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Abstract

Vision-language models (VLMs) are impactful
in part because they can be applied to a variety
of visual understanding tasks in a zero-shot fash-
ion, without any fine-tuning. We study gener-
ative VLMs that are trained for next-word gen-
eration given an image. We explore their zero-
shot performance on the illustrative task of image-
text retrieval across nine popular vision-language
benchmarks. Our first observation is that they
can be repurposed for discriminative tasks (such
as image-text retrieval) by simply computing the
match score of generating a particular text string
given an image. We call this probabilistic score
the Visual Generative Pre-Training Score (Visual-
GPTScore). While the VisualGPTScore produces
near-perfect accuracy on some retrieval bench-
marks, it yields poor accuracy on others. We
analyze this behavior through a probabilistic lens,
pointing out that some benchmarks inadvertently
capture unnatural language distributions by cre-
ating adversarial but unlikely text captions. In
fact, we demonstrate that even a “blind” language
model that ignores any image evidence can some-
times outperform all prior art, reminiscent of sim-
ilar challenges faced by the visual-question an-
swering (VQA) community many years ago. We
derive a probabilistic post-processing scheme that
controls for the amount of linguistic bias in gener-
ative VLMs at test time without having to retrain
or fine-tune the model. We show that the Visu-
alGPTScore, when appropriately debiased, is a
strong zero-shot baseline for vision-language un-
derstanding, oftentimes producing state-of-the-art
accuracy.
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1. Introduction

Vision-language models (VLMs) trained on web-scale
datasets will likely serve as the foundation for next-
generation visual understanding systems. One reason for
their widespread adoption is their ability to be used in
an “off-the-shelf” (OTS) or zero-shot manner without fine-
tuning for specific target applications. In this study, we
explore their OTS use on the task of image-text retrieval
(e.g., given an image, predict the correct caption out of K
options) across a suite of nine popular benchmarks.

Challenges. While the performance of foundational VLMs
is impressive, many open challenges remain. Recent anal-
yses (Kamath et al., 2023; Yuksekgonul et al., 2022) point
out that leading VLMs such as CLIP (Radford et al., 2021)
may often degrade to “bag-of-words” that confuse captions
such as “the horse is eating the grass” and
“the grass is eating the horse”. This makes
it difficult to use VLMs to capture compositions of objects,
attributes, and their relations. But somewhat interestingly,
large-scale language models (LLMs) trained for autoregres-
sive next-token prediction (Brown et al., 2020) seem to be
able to discern such distinctions, which we investigate be-
low. A related but under-appreciated difficulty is that of
benchmarking the performance of visio-linguistic reasoning.
Perhaps the most well-known example in the community is
that of the influential VQA benchmarks (Antol et al., 2015),
which could be largely solved by exploiting linguistic biases
in the dataset — concretely, questions about images could
often be answered by “blind” language-only models that did
not look at the image (Goyal et al., 2017). Notably, we find
that such blind algorithms still excel on many contemporary
image-text retrieval benchmarks where VLMs may struggle.

Generative models for discriminative tasks. We tackle the
above challenges by revisiting the role of language priors
through a probabilistic lens. To allow for a probabilistic
treatment, we focus on generative VLMs that take an image
as input and stochastically generate text via next-token pre-
diction (Li et al., 2022; 2023). We first demonstrate that such
models can be easily repurposed for discriminative tasks
(such as retrieval) by setting the match score for an image-
text pair to be the probability that the VLM would generate
that text from the given image, or P(text|image). We call
this probability score the Visual Generative Pre-Training
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Scenario 1

O Perain(t)
;= a white duck spreads its wings while in the water
t,= a white wings spreads its water while in the duck
t;= a white duck the its wings while in water spreads
t,= white a duck spreads its wings in while the water t, T, t3 ty ts

ts= while in the spreads its wings water a white duck

Scenario 2

t,= people are posing in a kitchen

t,= people are cooking in a kitchen

L =

Figure 1. Two train-test shifts encountered in image-to-text retrieval tasks. Scenario 1 (left) constructs negative captions by shuffling
words in the true caption (as in ARO-Flickr (Yuksekgonul et al., 2022)), but this produces implausible text such as “white a duck
spreads its wings in while the water”. Here, exploiting the language bias of the training set will help since it will
downweight the match score for such implausible negative captions. In fact, we show that a blind language-only model can easily identify
the correct caption. Scenario 2 (right) constructs negative captions that are curated to be plausible (as in SugarCrepe (Hsieh et al., 2023)).
Here, the language bias of the training set may hurt, since it will prefer to match common captions that score well under the language prior;
i.e., the incorrect caption of “people are cooking in a kitchen” is slightly more likely than the true caption of “people

are posing in a kitchen” under the language prior, and so

removing the language bias improves performance. We present

simple training-free approaches for removing such language biases, and show this significantly improves performance on challenging

benchmarks that fall into Scenario 2.

Score, or VisualGPTScore. Computing the VisualGPTScore
is even more efficient than next-token generation since given
an image, all tokens from a candidate text string can be eval-
uated in parallel. Though conceptually straightforward, such
an approach is not a common baseline. In fact, the genera-
tive VLMs (Li et al., 2022) that we analyze train separate
discriminative heads for matching/classifying image-text
pairs, but we find that their language generation head itself
produces better scores for matching (since it appears to bet-
ter capture compositions). Indeed, the OTS Visual GPTScore
performs surprisingly well on many benchmarks, even pro-
ducing near-perfect accuracy on ARO (Yuksekgonul et al.,
2022). But it still struggles on other benchmarks such as
Winoground (Thrush et al., 2022). We analyze this below.

The role of language priors. We analyze the discrepancy
in performance across benchmarks from a probabilistic
perspective. Our key insight is that many benchmark bi-
ases can be formalized as mismatching distributions over
text between foundational pre-training data and benchmark
test data — Pyrain (text) versus Prest(text). We use a first-
principles analysis to account for distribution shift by sim-
ply reweighting the VisualGPTScore with the Bayes fac-
tor Prest(text)/ Prrain(text), a process we call debiasing.
To compute the Bayes reweighting factor, we need access
to both the train and test language prior. We compute
Pirain(text) from an OTS VLM by drawing Monte-Carlo
samples of Pirain(text/image) from the trainset or Gaussian
noise images. Because Pest(text) may require access to the
test set, we explore practical variants that assume Piegt iS (a)
identical to Prrajn(text), (b) uninformative/uniform, or (c)
learnable from a small held-out valset. Our analysis helps

explain the strong performance of the VisualGPTScore on
certain benchmarks and its poor performance on others.
Moreover, our analysis offers simple strategies to improve
performance through debiasing without requiring any re-
training. We conclude by showing a theoretical connection
between debiasing and mutual information, which can be
seen as a method for removing the effect of marginal priors
when computing joint probability scores.

Empirical analysis. We conduct a thorough empiri-
cal evaluation of the OTS VisualGPTScore (and its de-
biased variants) for open-sourced image-conditioned lan-
guage models (Li et al., 2022; 2023; Liu et al., 2023)
across nine popular vision-language benchmarks. We
first point out that the VisualGPTScore by itself produces
SOTA accuracy on certain benchmarks like ARO (Yuk-
sekgonul et al., 2022) where their inherent language bi-
ases help remove incorrect captions that are also unnatural
(such as “a white duck the its wings while
in water” as shown in Fig. 1). In fact, we show that
blind baselines also do quite well on these benchmarks,
since language-only models can easily identify such im-
plausible captions. However, such language biases do
not work well on benchmarks where incorrect captions
are carefully constructed to be realistic. Here, Visual-
GPTScore should be debiased so as not to naively prefer
more common captions that score well under its language
prior. Debiasing consistently improves performance on
benchmarks such as Flickr30K (Young et al., 2014) and
Winoground (Thrush et al., 2022). Interestingly, we find
that debiasing can also improve accuracy on the frain set
used to learn the generative VLMs, indicating that such
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models learn biased estimates of the true conditional digropose more expensive and heavily-engineered solutions.
tribution Py,in (texfimage. We describe this further in - SyViC (Cascante-Bonilla et al., 2023) ne-tunes VLMs on
our Appendix A. Finally, our approach sets a new state-ofmillion-scale synthetic images to augment spatial, attribu-
the-art on image-text alignment (Thrush et al., 2022; Wandive, and relation understanding. SGVL (Herzig et al., 2023)
et al., 2023), showing potential to replace the widely-usedand Structure-CLIP (Huang et al., 2023) sample negatives
CLIPScore (Hessel et al., 2021) in text-to-image evaluationusing costly scene graph annotations. MosaiCLIP (Singh
In fact, our latest work (Lin et al., 2024; Li et al., 2024) et al., 2023) and SVLC (Doveh et al., 2022) use linguistic
extends VisualGPTScore to more powerful vision-languageools such as scene graph parsers and LLMs to design bet-
models trained on visual-question-answering (VQA) datater negative captions. The most recent DAC (Doveh et al.,
achieving further improvements. 2023) leverages a combination of foundation models includ-
ing BLIP2, ChatGPT, and SAM to rewrite and augment
image captions. In contrast, we demonstrate that OTS gen-
* We introduce VisualGPTScore to repurpose generativeerative scores can outperform these costly approaches on
VLMs for discriminative (image-text retrieval) tasks. compositionality benchmarks.

» Our analysis shows that language priors play a key, . - . -
role in addressing train-test distribution shifts, IeadingGenerathe pre-training and scoring. ~ Vision models

. . - trained withdiscriminativeobjectives often lack incentives
to a zero-shot debiasing technique that signi cantly )

improves performance on challengina benchmarks to learn structure information (Brendel & Bethge, 2019; Te-
. Wep nd thaF; many recent benchma?ks%or foundationéljankar etal,, 2021). Similarly, early LLMs trained wifis-
. y : criminativeapproaches, such as BERT (Devlin et al., 2018)
VLMs like ARO can be largely solved by blind so- . Lo
. ; . . and RoBERTa (Liu et al., 2019), have also been criticized
lutions (e.g., P(text)) that ignore images. This un- : o o
derscores the need to reevaluate lanauage priors & bag-of-words models insensitive to word order (Bertolini
vision-lanauage benchmarlzls u guage pni Tt al., 2022; Hessel & Scho eld, 2021; Papadimitriou et al.,
guag ' 2022; Sinha et al., 2021). Conversely, generative pre-trained
LLMs (Radford et al., 2019) demonstrate exceptional com-
2. Related works positional understanding while pre-trained solely with a
- . next-token prediction (Bengio et al., 2003) loss. Further-
Vision-language models. State-of-the-art VLMs like more, generative scores of LLMs (OpenAl, 2023; Chung

CLIP (Radford et al., 2021) are pre-trained on web-scale,, al., 2022; Zhang et al., 2022) have exible usage in down-

Image-text datasets (Schuhmann et al., 2022) using discringg, ., tasks, such as text evaluation (Yuan et al., 2021; Fu
inative objectives like image-text contrastive (ITC) (Rad—et al., 2023) and reranking (Keskar et al., 2019). While

fzoorg 1et|a|., Z?Zli) and ]lmrzrar?el—ttex; rgglt;hl?g_i(rl;]l'M) (tLIx?t al, generative scores from VLMs have been previously used for
) loss, typically formulate (matcljimage texy. discriminative tasks (Tschannen et al., 2023; Miech et al.,

These pre-trained models exhibit robust zero-shot and few;

! 021), our work uniquely investigates the critical role of
shot (Lin et al., 2023; Wortsman et al., 2022) performanc . X o .
on traditional discriminative tasks (Deng et al., 2009; Lmelanguage priors and introduces the rst debiasing solution

. . that improves retrieval without the need for retraining.
et al., 2014), often on par with fully-supervised models. P 9

More recently, image-conditioned language models like )
Flamingo (Alayrac et al., 2022) and BLIP (Li et al., 2022; 3. The role of language priors

2023) incorporate generative objectives primarily for down-In this section, we present a simple probabilistic treat-

stream tasks such as captioning (Agrawal et al., 2019) anpnent for analyzing the role of language priors in image-
VQA (Goyal et al., 2017).

conditioned language models (or generative VLMs). Moti-
Visio-linguistic compositionality.  Benchmarks like vated by their strong but inconsistent performance across a
ARO (Yuksekgonul et al., 2022), Crepe (Ma et al., 2022) variety of image-text retrieval benchmarks, we analyze their
Winoground (Thrush et al., 2022), EqBen (Wang et al.pehavior when there exists a mismatch between training
2023), VL-CheckList (Zhao et al., 2022), and Sugar-and test distributions, deriving simple schemes for address-
Crepe (Hsieh et al., 2023) show that discriminative scores ofng the mismatch with reweighting. We emphasize that the
VLMs, such as ITCScore and ITMScore, fail on their image-training data that we refer to is the foundational pre-training
text retrieval tasks that assess compositional reasoning. Codataset, while the test data is always a given benchmark
currently, advances on these tasks often involve ne-tuningdataset; in fact, most benchmarks we analyze do not even
discriminative VLMs with more data. One of the most provide a trainset. We conclude by exposing a connection
popular approaches, NegCLIP (Yuksekgonul et al., 2022)p related work on mutual information.

augments CLIP using programmatically generated negétfomputing P(tji). To begin our probabilistic treatment,

tives from original texts. Extending this, subsequent studle%ve rst show that image-conditioned language models (that

Contributions:
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(a) Pyrain  (tji) through generative VLMs (BP¢rain (1) via Monte Carlo sampling

Figure 2.Estimating Pyain (tji) and Pyain (t) from generative VLMs. Figure (a) shows how image-conditioned language models
su@ as Li et al. (2022) that generate text based on an image can be repurposed for cdPaprtiitji), which is factorized as a product

of * 7L, P(tjt« ;i) for a sequence ah tokens. These terms can be ef ciently computeganallel, unlike sequentiatoken-by-token
prediction for text generation. Figure (b) shows two approaches for Monte Carlo sampkag.of(t). While the straightforward
approach is to sample trainset images, we nd that using “null” (Gaussian noise) images can also achieve robust estimates.

probabilistically generate text based on an image) can bderivePg (tji) via Bayes rule:
repurposed for computing a score between a given image

i and text captiort. The likelihood of a text sequence ” .
t = fty)ty; p;tmg conditioned on imagé is natgrally Prest (tJ1) 1 P(1J)Peest (1) @
factorized as an autoregressive product (Bengio et al., 2003): = P(ijt) 7?"’“” 53 Prest (1) 3)
train
. I Puan (2 @
P(tji) = P(tejte ;i) @)
k=1 The above shows that the generative pre-training score

Prain (tji) need simply be weighted by thratio of the

language priors in the testset versus trainset. Intuitively, if a
Image-conditioned language models return backoftmax ~ Particular text caption appeansoreoften in the testset than
distributions corresponding to tha terms in the above the trainset, one shouldcreasethe score reported by the
expression. Text generation requisesjuentiatoken-by- ~ generative model. However, one often does not have access
token prediction, since tokelp must be generated before it to the text distribution on the testset. For example, real-
can be used as an input to generate the softmax distributioiorld deployments and benchmark protocols may not reveal
over tokerty.1 . Interestingly, given an imageand a text  this. In such cases, one can make two practical assumptions;
sequenceé, the above probability can be computegpar-  €ither the language distribution on test is identical to train,
allel because the entire sequence of tokieng is already ~ OF itis uninformative/uniform (see Figure 1):
available as input. Figure 2-a shows a visual illustration.

Train-test shifts. Given the image-conditioned model of Scénario 1:
P (tji) above, we now analyze its behavior when applied to  Prest (t) = Pyain (t) ) Optimal score iyain (tji)
test data distributions that differ from the trainset, denoted (5)
asPiest versusPyain . Recall that any joint distribution over  geenario 2:
images and text can be factored into a product over a lan-

guage prior and an image likeliho®(t;i) = P(t)P(ijt). Piest (t) isuniform. )  Optimal score isw
Our analysis makes the strong assumption that the image Prain (1)
likelihood P (ijt) is identical across the train and test data, 6)
but the language prioP (t) may differ. Intuitively, this

assumes that the visual appearance of entities (such asfanable . In reality, a testset might be a mix of both

"white duck" ) remains consistent across the trainingscenarios. To model this, we consider a soft combination
and test data, but the frequency of those entities (as manithere the language prior on the testset is assumed to be a
fested in the set of captioi®(t)) may vary. We can now  attened version of the language prior on the trainset, for

4
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some temperature paramete® [0; 1]: the language of PMt
I:)train (tji) - F)train (t;i) (9)
1 . . Purain (tji) Ptrain (t) Ptrain (i)Ptrain (t)
Peest (1) /' Pyain (t) ) Optimal score Im / Ptrain. (t:)*
(7) Ptrain (')Ptrain (t)

, 8SPyain (i) is constantin I-to-T  (10)
1
_ K i _
By setting to O or 1, one can obtain the two scenarios = pmip,,,, (t;i) ,wherek = — 1(11)
described above. Some deployments (or benchmarks) may

bene t from tuning on a held-out valset, if available. Eq. 11 shows that our-debiasing is equivalent to PKI
fork = 1. PMI¥ is widely adopted in information re-

Implications for retrieval benchmarks. We spec- trieval tasks (Li et al., 2016; Li & Jurafsky, 2016; Wang
ulate some benchmarks like ARO-Flickr (Yuksek-gt g, 2020). This alternative derivation could explain why
gonul et al., 2022) are close to Scenario 1 because_gepjasing remains effective across various testing bench-

they include negative captions that amaplausible  marks (as we show next), even when our previous proba-
such as a white duck the its wings while bilistic assumptions may not hold.

in water spreads ”. Such captions will have a low
score under the language prie¢ain (t) and so reporting . .
the raw generative scoRy,in (tji) (that keeps its language 4. Experimental results on I-to-T retrieval

prior or bias) will improve accuracy. In fact, we show that | this section, we verify our hypothesis on I-to-T retrieval
applying ablind language model (that ignores all image penchmarks using state-of-the-art multimodal generative
evidence) can itself often identify the correct caption. Ony| s, In particular, we adopt image-conditioned language
the other hand, for test datasets with magalistic nega-  ,odels such as BLIP (Li et al., 2022) as the learned estima-
tive captions (Scenario 2), it may be useful to remove thgq, of Pyain (tji). Then, we discuss how we perform Monte
language bias of the trainset, since that will prefer to matche 5110 estimation oPyain (1), including a novel ef cient

to common captions (even if they do not necessarily agregampling method based on “content-free” Gaussian noise
with the inputimage). This appears to be the case for Sugafmages. Finally, we show the state-of-the-art results of our

Crepe (Hsieh et al., 2023), which uses LLMs like ChatGPTganerative approach on recent I-to-T retrieval benchmarks.
to ensure that the negative captions are realistic. o . -
Preliminaries. We leverage OTS image-conditioned lan-

An information-theoretic derivation of -debiasing.Our guage models to estima®gan (t). Most of our diagnos-
approach to debiasing is reminiscent of mutual informayic experiments focus on the open-sourced BLIP (Li et al.,
tion, which can also be seen as a method for removing thep22: 2023) model, trained on public image-text corpora
effect of marginal priors when computing joint probabil- sing discriminative (ITC and ITM) and generative (caption-
ity scores (Daille, 1994). In fact,-debiasing (Eq. 7) is jng) objectives. Discriminative objectives typically model
equivalent to a form of pointwise mutual information (PMI) P (matcht;i). For example, ITCScore calculates cosine
known as PMt (Role & Nadif, 2011). PMI is a classic similarity scores between image and text features using a
information-theoretic measure that quanti es the associgqyal-encoder: ITMScore jointly embeds image-text pairs
tion between two variables (Yao et al., 2010; Henning &g a fusion-encoder and returns softmax scores from a
Ewerth, 2017; Shrivastava et al., 2021). In the context Ofoinary classi er. We term the generative score\dsual
image-text retrieval, PMI measures how much more or lesgenerativePre-Training Score VisualGPTScore. While
likely the image-text pair co-occurs than if the two were g |p is pre-trained using all three objectives, this generative
independent: score has not been applied to discriminative tasks before
our work. Lastly, our approach can be extended to other
generative VLMs. We also present some additional results
using LLaVA-1.5 (Liu et al., 2023), a recent state-of-the-art
VLM (Liu et al., 2023) that produces SOTA accuracy on
several challenging benchmarks.

P(t;i) _ P(ijt) _ P(tji)
P(t)P(i) P@)  P(t)

pmip (t;1) = 8

Implementing VisualGPTScore. Our method calculates
However, directly applying PMI (Eq. 8) for retrieval tends an average of the log-likelihoods tf at each token position
to overly in ate scores for rarer texts (Role & Nadif, 2011). k and applies an exponent to cancel the log:
Consequently, the PMlapproach was introduced to control i ) 1P P (teite )
the strength of debiasing. Below, we rewrite the Eq. 7 using ViSUaIGPTScore(t;i) := em iz PRTRelall - (12)

5
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To condition on an input image, BLIP uses a multimodalheavily-engineered solutions, including NegCLIP, SyViC,
casual self-attention mask (Li et al., 2022) in its image-MosaiCLIP, DAC, SVLC, SGVL, Structure-CLIP, all of
grounded text decoder, i.e., each text token attends to all ithich ne-tune CLIP on much more data. Details on how
preceding vision and text tokens. We emphasize that Visuale report the baseline results can be found in Appendix D.
GPTScore has the same computational cost as ITMScorEor reference, we also include results of text-only Vera and
which uses the same underlying transformer but with a birammar from Hsieh et al. (2023). To show that even the
directional self-attention mask to encode an image-text paimost recent SugarCrepe is not exempt from language biases,
We address potential biases of this estimator in Appendix Ave run two more text-only methods:

Estimating Pyain (t) using Monte Carlo sampling (or- 1. Puwm (t): passing captions into a pure LLM, such as
acle approach). Given Py, (tji), we can estimate BART-base (Yuan et al., 2021), FLAN-T5-XL (Chung
Piain (t) via classic Monte Carlo sampling (Shapiro, 2003), et al., 2022), and OPT-2.7B (Zhang et al., 2022), to
by drawingn images from the train distribution, such as compute a text-only GPTScore (Fu et al., 2023).
LAION114M (Schuhmann et al., 2021) for BLIP: 2. Pyain (t): passing both captions and Gaussian noise

1 X images to BLIP as shown in Figure 2.
I:’train (t) o F’train (tjik) (13) . . L L
N, Discussion on -debiasing. Table 2 shows that debiasing

affects benchmarks differently depending on their construc-
Reducing sampling cost with Gaussian noise images (our tion; benchmarks with unrealistic negative captions (such as
approach). The above Equation 13 requires many trainsetARO-Flickr) bene t from a language prior that can identify
samples to achieve robust estimates. To address this, véeich negative examples. Here, debiasing with largeirts
draw inspiration from (Zhao et al., 2021), which uses aperformance. On the other hand, benchmarks with realistic
content-fregext prompt ‘N/A” to calibrate the probability negative captions (such as SugarCrepe) tend to bene t from
of a text from LLMs, i.e.,P(tj“N/A™"). To apply this to debiasing because it reduces the in uence of the language
our generative VLMs, we choose to sample “null” inputs asprior. Our ndings are reminiscent of the lessons from the
Gaussian noise images. It turns out Eqg. 13 can be estimat&fQA benchmark (Goyal et al., 2017), known to be solvable
using as few as 1-3 Gaussian noise images (with a medpy “blind” algorithms that do not look at the image, e.g.,
and standard deviation calculated from trainset distribution)questions such as “Is there a clock” have an answer of “Yes”
We provide a visual illustration of this method in Figure 2-b.98% of the time. However, we also nd that some recent
We nd this method to be less computationally demandingbenchmarks such as Winoground (Thrush et al., 2022) and
and just as effective as sampling thousands of images frofegBen (Wang et al., 2023) introduce strict evaluation proto-
trainset. We ablate sampling procedures in Appendix B anaols that aggressively penalize such blind algorithms. We
show that our method generalizes across BLIP and BLIP-2liscuss these challenging Scenario 2 benchmarks (with far
architectures in Appendix C. lower SOTA accuracy) in the next section.

Benchmarks and evaluation protocols.We comprehen- . .
sively report on four recent I-to-T retrieval benchmarks thatd. Additional Challenging Benchmarks

assess compositionality, including ARO (Yuksekgonul et aI.,In this section, we apply our OTS generative approaches to
2022), Crepe (Ma et al., 2022), SugarCrepe (Hsieh et aI'\’/e more Scenario 2 benchmarks: (a) Winoground (Thrush

2023), and VL-CheckList (Zhao et al., 2022). In theseet al., 2022) and EqBen (Wang et al., 2023) for image-
datasets, each image has a single positive caption and mlflé-xt "alignment' (b) COCO (Lin et.’ al, 2014) and

tiple negative captions. ARO (Yuksekgonul et al., 2022)_.. i . ]
has four datasets: VG-Relation, VG-Attribution, COCO—F"Ckr?’OK (Young etal,, 2014) for large scalg retrieval; (C.)
ImageNet (Deng et al., 2009) for zero-shot image classi -

Order, and Flickr30k-Order. SugarCrepe (Hsieh et al., _.. ; - ) ,
2023) has three datasets: Replace, Swap, and Add. thr;\tmn. While naively applying OTS VisualGPTScore leads

: o 0 inferior performance on these benchmarks, our training-
Crepe (Ma etal., 2022), we use the entire productivity se ree -debiasing consistently improves its performance even

and report on three datasets: Atom, Negate, and Swap. VL-i,[h a xed =1, without accessing the held-out valset (Ta-

CheckList (Zhao et al., 2022) has three datasets: Object, Ag_lle 3-a). We also derive the optimal text-to-image (T-to-1)

tribute, and Relation. Appendix E visualizes these dataset?étrieval objective and show that OTS generative scores

SOTA performance on all four benchmarks. In Table 1, can achieve robust T-to-I performance (Table 3-b). Lastly,
we show that our OTS generative approaches, based owe apply VisualGPTScore and itsdebiased version to a
the BLIP model pre-trained on LAION-114M with ViT- state-of-the-art VLM, LLaVA-1.5 (Liu et al., 2023), and

L image encoder, achieves state-of-the-art results on afiutperform widely-used methods such as CLIPScore (Hes-
benchmarks. We outperform the best discriminative VLMs sel et al., 2021) on the challenging Winoground and EqBen
including LAION5B-CLIP, and consistently surpass otherbenchmarks. This suggests that VisualGPTScore is a supe-

6
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Table 1.0TS generative VLMs are SOTA on image-to-text retrieval benchmarks. We begin by evaluating

blind language models (in red) Surprisingly, this already produces SOTA accuracy on certain benchmarks such as ARO-
Flickr, compared to the best discriminative approaches (in gray) We also nd that blind inference of generative VLMs,

Pwain (t) via sampling Gaussian noise images (in bluejften performs better and achieve above-chance performance even on the
most recent SugarCrepe. Next, we show that simply repurposing a generative VLM's language generation head for computing image-text
scores (VisualGPTScore in yellow) which corresponds to = 0, consistently produces SOTA accuracy across all benchmarks. Finally,

debiasing this score t tuning on valset (in green) further improves performance, establishing the new SOTA.

ARO -
Score Method VL-CheckList
. Score Method
Rel Atr COCO Flickr Object Attribute Relation

Random - 50.0 50.0 20.0 20.0

Vera 617 826 598 635 Random - 50.0 50.0 50.0
Text-Only ] Vera 82.5 74.0 85.7

Grammar 59.6 58.4 743 76.3 Text-Only Grammar 58.0 524 68.5

BART 81.1 73.6 95.0 95.2 BART 52'0 51'0 45'1
Puwm (1) Flan-T5 84.4 76.5 98.0 98.2 P ) Flan-T5 60.3 55'0 49'3

OPT 847 798 97.9 98.6 LLM oPT - P -
Pirain (t) BLIP 87.6 80.7 98.6 99.1 Poan (0) BLIP 68.2 58-7 75'9

CLIP 50.0 62.0 46.0 60.0 frain cLIP 816 676 631

LAION2B-CLIP 516 619 25.2 30.2
LAIONSB-CLIP 46.1 57.8 26.1 31.0
NegCLIP 810 71.0 86.0 91.0

LAION2B-CLIP  84.7 67.8 66.5
LAIONSB-CLIP  87.9 70.3 63.9

Structure-CLIP  83.5 851 - - . NegCLIP 814 2z 635
P(matcht;i) SyviC - 70.4 69.4
SyVvic 80.8 724 924 872 SGVL 852 782 804
P(matcht;i) SGVL - - 87.2 910 SLVC 850 720 690
MosaiCLIP 82.6 780 879 86.3 DACLLM 873 773 86.4
DAC-LLM 81.3 739 945 957 DAG-SAM 885 758 EETE)
DAC-SAM 772 705 912 939 BLIPITC S 803 735
BLIP-ITC 63.1 816 343 417 BLIPITM 899 EHi 677
BLIP-ITM 58.7 90.3 451 51.3 ours ( =0) I 57 EHIE
Pean (til) Ours( =0) 89.1 953 994 995 Pran (1) Ours( =1) 904 776 778
P"afnw Oours ( =1) 68.1 87.9 324 445 Puain (1) ours( = ) i K] 95
train Ours( = ) 891 954 994 995 : : :
(@) Accuracy on ARO (b) Accuracy on VL-CheckList
Score Method SugarCrepe Score Method Crepe
Replace Swap Add Atom Swap Negate
Random - 50.0 50.0 50.0
Y Grammar 50.0 50.0 50.0 Text-Only Grammar 18.2 50'9 9 8
BART 484 519 612 BART 388 533 444
Puwm (1) Flan-T5 51.4 576 409 P (1) Flan-T5 Be GaE  GEn
OPT 585  66.6 45.8 LLM oPT =5 o g
Pyain (1) BLIP 759 771 709 P (0 BLIP  mc ra o
CLIP 808 633 751 o cLip 223 266 288

LAION2B-CLIP 86.5 68.6 88.4

LAIONSB-CLIP 85.0 680 89.6 LAION2B-CLIP 23.6 248 180

P (matcht; i) P(matcht;i) LAION5SB-CLIP 242 239 20.1

gf?P?ILT'E 22'2 ;g'g 223 BLIP-ITC 248 177 265
BLIP-ITM 887 813 87.6 BLIP-ITM cliol 207 255
— Ours( =0) 933 910 910 Pean (tji)  OWS( =0y 782 781 796
Ptrain (t]l) OUI’S( — 1) 83.2 855 859 m Ours( = 1) 20.6 28.3 35.6
Pyain (1) ours( = ) e e Ours( = ) 733 781 796
(c) Accuracy on SugarCrepe (d) Accuracy on Crepe
rior choice for measuring image-text alignment. more details, but in summary, both benchmarks operate on

Balanced evaluation protocols for retrieval. Winoground ~ P2'> of image-text pairb(io; to); (i1;t1)g and construct
al'lwo I-to-T retrieval (text score) tasks with a single image

and EqBen evaluate |m_age-text z?lllgnment through retriev and two candidate captions. The text score is awarded 1
tasks, and we nd their evaluation protocols discourage . . : .
oint only if bothretrieval tasks are correct. Consider the

blind solutions. We refer the reader to the benchmarks foP
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Table 2. -debiasing on I-to-T benchmarks andPyain  (t) frequency charts of both positive and negative captiondncreasing

from 0 to 1 hurts performance on benchmarks with non-sensical negative captions like ARO-Flickr. ARO's negative captions are easier
to identify because of their low score under the language BYigr (t), implying such benchmarks may even be solved with blind
algorithms that avoid looking at images. On the other hand, for benchmarks like SugarCrepe with more Balancgd between

positive and negative captions, tuningeads to performance gain. Appendix D shows analysis on all datasets.

Alpha-Tuning Prior Frequency Alpha-Tuning Prior Frequency

ARO-Flickr SugarCrepe-Add

Table 3.Additional results on Winoground/EqBen/COCO/Flickr30K/ImageNetlK. Table (a) shows the importance of-
debiasing on these compositionality and large-scale retrieval benchmarks. While OTS generative scores do not work
well, debiasing with a larger close to 1 can consistently and often signicantly improve I-to-T performance. To
highlight the improvement, we mar results without debiasing (= 0) (in yellow) , debiasing with a xed =1 (in pink), and

cross-validation using held-out valsets£¥ , ) (in green). Table (b) shows that OTS generative scores can obtain favorable re-
sults on all T-to-I retrieval tasks, competitive with the ITMScore.
Ptrain (tji)

Metric Benchmark  ITMScore Prrain (1)
=0 -1 _ Metric Benchmark ITMScore  Pyain (tji)
- - ~ wval val -
TextScore Winoground 355, 278  33Ja4 3660 085%cm  Image Score phicdound 198 oot
EqBen 26.%0:3) 9.60:2) 19.80:3) 19.80:3)  0.99%.007) 9 ; -
r@1/r@s COCO 71.9/90.6 19.7/40.6 46.2/73.1 48.0/742 0819 R@1/R@5 EI.OE%’OK ;3;"88//;38 752'2//973?'5
Flickr30k ~ 88.8/98.2 34.6/59.0 58.7/88.0 63.6/89.2  0.719 Ickr : : : :
Accuracy ImageNet1K 37.4 18.6 36.2 40.0 0.670
(a) -debiasing on valsets for I-to-T retrieval (b) T-to-I retrieval

common case where one caption is more likely under aimply use one-shot samples from Lin et al. (2023) to cross
language prior; here the common caption will be correctlyvalidate on ImageNet, which incurs negligible costs. Ap-
retrieved for one of the tasks but will be incorrectly retrieved pendix B details the debiasing procedure for each dataset.
for the other, implyingno points will be awarded. Similarly Lastly, we observe that generative approaches still lag be-
stringent metrics are used for T-to-| retrieval (image scorehind the ITMScore of BLIP for the two large-scale retrieval
The nal group score is awarded 1 point only if all 4 retrieval benchmarks. This motivates us to study biases of generative
tasks are correct. models from the statistical perspective of biased estimators,

-debiasing consistently improves I-to-T retrieval. Ta- brie y examined in Appendix A.

ble 3-a shows that simply debiasing VisualGPTScore withExtending to T-to-I retrieval. Though not the focus of our

a xed =1 signi cantly improves performance on chal- work, we show that image-conditioned language models can
lenging I-to-T benchmarks. One can also do slightly betteibe applied to T-to-I retrieval. Given a text captibrwe can

by using a held-out valset to tune for the optima2 [0; 1].  rewrite the Bayes optimal T-to-I retrieval objective as:

For Winoground and EgBen, we sample half of the data as a . . .

valset and perform a grid search foy, (using a step size Prest (1Jt) /' Prain (1) Prain (i) (14)
of 0.001), reporting the performance on the other half. WeEquation 14 is hard to implement because we do not have
repeat this process 10 times and report the mean and statecess tdPyn (). However, wherPyqi, (i) is approxi-
dard deviation. For COCO and Flickr30K, we perform  mately uniform, one can directly appBain (tji) for opti-
debiasing using Recall@1 (R@1) on the of cial valset. We mal performance. We report T-to-I performance in Table 3-b,
report the zero-shot classi cation accuracy on ImageNetlKwhere our generative approach obtains competitive results
which can be viewed as an I-to-T retrieval task that retrievesompared against ITMScore, likely because T-to-I retrieval
the best textual label (out of 1000) for each image. Wes less affected by language biases.
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a rst-principles analysis to account for mismatching distri-
butions over text between train and test data. Our analysis

sualGPTScore (and its=1 version) against popular image-text mot@vates a trainingjfree_ (zero-shoF) solution to effectively
scoring methods such as CLIPScore and those that combir@€bias language priors in generative scores. We hope our
VLMs with additional LLMs like ChatGPT. On Winoground @analysis can encourage future work to revisit the issue of
and EqBen, ou VisualGPTScore (=0) outperforms all meth- language biases in vision-language benchmarks.

ods using only a state-of-the-art VLM (LLaVA-1.5). Moreover, | iitations and future work. VisualGPTScore depends
debiasing with =1 (using a single Gaussian noise image) con-,, \| Ms pre-trained on noisy and imbalanced web data,
sistently improves I-to-T retrieval, thereby increasing the text an(Yvhich may result in biases (Mehrabi et al., 2021; Parashar
group score. To ensure a fair comparison, we use the publicly avalét al., 2024). We make several simpli ed assumptions in

able model checkpoints and corresponding code of prior Workih . t0 off ntuiti | i £ Vi |
Method descriptions and implementation details can be found i € main paper _O offeran in L_“ Ve exp an_a_ lon ot Visual-
GPTScore. For instance, the image-conditioned language

Table 4.Superior performance of VisualGPTScore on chal-
lenging image-text alignment benchmarks.We compare Vi-

Appendix D. i -
o o Winogound EqBen model might not accurately represéfain (tji) and as-
Toxt Image Growp Text Image Group signs higher scores towards more common texts. We ex-

Random Chance - 250 250 167 250 250 167 amine this phenomgnon in Appendlx A. Future quk may

— , attempt other sampling methods like coreset selection (Guo
Of cial implementation i N
CLIPScore - 313 110 88 350 336 214 et al., 2022; Wu et al., 2023) to estimagain (t) with
VPEval ChatGPT 128 110 63 343 257 214 improved ef ciency. As VisualGPTScore shows compet-
LLMScore ChatGPT 213 17.8 125 329 279 229 itive performance, distilling it into discriminative CLIP-
?g‘*s“'ts based on LLaV‘l"l-Sz e 18 o w00 2 Score (Miech et al., 2021) can reduce its inference cost.

Llama- R 18.5 155 .0 0. 14 . . o

Vo2 FanTs 140 273 100 229 407 200 F|_nally,_ VQAScore (Lin et al., 2024; _L|_ et al., 2024) ap-
Davidsonian ChatGPT 21.0 168 155 264 200 200 plies VisualGPTScore to the latest vision-language mod-
VisualGPTScore (=0) - 3.3 370 248 257 421 214 els trained on visual-question-answering (VQA) datasets
VisualGPTScore (=1) - 443 37.0 275 429 421 29.3

to achieve the state-of-the-art performance. This demon-
strates that generative scoring is a more reliable alternative
to CLIPScore (Hessel et al., 2021) for automated evaluation
State-of-the-art image-text alignment.Text-to-image gen-  of text-to-image models.

erative models such as DALL-E 3 (Betker et al., 2023) are

often evaluated with models that score the agreement (

alignment) between the generated image and the input crjéppaCt Statement
tion, such as the CLIPScore (Hessel et al., 2021). HoweveyisualGPTScore is developed with the important goal of
as CLIP struggles with compositional texts (Kamath et al.advancing the eld of vision-language models. It has many
2023), recent studies such as VPEval (Cho et al., 2023b) angositive societal impacts, such as improving the scienti ¢
LLMScore (Lu et al., 2023) combine VLMs with LLMs like  evaluation of generative models (Lin et al., 2024; Li et al.,
ChatGPT to more accurately score image-text alignmen024). Nonetheless, we encourage future work to study its
Most recently, TIFA (Hu et al., 2023), VQ2 (Yarom et al., biases, especially since the underlying models are trained on
2023), and Davidsonian (Cho et al., 2023a) use LLMs tonoisy and imbalanced data (Parashar et al., 2024; Mehrabi
generate a set of Q&A from input captions, then score thet al., 2021).

image based on the accuracy of a VQA model. Appendix D

describes these methods in details. Table 4 shows that Vi-

sualGPTScore (and its debiasedl version) outperforms

such complex approaches for image-text alignment, needing

only an OTS state-of-the-art VLM, LLaVA-1.5 (Liu et al.,

2023). This suggests that image-conditioned language mod-

els can already serve as robust alignment metrics. We also

encourage readers to explore our latest research on VQAS-

core (Lin et al., 2024, Li et al., 2024), which adapts Visual-

GPTScore to more advanced generative models trained with

visual-question-answering (VQA) datasets.

6. Discussion and Limitations

Summary. Our study shows the ef cacy ajenerativepre-
training scores in solvindiscriminativetasks. We present

9
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A. Is VisualGPTScore a Biased Estimator oPyin (tji)?

Retrieval performance on trainset (LAION). This paper is built on the assumption that VisualGPTScore is a reliable
estimator ofPyain (tji). However, this simplifying assumption does not completely hold for the BLIP model we examine.

We speculate that such OTS generative scores are biased towards more common texts. We witness this same phenomenon in
Table 5, where we perform image-text retrieval on random subsets from training distribution LAION-114M (Li et al., 2022).

Table 5. Retrieval performance on randomly sampled training (LAION114M) subsets with varied sizesTable (a) shows that while

OTS generative scores are robust for T-to-I retrieval, its performance degrades on I-to-T retrieval tasks when the number of candidate texts
increases. This implies that OTS generative scores suffer from language biases towards certain texts even in the training set. Nonetheless,
we show that our debiasing solution using either 1 or optimal 2 [0; 1] with a step size of 0.001, can consistently boost the
performance. Figure (b) visualizesdebiasing results on LAION subsets, where each curve represents a different sample size.

I-to-T Retrieval T-to-1 Retrieval
Dataset Size Pean (L)
IT™ Puan (1) ITM  Pyain (tji)
=0 =1 =
100 96.0 59.0 94.0 95.0 0.535 950 97.0
1000 90.9 37.1 71.7 857 0.733 920 931
2000 87.2 328 623 643 0.840 878 89.8
5000 79.8 251 509 54.1 0.727 819 844
(a) Performance on LAION trainset retrieval (b) Alpha-tuning on LAION

Modelling the language bias in VisualGPTScoreAs evidenced in Table 5, we believe VisualGPTScore is biased towards
more common texts due to modelling error. To consider this error in our analysis, we rewrite the VisualGPTScore as:

VisualGPTScorg(t; i) := [strain (tji) = Pygain (tji) Pgain (1) ; (15)

whereP represents the (biased) model estimateRndpresents the true distribution. The model bias towards common
texts is encoded by an unknown parameter

Monte Carlo estimation usingP. Because our Monte Carlo sampling method relie¥gg, (tji), it is also a biased
estimator ofPgqin (1):

X
If}train (t) = % If}train (tjik): F)train (t)l+ : (16)
k=1

Rewriting optimal I-to-T objective with P. We can rewrite Equation 4 as:

- . Prest (1)
Prest (tji) /' Pyain (tji) =——~ 17
test (L]i) train (1] )Ptrain 0) (7)
v Prest (1)
= Puain (tji)=—2 2 18
frain (J)Ptrain (t)l+ ( )
..+ Prest (1)
= Buan (tji) L (19)
e Iﬂtrain (t)
-debiasing with P. Using Equation 19, we can reformulatedebiasing (Equation 7) as follows:
) 1 A . -[strain (tji)
Piest (1) /' Pyain (1) ) Optimal score is;m——— (20)
If}train (t)
where = 1:— Notably, the above equation has the same structure as before (Equation 7). This implies that even if

Prrain (1) = Prest (1), we still anticipate = -— 6 0. This accounts for why the optimalis not 0 when we perform
I-to-T retrieval on trainset in Table 5.
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Implication for vision-language modelling. Our analysis indicates that similar to generative LLMs (Li et al., 2016;

Li & Jurafsky, 2016), contemporary image-conditioned language models also experience issues related to imbalanced
learning (Kang et al., 2019). Potential solutions could be: (a) re ned sampling techniques for Monte Carlo estimation
of P(t) such as through dataset distillation (Wu et al., 2023), and (b) less biased modelRrgjiofsuch as through
controllable generation (Keskar et al., 2019).

B. Ablation Studies on -Debiasing

Details of Gaussian noise samplesBLIP and BLIP-2 experiments sample Gaussian noise images with a méahanfd
a standard deviation @& 25. By default, we use 100 images for Winoground, 30 images for EqBen, 1 image for ImageNet,
and 3 images for the rest of the benchmarks.

Estimating Pyain (t) via Gaussian noise images is more sample-ef cientWe use Winoground to show that sampling
Gaussian noise images to calculBtgi, (t) can be more ef cient than sampling trainset images. As demonstrated in
Table 6, a limited number of Gaussian noise images (e.g., 3 or 10) can surpass the results obtained with 1000 LAION images.
Moreover, using null images produces less variance in the results.

Table 6.Comparing sampling of Gaussian noise images and trainset images for estimatifyain (). We report text scores of

-debiasing on Winoground I-to-T retrieval task. We ablate 3/10/100/1000 Gaussian noise and LAION samples and report both mean
and std using 5 sampling seeds. The optimaPR [0; 1] is searched on testset via a step siz8:001 The Gaussian noise images are
sampled with a mean calculated from the LAION subset and a xed st

Sample Size Guassian Noise Images Trainset Images
= test test ‘ = test test

3 35950:5) 0.82%0.012) | 322031:6) 0.7080:150)

10 36:25(0;4) 0.827(();015) 33:60(0;9) 0.91Q0;104)

100 36:35(0;1) 0.84Q0;010) 34:70(0:6) 0.91Q0;03g)

1000 36:25(0:0) O.85Q0;000) 35:15(0;3) 0.96Q0;033)

Alternative approach on COCO/Flickr30k: estimating Pgan (t) using testset images. For large-scale retrieval
benchmarks like COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014), we can directly average scores of all candidate
images (in the order of thousands) to ef ciently approxim@g, (t) without the need to sample any Gaussian noise
images. This approach incurs zero computation cost as we have already pre-computed scores between each candidate image
and text. We show in Table 7 that using testset images indeed results in better performance than sampling 3 Gaussian noise
images.

Table 7. I-to-T retrieval on COCO/Flickr30k using different sampling methods. EstimatingPw.in  (t) by averaging the scores of
testset images (with zero computational cost) demonstrates superior performance compared to sampling additional Gaussian noise images.
Ptrain ji
Metric Benchmark Py, (tji) Sampling Method Puain 8]) :
=1 = val val
Testset Images 46.2/73.1 48.0/74.2 0.819
Null Images 24.4/526 40.4/66.6 0.600

Testset Images 58.7/88.0 63.6/89.2 0.719
Null Images 27.8/62.2 48.5/79.0 0.427

COCO 19.7/40.6
R@1/R@5

Flickr30k 34.6/59.0

Tuning with a valset. In Table 8, similar performance trends are observed across validation and test splits of COCO and
Flickr30k I-to-T retrieval benchmarks using the sam@ [0; 1]. Furthermore, ., and ,, are empirically close. As
such, our method can function as a reliable training-free debiasing method.

C. Experiments with BLIP-2

We provide BLIP-2 results for completeness.

BLIP-2 (Li et al., 2023) overview. BLIP-2 leverages frozen pre-trained image encoders (Fang et al., 2022) and large
language models (Chung et al., 2022; Zhang et al., 2022) to bootstrap vision-language pre-training. It proposes a lightweight
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Table 8. -debiasing results on both the valset and testset for COCO/Flickr30k I-to-T retrieval We observe that validation and test
performance are strongly correlated while we interpolag [O; 1].

(b) Alpha-tuning on COCO Retrieval (c) Alpha-tuning on Flickr Retrieval

Querying Transformer (Q-Former) that is trained in two stages. Similar to BLIP (Li et al., 2022), Q-Former is a mixture-of-
expert model that can calculate ITC, ITM, and captioning loss given an image-text pair. Additionally, it introduces a set of
trainable query tokens, whose outputs serveisisal soft promptprepended as inputs to LLMs. In its rst training stage,
Q-Former is ne-tuned on the same LAION dataset using the same objectives (ITC+ITM+captioning) as BLIP. In the second
stage, the output query tokens from Q-Former are fed into a frozen language model, such as FLAN-T5 (Chung et al., 2022)
or OPT (Chung et al., 2022), after a linear projection trained only with captioning loss. BLIP-2 achieves state-of-the-art
performance on various vision-language tasks with signi cantly fewer trainable parameters.

BLIP-2 results (Table 9 and Table 10).We present retrieval performance of the BLIP-2 model that uses ViT-L as the frozen
image encoder. We report results for both the rst-stage model (denoted as Q-Former) and the second-stage model which
employs FLAN-T5 (Chung et al., 2022) as the frozen LLM. Oudebiasing solutions generalize to all variants of BLIP-2.

Table 9.BLIP-2 on ARO/Crepe/VL-CheckList/SugarCrepe.

Benchmark Dataset Random w. Q-Former w. Flan-T5
ITC IT™ Ptram (tJ i) Ptraln (tji)
VG-Relation 50.0 46.4 67.2 90.7 89.1
ARO VG-Attribution 50.0 76.0 88.1 94.3 90.9
COCO-Order 20.0 285 25.2 96.8 99.3
Flickr30K-Order 20.0 25.3 28.6 97.5 99.7
Atom-Foils 16.7 20.8 20.9 74.7 69.7
Crepe Negate 16.7 134 14.2 79.1 90.0
Swap 16.7 134 180 79.5 79.1
VL-CheckList Object 50.0 89.7 89.2 90.1 84.1
VL-CheckList  Attribute 50.0 76.6 79.3 73.9 70.6
VL-CheckList Relation 50.0 705 723 89.9 56.7
SugarCrepe Replace 50.0 86.7 885 93.0 82.4
SugarCrepe Swap 500 69.8 80.9 91.2 80.8
SugarCrepe Add 50.0 86.5 88.0 92.7 76.2

Table 10.BLIP-2 on Winoground/EqgBen.

Benchmark Model

I-To-T (Text Score)
Puain_ (tji)

T-To-I (Image Score)

ITC IT™ Puan (D) ITC ITM  Pyan (tji)
=0 =1 =
BLIP 280 358 27.0 330 365 0836 9.0 158 215
Winoground BLIP2-QFormer 30.0 425 24.3 293 33.0 0.882 105 19.0 20.0
BLIP2-FlanT5 253 315 343 0.764 - - 195
BLIP 209 26.0 9.6 19.8 19.8 0.982 20.3 20.3 26.1
EgBen (Val) BLIP2-QFormer 32.1 36.2 122 21.9 222 0.969 234 284 26.6
BLIP2-FlanT5 - 85 220 220 1.000 - - 20.9

D. Additional Reports

Computational resources.All experiments use a single NVIDIA GeForce 3090s GPU.
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Details of Table 1. For CLIP (Radford et al., 2021), LAION2B-CLIP, and LAION5B-CLIP (Schuhmann et al., 2022),
we report the results from Hsieh et al. (2023) using the ViT-B-32, ViT-bigG-14, and xIm-roberta-large- ViT-H-14 models
respectively. The results of NegCLIP (Yuksekgonul et al., 2022), Structure-CLIP (Huang et al., 2023), SVLC (Doveh et al.,
2022), SGVL (Herzig et al., 2023), DAC-LLM, and DAC-SAM (Doveh et al., 2023) are directly copied from their original
papers. We run BLIP-ITC and BLIP-ITM using our own codebase, which will be released to the public.

Method descriptions for Table 4. CLIPScore (Hessel et al., 2021) measures the cosine similarity (dot product) score
between an image and text, each embedded using the CLIP image and text encoder, respectively. VPEval (Cho et al., 2023b)
utilizes GPT-3.5 to translate the text prompt into a Python-like program that invokes vision foundation models such as CLIP,
BLIP, and GroundingDINO, to examine fine-grained image details. LLMScore (Lu et al., 2023) uses BLIP-2 to first caption
the image, then uses ChatGPT to score the difference between the BLIP-generated caption and the text prompt. TIFA (Hu
et al., 2023) and Davidsonian (Cho et al., 2023a) first use LLMs such as a finetuned Llama-2 or GPT-3.5 to generate a set of
Q&A given the text prompt, then return the accuracy score of the VQA model. VQ2 (Yarom et al., 2023) uses a finetuned
FlanT5 to generate the Q&A, then averages the log likelihoods of the generated answers.

Implementation details of Table 4. We report the performance on Winoground (Thrush et al., 2022) and EqBen-Mini,
which is an official subset of EqBen (Wang et al., 2023) for benchmarking large foundational VLMs. We follow the official
implementation of CLIPScore (Hessel et al., 2021) to report the performance of CLIP-ViT-B-32 (Radford et al., 2021).
For VPEval (Cho et al., 2023b) and LLMScore (Lu et al., 2023), we strictly follow the official codebase to benchmark
their performance. For TIFA (Hu et al., 2023), VQ2 (Yarom et al., 2023), Davidsonian (Cho et al., 2023a), we strictly
follow their released code and adopt their QA-generation language models (or in-context Q&A samples for ChatGPT).
However, as we do not have access to the private VQA models they adopted, e.g., PaLI-17B, we implement these approaches
using LLaVA-1.5-13B (Liu et al., 2023) as the VQA model. We stick to the default system message to prompt LLaVA-1.5,
which can be found on their official GitHub repo. For fair comparison, our VisualGPTScore is also implemented using
LLaVA-1.5-13B. We only use the system message without appending any questions when computing P(text|image). For
a-debiasing, we sample a single Gaussian image with a mean of 0 and standard deviation of 0.25 (derived from the statistics
of training images used to train LLaVA).

Group scores on Winoground/EqBen using BLIP (Table 11).

Table 11. Performance comparison of BLIP’s ITCScore, ITMScore, and a-tuned VisualGPTScore® on Winoground and EqBen.

Method Winoground (all) EqBen (val)

Text Score  Image Score  Group Score ‘ Text Score  Image Score  Group Score
ITCScore 28.0 9.0 6.5 20.9 20.3 10.6
ITMScore 35.8 15.8 133 26.0 20.3 12.6
VisualGPTScore 36.5 21.5 16.8 20.4 26.1 11.7

Fine-grained tags on Winoground (Table 12).
Performance on SugarCrepe (Table 13).

a-debiasing on ARO/Crepe/SugarCrepe/VL-CheckList (Table 14).
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Table 12. BLIP performance on Winoground subtags (Diwan et al., 2022). We report the number of test instances for each subtag and
their respective text score, image score, group score.

Dataset Size Method Text Score  Image Score  Group Score
ITCScore 32.6 11.6 8.1
NoTag 171  ITMScore 41.9 21.5 19.2
Visual GPTScore 43.0 28.5 23.8
ITCScore 433 16.7 16.7
NonCompositional 30 ITMScore 50.0 23.3 16.7
Visual GPTScore 433 333 26.7
ITCScore 32.6 8.7 6.5
AmbiguouslyCorrect 46 ITMScore 28.3 6.5 2.2
Visual GPTScore 26.1 19.6 8.7
ITCScore 29.0 7.9 7.9
VisuallyDifficult 38 ITMScore 26.3 10.5 7.9
Visual GPTScore 31.6 13.2 7.9
ITCScore 32.5 8.9 8.9
Unusuallmage 56 ITMScore 21.4 10.7 7.1
Visual GPTScore 30.4 10.7 8.9
ITCScore 20.0 8.0 6.0
Unusual Text 50 ITMScore 38.0 12.0 12.0
Visual GPTScore 30.0 18.0 12.0
ITCScore 16.7 2.6 1.3
ComplexReasoning 78 ITMScore 21.8 5.1 2.6
Visual GPTScore 21.8 10.3 6.4
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Table 13. Performance on SugarCrepe (Hsieh et al., 2023). SugarCrepe is the most recent visio-linguistic compositionality benchmark
which improves upon previous Crepe (Ma et al., 2022) by using state-of-the-art large language models (including ChatGPT), instead
of rule-based templates, to generate more natural negative text captions. We show that text-only baselines and LLM-based methods
indeed fail to succeed on SugarCrepe. However, our OTS generative approaches still achieve competitive results compared against SOTA
discriminative approaches. The results of human performance, text-only baseline, and SOTA CLIP and NegCLIP-SugarCrepe are directly
taken from the Hsieh et al. (2023). For other approaches, we evaluate their performance following the same procedure as described in
main texts.

Method Model SugarCrepe
Replace Swap Add | AVG
Human Performance - 98.67 99.50  99.00 | 99.06
Random Chance - 50.00 50.00 50.00 | 50.00
Text-Only Baseline Vera 49.46 4930 49.50 | 49.42
Grammar 50.00 50.00 50.00 | 50.00
Bart 48.41 5193 61.16 | 53.83
Pim(t) Flan-T5 51.41 57.59 40.94 | 49.98
OPT 58.53 66.58 45.78 | 56.96
Prrain(t) BLIP 75.90 77.14  70.89 | 74.64
CLIP-LAION2B 86.50 68.56 88.37 | 81.14
CLIP-LAIONS5B 84.98 67.95 89.62 | 80.85
ITCScore BLIP 85.76 73.79 85.66 | 81.74
BLIP-2 86.66 69.77 86.50 | 80.98
NegCLIP-SugarCrepe 88.27 74.89  90.16 | 84.44
ITMScore BLIP 88.68 81.29 87.57 | 85.85
BLIP2-Qformer 88.45 80.87 87.96 | 85.76
BLIP 93.33 91.00 90.98 | 91.77
Prrain(ti) BLIP2-Qformer 93.00 91.24 92.69 | 92.31
BLIP2-FlanT5 82.44 76.57 7624 | 78.42
- BLIP 95.09 92.39 97.36 | 94.95
poraindil BLIP2-Qformer 94.62 9227 9758 | 94.82
BLIP2-FlanT5 85.69 78.80 91.76 | 85.42
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Table 14. a-debiasing results on all I-to-T benchmarks and P;.q» (t) frequency charts. Increasing « from 0 to 1 hurts performance
on benchmarks with non-sensical negative captions such as ARO and Crepe. These benchmarks can also be largely solved with blind
algorithms that avoid looking at images. On the other hand, for benchmarks like SugarCrepe with more balanced Piyqir (t) between
positives and negatives, tuning « leads to performance gain.
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