Enhancing Decision-Making of Large Language Models via Actor-Critic

Heng Dong*! Kefei Duan“? Chongjie Zhang?

Abstract

Large Language Models (LLMs) have achieved
remarkable advancements in natural language
processing tasks, yet they encounter challenges
in complex decision-making scenarios that re-
quire long-term reasoning and alignment with
high-level objectives. Existing methods either
rely on short-term auto-regressive action genera-
tion or face limitations in accurately simulating
rollouts and assessing outcomes, leading to sub-
optimal decisions. This paper introduces a novel
LLM-based Actor-Critic framework, termed LAC,
that effectively improves LLM policies with long-
term action evaluations in a principled and scal-
able way. Our approach addresses two key
challenges: (1) extracting robust action evalu-
ations by computing Q-values via token logits
associated with positive/negative outcomes, en-
hanced by future trajectory rollouts and reason-
ing; and (2) enabling efficient policy improve-
ment through a gradient-free mechanism. Ex-
periments across diverse environments — includ-
ing high-level decision-making (ALFWorld), low-
level action spaces (BabyAl-Text), and large ac-
tion spaces (WebShop) — demonstrate the frame-
work’s generality and superiority over state-of-
the-art methods. Notably, our approach achieves
competitive performance using 7B/8B parameter
LLMs, even outperforming baseline methods em-
ploying GPT-4 in complex tasks. These results
underscore the potential of integrating structured
policy optimization with LLMs’ intrinsic knowl-
edge to advance decision-making capabilities in
multi-step environments.

“Equal contribution 'IIIS, Tsinghua University *Washington
University in St. Louis. Correspondence to: Heng Dong <drd-
hxi@gmail.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

Large Language Models (LLMs) (Touvron et al., 2023;
Jiang et al., 2023; Team et al., 2024) have demonstrated
impressive capabilities across various natural language pro-
cessing tasks, including text generation (Li et al., 2024a),
question answering (Li et al., 2024b), and summarization
(Jin et al., 2024). The successful application of LLMs in
these areas, coupled with their extensive internal knowl-
edge, has generated significant interest in leveraging LLMs
to tackle complex decision-making problems, particularly
in data-scarce environments.

Early works (ichter et al., 2023; Huang et al., 2022a) have
employed LLMs as policies, generating actions in an auto-
regressive way that directly utilizes the models’ prior knowl-
edge for decision-making. While these methods are simple
and effective for short-term action generation, they often
lack the capacity for long-term planning. Although reason-
ing techniques such as Chain-of-Thought have been intro-
duced to enhance the reasoning capabilities of LLMs (Yao
et al., 2023; Shinn et al., 2024) and improve action selection,
the ability to engage in comprehensive long-term planning
remains underdeveloped. Consequently, decisions may ap-
pear locally optimal but fail to meet the overall objectives
in more complex, multi-step environments.

Other approaches (Hao et al., 2023; Liu et al., 2023; Fu
et al., 2024; Brooks et al., 2024) incorporate planning, either
through interaction with real environments or by leveraging
the LLMs’ internal imaginative capabilities, followed by
action evaluation based on the planning outcomes. These
evaluations are then used to select the actions that yield the
best results. However, such methods heavily depend on
the model’s accuracy in performing rollouts and evaluating
outcomes, leading to sub-optimal action selection when
the model’s rollouts diverge from reality or when action
evaluations are inaccurate.

The fundamental limitation of these two lines of research
lies in the decoupling of LLM’s prior policy and action
evaluations. They either (1) rigidly follow LLM priors
without sufficient planning or (2) over-rely on potentially
flawed simulated rollouts, both fail to reconcile the LLM’s
inherent knowledge with error-corrected planning insights.

To address the above problems, we propose a novel LLM-

LLM-based Actor-Critic

| [Instruction]: (...)

! Your task is to: put a
| saltshaker in drawer.
)

i [Obs 4]: You open the

| cabinet 2. The cabinet
12 is open. In it, you
}see a plate 1, a

| saltshaker 1, and a

Prior Action
Distribution Ty [y

f[Reﬂecﬁon]: Now I find a saltshaker (1). Next, I need to take it. I can take
' the saltshaker after finding it. The thought is reasonable. This step is GOOD.

[Candidate a']: 1
[Imagined Traj u']: You pick up the saltshaker 1 }

E[Reﬂecﬁon]: I have taken saltshaker 1 in this

up the saltshaker 1 from
the cabinet 2.

| soapbottle 1. 3 al a? a3 i\ place. This step is GOOD.
o [Critic Q']+ 0.81355 by Quum = log 722 (Eq. 3)
[LAC Inference 4] Updated Action [Candidate a®]: [Candidate a3]:
Distribution 7,¢,, | i }
——— PG n(Geen) !
[Act 4] ' [Critic @*]: 0.79087 ' [Critic @3]: 0.59058 3
[Obs5]: You You pick al a? 3 Policy Optimization (Sec. 4.2)

Tnew = TLLm €xp(@Quim) (Eq. 6)

Figure 1. Framework of our LAC. At each time step, LAC optimizes the policy via two steps: (1) the critic Qr1m evaluates each candidate
action sampled from the policy 7rim; (2) the policy miiwm is optimized according to the action evaluations using a gradient-free method.

based Actor-Critic (LAC) approach that leverages action
evaluations to optimize the LLM’s prior policy under con-
straints, facilitating the effective integration of decision-
making information inherent in the LLM’s prior knowledge
with insights derived from robust action evaluations that
incorporate long-term planning. While there have been at-
tempts to simultaneously utilize both types of information
(the LLM’s prior knowledge and action evaluations) for
decision-making, these efforts have typically resulted in
simplistic combinations (Zhang et al., 2023).

Implementing this idea involves two major challenges. First,
how to extract action evaluation information from the LLM.
A simple approach is to directly prompt the LLM to output
evaluation values that indicate the quality of action; however,
this direct prompting method can be unstable and easily
influenced by the instructions and examples provided to
LLMs. To address this issue, we use the logits of specific
tokens to calculate Q values (action values). Specifically,
we employ tokens that convey positive or negative meanings
as the LLM’s internal beliefs about the action’s quality or its
likelihood of successfully completing the task. We derived
a simple yet effective formula to use these logits for Q value
computation. Additionally, to allow long-term planning
ability and enhance the accuracy of this calculation, we
perform rollouts for each candidate action to predict future
trajectories, conduct a brief reasoning process based on
these trajectories, and then collect positive/negative token
logits to compute Q values.

The second challenge is how to utilize these action eval-

uation insights to optimize the policy. A straightforward
method might involve direct gradient-based actor-critic up-
dates; however, this approach is inefficient for LLMs due
to high computational demands, leading to increased de-
cision latency. To solve this challenge, we formulate the
policy improvement problem as a KL-divergence optimiza-
tion problem and derive a closed-form solution, allowing us
to optimize the policy in a gradient-free manner and improve
the accuracy of decision-making.

Empirically, we demonstrate the effectiveness and generality
of LAC across diverse environments, including high-level
decision-making tasks (ALFWorld, (Shridhar et al., 2021)),
low-level action space (BabyAlI-Text, (Carta et al., 2023b))
and potentially infinite action space (WebShop, (Yao et al.,
2022)). The results show that our approach consistently
outperforms state-of-the-art methods, e.g., RAP (Hao et al.,
2023), LATS (Zhou et al., 2024a). Notably, in several chal-
lenging tasks, LAC using 7B/8B LLMs significantly sur-
passes ReAct (Yao et al., 2023) with GPT-4 (Achiam et al.,
2023).

Our contributions are twofold: (1) We propose a novel Q-
function estimation approach to extract action evaluation
information from LLMs that leverages LLMs’ internal belief
about success or failure of the current task; (2) We formu-
late the policy improvement problem as a KL-divergence
constrained optimization and derive a closed-form solution,
allowing us to optimize the policy in a gradient-free manner
using the action evaluation.

LLM-based Actor-Critic

2. Related Work

Large Language Models for Sequential Decision-Making
Sequential decision-making is a key ability of intelligent
agents, involving generating actions to achieve goals (Barto
et al., 1989; Littman, 1996; McCarthy et al., 1963; Bylander,
1994). Recently, LLM-based agents have gained popular-
ity in decision-making across various fields, requiring only
instructions or few-shot examples to adapt to new tasks
(Huang et al., 2022b; Singh et al., 2023; Ding et al., 2023)
due to pre-training on large datasets. Previous work pri-
marily categorizes LLMs into two roles: policies, which
generate actions from trajectories, and critics, which eval-
uate actions based on trajectories and actions. Research
falls into two categories: the first uses LLM-generated ac-
tions directly from previous trajectories (ichter et al., 2023;
Huang et al., 2022b; Yao et al., 2023; Huang et al., 2022a;
Shinn et al., 2024). However, the auto-regressive nature of
LLMs limits their long-term planning capabilities, making
them struggle with complex tasks (Huang & Chang, 2022;
Mialon et al., 2023). The second category employs another
LLM to evaluate actions by simulating outcomes, choosing
the best one (Hao et al., 2023; Liu et al., 2023; Fu et al.,
2024; Koh et al., 2024). While these methods enable long-
term planning, they heavily depend on evaluation accuracy,
which can lead to sub-optimal solutions.

To address these issues, we propose optimizing LLM’s prior
policy using action evaluations under constraints, enhancing
long-term planning while mitigating evaluation inaccuracies.
Previous attempts to combine LLM’s prior policy and action
evaluation (Zhang et al., 2023) have been simplistic and
lacked theoretical guarantees, resulting in unsatisfactory
performance.

Large Language Models with Reinforcement Learning
Classical sequential decision-making methods, such as Re-
inforcement Learning (RL), have been widely adopted in
embodied environments (Schulman et al., 2017; Fujimoto
etal., 2018; Huang et al., 2020; Dong et al., 2022). However,
these RL-based methods are typically sample-inefficient
and require lots of samples for training. On the other hand,
LLMs that contain rich prior knowledge about the world
may alleviate this burden. To combine RL and LLM, one
straightforward way is to use LLMs as base models and add
policy/value heads on top of LLMs (Carta et al., 2023a; Tan
et al., 2024). Then classical RL methods like PPO (Schul-
man et al., 2017) can be used for training (Szot et al., 2023;
Zhou et al., 2024b). However, these methods still require
lots of training samples of the same tasks, which reduces
the benefits of using LLM to some extent and contradicts
our settings. There are also other paradigms for combining.
RLEM (Zhang et al., 2024) adopts Q-learning (Watkins &
Dayan, 1992) and an experience memory to update policies,
but it may get stuck in the tasks with extremely sparse re-

wards like ALFWorld and BabyAI-Text. Retroformer (Yao
et al.) trains a smaller LLM with PPO to generate suit-
able prompts for a larger LLM for a specific task, while our
method only needs a small model. ICPI (Brooks et al., 2024)
uses LLMs to implement policy iteration by predicting fu-
ture trajectories and accumulating future rewards, which
may also struggle with sparse reward settings. We have
compared it empirically in Section 5.

3. Preliminary & Previous Work

In this section, we describe the task setting and previous
LLM decision-making methods for better understanding.

Task setup. Consider a general setup of an agent interact-
ing with an environment for achieving a given goal g, e.g.,
g ="“put a clean egg in microwave” (from ALFWorld) or
g ="“pick up the green ball” (from BabyAI-Text). At time
step t, the agent receives a natural language described ob-
servation o; € O from the environment. The agent then
takes an action a; € A sampled from policy 7(alg, hy),
where h; := (01,a1,092,as--- ,0¢) is the history to the
agent. During execution, there is no immediate reward and
only at the end of each episode, the environment will give
a signal to evaluate the completion of the task. For each
testing task, the agent can only try once and cannot conduct
improvements through repeated trials.

Methods that directly use LLM’s prior as a policy. To
solve the above tasks with LLMs, one simple method
is to directly use LLM’s prior as a policy: a; <
arg max, mLm(alg, ht), which can be implemented by sim-
ply injecting instructions or few-show examples to the
prompt as suggested in Yao et al. (2023). Despite its sim-
plicity, the policy mpm generates actions solely relying
on its auto-regression ability and it does not conduct long-
term planning explicitly, which is typically necessary for
sequential decision-making tasks. Additionally, this issue
will be exacerbated when using lightweight models like
CodeLlama-7B (Roziere et al., 2023) and Mistral-7B (Jiang
et al., 2023). This problem is verified in Section 5.

Methods that incorporate planning and action evalua-
tions. To handle the issue of lack of long-term planning,
another line of research incorporates planning and action
evaluations into decision-making (Hao et al., 2023; Liu
et al., 2023; Fu et al., 2024). The basic idea is to first sample
several candidate actions from policy {a},a?,--- ,a?'} ~
mLm(+|g, Bt), then evaluate each candidate action by other
LLMs and finally select the action with the highest evalu-
ation value. The evaluation procedure is the key to these
methods, and many approaches can be adopted. For exam-
ple, directly ask an LLM to evaluate the action candidate (Fu
et al., 2024), or predict the future trajectory u; of each action
candidate by regarding an LLM as a forward world model

LLM-based Actor-Critic

Algorithm 1 LAC: LLM-based Actor-Critic algorithm.
1: Input: current task goal g, history h;, actor 71 v, for-
ward model fiy, value-based critic Qyym, hyperpa-
rameter o, candidate action size n.
Output: selected action a
{ai}isy ~ mim(tlg: he)s
for: =1tondo
ul < frim(g, he,al); > predict future trajectory
Orim(g, he,al, ul) « log 7];(&1”'E:::;gjg; B> action
evaluation (Sec. 4.1)

end for

8: Tnew(atlg, he) <= mLim(ailg, he) exp(aQrim(g, he,
al,ul)); > policy optimization (Sec. 4.2)

9: aj < argmax,; Tuew(a;|g, ht)

> candidate actions

AN o

=

fum and use the future outcome as evaluations, or use
tree-search methods like Monte Carlo Tree Search (MCTS)
(Kocsis & Szepesviri, 2006; Coulom, 2006) to expand each
action candidate (Hao et al., 2023). Despite this progress,
these approaches heavily depend on the model’s accuracy in
performing rollouts and evaluating outcomes. When rollouts
diverge from reality and evaluations are inaccurate, which
could be common when using lightweight LLMs, the action
selection could be sub-optimal.

4. Method

In this section, we introduce our novel LLM-based Actor-
Critic (LAC) algorithm, which effectively integrates the gen-
erative capabilities of LLMs (as the acfor) with their eval-
uative reasoning capabilities (as the critic) in a principled
and scalable manner. The actor, represented by the LLM-
based prior policy (mrrm), generates potential actions, while
the critic (Qr1m) evaluates these actions by incorporating
long-term reasoning. This synergy enables effective policy
improvement through an innovative gradient-free optimiza-
tion method.

We first explain how to leverage LLMs to extract meaning-
ful action evaluation information (Section 4.1). Building on
this, we propose a gradient-free policy optimization method
that efficiently refines the policy based on the critic’s feed-
back (Section 4.2). The overall workflow of the algorithm
is summarized in Algorithm 1.

4.1. Critic Development for Long-term Action
Evaluation

We propose a novel method for constructing the critic Oy m,
designed to provide numerical evaluations of candidate ac-
tions sampled from the policy 7w m(¢|g, f¢). This approach
targets goal-based decision-making problems characterized
by sparse rewards and binary outcomes, where the agent

receives a reward only upon achieving the goal. By linking
Qrm to the agent’s success probability of task comple-
tion, we enable more effective guidance toward maximizing
expected returns. Furthermore, we demonstrate how this
evaluation can be derived directly from token logits associ-
ated with positive and negative outcomes.

4.1.1. CONNECT CRITIC TO SUCCESS PROBABILITY

Let Qrim(g, hi, aé) be the value-based evaluation of each
candidate action a} given the task goal g and history h;.
We consider scenarios with sparse rewards, which are only
provided at the end of each episode. Considering the binary
outcomes, we hope Qrrm(g, b, ai) could reflect the possi-
bility of achieving success effectively. We employ a logistics
function (Jordan et al., 1995) to relate Qrim(g, ¢, al) to
the success probability.

Let P(ywlg, he,al) € [0,1] denote the probability of suc-
cessfully completing the task goal g after executing action
al, where y,, represents a success signal at the end of the
episode. Similarly, let P(y;|g, hy, al) represent the failure
probability. We use the following formulation to connect
P(yw‘gv htv ai) with QLLM(Q; hta ai):

1
1+ exp (—Quim(g, he,al))’

P(yw|g, he, a}) = (0

With this formulation, Qy1m(g, h¢, al) is positively corre-
lated with the success probability P(y.,|g, h,at). Higher
OQrim(g, hy,al) values map to a greater likelihood of suc-
cess, allowing the critic to guide the policy toward actions
that maximize long-term returns. In this way, maximiz-
ing the Q-function corresponds to maximizing the success
probability for the current task.

While other formulations could be used, we found that Equa-
tion (1) is both simple and effective for a wide range of tasks.
For a comparison of alternative formulations, refer to Ap-
pendix A.2 and Appendix A.3.

4.1.2. ESTIMATE CRITIC WITH LLMS

To estimate Qpym(g, hy,al) using LLMs, we perform an
equivalent transformation on Equation (1):

P(yw|gvhtva2)
‘P(yl|gvhtaa‘7i)7

which uses the equation P(y,,) + P(y;) = 1. With Equa-
tion (2), we can use the LLM to obtain Qyym(g, he,at)
via first estimating P(y(., 1|9, he, aj). The basic idea is
to prompt the LLM to predict the outcomes given the cur-
rent trajectory (g, h;) and action a}. Specifically, we use
special paired tokens with positive/negative meanings, i.e.,
“GOOD”/“BAD” or “SUCCESS”/*“FAILURE”, to indicate
success/failure outcomes. The corresponding generated

Qrim(g, hi,al) = log)

LLM-based Actor-Critic

AlfWorld LAC (ours) ReAct RAP ICPI RAFA BabyAl-text (task: go to)
0.84 0.76
08d 070 0.78 0.79 o 0.70
GPT-4+ReAct ’ 0.66
GPT-4+ReAct
0.7
0.6
0.6
0.54 0.5 0.48
o o 0.46 0.46
L 2
505 e 0.42 0.42
g 804
§ 041 § 0.32 032
a 034 0.34) 0.30
0.3
03 - 31 031929 0.26 0.26 0.26
0.25 o 0.24 0.25 0.22
020 0.19 0.2+
0.2 0.17 0.18 16 0.16 0.16 0.16
0.1 - 01 0.06
0.02
0.0 T T T T 0.0 T T T T
Codellama-7B Gemma-7B Llama-3-8B Mistral-7B Codellama-7B Gemma-7B Llama-3-8B Mistral-7B

Different Large Language Models

Different Large Language Models

Figure 2. Performance of our LAC compared with various baselines in benchmarks ALFWorld and BabyAI-Text.

probabilities of LLMs for those special tokens reflect LLMs’
internal belief in success/failure after taking action a. We
let the generated probabilities of “GOOD” and “BAD” rep-
resent P(yy,|g, he,at) and P(y;|g, hy, al) respectively. Fi-
nally, using Equation (2), we can calculate Qyym(g, he, at)
for action a?. Though our action evaluation is designed for
binary outcomes, we empirically show that this formulation
is also effective in continuous-reward settings in Section 5.

To improve the accuracy of Qpym(g, hy,al), we introduce
future trajectory rollouts using a forward world model
fLLm, which can be implemented by prompting LLMs,
e.g., adding few-shot examples, or by fine-tuning on these
examples. For each candidate action a?, we rollout sev-
eral future steps to predict the resulting trajectory ui ~
fum(g, he, al). By considering the future trajectory u?,
we obtain more informed estimates of the success and fail-
ure probabilities P(yy,.13]9, b, aj, uj). This approach ac-
counts for the delayed consequences of actions and ensures
that Qp1m(g, he, al, ul) reflects the long-term value of each
action:

P(yw|ga ht; aia u%)
P(yilg, he, af, uy)

Trajectory rollouts are especially important in tasks where
the outcomes of actions may unfold over several steps. By
simulating the future impact of actions, the critic provides
a more accurate assessment, guiding the policy towards
actions that maximize the probability of long-term success.

Quim(g, by, ay, uj) =log 3)

Empirically, we also found that contextual reflections on
previous actions can be helpful to improve performance.
Specifically, given the task goal g and history h;, which may
contain the predicted future trajectory, we prompt LLMs to

generate a short reflection such as “I have found object-X.
This step is GOOD” or “I should take object-X instead of
object-Y first. This step is BAD.” These reflections provide
judgments about whether and why the previous actions were
appropriate. For more examples of these reflections, please
refer to Table 27 and Table 28 of Appendix B.

These reflections serve as simple reasons, akin to a Chain-
of-Thought (CoT) (Wei et al., 2022; Kojima et al., 2022;
Prystawski et al., 2024), allowing the policy to sample better
candidate actions by avoiding past mistakes. These reflec-
tions also enable the critic to evaluate candidate actions with
greater accuracy, ultimately enhancing decision-making per-
formance. For the difference comparison between our re-
flection and CoT, please refer to Appendix A.4.

4.2. Gradient-free Policy Optimization

In this subsection, we derive a gradient-free policy opti-
mization method using the above estimated value-based
evaluation. To effectively improve the LLM’s prior policy,
we propose to use the following KL-constrained policy opti-
mization problem to maximize the expected value function:

IHT?XEa;Nn('\g,hf,),u;~fLLm(g,m7a1) [QLLM(ga he, ay, Ut)]

1 .)
— . Dxr [7(atlg, he) | mim(aglg, he)] 4)

where « is a hyperparameter controlling the deviation from
the original policy 7 ym. The KL-divergence term prevents
the new policy 7w from deviating too far from the origi-
nal policy, balancing the policy’s prior knowledge and the
critic’s guidance.

Following prior work (Rafailov et al., 2024; Go et al., 2023;

LLM-based Actor-Critic

LAC (ours) ReAct RAP LATS

LAC (ours) ReAct RAP LATS

0.46

0.4

0.3

Success Rate

0.1+

0.0

T T T
Gemma-7B Llama-3-8B Mistral-7B

Different Large Language Models

. L
Codellama-7B

Rewards

0.72
0.7
0.58

0.6 q

0.51

=}
>
L

o
w
s

0.2

0.19

0.0 T
Mistral-7B

T T
Gemma-7B Llama-3-8B
Different Large Language Models

. L
Codellama-7B

Figure 3. Performance of LAC in benchmark WebShop

Peng et al., 2019; Jain et al., 2013; Peters & Schaal, 2007),
we can show that the optimal solution to the KL.-constrained
maximization objective in Equation (4) takes the following
form:

1

Wnew(aﬂg, ht) :mﬂLLM(aﬂgv ht)

-exp (@Quim(g, bty ag, uy)), (5)
where Z(g, hi) = 3. q; mm(a;lg;) exp(aQuim(g,
al,ul)) is the partition function. Please refer to Ap-
pendix B.1 for a complete derivation. As the partition
function does not depend on action a, we can ignore it
in practice:

Tnew (a¢]g; he) o mLim(aglg, be) exp (@Qrim(g, b, ay, uy)).

(6)
We simply take the action with maximum proportion a; <—
arg max; Trnew(at|g, ht). It is worth mentioning that if we
let « = 0 in Equation (6), we recover the methods that
directly use LLM’s prior as a policy, and if we let « — 400,
we recover the methods that incorporate planning and action
evaluations.

There are two key advantages of using Equation (6). Firstly,
it updates the action distribution of policy 71y in the direc-
tion suggested by critic Q)1 in a gradient-free way, which
achieves policy improvement with much lower computa-
tion burden compared to gradient-based methods, especially
when the actor is realized by LLMs. Secondly, the action
distribution of the new policy 7y is a balanced integra-
tion of the policy’s prior based on past information and the
critic’s posterior based on predicted future information.

5. Experiments

In this section, we benchmark our method LAC on three
benchmarks that cover high-level action space (ALFWorld
(Shridhar et al., 2021)), low-level action space (BabyAI-Text
(Chevalier-Boisvert et al., 2018)) and potentially infinite ac-
tion space (WebShop (Yao et al., 2022)). We evaluate the
effectiveness of LAC by answering the following questions:
(1) Can LAC outperform other decision-making with LLM-
based methods? (Section 5.2) (2) How does each component
of LAC contribute to its performance? (Section 5.3) (3) How
do different large language models influence performance?
(Section 5.2 and Section 5.3) (4) Is our method computation-
ally consuming? (Section 5.4) (5) Why is LAC effective?
(Section 5.5). The code of LAC is publicly available on
GitHub' and website?.

5.1. Experiment Setup

We compare our method with various decision-making with
LLMs baselines. Here we briefly introduce these methods,
and for more details, please refer to Appendix C.2.

Various baselines: (1) ReAct (Yao et al., 2023) combines
reasoning and acting in the interaction with the environ-
ment and leverages the reasoning capabilities of LLMs to
increase the probability of the LLM acting correctly as a
policy. (2) RAP (Hao et al., 2023) utilizes LLMs as policy
and world models and adopts tree-search planning methods
to evaluate each possible action candidate. (3) ICPI (Brooks
et al., 2024) implements policy iteration using LLMs by
predicting future trajectories and selecting the action with

'"https://github.com/drdh/LAC
https://sites.google.com/view/lang-ac

https://github.com/drdh/LAC
https://sites.google.com/view/lang-ac

LLM-based Actor-Critic

LAC (ours)
LAC w/o critic

Alfworld

critic-only
LAC w/o reflection

LAC w/o rollout

RoAct BabyAl-text (task: go to)

o o o o
wn o N =)

Success Rate
I
IS
o
&

03131

o
w

o
N

o
o

°
5}

Success Rate

0.6

0.5+

0.4+

0.3+

0.2+

0.1+

Gemma-78B Llama-3-8B Mistral-7B

Different Large Language Models

Codellama-78B

0.0 T T T
Gemma-78B Llama-3-88 Mistral-7B

Different Large Language Models

Codellama-7B

Figure 4. Ablation studies in benchmarks ALFWorld and BabyAI-Text.

the highest predicted cumulative rewards. (4) RAFA (Liu
et al., 2023) evaluates each action candidate by tree-search
and selects the action that may complete the most sub-goals.
(5) LATS (Zhou et al., 2024a) combines the reasoning, act-
ing, and planning capabilities of LLMs with MCTS (Kocsis
& Szepesvari, 2006) and external feedback mechanisms to
enhance decision-making across various domains, achieving
competitive results in web navigation.

We evaluate LAC on three decision-making benchmarks
with sparse rewards and distinct types of action space.

High-level actions: ALFWorld (Shridhar et al., 2021) is
a widely used text-based household environment with 134
different evaluation tasks, which require the agent to achieve
a goal through a sequence of high-level actions, e.g. “go
to place-X", “take object-Y from place-X”, efc. The agent
gets a reward of 1 if it achieves the goal, and 0 otherwise.
The main challenge of this benchmark is to locate the tar-
get object and fulfill household work with commonsense
knowledge of LLMs. Following ReAct, we evaluate all 134
unseen evaluation games in a task-specific setup.

Low-level actions: BabyAI-Text (Carta et al., 2023b) is a
Grid World environment that extended from the BabyAl plat-
form (Chevalier-Boisvert et al., 2018), in which the agent
and objects are placed in a room of 8 x 8 tiles. The agent has
6 primitive actions: turn left, turn right, go forward, pick up,
drop, toggle, to solve a task described in natural language
(e.g. “Pick up the red box™). Similar to ALFWorld, this
benchmark also has binary rewards of 1 or 0. These tasks
could be difficult because agents have to make a long-term
plan, avoid obstacles, and find a short path to target objects
based on partial observations that are described in natural
language.

Potentially infinite actions: WebShop (Yao et al., 2022)
requires an agent to purchase a product based on instructions
(e.g. “Ineed a long clip-in hair extension which is natural
looking, and price lower than 20.00 dollars”) through web
interactions (e.g. search “long clip-in hair extension”, click
buttons such as “[item ID]” or “back to search’). Within this
context, the “search” and “click” actions can indeed lead to
an unbounded set of potential actions, as the agent can con-
tinuously refine its queries and selections based on dynamic
web results. Different from ALFWorld and BabyAI-Text,
the final reward in this benchmark is a continuous value
between 0 and 1, depending on the degree to which the final
purchased product meets the requirements.

To show the stability of LAC, we adopt four open-
source large language models from different organizations:
CodeLlama-7B (Roziere et al., 2023), Mistral-7B (Jiang
et al., 2023), Gemma-7B (Team et al., 2024), and Llama-3-
8B (Meta, 2024a).

5.2. Main Performance

We report the results of our method LAC compared with
other baselines in Figure 2 (ALFWorld and BabyAI-Text),
Figure 3 (WebShop) and Figure 6 (more BabyAl-Text tasks).
For all experiments, we set the temperature of LLMs to 0,
hence the generation is deterministic. For this reason, there
is no error bar in the figure.

LAC outperforms all other baselines in both ALFWorld and
BabyAlI-Text, and is even better than GPT-4+ReAct in most
settings, which validates our method’s effectiveness and
stability. In WebShop, LAC consistently outperforms other
baselines, in terms of both accumulated reward and success
rate across various base models. This further demonstrates

LLM-based Actor-Critic

LAC (ours)

Success Rate Steps per Task

ReAct

RAP IcPI RAFA

%102 Time Used per Task x10% Token Cost per Task

34.09

o
®

31.39
30.55
304

°
<

<
o
N
&

o
0

204 1974
18.10

°
2
Steps

Success Rate
o
W

o
o

o
o

o
°
o

Time (Seconds)

IS

3.5
935.05

29699.60
30192.47

842.07 3.04

o

#Tokens

456.52

14180.93

280.18 1.04

7050.81

0.54

3642.95

75.52

Different Methods Different Methods

Different Methods Different Methods

Figure 5. Computational cost analysis of LAC and baselines.

the robustness of our method in handling more complex and
open-ended action spaces.

LAC’s superior performance stems from its effective inte-
gration of the decision-making information contained in
the LLM prior with the decision-making insights derived
from action evaluations that incorporate long-term planning.
For better understanding, we have also provided illustrative
examples for ALFWorld and BabyAI-Text in Figure 10 and
Figure 11 respectively. In summary, the policy and critic
alone may make mistakes at different time steps, our LAC
can select the correct action through their integration.

Regarding the performance of LAC with different base mod-
els, we highlight two key findings: (1) Our method is general
and can be adapted to various base models, and (2) stronger
base models, such as Gemma-7B, demonstrate higher per-
formance when integrated with our approach. However, due
to the incomplete public availability of training details for
these base models, further in-depth analysis will require
additional investigation.

Here we only compare LAC with LLM-based methods, for
more results regarding other baselines, e.g., finetuning the
policy, LLM-based RL variants, and decision-transformer
(Chen et al., 2021), please refer to Appendix A.S.

5.3. Ablation Studies

To investigate the contributions of each component of LAC,
we conduct elaborate ablation studies. There are several
main components that characterize our method: (1) policy
optimization step using action evaluations provided by critic;
(2) action evaluations by extracting internal information of
LLMs. Therefore, to show the contribution of each compo-
nent, we design the following ablation studies: (1) LAC w/o
critic removes the policy optimization step from LAC; (2)
LAC w/o rollout does not predict future trajectories during
action evaluations; (3) LAC w/o reflection removes the re-

flection procedure when sampling and evaluating candidate
actions; (4) critic-only only uses critic’s action evaluation
information for action selection.

We report the results in Figure 4. LAC is better than all other
variants in both ALFWorld and BabyAI-Text. Specifically,
the performance decrease in LAC w/o critic and critic-only
compared with LAC verify the effectiveness LAC’s policy
optimization with critic’s action evaluations. And the result
that LAC w/o reflection and LAC w/o rollout perform worse
than LAC also suggests the necessity for incorporating re-
flections and future trajectory predictions.

5.4. Computational Cost Analysis

Our method conducts action evaluations by predicting future
trajectories, which may bring extra computational cost per
step. In Figure 5, we compare computational costs concern-
ing the number of tokens spent and running time between
LAC and other baselines. Specifically, though LAC has a
higher computational cost per step due to the extra infer-
ence procedure of critics and the forward model, the total
cost of LAC is still lower than most LLM-based baselines
because LAC requires fewer steps to finish each task. This
is due to LAC’s higher success rate, enabling it to complete
tasks within the maximum step limit, while other baselines
often reach this limit without completing the tasks. If we
only consider successful tasks, the step cost is similar across
methods: LAC: 15.32 steps, ReAct: 17.75 steps, and RAP:
16.36 steps. For more computational cost analysis of other
baselines, please refer to Appendix A.6.

5.5. Statistical Analyses

Directly interpreting LLM-based decision-making is inher-
ently challenging due to two factors: (1) LLMs are black-
box models, making it difficult to directly explain their
outputs; (2) In sequential decision-making tasks, ground-

LLM-based Actor-Critic

Table 1. Pearson correlations between Q-values and timesteps.

Successful Trajectory (1843 steps in total)

Failed Trajectory (1092 steps in total)

log P(*“GOOD”) 0.35+0.18
log P(“BAD”) -0.32 £0.19
Q-value of chosen action 0.34+£0.18

-0.37+£0.19
0.38+0.19
-0.41 £0.18

Table 2. Confidence analysis of policy improvement.

Case (Proportion) Prior Policy Conf. Q-function Conf. the Improved Policy Conf.
Both agree (49.81%) 0.49 (V) 0.21 (v) 0.74
Prior agrees, Q disagrees (29.12% cases) 0.34 (V) 0.06 (X) 0.28
Prior disagrees, Q agrees (19.28% cases) 0.21 (X) 0.34 (v) 0.22
Prior disagrees, Q disagrees (1.79% cases) 0.06 (X) 0.03 (X) 0.07

truth actions are typically unavailable for analyzing each
action the policy selects—only task-level success or failure
signals are observed.

Therefore, we provide statistical analyses to shed light on
why the two key components of LAC—Q-function estima-
tion and gradient-free policy improvement—work effec-
tively in practice.

Q-function estimation reflects task progression We esti-
mate Q-values using LLM-internal beliefs (log-probabilities
of “GOOD”/“BAD” tokens). To validate that these Q-values
meaningfully track task success, we compute the Pearson
correlation between Q-values and timesteps within each
trajectory. The intuition is: if an agent is on a successful
path, Q-values should increase as it progresses (and decrease
otherwise). The results in Table 1, averaged across 134 ALF-
World tasks, confirm this trend: successful trajectories show
increasing Q-values, while failed ones show the opposite.
This demonstrates that our Q-function captures the evolving
success likelihood of the policy throughout a trajectory.

Policy improvement reflects model confidence Our
gradient-free policy improvement balances the prior pol-
icy and the Q-function based on relative confidence.
Specifically, we define a model’s confidence as the dif-
ference between its top two scores: (1) For the prior pol-
icy: log P(a1]s) — log P(az|s); (2) For the Q-function:
Q(a1]s) — Q(az|s), where a; and ag are the actions with
the highest and second-highest probability (or Q-value),
respectively, under the corresponding model.

We analyze which action (from the prior policy or Q-
function) is selected by the improved policy and what confi-
dence each model had in its choice. Table 2 summarizes the
outcomes. This analysis shows that: (1)When both models
agree, the confidence of the improved policy is highest; (2)
When they disagree, the improved policy tends to trust the

more confident model; (3) In low-confidence cases, the pol-
icy remains conservative. These results suggest our method
implicitly aggregates decision knowledge from both sources
by weighting based on model confidence, enabling effective
policy improvement without explicit gradients.

6. Discussion

In this work, we introduce a novel LLM-based Actor-Critic
algorithm LAC that leverages action evaluations to optimize
the prior policy of LLM, enabling an effective integration
of the decision-making insights derived from LLM prior
and action evaluations that incorporate long-term planning.
Compared with previous methods, LAC achieves high per-
formance on three benchmarks that cover various action
spaces even using lightweight open-source LLMs.

Despite the advancement, our method also has limitations
and inspires possible future directions. Firstly, the reflection
of LAC is only used before action generation, which can
also be applied after action generation. For example, it can
provide reflections for predicted future trajectories to re-
sample candidate actions if the previous candidate actions
all fail to complete the target task. Secondly, though we only
expand one node for each candidate action for simplicity
and efficiency and find it works effectively, LAC can also
adopt tree-search to provide a more accurate assessment
of candidate actions. Thirdly, though LAC could deal with
scenarios with continuous final reward empirically by only
treating getting the highest reward as success, it is an ex-
citing future direction to develop a more principal method
to deal with such situations. Last but not least, the effec-
tiveness of LAC when applied to larger and more powerful
LLM models needs further investigation.

LLM-based Actor-Critic

Impact Statement

Our method is built upon open-source large language mod-
els (LLMs). Like other methods that use LLMs, our method
also inherits some benefits and challenges from LLMs. For
the benefits, our method directly exploits the prior knowl-
edge from LLMs, which may reduce potential carbon costs
compared with training policies from scratch. For the chal-
lenges, our method might be susceptible to producing unin-
tended output when confronted with harmful input, such as
unethical text or input intended for adversarial attacks. To
solve this problem, we suggest a thoughtful deployment of
our method, such as adding a filtering component.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Barto, A. G., Sutton, R. S., and Watkins, C. Learning and
sequential decision making, volume 89. University of
Massachusetts Amherst, MA, 1989.

Brooks, E., Walls, L., Lewis, R. L., and Singh, S. Large lan-
guage models can implement policy iteration. Advances
in Neural Information Processing Systems, 36, 2024.

Bylander, T. The computational complexity of propositional
strips planning. Artificial Intelligence, 69(1-2):165-204,
1994.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding large language models in
interactive environments with online reinforcement learn-

ing. In International Conference on Machine Learning,
pp- 3676-3713. PMLR, 2023a.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding large language models
in interactive environments with online reinforcement
learning, 2023b.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence

modeling. Advances in neural information processing
systems, 34:15084-15097, 2021.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems,
L., Saharia, C., Nguyen, T. H., and Bengio, Y. Babyai: A
platform to study the sample efficiency of grounded lan-
guage learning. arXiv preprint arXiv:1810.08272, 2018.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72—83. Springer, 2006.

Cuadron, A., Li, D., Ma, W., Wang, X., Wang, Y,
Zhuang, S., Liu, S., Schroeder, L. G., Xia, T., Mao,
H., et al. The danger of overthinking: Examining the
reasoning-action dilemma in agentic tasks. arXiv preprint
arXiv:2502.08235, 2025.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Ding, Y., Zhang, X., Paxton, C., and Zhang, S. Task and
motion planning with large language models for object
rearrangement. In 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
2086-2092. IEEE, 2023.

Dong, H., Wang, T., Liu, J., and Zhang, C. Low-rank
modular reinforcement learning via muscle synergy. Ad-

vances in Neural Information Processing Systems, 35:
19861-19873, 2022.

Fu, D, Huang, J., Lu, S., Dong, G., Wang, Y., He, K., and
Xu, W. Preact: Predicting future in react enhances agent’s
planning ability. arXiv preprint arXiv:2402.11534, 2024.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587-1596.
PMLR, 2018.

Go, D., Korbak, T., Kruszewski, G., Rozen, J., Ryu, N., and
Dymetman, M. Aligning language models with prefer-
ences through f-divergence minimization. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th In-
ternational Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
11546-11583. PMLR, 23-29 Jul 2023. URL https://
proceedings.mlr.press/v202/go23a.html.

Hafner, D. Benchmarking the spectrum of agent capabilities.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1d=1W0z96MFEOH.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 8154-8173,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
507. URL https://aclanthology.org/2023.
emnlp-main.507/.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models, 2021.

https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v202/go23a.html
https://proceedings.mlr.press/v202/go23a.html
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=1W0z96MFEoH
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/

LLM-based Actor-Critic

Huang, J. and Chang, K. C.-C. Towards reasoning in
large language models: A survey. arXiv preprint
arXiv:2212.10403, 2022.

Huang, W., Mordatch, 1., and Pathak, D. One policy to con-
trol them all: Shared modular policies for agent-agnostic
control. In International Conference on Machine Learn-
ing, pp. 4455-4464. PMLR, 2020.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118-9147.
PMLR, 2022a.

Huang, W., Xia, F.,, Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, 1., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022b.

ichter, b., Brohan, A., Chebotar, Y., Finn, C., Hausman,
K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E.,
Julian, R., Kalashnikov, D., Levine, S., Lu, Y., Parada,
C., Rao, K., Sermanet, P., Toshev, A. T., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P, Yan, M., Brown, N., Ahn,
M., Cortes, O., Sievers, N., Tan, C., Xu, S., Reyes, D.,
Rettinghouse, J., Quiambao, J., Pastor, P., Luu, L., Lee,
K.-H., Kuang, Y., Jesmonth, S., Joshi, N. J., Jeffrey, K.,
Ruano, R. J., Hsu, J., Gopalakrishnan, K., David, B.,
Zeng, A., and Fu, C. K. Do as i can, not as i say: Ground-
ing language in robotic affordances. In Liu, K., Kulic,
D., and Ichnowski, J. (eds.), Proceedings of The 6th Con-
ference on Robot Learning, volume 205 of Proceedings
of Machine Learning Research, pp. 287-318. PMLR, 14—

18 Dec 2023. URL https://proceedings.mlr.

press/v205/ichter23a.html.

Jain, A., Wojcik, B., Joachims, T., and Saxena, A. Learning
trajectory preferences for manipulators via iterative im-
provement. Advances in neural information processing
systems, 26, 2013.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. 1., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, H., Zhang, Y., Meng, D., Wang, J., and Tan, J. A
comprehensive survey on process-oriented automatic text
summarization with exploration of llm-based methods.
arXiv preprint arXiv:2403.02901, 2024.

Jordan, M. L. et al. Why the logistic function? a tutorial
discussion on probabilities and neural networks, 1995.

11

Kocsis, L. and Szepesvéri, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp- 282-293. Springer, 2006.

Koh, J. Y., McAleer, S., Fried, D., and Salakhutdinov, R.
Tree search for language model agents. arXiv preprint
arXiv:2407.01476, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:

22199-22213, 2022.

Li, J., Tang, T., Zhao, W. X., Nie, J.-Y., and Wen, J.-R. Pre-
trained language models for text generation: A survey.
ACM Comput. Surv., 56(9), April 2024a. ISSN 0360-
0300. doi: 10.1145/3649449. URL https://doi.
org/10.1145/36494409.

Li, X., Zhou, Y., and Dou, Z. Unigen: A unified generative
framework for retrieval and question answering with large
language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 8688-8696,
2024b.

Littman, M. L. Algorithms for sequential decision-making.
Brown University, 1996.

Liu, Z., Hu, H., Zhang, S., Guo, H., Ke, S., Liu, B., and
Wang, Z. Reason for future, act for now: A principled
framework for autonomous llm agents with provable sam-
ple efficiency. arXiv preprint arXiv:2309.17382, 2023.

McCarthy, J. et al. Situations, actions, and causal laws.
Comtex Scientific, 1963.

Meta. Meta llama 3. https://llama.meta.com/
llama3/, 2024a.

Meta. Meta llama 3.1. https://ai.meta.com/
blog/meta-1llama-3-1/,2024b.

Mialon, G., Dessi, R., Lomeli, M., Nalmpantis, C., Pa-
sunuru, R., Raileanu, R., Roziere, B., Schick, T., Dwivedi-
Yu, J., Celikyilmaz, A., Grave, E., LeCun, Y., and
Scialom, T. Augmented language models: a survey.
Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/
forum?id=Jh7wH2AzKK. Survey Certification.

Paglieri, D., Cupial, B., Coward, S., Piterbarg, U., Wotczyk,
M., Khan, A., Pignatelli, E., Kucinski, L., Pinto, L.,
Fergus, R., Foerster, J. N., Parker-Holder, J., and Rock-
taschel, T. Benchmarking agentic 1lm and vlm reasoning
on games. arXiv preprint arXiv:2411.13543, 2024.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable

https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://doi.org/10.1145/3649449
https://doi.org/10.1145/3649449
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK

LLM-based Actor-Critic

off-policy reinforcement learning.
arXiv:1910.00177, 2019.

arXiv preprint

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
Proceedings of the 24th international conference on Ma-
chine learning, pp. 745-750, 2007.

Prystawski, B., Li, M., and Goodman, N. Why think step by
step? reasoning emerges from the locality of experience.
Advances in Neural Information Processing Systems, 36,
2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,
2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740-10749, 2020.

Shridhar, M., Yuan, X., Coté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. Alfworld: Aligning text and
embodied environments for interactive learning, 2021.

Singh, 1., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523-11530.
IEEE, 2023.

Szot, A., Schwarzer, M., Agrawal, H., Mazoure, B., Metcalf,
R., Talbott, W., Mackraz, N., Hjelm, R. D., and Toshey,
A. T. Large language models as generalizable policies for
embodied tasks. In The Twelfth International Conference
on Learning Representations, 2023.

12

Tan, W., Zhang, W., Liu, S., Zheng, L., Wang, X., and
An, B. True knowledge comes from practice: Aligning
large language models with embodied environments via
reinforcement learning. In /CLR, 2024.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Riviere, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P,,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279-292, 1992.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E. Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744-20757, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yao, W., Heinecke, S., Niebles, J. C., Liu, Z., Feng, Y.,
Xue, L., Rithesh, R., Chen, Z., Zhang, J., Arpit, D., et al.
Retroformer: Retrospective large language agents with
policy gradient optimization. In The Twelfth International
Conference on Learning Representations.

Zhang, B., Mao, H., Ruan, J., Wen, Y., Li, Y., Zhang,
S., Xu, Z., Li, D, Li, Z., Zhao, R., et al. Con-
trolling large language model-based agents for large-
scale decision-making: An actor-critic approach. arXiv
preprint arXiv:2311.13884, 2023.

Zhang, D., Chen, L., Zhang, S., Xu, H., Zhao, Z., and Yu,
K. Large language models are semi-parametric reinforce-
ment learning agents. Advances in Neural Information
Processing Systems, 36, 2024.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies
reasoning, acting, and planning in language models. In

Forty-first International Conference on Machine Learn-
ing, 2024a.

LLM-based Actor-Critic

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar, A.
Archer: Training language model agents via hierarchical
multi-turn rl. In Forty-first International Conference on
Machine Learning, 2024b.

13

LLM-based Actor-Critic

A. Extra results
A.1. Results of other tasks in BabyAI-Text

For a complete comparison, we show the performance of LAC and baselines in other tasks from BabyAlI-Text in Figure 6.
Our LAC outperforms all other baselines, which further validates the effectiveness of LAC.

A.2. Results of using other definition of Oy

P(Ywlg,hs,a;)

) © P(yilg;he,ay)
simplest variant is Q1 m(g, e, al) = log P(yw|g, ht, a}). In this subsection, we provide a performance comparison between
them in Figure 7. LAC outperforms the variant in most situations across tasks and models. We speculate that this is because
LAC uses more information, i.e., both P(y,,|g, ht, at) and P(y;|g, ht, ab), than the variant, and the evaluation might be more
accurate and more stable. There might be other definitions of Q;;y and among them, our Oy 1y is simple and effective.

In LAC we define critic Qrym as Qrim(g, he, af;) = log There are also other definitions, for example, the

A.3. Results of directly prompting the LLLMs to output action evaluation

To further demonstrate the strengths of our critic Oy 1. We conducted additional experiments comparing the performance
of LAC and LAC w/ direct evaluation on the WebShop benchmark. LAC generates value-based evaluations by extracting
LLMs’ internal beliefs of success and failure as described in Equation (2). For LAC w/ direct evaluation, we prompt the
LLMs to directly output the probability of success P(y,,), while keeping all other components unchanged. The Q-value is

then calculated as log lf},y(z) 3

The results, presented in Table 3 and Table 4, show that our LAC method outperforms LAC w/ direct evaluation in terms
of success rate and reward across most base models. Analysis of the resulting trajectories revealed that LAC w/ direct
evaluation often produces a non-informative success probability (e.g., P(y,,) = 0.5), leading to ineffective improvements in
policy.

Table 3. Success rate of LAC and LAC w/ direct evaluation in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 32% 46 % 39% 32%
LAC w/ direct evaluation 27% 29% 33% 24%

Table 4. Rewards of LAC and LAC w/ direct evaluation in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.5840 0.7237 0.6733 0.6299
LAC w/ direct evaluation 0.5636 0.6975 0.6453 0.6333

A.4. Comparison of our reflection component and chain-of-thought

In this subsection, we empirically compare the reflection method used in LAC and the Chain-of-Thought (CoT) methods
(Wei et al., 2022; Kojima et al., 2022).

Though the reflection draws inspiration from CoT, it is not trivial to determine what the reflection content should be. Our
method generates judgments based on previous actions and their outcomes, whereas CoT uses arbitrary thought generation
without a structured focus on past mistakes. The reflection is specially designed for decision-making tasks and owns two
advantages over naive CoT:

Strength 1. Our reflection can improve the policy directly by avoiding previous mistakes when the policy is conditioned
on its generation.

To substantiate this claim, we conducted experiments comparing the performance of prior policy w/ reflection and piror
policy w/ CoT on the WebShop benchmark. Here are the details of these two variants:

14

LLM-based Actor-Critic

B LAC (ours) B ReAct RAP = ICPI RAFA

goto go to after pick up

0.30

0.30

0.25 4

0.20 4

0.15 1

Success Rate
Success Rate

0.10 1

0.05

0.00 -
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B Codellama-7B Gemma-7B Llama-3-8B Mistral-7B
Different Large Language Models Different Large Language Models
pick up pick up then go to
0.52 0.36
0.5 0.35
0.30 1
0.44
0.25 1
Q @
0.3 ©
 0.31 4
- = 0.20
a I
i [
o o
I+ o
=1 >
® % 0.15 A
0.24
0.10 4
0.05 1
0.00 -
CodeLlama-7B Gemma-7B Llama-3-88 Mistral-78 Codellama-7B Gemma-7B Llama-3-88 Mistral-7B
Different Large Language Models Different Large Language Models
open door put next to
0.10 0.06
0.10 - 0.06 -
0.05 -
0.08 -
0.04
0.04 -
£ 0.06 2
-4 4
@ 0
a a
@ ¢ 0.03 -
o 1=
3 =3
v 0.04 0.04 0.04 7]
0.04 -
0.02 -
0.02 0.02 0.02
0.02 -
0.01
.000.000.00 0.00 0.000.00 .000.000.000.00 .00 0.000.00 .000.000.000.00 .000.000.000.00 .00 0.000.000.000.000.00
0.00 - T T T T 0.00 - T T
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B Codellama-7B Gemma-7B Llama-3-8B Mistral-7B
Different Large Language Models Different Large Language Models

Figure 6. Performance of our LAC compared with various baselines in all tasks from BabyAI-Text.

15

LLM-based Actor-Critic

AlfWorld e LAC (ours) LAC (g =logPly = +1)) BabyAl-text (task: go to)
0.84 0.84 0.76
0.8 0.79 0.78 0.79 080
0.75 0.7 A
0.7 4
0.65 0.6 1
0.6
0.5 A
B i
8 0.54 E
8 804+
§ 0.4 g
(2] 12}
0.3 1
0.34
0.2 1 021
0.1 0.14
0.0- T T T T 0.0-

Codellama-78B Gemma-7B Llama-3-88 Mistral-7B Codellama-7B Gemma-7B Llama-3-8B Mistral-7B
Different Large Language Models Different Large Language Models

Figure 7. Performance of LAC when using different definition of critic Qrim

(1) prior policy w/ reflection: We remove all components of LAC, leaving the policy and the reflection unchanged.
Specifically, at each step, after observing the action results, the reflection first generates some judgments on previous actions,
and then the policy selects the next action based on the judgments. (2) prior policy w/ CoT: We remove all components
of LAC, except the policy. Additionally, we equip the policy with CoT by adding “Let’s think step by step” to the prompt.
Specifically, at each step, before choosing the next action, the CoT prompting component first outputs arbitrary thoughts that
may help solve the task.

As shown in Table 5 and Table 6, prior policy w/ reflection consistently surpasses prior policy w/ CoT across most base
models in terms of both success rate and reward. By analyzing the results, we found that prior policy w/ CoT may make the
same mistake multiple times and get stuck at this mistake, while prior policy w/ reflection can largely avoid seen mistakes.

Table 5. Success rate of prior policy w/ reflection and prior policy w/ CoT in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

prior policy w/ reflection 21% 46 % 39% 31%
prior policy w/ CoT 21% 20% 31% 20%

Table 6. Rewards of prior policy w/ reflection and prior policy w/ CoT in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

prior policy w/ reflection 0.5739 0.6564 0.6556 0.6288
prior policy w/ CoT 0.5520 0.5347 0.6379 0.4671

Strength 2. Our reflection can be seamlessly integrated with critic Qp 1y, Which helps the critic to generate more accurate
value-based evaluations.

To further evaluate this integration, we compare the performance of LAC and LAC w/ CoT on the WebShop benchmark. The
details of the two methods are as follows:

(1) LAC: Our original method. (2) LAC w/ CoT: We replace the reflection component of LAC with CoT and keep other
components unchanged.

We show the results in Table 7 and Table 8. Our method LAC consistently outperforms LAC w/ CoT regarding success rate

16

LLM-based Actor-Critic

and reward across all evaluated base models. This is because, without reflection’s judgment on previous steps, the critic may
output inaccurate value-based estimations, hindering the policy improvement phase.

Table 7. Success rate of LAC and LAC w/ CoT in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 32% 46 % 39% 32%
LAC w/ CoT 27% 29% 33% 24%

Table 8. Rewards of LAC and LAC w/ CoT in WebShop
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.5840 0.7237 0.6733 0.6299
LAC w/CoT 0.5734 0.5270 0.6515 0.5101

In summary, the reflection’s focused evaluations of past actions provide critical advantages over the simple reflections of
CoT, leading to improved performance in decision-making tasks.

A.5. Comparison of LAC with more baselines on ALFWorld

= LAC (ours) ReAct w/ finetuned policy Conventional Policy Gradient w/ dense rewards Conventional Decision Transformer
W LAC w/ finetuned policy W Conventional Policy Gradient

081
7
078 ors 079
076
or GPT4 + ReAct
070 070 oo
065
062
059
055
GPT-d-turbo + ReAct
s Claude-3-5-sonnet + ReAct
043
GPT-4o + ReAct
037 037
035
032 - Claude-3-haiku + ReAct
031
N 4 AN EE 02 e _— N — — 7% GPT-40-mini + ReAct
020
010
000 000 000 000 000 000

Codellama-78 Gemma-78 Llama-3-88 Mistral-78 Llama-3.1-88
Different Large Language Models

Success Rate

Figure 8. Performance of our LAC and LAC’s variants compared with various baselines in benchmark ALFWorld.

In this subsection, we compare LAC with more baselines including some traditional RL methods implemented using LLMs
on ALFWorld (Shridhar et al., 2021). The comparison is shown in Figure 8.

A.5.1. FINETUNE POLICY

While in LAC we fine-tune the model for generating reflections using a few trajectories, it is also possible to fine-tune
the policy to generate actions using those trajectories. Therefore, a potential baseline could be fine-tuning the policy in
ReAct. To demonstrate the improvement brought by fine-tuning the policy, we fine-tune the policy in ReAct (Yao et al.,
2023) and show the results in Figure 8. We also show the results of LAC w/ fine-tuned policy in Figure 8. In brief, ReAct
w/ fine-tuned policy is a strong baseline compared with other baselines, but still inferior to our method LAC and LAC w/
fine-tuned policy. Compared to LAC, the underperformance of LAC w/ fine-tuned policy arises from its tendency to overfit
the training trajectories. This overfitting causes the policy to favor actions that are more frequent in the dataset, potentially
leading to suboptimal action selection.

For example, in the ALFWorld training dataset, the action “take an apple from X occurs frequently. After fine-tuning, the
policy may disproportionately generate this action, even when it is irrelevant to the current goal. One case is that the current

17

LLM-based Actor-Critic

goal is to “heat some egg and put it in the garbage can”. When the agent sees an “apple 2” in “fridge 17, it generates and
selects an irrelevant action “take apple 2 from fridge 17, which does not align with the task.

This tendency towards overfitting arises because the complexity of the policy function, which maps states s to actions a, often
exceeds that of the critic. The policy often has to capture a wide variety of potential actions for each state, particularly in
complex environments. However, the quite limited training dataset in our setting restricts its ability to generalize effectively,
resulting in memorization of specific actions rather than flexible decision-making. In contrast, the model for reflection
generation and rollouts focuses on capturing more predictable dynamics of the environment and simpler evaluation criteria.
This typically requires simpler mappings than those needed for the policy, thus avoiding overfitting.

A.5.2. LLM-BASED RL VARIANTS

We also include some LLM-based RL variants as baselines to show the superiority of LAC over conventional RL algorithms.
We design three LLM-based RL variants that are built upon pre-trained LLMs and directly extract actions/values information
from LLMs without adding action/value heads, namely Conventional Policy Gradient, Conventional Policy Gradient w/
dense rewards and Conventional Actor-Critic in Figure 8.

For the implementation of the Conventional Policy Gradient, we need the probability of actions and the returns. To
obtain the probability of actions, we directly use LLM to compute the conditional probability of each token in action
a; = [wi,wy, -+ ,w|q,|] given the goal g, history h; and then calculate their product:

m(aclg, hy) = H';-ZLPLLM(UJJ‘\Q, hi,wey)

in which Pr,rar(wj|g, ht, w<;) is the probability of token w; given goal g, history h; and previous tokens w.; computed
by LLM. Then we regard the cumulative future rewards as the return G, which is +1 for successful trajectories and —1 for
failed trajectories in the tasks we considered. Finally, the gradient of policy is E[", Vlogm(at|g, h)G:]. Conventional
Policy Gradient w/ dense rewards is similar to Conventional Policy Gradient except that we manually add intermediate
rewards for each step, and then use the cumulative future rewards as the return G;.

For the implementation of the Conventional Actor-Critic, we additionally need a critic to estimate action values. As it is
possible to train a new value head using only 18 trajectories, we instead approximate the action value similar to Qy;y in our
method LAC, i.e.

Priv (Ywlgs be, ar, ug)

Priyv(yilg, bt ar,)

Qrim(9, he, a, ue) = log

in which Prras(ygw,iy9, ht,ae, ug) is the output probability of special positive/negative tokens like GOOD or
BAD that indicate positive/negative results as LLM’s belief on success/failure. Finally, the gradient of policy is
E[Zf VIOgTr(at‘gv ht)QLLM(Q, hta g, ut)]

In summary, Conventional Policy Gradient exhibits almost all zero performance, which is due to the extremely sparse
reward problems, compared with Conventional Policy Gradient w/ dense rewards. Conventional Actor-Critic demonstrates
non-zero performance only on some stronger LLMs like Gemma-7B (Team et al., 2024), Llama-3-8B (Meta, 2024a) and
Llama-3.1-8B (Meta, 2024b), which may be because the optimization method of conventional actor-critic is not suitable in
insufficient data settings.

A.5.3. DECISION TRANSFORMER

In addition to the aforementioned LLM-based RL variant, Decision Transformer (Chen et al., 2021) is also a potential solution
in combining RL and transformer-based LLMs. We fine-tune pretrained LLMs in a similar way as conventional decision
transformers. We construct a dataset using decision-transformers’ trajectory representation: 7 = [R1, s1, a1, Ra, $2, a2, |,
in which R; is return-to-go, i.e., +1 for successful trajectories and -1 for failed trajectories in our extremely sparse reward
settings. Then we fine-tune LLMs with next-token prediction loss on these trajectories. During execution, we insert +1
before state s; to specify the desired outcome. The results are shown in Figure 8 as Conventional Decision Transformer. In
short, Conventional Decision Transformer exhibits a similar performance to ReAct, which may be because the 18 trajectories
are insufficient for fine-tuning decision transformers.

Our method LAC is better than all considered baselines because of its ability to handle extremely sparse reward problems
using LLM’s prior knowledge and to fully utilize insufficient data.

18

LLM-based Actor-Critic

A.6. Computational cost analysis of LAC with more baselines in ALFWorld

LAC (ours) ReAct w/ finetuned policy RAFA ICPI Conventional Policy Gradient w/ dense rewards Conventional Decision Transformer
LAC w/ finetuned policy ReAct RAP mmm Conventional Policy Gradient Conventional Actor-Critic
Success Rate Steps per Task x102 Time Used per Task x10% Token Cost per Task

3.5

0.81 401 39.00 935.05

o
)

°
3
el
29699.60
30192.47

354 . 142.07 3.0

32.27

o
N
®

31.39
30.55

4960.00

30 4 25

o
EY

52824

254

4
o
o

2.04

0.04
4 1972 456.5

o

IS

o

N

Steps
N
S

#Tokens

18.1C

Success Rate
Time (Seconds)

IS

14180.93

154

026 102.50
0.22 280483 40 1.04
10 4

o
w

8232.87

o
N

154.13

5220.56

3642.95
3647.99
4007.24

0.54

o
i
o

0157
75.52 5.891.08

0.00,

0.0
Different Methods Different Methods Different Methods Different Methods

o
o
o
o

Figure 9. Computational cost analysis of our LAC compared with various baselines in benchmarks ALFWorld. Though LAC may have a
higher computational cost per step due to the extra inference procedure of critics and the forward model, the total cost of LAC is still
lower than most LLM-based baselines because LAC requires fewer steps to finish each task.

In this subsection, we demonstrate the computation cost of LAC and other baselines in Figure 9. We show the success rate,
steps per task, time used per task, and token cost per task respectively. Specifically, though LAC has a higher computational
cost per step due to the extra inference procedure of critics and the forward model, the total cost is still lower than most
LLM-based baselines because LAC has a higher success rate and requires fewer steps to finish each task.

A.7. Illustration of ALFWorld and BabyAI-Text
We show the illustrative example of ALFWorld and BabyAI-Text in Figure 10 and Figure 11, respectively.

Figure 10 presents a concrete scenario where the agent’s goal is to “put a saltshaker in the drawer”. At a critical decision step
(Step 4), we observe the following intuitive distinction between components: (1) LLM-based prior policy alone mistakenly
suggests “go to drawer 17 because the base LLM model overlooks that the agent has already found the correct object
(“saltshaker 17) in cabinet 2. This error exemplifies the common hallucination problem in LL.Ms, which occurs when the
model disregards previous states and incorrectly recommends irrelevant actions. (2) In contrast, the critic suggests “take
saltshaker 1 from cabinet 2” because it evaluates potential actions by predicting future trajectories and determines that
this action will successfully pick up the correct object. (3) Our method leverages these distinct insights by optimizing
the prior policy’s action distribution based on the critic’s evaluation. It effectively corrects the errors introduced by the
prior policy, balancing the strengths of prior policy (flexible but sometimes inaccurate) and critic evaluations (accurate but
computationally intensive).

This analysis shows that: (1)When both models agree, the confidence of the improved policy is highest; (2) When they
disagree, the improved policy tends to trust the more confident model; (3) In low-confidence cases, the policy remains
conservative.

These results suggest our method implicitly aggregates decision knowledge from both sources by weighting based on model
confidence, enabling effective policy improvement without explicit gradients.

A.8. Results of different critic improvement methods

Empirically, we found that the critic can be improved via fine-tuning on a few trajectories. Please refer to Appendix B.2 for
more fine-tuning details. To show the effectiveness of fine-tuning, we present the performance of LAC and other variants
when we just add these examples into the prompt, i.e., in-context learning, on task “go to” and “pick up” from BabyAI-Text
in Table 9 and Table 10 respectively. We also show the the performance improvement if we do fine-tuning in the parentheses.
This result indicates that fine-tuning can incorporate extra knowledge into LLMs better than in-context learning in our

19

LLM-based Actor-Critic

- Prompt ~
[Instruction]: Interact with a household to solve a task. Here are two examples. (...)
[Task]: You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 5, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 3, a countertop 2, a
countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a
shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a
toaster 1.
Your task is to: put a saltshaker in

N) J

/4[Inputs & Outputs of LAC (Ours) J N {Action Probs. (Partial)]7
(o0 prior - LACw/o LACw/o LAC
[Act1]: go to cabinet 1 policy ©MC efiection critic (Ours)

[Act2]: go to cabinet 2 / "

— —

[Obs 2]: On the cabinet 1, you see a glassbottle 1. j v

[LAC Inference 2] o2
!W wcannerz| Bootwarawers| gotosmers

' Vv
[Obs 3]: The cabinet 2 is closed. ° v
[LAC Inference 3] " v

i
va
[Act3]: open cabinet 2 / " I I
o M go to cabinet 3 open cabinet 2 g0 to cabinet 4
i

[Obs 4]: You open the cabinet 2. The cabinet 2 is open. In it, you see| |:= V4
a plate 1, a saltshaker 1, and a soapbottle 1. o X X
[LAC Inference 4] "

[Act4]: take saltshaker 1 from cabinet 2 Vv

[Obs 5]: You pick up the saltshaker 1 from the cabinet 2.

(...) 0

[Obs 7]: You open the 1. The drawer 1 is open. In it, you see a
fork 1, and a peppershaker 1. J
[LAC Inference 7] o

[Act7]: put saltshaker 1 in/on 1V o2 I i

[Obs 8]: You put the saltshaker 1 in/on the 1. *M [Mpuesarsnosert mon ravers figoto cabineca [eise arwer [o cbinac2
\) L

W tafe saltshaker 1 from dabil

SN

— _
<
[
< :

Figure 10. An illustrative explanation of our method LAC in ALFWorld. The histogram on the right shows the action probabilities of
different methods. While LLM’s prior policy (miim) and critic, as well as LAC w/o reflection, make mistakes at different time steps, LAC
(ours) can select the correct action by optimizing the policy given action evaluation. The LAC inference step is detailed in Figure 1.

20

LLM-based Actor-Critic

()

s | Prompt | 2

[Instruction]: Assume that you are an agent in a Grid World. Given a goal, your task is
to execute a sequence of actions to achieve the goal.
[Possible actions]: turn left, turn right, go forward, pick up, drop, toggle.
[Goal]: go to the green ball
\

/—[Inputs & Outputs of LAC (Ours) } ~N [{ Action Probs. (Partial)

prior e LACw/o LACw/o LA

J
[Obs 1]: You see a wall 5 steps forward, You see a wall 2 ¢
steps right, You see a green ball 3 steps left and 4 steps

forward, You see a grey key 2 steps left and 2 steps V4 v v
forward, You see a blue key 1 step left and 3 steps forward, || .. X I

policy reflection critic (Ours)
You see a green key 1 step left and 2 steps forward, You see 03
a blue ball 1 step right and 1 step forward o2

v
[LAC Inference 1] I

[Act1]: go forward P e ReEreen N
— [go forward turn left turn right}*

,,,,,,,,,,,,,,,,,,,,,,,,,,, e

[Obs 2]: (...) You see a green ball 3 steps left and 3 steps X X Xl v v

forward, (...) You see a blue ball 1 step right
[LAC Inference 2] 0 J I I

[Act2]: go forward v

(...) .
[Obs 5]: You see a wall 1 step forward, (...) You see a o X N4 N4 X Vv

green ball 3 steps left 0
[LAC Inference 5] 02
[Act5]: turn left o

[Obs 6]: (...) You see a red ball 4 steps forward, You see a 0
green ball 3 steps forward 0
[LAC Inference 6] 02
[Act6]: go forward o
- J J

<
>

Figure 11. An illustrative explanation of our method LAC in BabyAlI-Text. The histogram on the right shows the action probabilities of
different methods. While LLM’s prior policy (7rLm) and critic, as well as LAC w/o reflection, make mistakes at different time steps, LAC
(ours) can select the correct action by optimizing the policy given action evaluation. Please refer to Table 30 for the full trajectory.

21

LLM-based Actor-Critic

case and improve the quality of action evaluation, yielding better performance. It is worth mentioning that our LAC still
outperforms baselines without fine-tuning.

Table 9. Performance of two critic improvement methods: in-context learning or fine-tuning.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.30(10.16) 0.62(10.14) 0.32(10.34) 0.24 (1 0.46)
LAC w/o reflection 0.30 (10.02) 0.58 (10.02) 0.38 (10.10) 0.26 (1 0.28)
LAC w/o critic 0.28 (10.06) 0.48(10.04) 042 (10.10) 0.10 (1 0.28)
critic-only 042 (10.04) 0.40(1024) 0.34(1022) 0.38(10.24)

Table 10. Performance of two critic improvement methods: in-context learning or fine-tuning.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC 0.20 (10.06) 0.22(10.20) 0.34(10.08) 0.20 (1 0.16)
LAC w/o reflection 0.16 (10.08) 032 (1 0.04) 0.32(10.04) 0.22 (1 0.06)
LAC w/o critic 0.12(10.14) 0.36(10.20) 0.28 (10.06) 0.26 (1 0.04)
critic-only 0.22(10.04) 024(1026) 0.16(10.16) 0.16 (1 0.26)

A.9. Analysis of the fine-tuning process in LAC

In order to improve the quality of the reflections generated by LLM, we finetune the LLM that generates the reflections. In
this section, we analyze the finetuning process, showing the impact of finetuning, as well as the impact of different data
amounts and positive and negative sample ratios on task success rates. The comparison can be seen in Figure 12.

In Figure 12 (a), we show the influence of fine-tuning data size. We use 9, 18, 27 and 36 trajectories to fine-tune LLMs, and
show the final success rate on 134 evaluation tasks. In summary, larger data sizes (27 or 36 trajectories) generally bring
higher success rate, while small data sizes (18 and even 9 trajectories in some cases) are already enough for LAC to achieve
outperformance.

Figure 12 (b) shows the influence of different positive/negative sample ratio (positive:negative = 0:1, 1:3, 1:1, 3:1 and 1:0)
on final performance. We keep the total number of samples the same and just change positive/negative ratio. In short, our
LAC is robust to reasonable positive/negative ratios (e.g. 1:3, 1:1, 3:1), while LAC based on CodeLlama-7B (Roziere et al.,
2023) and Gemma-7B (Team et al., 2024) even perform better when given all positive samples (1:0).

Figure 12 (c) shows the learning curves of the fine-tuning process. We plot the next prediction loss and positive/negative
tokens prediction accuracy for CodeLlama-7B (Roziere et al., 2023). In short, as the next token prediction loss decreases
during fine-tuning, the accuracy of predicting the special tokens (GOOD or BAD) increases, which exhibits the effect of the
fine-tuning process.

A.10. Ablation studies on the impact of finetuning

The finetuning process is important in our method, but it can also be replaced by in-context learning, where several examples
are inserted in each input. Here we compare our method with ReAct regarding the effect of finetuning in ALFWorld. The
results, presented in Table 11, show that our method outperforms the baseline both with and without finetuning, and the
performance can be further improved with finetuning. With finetuing, our method provides more consistent performance
with different LLMs.

A.11. Results of different hyper-parameter «

The hyper-parameter « in Equation (4) controls the deviation from the original policy 7 yym. In this subsection, we grid-
search this hyper-parameter over {1/2, 1,2, 5,10} in task “go to” of BabyAlI-Text, then we fix « for other tasks: o = 1 for
model CodelLlama-7B, o = 2 for model Gemma-7B, o = 2 for model Llama-3-8B and v = 10 for model Mistral-7B.

As for benchmark ALFWorld, we fixed o = 1 in all experiments.

22

LLM-based Actor-Critic

LAC (pos:neg=0:1) LAC (posineg=1:1) mmm LAC (pos:neg=1:0) Finetuning Analysis
LAC (posineg=1:3) LAC (posineg=3:1) 104
LAC (#traj=9) LAC (#traj=18) LAC (#traj=27) mmm LAC (#traj=36) oo :
o 086
06 0.6 085
o . sePioss 0808 081 082052 osr |
08 078 078 078 08 078 02078 081
R 07207
072072072 0.9 0.0
064 >
06 06 £067 —
o 2 Validation Accuracy
g 5
= < < Test Accuracy
] ¢ 5 oa Loss
¢ £ 041
S04 @04 3
? 3
031
0.2 4
02
02 016
009
007 0.04
o 00— : . . . 0 0 0 0 0 y
CodeLlama-78 Gemma-78 Liama-3-88 Mistral-78 CodeLlama-78 Gemma-78 Llama-3-88 Mistral-78 0 200 400 600 800 1000
Different Large Language Models Different Large Language Models Finetuning Steps
(a) (b) (©

Figure 12. Analysis regarding the fine-tuning process of our LAC. (a) Influence of the fine-tuning data size. Larger data sizes (27, 36
trajectories) generally bring higher performance, but small data sizes (18 and even 9 trajectories) are already enough for our method to
achieve outperformance. (b) Influence of the positive/negative data ratio. LAC is robust to reasonable positive/negative ratios (1:3, 1:1,
3:1) while CodeLlama-7B and Gemma-7B-based LAC even perform better given all positive data (1:0). (c) Learning curves of next-token
prediction loss and positive/negative tokens prediction accuracy for Codel.lama-7B and ALFWorld.

Table 11. Ablation studies on the impact of finetuning.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC (w/o finetuning) 0.39 0.59 0.71 0.57
ReAct (w/o finetuning) 0.20 0.54 0.31 0.34
LAC (w/ finetuning) 0.79 0.84 0.78 0.79
ReAct (w/ finetuning) 0.38 0.70 0.73 0.65

A.12. Performance comparison in other benchmarks

To further show the strength of our method, we conduct preliminary experiments on Crafter (Hafner, 2022), using the
implementation from BALROG (Paglieri et al., 2024). Crafter is a 2D survival game specifically designed to test long-horizon
reasoning and sequential decision-making, with tasks involving resource gathering, crafting, and combat. It represents a
significantly more complex setting than ALFWorld and WebShop.

We evaluated our method on this benchmark using Llama-3.1-8B-It, following BALROG’s official evaluation protocol.
We compare LAC with several representative baselines from BALROG’s GitHub repository. The preliminary results are
summarized in Table 13. Our method achieves higher performance than other available baselines under identical evaluation
settings. These preliminary results provide further evidence of the robustness, effectiveness, and adaptability of our proposed
actor-critic approach, particularly in significantly more challenging and complex decision-making environments. It is worth
noting that CoT performs worse than the baseline Naive on the Crafter benchmark. We hypothesize that it is due to the
model’s inconsistency within their chain-of-thoughts. Two contiguous chains of thoughts might lead model to take actions
which push towards different goals, which is not ideal. The authors also note that this is a problem especially with smaller,
weaker models.

A.13. Preliminary experiments with reasoning LLMs

We have conducted preliminary experiments with reasoning LL.Ms like DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al,
2025). However, we observed that they often tend to overthink rather than output direct environmental actions in both
our method and the baseline ReAct. For instance, even when we explicitly prompt the reasoning LLMs to output actions
(e.g., “Please make sure your response is in the following format:\n> {The action you choose}”), the models still generated
detailed explanations but avoided selecting the next action. A typical response might be: “I need to find a key to open the
safe or locate the pencil in the drawers. Since I can’t (...), ’'m unable (...), I must (...)”. This issue has also been noted
in prior work (Cuadron et al., 2025). We believe that using reasoning LLMs for decision-making tasks requires deeper

23

LLM-based Actor-Critic

Table 12. Results of different hyper-parameter
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC (v = 1/2) 0.46 0.54 0.62 0.68
IAC(a=1) 046 0.62 0.64 0.58
IAC(a=2) 044 0.76 0.66 0.64
IAC (a=5) 046 0.72 0.62 0.64
LAC (a = 10) 0.40 0.58 0.60 0.70

Table 13. Performance comparison of LAC (Ours) and other baselines in Crafter (from BALROG)
Llama-3.1-8B-It

LAC (Ours) 25.91% +1.93%
Naive (direct action generation) 20.45% + 4.26%
Robust Naive (formatted actions) 4.55% + 1.57%
CoT (ReAct, reason then act) 18.64% + 3.24%
Robust CoT (reason + formmated actions) 15.46% + 3.59%
Few-Shot (in-context examples) 12.73% = 1.25%

exploration to balance internal reasoning with effective environmental interaction.

B. Method details
B.1. Deriving the solution of the KL-constrained maximization objective

In this subsection, we will derive Equation (5). We optimize the following objective:
i 1 i i
max B r(ai|ghe) [O1im(g, hes af,up)] — a]D)KL [7(atlg, he)llmiim(at]g, he)] -
We now have:
1 i i
Lim(gvhtvatvut)] - EDKL [”(%‘97ht)||7TLLM(at|g»ht)]

1 W(ai|g7ht)
= m.,?’XEa Nﬂ'(atlg ht |:QLLM g’ ht’ at’ Ut) & log m
t19

max Boir(ailg,he)

a’t|g7 h’t)

=minkE .
& T (atlg, he

e aj~m(allg,he)

) - aQLLM(gv htv a‘iv ui):|

(aﬂg’ ht)
WLLM(at|97 hy) exp (Qrim(g, he, alb, ul))

—log Z(g, ht)

= H}n_in E(ﬂ i~m(atlg,he) |}Og

where we have the partition function:

Z(g,he) =Y mum(ailg, he) exp (aQuim(g, he, af, uf)).

i
ai

Since the partition function is a function of only g, h; and the original policy 7| v, but does not depend on the optimized
policy 7, we define

. 1 , o
7" (aglg, he) = mﬂLLM(aﬂ%ht)eXp(OéQLLM(g7ht7ai7U§))-

24

LLM-based Actor-Critic

This definition of policy if a valid probability distribution as 7*(at|g, h;) for all a} and Za;' m*(at|g, he) = 1. As Z(g, hy)
is not a function of ai, we can then re-organize the objective as:

ﬂ-(aﬂga ht)
Z(g{ht) mim(atlg, he) exp (aQrim(g, he, at, uy))

- log Z(g7 ht)

T

min B raijg,n.) [log

ﬂ-(ailga ht)
m*(alg; h)
:HEHDKL [m(ailg, he) |7 (ailg, he)] —log Z(g, hy).

=m0 By nalgn) {log ~log Z(9,he)

Then since Z (g, h;) does not depend on 7, we can only care about the KL-divergence, which is minimized at 0 if and only
if the two distributions are identical. Therefore, the optimal solution is

m(ajlg, he) = 7 (atlg, he) =)WLLM(aﬂg,ht)eXp (Orim(g, e, al, ul)), @)

Z (g) ht
which completes the derivation.

B.2. Critic improvement of LAC

The reflections critic Q1 v, and forward model fi;y we used can be easily implemented by prompting LLMs via providing
instructions or few-shot examples from similar tasks like prior work (Yao et al., 2023; Liu et al., 2023). However, empirically,
we found that they can be further improved via fine-tuning LLMs with simple next-token prediction loss on several samples
collected from training tasks. In this work, we consider fine-tuning for ALFWorld and BabyAI-Text to show the impact
of fine-tuning. We use 18 trajectories for each benchmark for fine-tuning, including two successful trajectories and one
failed trajectory for each task-type. Though 18 trajectories are significantly fewer than what is required for conventional
reinforcement learning algorithms, they are generally enough for our method. Each trajectory has the following format:
(g,00,a1,01,¢1, -+ yam,0m,cy), where H is the episode length and ¢; is a reflection of action a;. Each ¢; includes an
explanation about the action a; (e.g., “I have found object-X. This step is ” or “I should take object-X instead of object-Y
first. This step is ”’) and a special token that indicates positive/negative judgment (e.g., “GOOD” or “BAD”).

Practically, we just fine-tune the LLM once and use it to generate all the reflections, construct critic Qy; v, and forward
model fim, thanks to the fine-tuning with the above data format. Specifically, when minimizing the loss of predicting
future trajectories, the forward model fiy is improved. When minimizing the loss of generating reflections, the reflections,
critic 9y v are both improved. The latter is because reflections also contain special tokens that indicate positive/negative
judgments, whose generated probabilities are used to calculate Q;;y in Equation (3). We analyze this fine-tuning process
in Appendix A.9. Some examples of the labeled trajectories in ALFWorld and BabyAI-Text are shown in Table 27 and
Table 28 respectively.

C. Experiment details
C.1. Benchmark details
C.1.1. ALFWORLD: BENCHMARK WITH HIGH-LEVEL ACTIONS

We choose ALFWorld (Shridhar et al., 2021), a text-based household environment, to demonstrate the effectiveness of LAC
on high-level planning. ALFWorld is a synthetic text-based game aligned with ALFRED (Shridhar et al., 2020) benchmark.
There are 6 types of tasks in this environment, which require the agent to achieve a high-level goal through a sequence of
high-level actions, e.g. “go to place-X", “take object-Y from place-X”, efc. The details about the 6 task types in ALFWorld
are shown in Table 14.

A challenge built into ALFWorld is that the agent needs to explore the environment to find a target object. The commonsense
knowledge in LLMs about the likely locations for common household items makes this environment suitable for LLMs to
solve. The reward is 1 only when the agent reaches the goal. Following ReAct, we evaluate 134 unseen evaluation games in
a task-specific setup.

25

LLM-based Actor-Critic

Table 14. All the task types and the corresponding goals for ALFWorld

Type Description

Pick & Place The agent needs to put a target object to a target place, e.g. put some spraybottle on toilets, find some apple and put it in sidetable, efc.

Clean & Place The agent needs to find a target object, clean it and put it to a target place, e.g. clean some apple and put it in sidetable, put a clean
lettuce in diningtable, efc.

Heat & Place The agent needs to find a target object, heat it and put it to a target place, e.g. heat some egg and put it in diningtable, put a hot apple
in fridge, efc.

Cool & Place The agent needs to find a target object, cool it and put it to a target place, e.g. cool some pan and put it in stoveburner, put a cool mug

in shelf, etc.

Examine & Place The agent needs to find a target object, and examine it with desklamp, e.g. look at bowl under the desklamp, examine the pen with
the desklamp, etc.

Pick Two & Place The agent needs to put two target objects to a target place, e.g. put two saltshaker in drawer, find two pen and put them in dresser, etc.

C.1.2. BABYAI-TEXT: BENCHMARK WITH LOW-LEVEL ACTIONS

For decision-making tasks with low-level planning, we adopt BabyAI-Text (Carta et al., 2023b) as our test-bed. BabyAl-Text
is a text-only version environment extended from the BabyAl platform (Chevalier-Boisvert et al., 2018). BabyAI-Text is
a Grid World environment, in which the agent and objects are placed in a room of 8 x 8 tiles. The agent has 6 primitive
actions: turn left, turn right, go forward, pick up, drop, toggle, to solve a task described in natural language (e.g. Pick up the
red box). The agent has access to a 7 x 7 partial view, which means it can only observe the objects belonging to the 7 x 7
grid in front of it. In addition to objects relevant to completing a given task, there are also other distractors in the room. All
the task types in BabyAl-Text are shown in Table 15.

Table 15. All the task types and the corresponding goals for BabyAl-Text

Type Description
go to The agent needs to find target object and go to it, e.g. go to the green key, go to the red ball, efc.
pick up The agent needs to find target object, go to it and pick up it, e.g. pick up the blue key, pick up the purple ball, efc.

go to after pick up The agent needs to find and pick up one object, then go to another object, e.g. go to the blue key after you pick up the green key etc.
pick up then go to The agent needs to find and pick up one object, then go to another object, e.g. pick up the green box, then go to the purple box efc.

put next to The agent needs to find and pick up one object, then go to another object and put the first object next to it, e.g. put the grey key next
to the yellow ball efc.
open door The agent needs to know which key to pick up, then find and pick up it to open the door, e.g. open the door, open the blue door, etc.

Unlike ALFWorld, an agent interacting with BabyAI-Text needs to find out the suitable low-level action to execute at each
step. We evaluate on the test environment in BabyAI-Text. The objects in a room are randomly chosen, and their position, as
well as the agent’s position, are also random. Considering the time and computational resource constraints, we evaluate on
50 tasks for each task type, yielding 300 tasks total.

C.1.3. WEBSHOP: BENCHMARK WITH POTENTIALLY INFINITE ACTION SPACE

In some scenarios, the space of possible actions can be infinite. We adopt a simplified environment, WebShop (Yao et al.,
2022), with potentially infinite action space to demonstrate the effectiveness of our method. WebShop requires an agent to
purchase a desired product based on textual instructions through the interaction with a simulated web environment. The
available actions include search something using textual descriptions and choose button to click like "[item ID]", "back to
search", "buy now", efc. Due to the nature of natural language, one can actually search anything, leading to an unbounded
set of potential actions. We evaluate 100 tasks in WebShop for our method and all the baselines.

One thing that should be mentioned about this benchmark is that the final reward is a value between 0 and 1, depending on
the degree to which the final purchased product meets the requirements. Thus in this work, we report the success rate and
final reward simultaneously, where success rate indicates the proportion of products that the agent finally buys that fully
meet the requirements, and final reward indicates the average final reward on all evaluated tasks.

C.2. Implementation details of baselines

C.2.1. REACT

ReAct (Yao et al., 2023) uses LLM as policy to generate action directly. They combine reasoning and acting during the
interaction with the environment to improve action selection.

Table 16 shows an example of a trajectory interleaving between actions and observations in ALFWorld. To leverage the

26

LLM-based Actor-Critic

reasoning ability of LLMs, ReAct adds an extra thinking action to the original action set in ALFWorld, allowing LLM agent
to engage in reasoning about task decomposition and goal achievement during task execution. An annotated trajectory for
ALFWorld given by ReAct is shown in Table 17. Text labeled in light green is the annotated thought to help LLM complete
a task better.

Table 16. An example of successful trajectory for ALFWorld

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a
sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.

Your task is to: ©put some spraybottle on toilet.

> go to cabinet 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> go to cabinet 2

The cabinet 2 is closed.

> open cabinet 2

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.
> take spraybottle 2 from cabinet 2

You pick up the spraybottle 2 from the cabinet 2.

> go to toilet 1

On the toilet 1, you see a soapbottle 2.

> put spraybottle 2 in/on toilet 1

You put the spraybottle 2 in/on the toilet 1.

Table 17. An example of annotated successful trajectory for ALFWorld in ReAct

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a
sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.

think: O SO e the task, need to find and take a sparybottle, then put t on to e
OK.

think: First I need to find :
countertop (1), toilet (1) S

cabline

OK.

> go to cabinet 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> go to cabinet 2

The cabinet 2 is closed.

> open cabinet 2

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.
think: Now I find a spraybottle (2). Next, I need to take it.

> take spraybottle 2 from cabinet 2

You pick up the spraybottle 2 from the cabinet 2.

> think: low I take spraybottle (2). Next, nee o pu t n/o oile

OK.

> go to toilet 1

On the toilet 1, you see a soapbottle 2.

> put spraybottle 2 in/on toilet 1

You put the spraybottle 2 in/on the toilet 1.

During the interaction with the environment, two successful trajectories like in Table 17 are provided to LLMs to leverage
the in-context learning ability of LLMs. The LL.Ms will generate an action to be executed in the environment or conduct
some reasoning about how to achieve the final goal. The chosen action and new observation are appended to the prompt for
LLMs to form a sequential decision-making process.

Similar to ALFWorld, we annotate some successful trajectories in BabyAl-Text to teach a ReAct agent how to complete a
task in BabyAlI-Text. Examples of successful trajectories without thoughts and with thoughts are shown in Table 18 and
Table 19 respectively.

As to WebShop, we adopt the implementation of ReAct and use one example for in-context learning. The successful example
without thoughts and with thoughts are shown in Table 20 and Table 21 respectively.

C.2.2. RAP

RAP(Hao et al., 2023) utilizes LLMs as policy and world model, and adopts tree-search planning methods to evaluate each
possible action candidate. Trajectories interleaving between actions and observations like in Table 16, Table 18 and Table 20
are provided to LLMs to learn how to choose action as an policy and the dynamics of the environment as a world model.

27

LLM-based Actor-Critic

Table 18. An example of successful trajectory for BabyAI-Text

Goal of the agent: go to the green key

Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a grey box 3 steps
left, You see a grey key 3 steps left and 1 step forward, You see a blue box 3 steps left and 2 steps
forward

Action:turn left

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward, You see
a green key 2 steps left and 1 step forward, You see a green ball 1 step left and 3 steps forward, You
see a grey box 3 steps forward, You see a grey key 1 step right and 3 steps forward, You see a blue box
2 steps right and 3 steps forward

Action:go forward

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You see a
green key 2 steps left, You see a green ball 1 step left and 2 steps forward, You see a grey box 2 steps
forward, You see a grey key 1 step right and 2 steps forward, You see a blue box 2 steps right and 2
steps forward

Action:turn left

Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward, You see
a green box 2 steps left and 1 step forward, You see a green key 2 steps forward, You see a blue key 1
step right and 3 steps forward, You see a green ball 2 steps right and 1 step forward, You see a grey
box 2 steps right

Action:go forward

Observation:You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps left, You
see a green key 1 step forward, You see a blue key 1 step right and 2 steps forward, You see a green
ball 2 steps right

Table 19. An example of annotated successful trajectory for BabyAl-Text in ReAct

Goal of the agent: go to the green key

Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a grey box 3 steps
left, You see a grey key 3 steps left and 1 step forward, You see a blue box 3 steps left and 2 steps
forward
Action:think: To
Observation:OK
Action:think: have not seen a green key. Firstly,
Observation:OK

Action:turn left

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward, You see
a green key 2 steps left and 1 step forward, You see a green ball 1 step left and 3 steps forward, You
see a grey box 3 steps forward, You see a grey key 1 step right and 3 steps forward, You see a blue box
2 steps right and 3 steps forward
Action:think: I have
key.

Observation:OK
Action:go forward
Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You see a
green key 2 steps left, You see a green ball 1 step left and 2 steps forward, You see a grey box 2 steps
forward, You see a grey key 1 step right and 2 steps forward, You see a blue box 2 steps right and 2
steps forward

Action:turn left

Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward, You see

a green box 2 steps left and 1 step forward, You see a green key 2 steps forward, You see a blue key 1
step right and 3 steps forward, You see a green ball 2 steps right and 1 step forward, You see a grey
box 2 steps right

Action:go forward

Observation:You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps left, You
see a green key 1 step forward, You see a blue key 1 step right and 2 steps forward, You see a green
ball 2 steps right

to find a green key and go to it.

Next, I

to go to the gre

a green key 2

28

LLM-based Actor-Critic

Table 20. An example of successful trajectory for WebShop

Webshop

Instruction:

i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00
dollars

[Search]
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next >]

[BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BO78GTKVXY]

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BOBKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor
Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)

$15.95

Action: c¢lick[B078GWRC1J]

Observation:

[Back to Search]

[< Prev]

scent [assorted scents] [bright citrus] [calming lavender] [ginger fresh] [simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]

Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,

Bright Citrus Deodorant by Earth Mama
Contains Organic Calendula 3-Ounce
Price: $10.99

Rating: N.A.

[Description]

[Features]

[Reviews]

[Buy Now]

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)
Observation: You have clicked 3 ounce (pack of 1).

Action: click[Buy Now]
Observation: Your score (min 0.0, max 1.0): 1.0

29

LLM-based Actor-Critic

Table 21. An example of successful trajectory for WebShop in ReAct

Webshop

Instruction:

i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00
dollars

[Search]
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next >]

[BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BO78GTKVXY]

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BOSKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor
Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)

$15.95

)

are bright citrus

less then 50 dollars. I can

k 3

rvation:

Obse

Action: click[BO78GWRC1J]

Observation:

[Back to Search]

[< Prev]

scent [assorted scents] [bright citrus] [calming lavender] [ginger fresh] [simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

Price: $10.99

Rating: N.A.

[Description]

[Features]

[Reviews]

[Buy Now]

the item has

Observation: OK.

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: «click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: click[Buy Now]
Observation: Your score (min 0.0, max 1.0): 1.0

30

LLM-based Actor-Critic

The assessment of each step is performed by a reward function, which can be the log probability of the action or self-
evaluation given by LLMs, or based on some task-specific heuristics. In our implementation, we adopt the log probability of
actions given by LLMs as the reward. For simplicity of implementation, we adopted a greedy approach to expand the tree,
generating only one action at a time. More specifically, at each step, LLMs will sample some action candidates. For each
action candidate, LLMs will generate a rollout trajectory until a maximum step or terminal state. The summation of log
probabilities of all the actions on the rollout accessed by LLMs are used as Q value for each action candidate. The candidate
with the highest Q value is chosen to be executed in the environment.

C.2.3. ICPI

Table 22. An example provided to critic in ICPI for ALFWorld

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a
sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.

Your task is to: put some spraybottle on toilet.

> go to cabinet 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

Reward:0

> go to cabinet 2

The cabinet 2 is closed.

Reward:0

> open cabinet 2

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.
Reward:0

> take spraybottle 2 from cabinet 2

You pick up the spraybottle 2 from the cabinet 2.

Reward:0

> go to toilet 1

On the toilet 1, you see a soapbottle 2.

Reward:0

> put spraybottle 2 in/on toilet 1

You put the spraybottle 2 in/on the toilet 1.

Reward:1

Table 23. An example provided to critic in ICPI for BabyAI-Text

Goal of the agent: go to the green key

Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a grey box 3 steps
left, You see a grey key 3 steps left and 1 step forward, You see a blue box 3 steps left and 2 steps
forward

Action:turn left

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward, You see
a green key 2 steps left and 1 step forward, You see a green ball 1 step left and 3 steps forward, You
see a grey box 3 steps forward, You see a grey key 1 step right and 3 steps forward, You see a blue box
2 steps right and 3 steps forward

Reward:0

Action:go forward

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You see a
green key 2 steps left, You see a green ball 1 step left and 2 steps forward, You see a grey box 2 steps
forward, You see a grey key 1 step right and 2 steps forward, You see a blue box 2 steps right and 2
steps forward

Reward:0

Action:turn left

Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward, You see
a green box 2 steps left and 1 step forward, You see a green key 2 steps forward, You see a blue key 1
step right and 3 steps forward, You see a green ball 2 steps right and 1 step forward, You see a grey
box 2 steps right

Reward:0

Action:go forward

Observation:You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps left, You
see a green key 1 step forward, You see a blue key 1 step right and 2 steps forward, You see a green
ball 2 steps right

Reward:1

ICPI (Brooks et al., 2024) proposes to implement policy iteration using LLMs through in-context learning. At each step, the
policy in ICPI will sample some action candidates and the critic will compute the Q values for each action candidates. The
action candidates with the highest Q values is chosen to be executed.

The policy is implemented using LLMs, and successful trajectories like in Table 16 and Table 18 are provided to it.

31

LLM-based Actor-Critic

As to the critic, ICPI prompts LLMs to give the numerical reward for each step directly. Given the current history and an
action candidate, the critic in ICPI will rollout a trajectory starting from the action candidate. Apart from predicting the
observations, the critic will give the numerical reward for each step on the rollout trajectory. The (discounted) return on
the rollout is treated as the Q value for the action candidate. For both ALFWorld and BabyAI-Text, we define the reward
as 1 when the agent reaches the goal. All other steps will have a reward 0. The examples provided to the critic are like in
Table 22 for ALFWorld and Table 23 for Baby AI-Text.

C.2.4. RAFA

Table 24. An example provided to critic in RAFA for ALFWorld

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a
sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.

Your task is to: put some spraybottle on toilet.

> critic: My task requires two sub-goals in order: take a spraybottle and put the spraybottle on the

toilet. My current state satisfies zero of the two sub-goals. The value is 0/2=0.

> OK.

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> OK.

The cabinet 2 is closed.

> OK.

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.

> OK.

You pick up the spraybottle 2 from the cabinet 2.

> critic: ©Now I take a spraybottle. My current state satisfies the first of the two sub-goals: take a
spraybottle. The value is 1/2=0.5.

> OK.

On the toilet 1, you see a soapbottle 2.

> OK.

You put the spraybottle 2 in/on the toilet 1.

> critic: Now I put the spraybottle on the toilet. My current state satisfies all the two sub-goals.

The value is 2/2=1.

Table 25. An example provided to critic in RAFA for BabyAlI-Text

Goal of the agent: go to the green key
You see a wall 2 steps right, You see a wall 3 steps forward, You see a grey box 3 steps left, You see a
grey key 3 steps left and 1 step forward, You see a blue box 3 steps left and 2 steps forward

>critic: My task requires two sub-goals in order: find the green key, and go to the green key. My
current state satisfies zero of the two sub-goals. The value is 0/2=0.
>0K.

You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward, You see a green key 2
steps left and 1 step forward, You see a green ball 1 step left and 3 steps forward, You see a grey box
3 steps forward, You see a grey key 1 step right and 3 steps forward, You see a blue box 2 steps right
and 3 steps forward

>critic: Now I find the green key. My current state satisfies the first of the two sub-goals: find
the green key. The value is 1/2=0.5.
>0K.

You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You see a green key 2
steps left, You see a green ball 1 step left and 2 steps forward, You see a grey box 2 steps forward,
You see a grey key 1 step right and 2 steps forward, You see a blue box 2 steps right and 2 steps
forward

>0OK.

You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward, You see a green box 2
steps left and 1 step forward, You see a green key 2 steps forward, You see a blue key 1 step right and
3 steps forward, You see a green ball 2 steps right and 1 step forward, You see a grey box 2 steps right
>0OK.

You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps left, You see a green
key 1 step forward, You see a blue key 1 step right and 2 steps forward, You see a green ball 2 steps
right

>critic: Now I go to the green key. My current state satisfies all the two sub-goals. The value is
2/2=1.

The framework of RAFA (Liu et al., 2023) is also like RAP or ICPI. The main difference is how the action evaluation is
conducted.

RAFA implements tree-search using LLM to evaluate each action candidate. Different from ICPI, RAFA uses the task
completion progress as the value for each step. They have the LLMs decompose a goal into sub-goals, and use the completion
status of the sub-goals after each step as the value for the step. RAFA evaluates the completion status of sub-goals based on
the predicted observations. Examples provided in RAFA are like in Table 24 for ALFWorld and Table 25 for BabyAl-Text.

32

LLM-based Actor-Critic

C.2.5. LATS

LATS (Zhou et al., 2024a) combines the reasoning, acting, and planning capabilities of LLMs with MCTS (Kocsis &
Szepesvari, 2006) and external feedback mechanisms to enhance decision-making, achieving competitive results in web
navigation. We adopt the official implementation to evaluate its performance on WebShop.

LATS cannot be directly applied to the other benchmarks we used for two main reasons. (1) LATS requires the ability to
revert the agent to earlier states in the environment, which ALFWorld and BabyAlI-Text do not support. LATS relies on
model-free MCTS, using environment simulator as a world model, reverting simulators to earlier states during tree search.
This limitation is also noted in their original paper (Page 9). (2) While it might be possible to modify these environments
to make them reversible, it would create an unfair comparison. Our method and other baselines do not rely on simulators
during reasoning in ALFWorld and BabyAI-Text, whereas, LATS would gain an advantage from this modification.

Nevertheless, we still attempted to adapt LATS for ALFWorld by using LLMs as world models, similar to our method, for a
fair comparison. The results, presented in the Table 26, show that LATS fails in almost all tasks. This is because its tree
search severely depends on the environment simulator for precise state transitions. With only LLM-based world models, the
state transitions often deviate from the actual environments, due to LLMs’ inherent hallucinations and partial observability
of ALFWorld.

Table 26. Performance comparison of LAC (Ours) and LATS in ALFWorld.
CodeLlama-7B Gemma-7B Llama-3-8B Mistral-7B

LAC (Ours) 0.79 0.84 0.78 0.79
LATS 0.00 0.00 0.03 0.00

C.3. Implementation details of LAC, ablation studies, and variants

Table 27. An example of annotated successful trajectory for ALFWorld in LAC

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a
sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.

Your task is to: put some spraybottle on toilet.

think: To solve the task, I need to find and take a sparybottle, then put it on toilet.
OK.
==> critic: The thought is reasonable. This step is GOOD.
> think: First I n to find a >raybottle \ ybottle is more likely cabine (1-4),
1tert (1), t (1), si sin 2), gar in (1) 0l eck starting with
cabinet 1.
OK.
==> critic: I need to find spraybottle firstly. The thought is reasonable. This step is GOOD.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
==> critic: I have not seen spraybottle in this place. This step is UNKNOWN.
> go to cabinet 2
The cabinet 2 is closed.
==> critic: The cabinet 2 is closed. This step is UNKNOWN.
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.
==> critic: I have seen spraybottle 2 in this place. This step is GOOD.
> think: Now I find a spraybottle (2). \ext, need to take it.
OK.
==> critic: I can take the spraybottle after finding it. The thought is reasonable. This step is
GOOD.

> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
==> critic: I have taken spraybottle 2 in this place. This step is GOOD.
think: Now I take a spraybottle (2). Next, I need to put it in/on toilet 1.
OK.
==> critic: I can put the spraybottle in/on toilet after taking it. The thought is reasonable. This
step is GOOD.
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
==> critic: I should go to toilet if I want to put the spraybottle on it. This step is GOOD.
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.
==> critic: I have put the spraybottle 2 in/on the toilet 1. This step is GOOD.

33

LLM-based Actor-Critic

Table 28. An example of annotated successful trajectory for BabyAl-Text in LAC

Goal of the agent: go to the green key

Observation:You see a wall 2 steps right, You see a wall 3 steps forward, You see a critic box 3 steps
left, You see a critic key 3 steps left and 1 step forward, You see a blue box 3 steps left and 2 steps
forward

Action:think: o complete the ask, o find a gree key and go to

Observation:0OK

Critic:The thought is reasonable. This step is GOOD.
Action:think: I have not seen a green key.
Observation:OK

Critic:I need to find a green key firstly. The thought is reasonable. This step is GOOD.

Action:turn left

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 2 steps forward, You see a
green key 2 steps left and 1 step forward, You see a green ball 1 step left and 3 steps forward, You see
a critic box 3 steps forward, You see a critic key 1 step right and 3 steps forward, You see a blue box
2 steps right and 3 steps forward

Critic:I have turned left and seen a green key 2 steps left and 1 step forward. This step is GOOD.
Action:think: e e
key.
Observation:OK
Critic:I can go to the green key after seeing it. The thought is reasonable. This step is GOOD.
Action:go forward

Observation:You see a wall 3 steps right, You see a blue key 3 steps left and 1 step forward, You see

a green key 2 steps left, You see a green ball 1 step left and 2 steps forward, You see a critic box 2
steps forward, You see a critic key 1 step right and 2 steps forward, You see a blue box 2 steps right
and 2 steps forward

Critic:I have gone forward. The green key is 2 steps left. This step is UNKNOWN.

Action:turn left

Observation:You see a wall 3 steps left, You see a green box 2 steps left and 3 steps forward, You see
a green box 2 steps left and 1 step forward, You see a green key 2 steps forward, You see a blue key 1
step right and 3 steps forward, You see a green ball 2 steps right and 1 step forward, You see a critic
box 2 steps right

Critic:I have turned left. The green key is 2 steps forward. This step is UNKNOWN.

Action:go forward

Observation:You see a green box 2 steps left and 2 steps forward, You see a green box 2 steps left, You
see a green key 1 step forward, You see a blue key 1 step right and 2 steps forward, You see a green
ball 2 steps right

Critic:I have gone forward. The green key is 1 step forward. This step is GOOD.

Firstly, I need to find a green key

I have seen a green key 2 steps left and 1 step forward. Next, I need to go to the green

We build our method based on ReAct (Yao et al., 2023). Specifically, we adopt the in-context examples from ReAct and
annotate reflections for those trajectories. For each task type in ALFWorld, we annotate two trajectories from ReAct as
successful examples to teach LLMs how to complete this type of tasks. For BabyAl-Text, we annotate two trajectories with
thoughts like in ReAct, as well as reflections, for each task type. As to WebShop, we annotate the example from ReAct
with reflections, and we remove the thoughts annotated in ReAct because we found better results can be achieved without
thoughts. The annotated trajectories for ALFWorld, BabyAl-Text and WebShop are shown in Table 27, Table 28, and
Table 29 respectively. The reflections we annotated are labeled in light orange. We also use ReAct algorithm to collect some
failed trajectories from the training set for each task type of ALFWorld and BabyAlI-Text. The collected failed trajectories
are also annotated with reflections, aiming to teach LLMs to distinguish between steps that are beneficial, harmful, or
indeterminate for achieving a goal.

We annotate the reflections using the following criteria:
(1) If an action on a trajectory is necessary for achieving the final goal, the following reflections will end with “This step is

GOOD.” to indicate the completion of an essential step, such as action “take spraybottle 2 from cabinet 2” for the goal
“put some spraybottle on toilet”.

(2) If an action is crucial for obtaining essential information to complete a goal, the subsequent reflections will end with
“This step is GOOD.”, such as action “open cabinet 2 in Table 27 which finds the target object.

(3) If an action is definitely useless or incorrect for achieving a goal, the following reflections will end with “This step is
BAD.” to indicate this action is undesirable, such as action “take cloth 1 from cabinet 1" for the task in Table 27.

(4) If an action can not be evaluated as good or bad from the history, the following reflections will end with “This step is
UNKNOWN.”, such as action “go to cabinet 1” or “go to cabinet 2” in Table 27.

All the annotated successful and failed trajectories are used to construct fine-tuning examples to fine-tune LLMs to generate
better reflections.

34

LLM-based Actor-Critic

Table 29. An example of successful trajectory for WebShop in LAC

Webshop

Instruction:

i would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00
dollars

[Search]
Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next >]

[BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BO78GTKVXY]

Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

$10.99

[BOBKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor
Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)

$15.95

Critic: The item required in the instruction is ’'bright citrus deodorant for sensitive skin’. I have
searched ’3 ounce bright citrus deodorant sensitive skin’, which is similar to the required item. I
also see that [BO78GWRC1J] is bright citrus deodorant. This step is GOOD.

Action: click[BO78GWRC1J]

Observation:

[Back to Search]

[< Prev]

scent [assorted scents] [bright citrus] [calming lavender] [ginger fresh] [simply non-scents]

size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]

Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding,
Contains Organic Calendula 3-Ounce

Price: $10.99

Rating: N.A.

[Description]

[Features]

[Reviews]

[Buy Now]

Critic: I have clicked [BO78GWRC1J] and found that this item is ’bright citrus deodorant’ and it can
satisfy the attributes in instruction, which is ’3 ounce’ and 'price lower than 50.00 dollars’. This
step is GOOD.

Action: click[bright citrus]

Observation: You have clicked bright citrus.

Critic: I have clicked [bright cirtrus] to choose the option that satisfies the instruction. This step
is GOOD.

Action: click[3 ounce (pack of 1)

Observation: You have clicked 3 ounce (pack of 1).

Critic: I have clicked [3 ounce (pack of 1)] to choose the option that satisfies the instruction. This

step is GOOD.

Action: click[Buy Now]
Observation: Your score (min 0.0, max 1.0): 1.0
Critic: I have bought the item that satisfies the instruction. This step is GOOD.

35

LLM-based Actor-Critic

Considering the computational cost of fully finetuning of LLMs, we use LoRA (Hu et al., 2021) to finetune our models. In
ALFWorld, with two successful trajectories and one failed trajectory for each task type, we have 485 (input,output) pairs in
total of six task types to finetune models. In BabyAl-Text, the number of finetuning (input,output) pairs is 418. We finetune
models for 1,000 steps with learning rate 2.5e-5 and batch size 2. We use A100 GPU with 80GB memory to fine-tune our
model. With just about 400-500 (input,output) pairs and 1,000 fine-tuning steps, we can complete the fine-tuning process
within one and a half hours.

During testing, the fine-tuned models are used to generate reflections after executing an action in the environment, as well as
to forecast the potential outcomes of each action candidate.

The number of candidate actions n is a hyperparameter, set to 5 in our experiments, that is, we evaluate the top 5 candidate
actions sampled from 7y per state. It is worth noting that sampling top candidate actions introduces a nonzero probability
of missing the true argmax action, especially when distinctions among candidate actions are subtle. However, this choice
is primarily driven by computational practicality: explicitly computing or evaluating the full action distribution for large
or open-ended action spaces common in LLM-based decision-making is typically intractable. Empirically, we find that
generating a small subset of candidate actions from a strong LLM prior is often sufficient to include promising actions, thus
making the trade-off between computational efficiency and accuracy acceptable.

After sampling action candidates, we use the fine-tuned model to predict future outcomes for each action candidate. The
model needs to predict the possible observation and generate reflections for each predicted step. We set the maximum
prediction step as 4, the model will continue the prediction until it generates a reflection ending with “This step is GOOD.”
or “This step is BAD”, or when it reaches the maximum prediction step.

For the optimization of 71\, wWe solve an optimization problem in Equation (4) with a hyper-parameter «, which balances
the generating probabilities of 71y and the values given by Qp1v. For ALFWorld, we set «v as 1, which yields superb
performance over baselines. For BabyAl-Text, we conduct a grid-search over {1/2,1,2,5,10} for «, finding that different
LLMs will have best performance with different «. The results can be seen in Table 12. For WebShop, we also conduct a
grid search over {1/10,1,10} to find the best «. Equation (4) is a weighted combination of the original policy and the action
evaluation values. It updates the distribution by adjusting the probabilities of the top candidate actions, while leaving the
probabilities of other actions unchanged.

We set the maximum horizon length to 40 for ALFWorld, 30 for BabyAlI-Text, and 15 for WebShop. If the agent has not
reached the final goal after the maximum steps, this episode will be marked as failure.

We use A100 GPU with 80GB memory to evaluate our method. For LAC, the execution time for ALFWorld is about 10
hours for 134 tasks using single A100 GPU. And for BabyAlI-Text, the execution time can be varied for different task types,
ranging from 4 to 10 hours for 50 tasks using one A100 GPU. For WebShop, 100 tasks will be completed within 3 or 4
hours. The GPU memory usage may range from 15GB to over 70GB during the interaction according to the length of inputs
to LLMs.

We compare our method with all the aforementioned baselines, demonstrating the effectiveness of our method on decision-
making tasks with both high-level actions and low-level actions, even with potentially infinite actions. To demonstrate the
effectiveness of each component in our method, we conduct ablation studies on each component. We removes the reflections
from LAC as well as the integration during pre-action-generation phase. This variant is called LAC w/o reflection. We also
evaluate the role of Qyy by removing it from LAC as well as the integration during post-action-generation phase. This
variant is called LAC w/o critic. We also demonstrate the role of the action prior given by LLM policy by using only critic
QM for decision-making. We call this variant as critic-only. The execution time of those variants during evaluation can be
varied according to its performance because a method having poor performance typically will cost more time to execute. On
ALFWorld, it may be 10-20 hours. The comparisons between those variants are shown in Figure 4.

We found that each component in LAC is crucial for the superb performance. Removing some components may lead to
wrong choice of action candidates. Such an example is shown in Table 30. LAC can complete this task successfully, while
eliminating some components in LAC will lead to failure. The comparison is shown in Figure 10.

36

LLM-based Actor-Critic

Table 30. An example of successful trajectory in test environment in BabyAlI-Text given by LAC

Goal of the agent:go to the green ball

Observation:You see a wall 5 steps forward, You see a wall 2 steps left, You see a yellow ball 1 step
left and 4 steps forward, You see a blue ball 1 step left and 3 steps forward, You see a red ball 1 step
left and 1 step forward, You see a grey key 2 steps right and 2 steps forward, You see a green key 2
steps right and 1 step forward, You see a blue key 3 steps right and 1 step forward

Action:think:To complete the task, I n > to it.

Observation:0OK

Critic:This thought is reasonable. This step is GOOD.
Action:think:I have seen a green ball 1 step left and 4 steps fo
ball.

Observation:OK

Critic:This thought is reasonable. I can go to the green ball after seeing it. This step is GOOD.
Action:turn right

Observation:You see a wall 5 steps forward, You see a wall 2 steps right, You see a green ball 3 steps
left and 4 steps forward, You see a grey key 2 steps left and 2 steps forward, You see a blue key 1 step
left and 3 steps forward, You see a green key 1 step left and 2 steps forward, You see a blue ball 1
step right and 1 step forward

Critic:I have turned right. The green ball is 3 steps left and 4 steps forward. This step is UNKNOWN.
Action:go forward

Observation:You see a wall 4 steps forward, You see a green ball 3 steps left and 3 steps forward, You
see a grey key 2 steps left and 1 step forward, You see a blue key 1 step left and 2 steps forward, You
see a green key 1 step left and 1 step forward, You see a blue ball 1 step right

Critic:I have gone forward. The green ball is 3 steps left and 3 steps forward. This step is UNKNOWN.
Action:go forward

Observation:You see a wall 3 steps forward, You see a wall 2 steps right, You see a green ball 3 steps
left and 2 steps forward, You see a grey key 2 steps left, You see a blue key 1 step left and 1 step
forward, You see a green key 1 step left

Critic:I have gone forward. The green ball is 3 steps left and 2 steps forward. This step is UNKNOWN.
Action:go forward

Observation:You see a wall 2 steps forward, You see a wall 2 steps right, You see a green ball 3 steps
left and 1 step forward, You see a blue key 1 step left

Critic:But I have gone forward. The green ball is 3 steps left and 1 step forward. This step is
UNKNOWN .

Action:go forward

Observation:You see a wall 1 step forward, You see a wall 2 steps right, You see a green ball 3 steps
left

Critic:But I have gone forward. The green ball is 3 steps left. This step is UNKNOWN.

Action:turn left

Observation:You see a wall 1 step right, You see a grey key 2 steps left and 2 steps forward, You see a
green key 2 steps left and 1 step forward, You see a blue key 1 step left and 1 step forward, You see a
red ball 4 steps forward, You see a green ball 3 steps forward

Critic:But I have turned left. The green ball is 3 steps forward. This step is UNKNOWN.

Action:go forward

Observation:You see a wall 1 step right, You see a grey key 2 steps left and 1 step forward, You see a
green key 2 steps left, You see a blue key 1 step left, You see a red ball 3 steps forward, You see a
green ball 2 steps forward

Critic:But I have gone forward. The green ball is 2 steps forward. This step is UNKNOWN.

Action:go forward

Observation:You see a wall 1 step right, You see a grey key 2 steps left, You see a red ball 2 steps
forward, You see a green ball 1 step forward

Critic:But I have gone forward. The green ball is 1 step forward. This step is GOOD.

find a green ball and

I need to go to the green

37

