that these explanations on potential have not been validated via thorough experimental evidence.

When trained with elementwise representation, it processes MN = 2,048 x 96 = 196, 608 characters at once.

Since it uses embeddings with a dimensionality of D = 12,288, a single byte embedding has a dimensionality
of C = D/N = 128. It can represent an (r, g, b) pixel as a 384-dimensional embedding, with 128-dimensional
byte embedding per color channel. As each token representation can embed 32 pixels jointly by (D/3C = 32),
it can process 65,536 = 32M pixels via M = 2048 tokens, which are three (256 x 256) RGB images at once.

Assuming 64-bit double precision floating point numbers, it can represent an (z,y, z) coordinate in a LIDAR
point cloud as an embedding with a dimensionality of 3072 = 3 x 8C. Each coordinate x, y, and z is encoded
into 8 bytes according to the IEEE 754 standard, projected into an (8,C = 128) byte embedding matrix and
then reshaped into a single latent representation of size 1024 = 8C. Representations of the three coordinates
are concatenated into a single 3072 = 3 x 1024 sized embedding. In this way, it can process 8192 = 4 x 2048
coordinates in a LIDAR point cloud, where each token embedding represents 4 coordinate embeddings jointly.

Overall, the GPT-3 trained using the elementwise representation can process approx. 39k words, i.e., 196, 608
characters with 5 letters per word, three (256 x 256) RGB images and 8192 LiDAR coordinates without any
architectural modification. Neither a CNN for image processing nor a specialized component will be required.
A total three modalities are represented using a shared (256,C = 128) size byte embedding table. Since each
of the 96 C-dimensional attention heads exactly attends on the latent space of C-dimensional byte embeddings,
the self-attention complexity on the MN = 196, 608 byte embedding sequence remains fixed to O(M+/M).
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