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Abstract

Learning pseudo-contractive denoisers is a fundamental challenge in the theoretical
analysis of Plug-and-Play (PnP) methods and the Regularization by Denoising
(RED) framework. While spectral methods attempt to address this challenge using
the power iteration method, they fail to guarantee the truly pseudo-contractive
property and suffer from high computational complexity. In this work, we rethink
gradient step (GS) denoisers and establish a theoretical connection between GS
denoisers and pseudo-contractive operators. We show that GS denoisers, with
the gradients of convex potential functions parameterized by input convex neural
networks (ICNNs), can achieve truly pseudo-contractive properties. Furthermore,
we integrate the learned truly pseudo-contractive denoiser into the RED-PRO (RED
via fixed-point projection) model, definitely ensuring convergence in terms of both
iterative sequences and objective functions. Extensive numerical experiments
confirm that the learned GS denoiser satisfies the truly pseudo-contractive prop-
erty and, when integrated into RED-PRO, provides a favorable trade-off between
interpretability and empirical performance on inverse problems.

1 Introduction

The pseudo-contractive operators constitute a wide class of operators that arise in iterative methods
for solving fixed point problems [[17]. Here, we recall that an operator 7' : H — H is d-pseudo-
contractive (d-PC) if there exists a constant d € (—o0, 1] such that for any x,y € H, it holds
that [12}[31]]

IT(x) = T(y)1* < llx = ylI* + dll(x = T(x)) = (y = T(y)I* M

where # is a Hilbert space. When d < 1, the operator 7' is called d-strictly PC (d-SPC) op-
erator [17]. The operator T' is nonexpansive and firmly nonexpansive (FNE) when d = 0 and
d = —1 [6]. The pseudo-contractive assumption has played an important role in the convergence
analysis of PnP methods [61] 154, [14} 52} 57, 160\ 40, 48}, 158}, 149, 130, 4} [11}, 162} 47,153}, [10] and RED
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framework [51}150} 21} 142]]. Firmly nonexpansive (FNE) denoisers [60} 49} 58} (11} [10], averaged non-
expansive denoisers [S7, 48,130, 47]], nonexpansive denoisers [54}151] 14,150,140, 53], and contractive
residuals or operators [52 42, [35] 4] all belong to the class of pseudo-contractive operators [17]. The
demicontractive assumption (see Definition [3.T) further generalizes the SPC concept, enabling the
inclusion of a broader range of denoisers. Based on the fixed-point projection of demicontractive
denoisers, Cohen et al. proposed the RED-PRO model [21] to theoretically bridge between PnP and
RED priors. The indicator of the fixed-point set can serve as a regularizer and plays an increasingly
important role in solving inverse problems. It is critically important to develop an efficient technique
for testing the demicontractivity of a given mapping [21]. Of course, obtaining a pseudo-contractive
denoiser also ensures the demicontractive property, as pseudo-contractive denoisers are a subclass of
demicontractive operators shown in Figure[T} However, ensuring nonexpansivity, or more generally,
a Lipschitz constraint on artificial neural networks is not easy in practice [49,[11]]. Therefore, how to
design an efficient training framework that enables neural networks to learn theoretically guaranteed
denoising mappings under the weak assumption, such as (I)), is a highly challenging problem. In
this paper, we will try to answer the open question by establishing a theoretical connection between
the GS denoiser and the pseudo-contractive denoiser. The GS denoiser is all you need—simply
parameterizing convex potential functions with ICNN:ss is sufficient without complex training
techniques.

Recently, spectral methods have been proposed to address the aforementioned problem [52},1491135162].
The SPC-DRUNet trained by spectral methods has achieved the state-of-the-art performance in
image restoration problems [62]]. Spectral methods typically use the power iteration (PI) method to
compute the spectral norm of the Jacobian matrix, which is then either normalized by dividing the
convolutional kernels by the spectral norm [52]] or incorporated into the loss function as a penalty
during training [49, 135/ 162]. Ryu et al. [52] utilize a PI method, treating the convolution as a linear
operator that performs a matrix-vector product. To balance speed and precision, PI only runs one
iteration. They enforced the contractiveness of the residual I — T} of the denoiser Tj by real spectral
normalization (RealSN), which normalized the spectral norm of each layer. To obtain a FNE denoiser
Ty, which is equivalent to the nonexpansiveness of Qg = 2Ty — I (see [16, Theorem 2.2.10] and [[7,
Proposition 4.4]), Pesquet et al. [49]] added the penalty term of the spectral norm to the loss function,
ie.,
E(Q) = IEx~p(x),n~./\f(0,fr21) ”TG(X + n) - XH2 + )‘maX{HJQe (i)”* 1 — 5}7

where p(x) is the data distribution, Jg, (X) is the Jacobian of @y at point X = px + (1 — 0)Tp(x +
n)(p € [0, 1]), the noise n follows a Gaussian distribution with mean 0 and standard deviation o1,
A > 0 is a penalization parameter, and the parameter £ € (0, 1) controls the penalty term. Then
the denoiser Ty is a resolvent of a maximally monotone operator (MMO). Later, the GS denoiser
Ty = I — Vg was proposed [20, 34], where 1)y : R — R U {oco} is parameterized by the
differentiable neural network such as ICNN [2] and DRUNet [67]]. Based on the GS denoiser, Hurault
et al. proposed the proximal DRUNet (Prox-DRUNet) [35], which requires that V1) is L-contractive
with L < 1. They fine-tuned the previously trained GS denoiser by the spectral method with the
following loss:

L) = Exp(x),n~A(0,01) ITo(x +n) — x||2 + Amax{||Jvy, (x+n)|, ,1—¢€}.

During training, the spectral norm ||.Jy, (x + n)||, is estimated with 50 iterations. Wei et al. trained
the d-SPC (d < 1) denoiser by the spectral method with the following loss [62]]

L(0) = Exp(x)n~A(0,0°1) [|To(x +1n) — xH2 + Amax{|dl + (1 — d)Jr,(x +n)|,,1 —€}.

However, these spectral methods constrain the spectral norm using a finite number of training samples
{x:,x}} fV:OI (noisy and clean image pairs), rather than all samples from the entire space. It is unable to
accurately constrain the global spectral norm such as maxyegn ||2J7, (x) — I||, in [49], which may
violate the SPC property. Moreover, PI methods have notable drawbacks: they can be computationally
expensive [[62], are not fully deterministic due to random initialization, and intermediate iterations do
not guarantee a strict upper bound on the spectral norm [25].

Amos et al. [2] introduced ICNNs, which guarantee the convexity by imposing non-negative con-
straints on network weights and employing convex, non-decreasing activation functions. The gradients
of ICNNSs possess universal approximation capabilities [33]], making them particularly valuable in
data-driven optimal transport [44}[33]]. The GS denoiser leverages ICNNSs to learn gradients of convex
implicit regularizers [20]]. Fang et al. [28] further proposed learned proximal networks (LPN), which



are parameterized by the gradient of ICNN. In this work, we rethink the GS denoiser Ty = I — Vg,
where 1)y is an ICNN, that can serve as a truly SPC denoiser. We are the first to establish the essential
connection between SPC denoisers and GS denoisers. The main contributions of this work are
summarized as follows:

1. Theoretical contributions. We rethink that the GS denoiser corresponds to a truly SPC
denoiser, as demonstrated in Proposition .1} We also theoretically propose another novel
construction method for truly pseudo-contractive denoisers, as presented in Proposition[4.3]
This work is the first to theoretically confirm the feasibility of training truly SPC denoisers
and to practically address the unresolved challenge of training demicontractive denoisers
posed by the RED-PRO model [21].

2. Algorithms and applications. We integrate the learned truly SPC denoiser into the RED-
PRO model and propose Algorithm|I]for solving imaging inverse problems. Theorem 4.6]
further establishes the convergence of objective functions in RED-PRO, complementing the
prior work [21]] that focused solely on sequence convergence.

3. Experimental validation. Through extensive numerical experiments, we validate the SPC
property of the GS denoiser compared to spectral methods [49}162]. Our results highlight
the ability of the method to balance interpretability and performance in addressing inverse
problems.

2 Related works

Regularization models are important in image restoration problems, which can be formulated as
follows:

min f(x) + Ag(x), @
where f is the data fidelity, g is the regularizer, and A > 0 is a regularization parameter. For example,

the data fidelity f(x) = 527 ||Ax — y||* corresponds to y = Ax + n with given linear operator A
and Gaussian noise n.

2.1 PnP methods

PnP methods that combine splitting algorithms with denoiser priors have been widely applied in
practical problems [61} 154} (1,137, 163} 128} 164, 138]] and have achieved state-of-the-art performance in
inverse imaging tasks [67, 26, 35,159]. Venkatakrishnan et al. [61] first proposed the PnP method
using the alternating direction method of multipliers (ADMM). PnP methods solve the problem (2)
by replacing the proximal operator prox, (x) with denoisers, such as non-local means (NLM) [[13]]
and block-matching 3D filtering (BM3D) [24]], within ADMM or forward-backward splitting (FBS),
also known as the proximal gradient method [9]]. Zhang et al. [67] extended PnP methods using
trained DNNSs to achieve state-of-the-art performance in image restoration [67]. The convergence of
PnP methods has been extensively studied. Sreehari et al. established theoretical conditions for PnP-
ADMM, requiring that the Jacobian VD, be a doubly stochastic and symmetric matrix with all real
eigenvalues in the range (0, 1] [54]]. Buzzard et al. provided a Consensus Equilibrium interpretation
on denoiser priors [[14]. Chen et al. [18] analyzed fixed-point convergence under bounded denoisers,
while Ryu et al. [52] proved the fixed-point convergence of PnP-FBS and PnP-ADMM using the
Banach contraction principle, assuming strongly convex data fidelity and nonexpansiveness of the
residual of DnCNN [68]]. Diffusion models (DMs) [32] can also act as efficient PnP priors, which
have been widely used in physical sciences such as black hole imaging problems [64! 69], and image
restoration [70]].

2.2 RED framework

Romano et al. [51]] introduced the well-known RED framework, which constructs an explicit ob-
jective function and flexibly incorporates various denoisers, such as NLM [13], BM3D [24], or
trainable nonlinear reaction diffusion (TNRD) [19]. The RED framework has been widely used in
computational imaging [55} 156} 41} 42]. Reehorst and Schniter et al. [S0] highlighted that some
existing denoisers do not satisfy the assumptions of RED, and provided the SMD (score-matching by
denoising) interpretation. To explore the relationship between PnP priors and RED, the RED-PRO



framework was proposed from the perspective of fixed-point projection. Since the fixed-point set
Fix(T) = {x € H : T(x) = x} is closed and convex [21 Theorem 3.8], RED-PRO reformulates
RED as a convex optimization problem for image restoration via fixed-point projection, the regularizer
g in @) is the indicator of the fixed-point set Fix(7), i.e.,

oo = [0 ifxeFX(D),
g\x) = oo, otherwise.

Building on the idea of RED, the GS denoiser Ty = I — Vg was proposed [20} 134], where 1)y is a
differentiable function. Based on the GS denoiser, Hurault et al. [35] established the convergence
theory of PnP methods. He et al. proposed simultaneous local and nonlocal RED (SLN-RED) for
image restoration [29]]. To avoid tuning the regularization parameter, Cascarano et al. proposed the
constrained RED called CRED [15] based on the discrepancy principle [27].

3 Preliminaries

Cohen et al. first introduced the following demicontractive assumption on denoisers [21]. Here is the
definition of demicontractive operators.

Definition 3.1. The mapping 7" : H — H is d-demicontractive with d < 1, if for any x € H and
z € Fix(T) it holds that

IT(x) = 2]” < |]x = z|* + d||T(x) — x|

The d-SPC operator is a d-demicontractive operator.

Let C;1,Cs,C3,C4 denote the classes of all operators 7' : H — H satisfying the assumptions of
demicontractive, SPC, NE, and FNE, respectively. For example, consider the inclusion defined as
follows. Let T' € C4 be arbitrary. Then, for all x,y € H, it holds that

IT(x) = T)I* < lIx = y|* = |(x = T(x)) = (y = TG = IT(x) =Tl < Ix =y,

which means T" € Cs. Therefore, C4 C Cs. The relationship between different classes of operators is
shown in Figure T

Figure 1: Relationship between different classes of operators.

The operator 7' : H — H is called conically A-averaged for A > 0 [5] if there exists a nonexpansive
operator U such that T = (1 — A\)I + AU, where I denotes the identity. In particular, when A € (0, 1)
the operator is A-averaged, a class that plays an important role in fixed-point algorithms [22} 65, 66|
8,23]. If U is FNE, then T' = (1 — A\)I 4+ AU is A-relaxed FNE (A-RFNE).

Next, we give some equivalent relationships between d-SPC operators, conically averaged operators,
and RENE operators demonstrated in Proposition [3.2] We give the proof in Appendix [A]

Proposition 3.2 ([17]]). Let A = ﬁ. Then the following statements are equivalent:

(i) Let T be d-SPC (d < 1).



(ii) T is a conically A-averaged operator.

(iii) T is a 2\-RFNE operator.
The following Proposition[3.3]serves as a key connection for exploring how to learn a truly pseudo-
contractive denoiser. Please see the proof in Appendix
Proposition 3.3 ([16]). Let R=1 —T and ;1 > 0, thenT' : H — H is p-RFNE if and only if for all
X,y € H,

(x -y, R(x) — R(y)) > %IIR(X) ~ R(y)|* 3)

The residual R = I —T is also called i-cocoercive in (3). Figureshows all equivalence relationships

between 1 — %-SPC operator, conically A-averaged operator, 2A\-RFNE operator, and %-cocoereive

residual, where A = 1.

-

N Y
R=I1I-Tisa
1 .
5 -cocoercive
operator

0

{ T is a conically } . [Tisa1—Lspc| {Tisa?)\-RFNE}
T

A-averaged operato operator operator

Figure 2: Equivalent relationships.

In the following Proposition [3.4] we introduce an important property of c-averaged operators for the
convergence rate of objective functions about the RED-PRO model. The proof is given in Appendix[C]

Proposition 3.4 ([66]). Let T be a a-averaged operator with o € (0,1), then T is a 1_TO‘-strongly
quasi-nonexpansive operator i.e., for any z € Fix(T), it holds that
||2 11—«

IT(x) = 2]* < |x — 2]* - I — 7). )

Finally, we give several equivalent characterizations of the L-smoothness property over the entire
space ‘H. Here is the definition of L-smoothness.

Definition 3.5 ([9]). Let L > 0. The function h : H — R U {00} is L-smooth if it is differentiable
over H and satisfies
[Vh(x) = Vh(y)| < Llx —yll, Vx,y€H. ©)

Theorem 3.6 ([9]). Let h : H — R U {oco} be a convex function, differentiable over H, and let
L > 0. Then the following claims are equivalent:

(i) his L-smooth.
(ii) Forallx,y € H,

(Vh(x) = Vh(y).x ~ ¥} > 7 Vh(x) - Vh(y)|* ©

4 Learned truly SPC denoiser

4.1 The GS denoiser is all you need

In this section, we will prove that the GS denoiser Ty = I — V1y in which vy is an ICNN, can
precisely correspond to a truly SPC denoiser. In [20], although Cohen et al. proposed the GS
denoiser early, they failed to explore its connection with the SPC denoiser. The pursuit of learning
SPC denoisers, once perceived as distant, is now within reach. Two inequalities (3) and (6) form a
crucial bridge, enabling us to establish the essential connection between the GS denoiser and the SPC
denoiser. We give the following result to theoretically guarantee the SPC property of the GS denoiser.



Proposition 4.1. Consider a scalar-valued (K + 1)-layered neural network 1y : R™ — R defined
by 1g(x) = wrzx + b and the recursion

Z1 :¢(H1X+b1), zk:qb(szk,l -i—HkX—l—bk)7 k=23,...,K,

where © = {w,b, {W 1 , {H}E |, {by}E_ |} are learnable parameters, ¢ : R — R is a
convex, non-decreasing and continuously differentiable scalar function, which operates pointwise.
Assume that all entries of W, and w are non-negative, and let 19 be Lg-smooth, then the GS
denoiser Ty = I — Vg is Lif-SPC operator.

Proof. Since W, and w are non-negative, it follows that 1) is convex from [2} Proposition 1]. Since
g is Lg-smooth, by (6), we have

(Vipo (%) — Vi (y), x — y) Lienvwe(x) V().

LetTy = I — Vg, by Propositionand recall 3] in Proposition L we directly derive 1= 2 1= = Le,

ie.,d= L% . Therefore, the denoiser Tj i

—2_SPC operator, which completes the proof. [

Given the ICNN 1)y, we train the GS denoiser Ty = I — Vg with the following loss function

L(0) = Exmp) mn (0,021 | To(x + 1) — x|

As previously proposed in [20]], the training process is straightforward and does not require any
additional spectral norm penalty.

Our Proposition 4.1 is the first to realize a truly £ L 2_SPC operator via the ICNN GS denoiser, whose
assumption is weaker than FNE and nonexpansive, and thus easier to satisfy in practice. Once the
GS denoiser meets the L" 2-SPC condition, the RED-PRO framework automatically guarantees
sequence convergence and objectwe convergence rate, as shown in Theorems 4.5 and 4.6, without
requiring stronger FNE or nonexpansive assumptions. The result of Proposition 4.1 can further
benefit existing PnP/RED theoretical works by enabling the ICNN GS denoiser to satisfy stronger
FNE or averaged nonexpansive assumptions in two ways:

* Controlling Ly < 1, e.g., by normalizing convolution kernels via spectral methods or
penalizing the network’s Lipschitz constant in the loss function, so that the FNE and
nonexpansive assumptions required in [58, Assumption 2], [54, Theorem III.1], and [50}
Lemma 5] are met;

* Estimating Ly via the power method and tuning the weight w < - so that T, = wTjy +

(1—w)lisa “’QL@ -averaged operator, thus satisfying the averaged operator assumptions
in [57, Assumption 2(b)] and [48, Theorem 3.5, Theorem 3.6]

Therefore, Proposition 4.1 provides valuable practical guidance for existing PnP/RED theoretical
works that require FNE, and averaged nonexpansive assumption.

Remark 4.2. Although we use the same GS denoiser as in [20], the difference is that we are the
first to theoretically address the relationship between d-SPC denoisers and GS denoisers, and also
practically demonstrate the feasibility of training SPC denoisers that fully satisfy the demicontractive
condition required by RED-PRO [21]]. We believe that this theoretical finding is valuable.

In contrast to spectral methods [52}1491135162]], our approach, like [20], directly embeds the underlying
mathematical structure, i.e., (3) and (6), into the denoiser, thereby naturally satisfying the SPC
property. This eliminates the need for adding extra penalty terms in the loss function and overcomes
the limitation that spectral methods cannot constrain the global spectral norm.

However, as pointed out in [20], one limitation is that the non-negative weights may constrain the
expressivity of ICNNs. We are now theoretically give another alternative construction method for any
truly pseudo-contractive neural networks.

Proposition 4.3. Let Ry : R" — R" be a Lg-Lipschitz continuous convolutional neural networks.
Denote Ry = Ry + Ly1, then the denoiser Ty = I — Ry is a pseudo-contractive operator, i.e.,

1To(x) = To(y)|I* < lx = yII* + |(x = To(x)) = (y = To(y))II-



Proof. Since Ry is Lg-Lipschitz continuous, for any x,y € H we have

[Ro(x) — Ro(y)ll < Lo [[x =y, )
by (7) and Cauthy-Schwarz inequality, we have

I(Rg(x) = Ro(y),x — y)|| < Lo [Ix — y[|*.

We can derive that )
(Ro(x) — Ro(y),x —y)+ Lo [|x —y|" > 0.
Thus, we have

(Ro(x) — Ry(y),x —y) = (Ro(x) — Ro(y),x —y) + Lo Ix — y||* > 0.

By [[7, Example 20.8], it follows that Ty = I — Re is a pseudo-contractive operator. O

The core problem in Proposition[d.3]is how to training Lipschitz-constrained neural networks Ryu et
al. normalized each convolutional kernel K with estimated spectral norm |||, i.e., TSN ,C” , which can
obtain 1-Lipschitz CNN. Anil et al. [3] proposed that by combining GroupSort activation functions
with orthonormal weight matrices, one can construct networks that are provably 1-Lipschitz and
capable of approximating any 1-Lipschitz function arbitrarily well. These methods can be used to
train the 1-Lipschitz-constrained neural networks Ry in Proposition In this case, the Lipschitz
constant Ly is equal to 1, then Ryg = Ry+ 1, and Ry = Ry -+ I can be viewed as a residual connection,
which is used to fit the noise distribution n. That is, Ry is obtained by minimizing the following loss
function:

~ 2
min {£(9) = Ex~p(x).n~n(0,0°D) HRG(X +mn)— nH } :

and the pseudo-contractive denoiser Ty = [ — Re is constructed. Moreover, Delattre et al. [25]
controlled a L-Lipschitz convolutional kernel IC;(1 < j < I), the training loss becomes: £(6) +

l .
fireg D j—1 Lreg (KC5) with

‘Cng(IC]) - UGI(IC ) oq1(K;)>L>
where o1 denotes the spectral norm computed by Gram iteration (GI), which is more efficient and
accurate than the power method, and x — 1,1, indicates 1 if x > L, and 0 otherwise.

Although the above methods yields pseudo-contractive denoisers by training Lipschitz-constrained
neural networks, such networks may practically suffer from limited expressive capacity [3.[36].
Remark 4.4. According to Proposition[4.3] as long as we accurately compute the Lipschitz constant
of the neural network, we can construct the pseudo-contractive neural network. The recent work [25]]
has shown that it is feasible to accurately obtain the Lipschitz constant of neural networks. We believe
that more expressive truly pseudo-contractive neural networks with inherent interpretability shown in
Proposition .3 will be developed in the future.

4.2 RED-PRO with the learned SPC denoiser

Based on the fixed-point projection of the demicontractive denoiser, Cohen et al. proposed the
following RED-PRO model

i 8
cmin f(x), (®)

where the denoiser T} is assumed to be d-demicontractive (d < 1) and f(x) = 543 [|[Ax — y|*. The
hybrid steepest descent algorithms [63] [66] is used to solve (B}, i.e.,

2" =T,(z"' — 1, Vf(z" 1)), )

where T,y = wTy + (1 — w)I, and {py }ren is diminishing, i.e., >, i = 400, limg 00 i, = 0,
and w € (0, 15 d) for d-demicontractive denoiser 7. Proposmonshows that T, is wB-averaged
and thus always nonexpansive for 0 < w < 1 —d. Algorlthml I]shows the detailed steps of RED-PRO
with the learned truly SPC denoiser Ty, which is written into the following compact form,

xP = T (x 1) — e V(T (xF71)), (10)



where T, = wTy + (1 — w)I. In fact, the above iteration (I0) is equivalent to the iteration (9).

Algorithm 1 RED-PRO with the learned truly SPC denoiser
Require: initialization x° € R"™, yj, = e w € (0, L%), and the GS denoiser Ty = I — V.
1: fork=1,2,--- /K do
2: vy = (1 —w)xF=t +wTp(xF1)
3 X =yh o VIy")
4: end for

Ensure: xX.

The known Theorem [4.5] provides the convergence guarantee of Algorithm [I]to an optimal solution
of (2) with the learned truly d-SPC denoiser Ty. Compared to RED-PRO [21} Theorem 4.3], we can
extend the interval of w from (0, 254) to (0,1 — d), and explore that w depends on the Lg-smooth
property of the ICNN. We further complement the convergence rate of the objective function for
RED-PRO in Theorem[.6] The proof is given in the Appendix [D]

Theorem 4.5 ([66} 21])). Let Ty = I — Y1)y be a continuous d-SPC denoiser, and f(x) be a proper
convex L.s.c. differentiable function with L-Lipschitz gradient. Then the sequence {x*}1.cn generated
by Algorithm[l|converges to a solution of (8).

Theorem 4.6. Let {x"},cn and {y*}ren be sequences generated by Algorithm|l} Assume that
S = arg minyerix(r,) f(X) is the solution set of the RED-PRO model and the sequence {x*} e is
bounded, then

(i) Foranyx’ € S and k > 1, there exist D1, Dy > 0 such that
k S D% CD%a
Cklfoz koz

where uj, = min{(V f(y’?),y? —x') : k < j < 2k}.

u

(ii) Foranyx' € S and k > 1, we have

D? i cD%7
cklfa ko

f(ylbcest) - f(xl) <

where kpest = arg ming<;<or f(y?).
Remark 4.7. The boundedness of {x*} ¢y in Theoremis straightforward to verify. Specifically,
we can replace T, with Pjg 1= o T}, in Algorithm E], where Fjo,1j» denotes the metric projection
onto the unit hypercube [0, 1]”. Thus the sequence {y”}cn is bounded such that y* € [0, 1]".
Since x* = y* — px V f(y"), for any z € Fix(T), we have ||x* — z|| < |ly* — z|| + ¢ ||V f(¥")]|.
Therefore, the sequence {x*},cn is also bounded.
Remark 4.8. Compared to the convergence results of RED-PRO in [21, Theorem 4.3 and Theorem

4.4], we provide a new complementary analysis by establishing the outer convergence rate of the
objective function in Theorem 4.6 (ii).

5 Experiments

In this section, we present some experiments to evaluate the performance of the learned truly SPC
denoiser. We benchmark it against state-of-the-art spectral methods, including MMO [49] and
SPCNet [62]. Specifically, we validate the SPC property of the learned denoiser. RED-PRO with
the learned truly SPC denoiser has the theoretical guarantee, which can be applied to complicated
imaging inverse problems. Our primary focus is on achieving theoretical interpretability rather than
pursuing state-of-the-art performance.

5.1 Implementation details

We compare spectral methods with the DnCNN architecture. SPCNet [62]] adopts d = 0.5 for MNIST
and CelebA datasets [39, 43]], and d = 0.8 for BSD400 [45]], while the MMO method [49] uses



d=—1in @) Spectral methods are configured with A = 103, e = 0.1, and 20 PI iterations for
CelebA and BSD400, or 30 iterations for MNIST. The ICNN models start with an initial learning rate
of 1073, decaying to 10~* after half the epochs. The DnCNN models begin with 10~4, decaying to
5 x 10~° mid-training.

For the MNIST dataset, ICNN is implemented with four convolutional layers, each containing 64
hidden neurons and softplus activation function ¢(z) = % log(1 + €A%) with 3 = 10. For BSD400

and CelebA, ICNN uses 256 hidden neurons with 8 = 100. All models are trained for Gaussian
denoising with a noise level of ¢ = 5/255 and a batch size of 128. Training spans 50 epochs for
MNIST and BSD400, and 30 epochs for CelebA. All experiments are conducted on one NVIDIA
A800 GPU using the PyTorch framework.

5.2 Validation of SPC property

We test the SPC property of the learned GS denoiser Ty = I — Vipy with ICNN vy, MMO [49], and
SPCNet [62] on two MNIST and test12 datasets. We calculate the maximum d defined by

IT(x) =TI = IIx — v’
lx = T(x)) = (y = T)I*

where y = x +n,n ~ N(0, 2I). Noise levels are uniformly sampled at 11 points in the interval
[107°,1072]. As shown in Figure the SPCNet [62] obtains a maximum d that exceeds 0.8 and 0.5

at a noise level of 10~°, whereas the MMO method [49] yields a d value that exceeds —1. Therefore,
denoisers trained by spectral methods violate the SPC property.
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——— —— SPCNet

— — MMO

—— Ous 15
—— SPCNet
—— MMO
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Figure 3: Validation of the truly SPC property on two different datasets.
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5.3 Competitive results with theoretical guarantees

In Figure we show the trend of the fidelity term 55, |y — Ax||* and PSNR (dB) throughout the
iterations with different w. We provide additional results in Appendix [E}

In the following, we demonstrate the effectiveness of RED-PRO with the SPC denoiser in inverse
problems, highlighting the ability to achieve competitive results while strictly satisfying theoretical
constraints. Compared to non-SPC methods such as DPIR [[67], which achieve high PSNR in only
8 iterations but do not converge with more iterations (see Appendix G.5 in [35]). As shown in
Table[I] RED-PRO can offer both competitive performance and guaranteed convergence. We also
provide visual PSNR curves shown in Figure [3]to clearly demonstrate that non-SPC methods may not
converge.
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PSNR (dB;
/

970 — Ours AN

SPCNet N
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0 100 200 300 100 500 0 100 200 300 100 500
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Figure 5: PSNR curves of RED-PRO with the learned truly SPC denoiser and non-SPC methods on
two images in the Gaussian deblurring task.

Table 1: Comparison of RED-PRO with various non-SPC denoisers on the Gaussian deblurring task.
All non-SPC and the ICNN GS denoisers use Algorithm [T| with the same hyperparameters.

Methods Parrot House Boat Couple Man
SPC-DnCNN [62] 25.73 3143 2853 28.17 29.58
MMO [49] 25.87 31.58 2857 2827 29.60
DnCNN [68] 2530 2674 2623 2598 2647
DRUNet [67] 27.00 3044 29.15 28.64 29.85
GS denoiser [35]] 27.38 32,58 2941 29.08 29091
Ours 27.17 3240 29.54 2917 30.25

6 Conclusion

In this paper, we proposed a novel perspective to construct a truly SPC denoiser by directly embedding
the underlying mathematical structure into the neural network architecture. Our theoretical analysis
shown in Proposition @]rethink that the known GS denoiser [20], built upon an ICNN, definitely
satisfies the d-SPC property, which plays a crucial role in convergence in PnP methods and RED
framework. Unlike spectral methods that require additional penalty terms and suffer from high
computational cost due to costly PI iterations, our method naturally guarantees interpretability while
offering the advantage in terms of time complexity. Furthermore, our theoretical insight shown in
Proposition [4.3|can pave the way for future research in developing interpretative neural networks for
imaging inverse problems.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we rethink that the GS denoiser corresponds to a truly SPC denoiser, as
demonstrated in Proposition[d.1] This work is the first to theoretically confirm the feasibility
of training truly SPC denoisers and to practically address the unresolved challenge of training
demicontractive denoisers posed by the RED-PRO model [21].

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: one limitation is that the non-negative weights may constrain the expressivity
of ICNNss.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please see section 2 and Appendix. We provide the full set of assumptions and
a complete (and correct) proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provide Implementation details and the hyperparameter setting.

17



Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we provide the training and test details in numerical experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: error bars are not reported because it is useless for our experiments, we mainly
verify the theory.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: we just evaluate the performance of the proposed method with the state-of-the
art methods.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: we confirm that the research conducted in the paper conforms, in every respect,
with the NeurIPS Code of Ethics

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper, so we think there is no societal impact of the work
performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: we do not release any data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: we use the open source code and datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: we do not release any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: we do not conduct any crowdsourcing experiments and research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: we do not conduct any crowdsourcing experiments and research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: we do not use LLMs in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The proof of Proposition [3.2]

Let A = ﬁ. We first show the equivalence between conically A-averaged and d-SPC operators. Let
S = (1-d)T +dI, then

1S(x) = S = (1 = )(T(x) = T(y)) + d(x —y)|”
= (1= |T(x) - T)I* +dlx -yl
—d(1 = d)[|[(x = T(x)) = (y = T)I

S is nonexpansive < [|S(x) — S(y)|*> < |x — y|?
& (1= d)|T(x) - T(y)|* +dlx -y
—d(1-d)|[(x = T(x)) = (y = T)I* < Ix -y
& |T60) = T)I* < lx = ylI* + d | (x = T(x)) = (v = T(»))II”
& T'is d-SPC.

By the above equivalence, we obtain 7 = (1 — A)I + AS is conically A-averaged, where S is
nonexpansive.

(i) & (ii): Take d = —1, then the FNE operator V is equivalent to %—averaged operator. There

exists a NE operator S such that V = %, then S = 2V — I. Substituting S = 2V — [ into
T = (1 —X)I+ AS yields
T=(1-2\N)I+2)\V,

hence T is (2)\)-relaxed FNE (i.e. 2A\-RFNE). The conically A-averaged operator is equivalent to the
2)\-FNE operator.

B The proof of Proposition 3.3

Let T = uS + (1 — u)I for a FNE operator S. Since S is FNE, then
1S(x) = SI* < llx = ylI* = [|(x = S(x)) = (v = S -
Since
1S(x) = S = I(S(x) = %) + (x = y) + (y = S|
= 1SGx) = x[* + Ix = y|* + ly = SO)II”
+2(5(x) —x,x—y) +2(5(x) =%,y = S(y) +2(x —y,y = S(¥))-
and

I(x = S(x)) = (y = SWII° =[x = SE)|* = 2(x = S(x),y = S(y)) + |y = S)|*-
From
1S(x) = SWI* < Ix—yl* = (x = S(x)) = (y = S&)I,
we obtain

Ix = S+ ly = S)II* <

ie.,

(S(y) = x,8(x) = x) + (S(x) =y, S(y) = y) > [|S(x) =x||* + [|S(¥) = y[[*. (1D
Since S(x) —x = (T'(x) —x) and S(y) —y = ;;(T(y) — y), then (TI) is equivalent to

)
(S0 = x.T(x) =)+ (560 =y 7¥) =¥) = = (176 = + 170 - yI*) . 12
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Let R=1—T, then
(S(y) = % T(x) — %) = {(S(y) = ¥) + (y — %), T(x) — %)
= (x =Y. R(0) + (R0, RY). (13)
Similarly, we have
(560 =y T(y) =) = (y = x Rly)) + = (R0 R¥). (14)
By (12) and above two equations (I3) and (T4), we have
(x =y R(x) = R(y)) = £ R(x) = R,

C The proof of Proposition [3.4]

Since T is a-averaged, by Proposition (i), then we have 75 = a = d = 21, ie., the
operator 7" is a —%-SPC operator,

L% x - Tx) - (v - T

ITG0) = T)I” < llx = yl|* ~
Lety = z € Fix(T') in (T3), we finally obtain

15)

1—

« 2
T — .
—=|760) x|

2 2
IT(x) — 2l < [lx —2]|” -

D The proof of Theorem 4.6|

Proof. (i) For any z € Fix(T), since y* = T,(x*~!) and T, is 1% -averaged, by (@) we have
2 l-d-w
w

2

" —lf” < |+ ] I = TG

it follows that
It = 2| = ly* = eV (v*) 2|
= |lv* — 2" — 2mty* — 2 VIR + i3 [V

<ol - EEETY et | P
— o (y* — 2, VE(y) + 1 |V FP)|” (16)

According to the known conditions, there exist Dy, D2 > 0 such that
ly" =zl < [x"=" —2|| < Dy, [V (y")] < D

If us, < 0, then the inequality holds. Otherwise, applying (I6) with z replaced by x’, we obtain, for
anyj 2 17

I = x|[" < [ = x| = 205 (V f(y7), ¥ = X) + 13 D3,
arrange the above inequality, we obtain
2 (VEy)y7 — %) < |0 = x| = |5 = || + p2D2.
Since pg > pj forall k < j < 2k — 1, summingitforall j = K,k +1,---,2k — 1, yields
2k—1 2k—1

23 (VI )y —x) < [ = x|F = o = x|+ Y w03
j=k Jj=k
2k—1
<DY+D3 > u
j=k
<D?+ D22k —1—Fk+1)n}
9 D22k
§D1+7(1+k)2a
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By the definition of uj, and ug > 0, it follows that

2k—1 2k—1
2 Z i (Vf(y ), y) —x) > 2uy Z Wi > 2ugknag—1 = = c(2k) "y, > ck' %y,
j=k
then ) ) ) )
w < Dj cDsk~ < D1 cDs

ckl=o " (1+2k+ k2> = ckl-o ' ko

(ii) In order to prove the rate in terms of the outer objective function f, we will use (i) and for
simplicity we define k = argmin{(V f(y?),y’ — x') : k < j < 2k}. We apply the sub-gradient
inequality on the convex function f to obtain

k / k , Bk o o DI cD3
Fpest) = F(x) < f(37) = f(xX) (V) Y™ =x) = 575 + =
the first inequality follows from f(yF. ) < f (y*), and the last inequality follows from (i). O

E Other experiments about convergence

We evaluate the convergence of Algorithm [I] on the CelebA dataset for the Gaussmn deblurrmg
task with oy = 1, 0poise = 0.02. We set K = 100, g = 9 X 2550,,0is¢(k + 1) 701, We first
compute the spectral norm ||.Jy ., (x*)||,, where {x"}/_ is the iterative sequence. Here we run the
PI method with 200 iterations. As shown in Figure[6] we can estimate the tight Lipschitz constant
Lo = maxycpn || Sy, (X)]|, > 2.5, then2/Ly < 0.8,w € (0,0.8).

2.5 2.5
2.4 24
2.3 2.3
522 W 22
,i; 2.1 ’E 2.1
T 20 20
1.9 1.9
1.8 1.8
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(@) (b)

Figure 6: Spectral norm H g, (xF) H* at the k-th iterative point x* on two images.

We provide additional experiments to demonstrate the convergence of Algorithm [T]on four images in
the CelebA dataset. The objective function and PSNR trends during iterations are shown in Figure|[7}

F Hyperparameter Setting

We manually set the step size pup, = = k) and the weight w of Algorlthm I to achieve the best

performance on the CelebA dataset. All hyperparameters are set to be the same for all images. The
hyperparameters are summarized in Table 2]

Table 2: Parameter setting for CelebA dataset.

Parameter  opiur = 1, Opoise = .02 Oppur = 1, Onoise =04 Obiur = 2, Tnoise = 02 Oprur = 1, Onoise = 04

c 9 X 25500ise 9 X 25500ise 14 x 2550 ,,0ise 20 X 2550n0ise
e 0.1 0.1 0.09 0.25
w 0.5 0.75 0.75 0.75
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Figure 7: Convergence of Algorithm [I]on other images in the CelebA dataset. (a) Objective function.
(b) PSNR.

26



G Compared with state-of-the-art methods

We first train the SPC denoiser using the CelebA dataset and then apply Algorithm [I]to perform
deblurring. We compare with diffusion-based method DiffPIR [70], PnP-PGD [34], and DPIR [67]].
As demonstrated in Table[3] we evaluate the efficacy of RED-PRO with the learned truly SPC denoiser
across a range of blur intensities, noise levels, and evaluation metrics. We give the hyperparameter
setting of RED-PRO in Table [2] Appendix [l We provide visual comparisons in Figure[§] DPIR
achieves the best results, our method ranks second, and DiffPIR effectively restores fine details but
occasionally alters facial expressions.

Table 3: Deblurring results on CelebA over 20 samples.

METHOD Oplur = 1, Onoise =02 Obiur = 1, Onoise = .04 Optur = 2, Onoise = 02 Oplur = 2, Tpoise = .04
PSNR(T) SSIM(1) PSNR(T) SSIM(1) PSNR(T) SSIM(T) PSNR(T) SSIM(?T)

DiffPIR  30.8+20 86+.03 295+18 82+.03 286+20 .80x.05 27618 .77+.05
PnP-PGD 3144+19 87+.02 276+09 .71+£.05 299+23 85+.05 288+20 .81+.05
DPIR 332+£30 .92+.03 31.8+26 .89+.04 301+25 86+£.05 291422 83+.05
RED-PRO 324+28 92+.03 308+23 .88+.03 293+23 86+.04 284+20 .83+.04

.

]

(a) Clean image (b) Degraded image (c) DiffPIR (30.07 dB)

2

y

(d) PnP—PG]S 630.53 dB) (e) DPIR (31.95 dB) (f) Ours (30.93 dB)

Figure 8: Visual comparison on CelebA for Gaussian deblurring with oy = 1, 0poise = 0.02.
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We consider a sparse-view computed tomography (CT) measurement model:

1
min — A;x —b; 2,
x€Fix(Ty) N ; I I

where b; € R™ is the measured sinogram for the i-th projection, and A is an m x n discretized Radon
transform matrix. For RED-PRO, we use pj = W, where A = [A1, Ay,...,AN]T,

and w = 0.1. The GS denoiser is trained on the public Mayo-CT dataset [46]. We simulate CT
sinograms using a parallel-beam geometry with 200 angles and 400 detectors. We compare with FBP
and the recommended method in [38]]. Table ] presents the results for CT reconstruction. Despite
RED-PRO’s theoretical guarantees, its empirical performance in CT reconstruction may be inferior
to that of PnP-ADMM.

Table 4: Numerical results for CT reconstruction on the Mayo-CT dataset, computed over 128 test
images.

Method PSNR SSIM
FBP 20.233 £0.034 0.1763 £ 0.0138
RED-PRO 30.057 £0.488  0.8190 £+ 0.0075

PnP-ADMM [28] 34.216 + 0.597 0.8938 + 0.0077
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