Learning Mixtures of Gaussian Processes through Random Projection

Emmanuel Akeweje! Mimi Zhang ' >

Abstract

We propose an ensemble clustering framework
to uncover latent cluster labels in functional data
generated from a Gaussian process mixture. Our
method exploits the fact that the projection co-
efficients of the functional data onto any given
projection function follow a univariate Gaussian
mixture model (GMM). By conducting multiple
one-dimensional projections and learning a uni-
variate GMM for each, we create an ensemble
of GMMs. Each GMM serves as a base cluster-
ing, and applying ensemble clustering yields a
consensus clustering. Our approach significantly
reduces computational complexity compared to
state-of-the-art methods, and we provide theoret-
ical guarantees on the identifiability and learn-
ability of Gaussian process mixtures. Extensive
experiments on synthetic and real datasets con-
firm the superiority of our method over existing
techniques.

1. Introduction

Gaussian process (GP) models are fundamental in
(Bayesian) machine learning. (Rasmussen & Williams,
2006) gave an overview of the mathematical foundations
and practical applications of GP for regression and classifi-
cation tasks. The GP mixture model naturally generalizes
the concept of Gaussian mixture model (GMM), making it a
powerful tool for the statistical or cluster analysis of hetero-
geneous functional data. However, documented works on
GP mixture models all perform parameter estimation before
any inference or cluster analysis, resulting in cubic com-
putational complexity with the number of data points. To
promote the application of GP mixture models for mixture
modelling or cluster analysis, we here take an innovative

'School of Computer Science and Statistics, Trinity Col-
lege Dublin, Treland *I-Form Advanced Manufacturing Research
Centre, Science Foundation Ireland, Ireland. Correspondence
to: Emmanuel Akeweje <eakeweje@tcd.ie>, Mimi Zhang
<mimi.zhang @tcd.ie>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

approach that performs cluster analysis before parameter es-
timation, and once the hidden cluster labels are revealed, the
problem of learning the mixture of GPs reduces to learning
each GP component independently.

A GP mixture model can not be defined through the notion
of probability density, which generally does not exist for
random functions. We here define the GP mixture model
in accordance with prior pooling (Seitz, 2021): a random
function X is a K-mixture of GPs if the sub-populations are
characterized by K Gaussian random functions {Xj }&_ |,
and that with probability 7 (> 0), a random sample is a
realization of the kth random function X ~ GP (g, X).
Here, we let GP(uy, X) denote the GP with a mean func-
tion uy and a covariance function ¥;. Note that, in the
above definition, the unknown weights {7}/ | are fixed
parameters. There are a few attempts at learning the GP mix-
ture model with the above definition. Let {z; }?_; denote the
functional data from the GP mixture, and z; € {1,..., K}
the hidden cluster label of the sample function x;. (James &
Sugar, 2003) assumed that each Gaussian random function
X}, has an individual mean function pu; yet a common co-
variance function ¥, = . They adopted the mixed-effects
model that, given z; = k and the basis expansion z;(t) =
pur () + [() — e (8)] = 32001 ckwbo () + 32001 ainbo (8),
the n coefficient vectors {a; = (aj1,...,a;m)" }7_, are
identically distributed and have a zero-mean Gaussian distri-
bution. An EM-type algorithm was developed for parameter
estimation. In both (Shi & Wang, 2008) and (Huang et al.,
2014), each Gaussian random function X has a different
mean function iy, and a different covariance function Xj,.
(Huang et al., 2014) developed an EM-type algorithm for
parameter estimation. In (Shi & Wang, 2008), each subject
is characterized by both a sample function x; and a covari-
ate vector ¢;. The covariates {¢; }!" are fitted by a logistic
regression model to predict the latent cluster labels. They
developed an EM-type algorithm, where the E-step updates
the expected log-likelihood function, and the M-step updates
all parameter estimates. (Wu & Ma, 2018) divided the func-
tion domain T C R into disjoint intervals: T = U;7;, and
assumed that X (¢) over each interval T; is a different GP;
that is, the stochastic process { X (t) : ¢ € T} is piece-wise
Gaussian. They developed an EM-type algorithm, where
the E-step is built on an MCMC technique for generating
latent cluster labels.

Learning Mixtures of Gaussian Processes through Random Projection

Another branch of works organizes the generative model
into a hierarchical structure. (Shi et al., 2005) assumed
that the weights (71, . . ., 7) have a Dirichlet distribution;
they employed the Gibbs sampler for simulating the latent
cluster labels and a hybrid Monte Carlo method for sim-
ulating the unknown model parameters. (Rasmussen &
Ghahramani, 2001), (Jackson et al., 2007), (Ross & Dy,
2013), (Li & Ma, 2023), and a few others extended the
Bayesian nonparametric model from multivariate data to
functional data. In particular, the building blocks of the
hierarchy are: (1) G ~ DP(Gp,), a Dirichlet process
having a base distribution GG and a concentration parameter
a; (2) © = (i, X) ~ G(O), a joint distribution over the
pair (11, X); 3) © ~ GP(u, X). For the 2nd block, although
one can utilize the GP and Wishart process together to di-
rectly sample the pair (u,2), the two functions p and 3
normally take a parametric form in applications, and we de-
fine a Dirichlet process over their parameters. The popular
stick-breaking process gives an explicit construction of G:
G(dO) =", mpde,; thatis, © is generated from a random
distribution G that concentrates a probability mass 7 on
the atom Oy, and the 7 ’s are given by a stick-breaking pro-
cess. For performing approximate inference, (Rasmussen &
Ghahramani, 2001) and (Jackson et al., 2007) developed a
Markov chain procedure relying on Gibbs sampling, while
(Ross & Dy, 2013) and (Li & Ma, 2023) applied the varia-
tional Bayes technique.

(Zhang & Parnell, 2023) recently conducted a thorough re-
view of clustering methods for functional data, from which
we identified three pertinent studies (Jacques & Preda, 2013;
Bouveyron et al., 2015; Rivera-Garcia et al., 2019). They all
approached the learning problem through defining a pseudo-
density for random functions. In particular, given the spec-
tral decomposition X (s,t) = > o7 | Akwbio (8)bio (), the
latent label z; = k, and hence the cluster-wise functional
principal component (fPC) decomposition z;(t) = ux(t) +
Sk @ikwbro (t), (Jacques & Preda, 2013) defined the
pseudo-density of [z;]|z; = k] to be II"* ¢(aiky; 0, Akw);
that is, they assumed that the distribution of the coefficient
vector (@1, - .., aikm,). is zero-mean Gaussian with a
diagonal covariance matrix diag(Ag1, - . ., Ak,)- (Rivera-
Garcia et al., 2019) assumed that the distribution of the
coefficient vector (aix1, ..., aikm)’, with m > my, is
N(0,diag(A1, - - -y Aemps Aks - - - Ak)); that is, the addi-
tional (m — my) random coefficients are identically dis-
tributed. The work (Bouveyron et al., 2015) differs from
(Rivera-Garcia et al., 2019) mainly in that (Bouveyron et al.,
2015) assumed that the transformed random function g(X})
is a Gaussian process, where the function g is the feature
map of a kernel function. The three works all developed an
EM-type algorithm, where the E step consists in comput-
ing the conditional expectation of the multivariate Gaussian
mixture log-likelihood, and the M step involves updating

the fPC decomposition for each cluster.

Following the definition of the GP mixture model by (Seitz,
2021), we address the learning problem within an ensemble
clustering framework. Ensemble clustering methods typi-
cally produce a variety of base clusterings and then extract a
consensus clustering from the base clusterings. The consen-
sus clustering encompasses all the information contained in
the ensemble, offering an improvement over the individual
base clusterings (Zhang, 2022). Our learning algorithm for
GP mixtures is extremely simple in that the base clusterings
in the ensemble are univariate GMMs, obtained by project-
ing the functional data onto multiple projection functions.
When the projection functions are randomly generated, our
approach parallels the random projection method for (high-
dimensional) multivariate data (Yellamraju & Boutin, 2018).

The paper is organized as follows. Section 2 provides the
formal definition of the GP mixture model. Section 3 delves
into the methodological details, and Section 4 offers a the-
oretical analysis. In Section 5, we present the results of
extensive experimental studies. Section 6 concludes with a
summary. All proofs are given in the appendix.

2. Gaussian Process Mixture

Let T denote a closed interval of R, and X a random func-
tion that is defined on a probability space ({2, F, Pr) and
taking values in the Hilbert space H(T,R) = {z : T — R}
of square-integrable functions. A sample function z =
X (-,w) € H(T,R) is the value of the random function X
at the outcome w € 2. Alternatively, we can view the func-
tion value z(t) as a random realization of the real-valued
random variable X (¢, -), a mapping from (Q, F) to (R, Bg),
where By is the Borel o-algebra of R. The random func-
tion X is called Gaussian if and only if the random vector
(X(t1),...,X(t))T is multivariate Gaussian for any finite
collection of time indices {t; € T}’_;. A GP is character-
ized by the mean function u(t) = E[X (¢)] and the covari-
ance function X(t, s) = E[(X (t) — u(2))(X (s) — u(s))].

In the context of cluster analysis, we assume that the sam-
ple functions {z1,...,x,} are random realizations of K
Gaussian random functions { X, ..., Xk}, with K (> 2)
being unknown. For each Gaussian random function Xj,
we write Xy, ~ GP(u, X). The complete data are in the
form of {(x;, z;)}, that are independent realizations of
the couple (X, Z), where Z is the hidden cluster-indicator
variable with Pr(Z = k) = 7, 7 > 0 and Eszl m = 1.
Given a value of Z, e.g., Z = k, the conditional distribu-
tion of the random function X is that of X. If the sample
function x; is a random realization of X, then for any finite
collection of input points t; = {t;1,- - , tir, }, the vector of
function values z;(t,) has the multivariate Gaussian distribu-
tion N(ux(t;), Xk (L;, t;)), where N(-, -) is the notation for

Learning Mixtures of Gaussian Processes through Random Projection

multivariate Gaussian distribution. Here, we employ com-
pact notation for functions applied to collections of input
points, and Y (¢;,t,) is the r; X r; covariance matrix.

In real applications, the observation of z; at any point
t € 7, denoted by y;(¢), may come with an additive er-
ror: y;(t) = x;(t) + €;(t), where ¢; is the noise process
with E[e;(¢)] = 0 and E[€?(¢)] = o (). If the sample func-
tion xz; is from GP(uy, X)), the conditional distribution
of the sample path y;(¢,;) is again multivariate Gaussian
N(ur(t;), Xk (t;,t;) + 0°I), where I is the identity matrix
of appropriate dimension. Therefore, given the prior beliefs
{m H<_ |, the marginal distribution of y; (¢,) is a multivariate
Gaussian mixture:

K
yilty) ~ > mN(uk(t,), Skt 1) + o).
k=1

Let D = {y;(t;,) : i =1, -+ ,n} denote the set of n sample
paths. The log-likelihood function of the n sample paths is

n K
L(©;D) =Y log(Y | meo(wilty); ua(ts), Skt) +0°T)),
k=1

i=1

where ¢ is the Gaussian density function, and © is the set
of all model parameters: © = {7y, p, g, o H_ .

Existing methods typically treat the mixture-learning prob-
lem as a parameter-estimation problem and develop an EM-
type algorithm for parameter estimation. However, this
line of approach suffers from two significant drawbacks:
(1) The computational load is heavy, rendering EM-type
algorithms impractical when r; is large, due to the need to
invert the covariance matrices. (2) EM-type algorithms are
local-search heuristic, and the output is heavily influenced
by the initial input, leading to local-optimal results with no
quality guarantees. To address these computational barriers,
we approach the mixture-learning problem from the cluster
analysis perspective, where the direct objective is to learn
the latent cluster labels {z;}?_, not the parameter set ©.

3. Methodology
3.1. From GP Mixture to Univariate Gaussian Mixture

According to the spectral theorem for compact self-adjoint
operators, the covariance function Xj(s,t) of X has a
series representation:

Yr(s,t) = Z Aewbro (8)bro (1),

where \y1 > Ago > .-+ > 0 are the eigen-values, and
{bkv }ven are the orthonormal eigen-functions. Then a sam-
ple function x;, with z; = k, has the following fPC decom-

position:
2i(t) = () + > Ginubro (8), (1)
v=1

where a;r, = (x; — pig, bry) is the fPC score associated
with the eigen-function bg,. Given that X is Gaussian,
the fPC score a;;, has the univariate Gaussian distribution
N(0, Agy) and is independent from a;.. for any r # v (Hall
et al., 2006). Note that the fPC scores {a;x1, Gik2, - . .} are
always uncorrelated, but the independence is only guar-
anteed when X}, is a Gaussian random function. If the
sample functions {x;}?_; are all from the kth GP, then the
fPC scores {a;iy 7 are i.i.d. from N(0, Ay,), and are
independent from the fPC scores {a;x}, of any other
eigen-function by, 7 # v.

In application, we do not know the true cluster label of
x;, and therefore cannot perform the cluster-wise fPC de-
composition as in (1). Let p denote the population mean
function: u(t) = Zszl Ttk (t). Let {By}ven denote a
(arbitrary) basis of the Hilbert space H(T,R). Then any
sample function z; admits the following expansion

zi(t) = p(t) + > ainfBu(t),)

where v, = (x; — p, B,) is the projection coefficient onto
the basis function f3,. Given that z; = k, we replace z; with
its fPC decomposition in Equation (1) and obtain

v = (i — 1, Bo) = (e — 11, Bo) + D _ aira (brt, Bo),

=1

where we have utilized the linearity of the inner product.
Recall that the fPC scores {a;x1, aik2, - . .} are independent
and Gaussian, and that a linear combination of independent
Gaussian variables is still Gaussian. Therefore, condition-
ing on z; = k, the distribution of «;, is univariate Gaussian
N — 5 Bo)s >opeq Met(bit, By)?). The marginal distri-
bution of «y, is hence a univariate Gaussian mixture:

K o]
v ~ Y TNk = 1, Bo), D M (bii, Bo)%)- - (3)
k=1

=1

That is, for any basis {5,},en of the Hilbert space
H(T,R), the projection coefficients of the functions {x; —
u}™ , onto, e.g., the basis function f3, are distributed

according to the univariate GMM Zszl TeN((ur —
Hy 6v>v 21021)\kl<bkl7 ﬂv>2)-
Define the integral operator K: H(T,R) — H(T,R) by

[Kx](s):/TE(s,t)x(t)dt7

where X(s,) = 3y mRB[(Xk (£)—p(£)) (Xx(5) = pa(s))]
is the population kernel. We have the following theorem.

Learning Mixtures of Gaussian Processes through Random Projection

Theorem 3.1. The operator K is compact, positive and
self-adjoint.

Built on Theorem 3.1, we can invoke the spectral theo-
rem for compact self-adjoint operators to conclude that K
has a complete set of eigen-functions in H (T, R). There-
fore, in Equation (3), we can let {53, },en be the set of
eigen-functions of the operator K, and fit a univariate
GMM to the projection coefficients (namely, the fPC scores)
{@y }1; for each v > 1. However, although the eigen-
functions of the operator K are more efficient in explain-
ing the variation in the functional data, our inclination
leans toward basis functions onto which the projected Gaus-
sians are well separated. Finally, we note that the pro-
jection functions {3,}Y_; need not be from a basis of
H(T,R). It can be readily proved that, for any function
B € H(T,R), the distribution of the projection coeffi-
cients {(z; — u,8) : i = 1,...,n} is always a univariate
GMM: 5 N (ke — 11, B), Yooy Akt (bii, 3)?). There-
fore, the projection functions {3, }Y_, can be randomly gen-
erated. In Section 4.2, we delve deeper into the performance
analysis of our clustering method in the context of random
projection functions.

3.2. The Ensemble Clustering Method

The motivation for taking the ensemble clustering approach
is explained in Appendix B, and the pseudo code of the clus-
tering method is given in Algorithm 1. Before we expand on
step 7, a few points are noted: (a) Step 1 calls for a smooth-
ing technique, and our Python package' GPmix offers a
range of options. (b) In step 4, we apply both the method of
moments and the EM algorithm for parameter estimation,
where the parameter estimates from the method of moments
are for initializing the EM algorithm. We prove in Section
4.3 that the method of moments learns the parameters in
polynomial time and a polynomial number of samples. (c)
It is important to note that cluster labels are symbolic. If we
want to directly aggregate the V' cluster membership matri-
ces {M,}Y_,, we need to solve the label correspondence
problem. The method outlined in step 9 utilizes the concept
of objects co-occurrence, where the relation [B,B7];; = 1
(1 <i,7 < n)indicates that the sample functions z; and x;
are in the same cluster w.r.t. the vth clustering.

When {3, },en are the eigen-functions w.r.t. the popula-
tion kernel (s,) = S, mE[(Xk(t) — u(t))(Xi(s) —
u(s))], the density plot of the fPC scores {a,}?; has
fewer distinct peaks for a larger eigen-dimension v. In other
words, the component Gaussian distributions in the mixture
model S5, k¢ (at; Uk, 02,) overlap significantly when
v is large. This motivates us to define the weight w, for
the vth base clustering in relation to the overlapping degree

"https://github.com/EAkeweje/GPmix

Algorithm 1 The GP mixture learning algorithm.

Input: The raw data D = {y;(¢,;)}",, the projection func-
tions {3, }Y_,, and the number of clusters K.
Output: The learned cluster labels {z;}7 ;.
1: Estimate the population mean function p and the n
sample functions {z;} ;.
2: forv=1,...,Vdo
3: Calculate the n projection coefficients:

Qi = (T — i1, Bo), 1 <0 <.

4: Train a univariatt GMM from the data {a;, 7,
K
denoted by >, _; Tord (s Upk, 02)).
5. Obtain the cluster membership matrix M,,:
v vaqs(aiv;uvkao—sk)

- K
Zj:l Wt)jﬁb(aiv; Uyj, 0'12;3')

My, =
forl<i<n, 1<k<K.
6: Construct a binary membership indicator matrix B,:

)

v {1, if k = argmax; <j<x {my; };

ik = 0, otherwise.
7: Calculate the weight w, (> 0): ZUV:1 wy = 1.
8: end for

9: Apply a multivariate clustering method on the affinity
matrix A = ZX:l wUBUBiT, and return the identified
cluster labels {z; }1_;.

between the component Gaussian distributions.

The development of an effective statistic for assessing the
separation between two Gaussian distributions traces back
to the work of (Dasgupta, 1999), where the concept of c-
separation was introduced. We here adopt the definition
given by (Maitra & Melnykov, 2010), which is in keeping
with our clustering objective. For two multivariate Gaus-
sians N(uy, Xx) and N(u;, X;) with mixing proportions
7 and 7;, define €;;, as the probability that an instance
from the kth mixture component N(uy, Xf) is misclassified
into the jth mixture component:

gjik = Pr (mro(Xsug,) <m;d(X;u;, %)

Analytic calculation of Ejlk is impractical, but numerical

computation can be readily done for univariate GMMs. The

total probability of misclassification, denoted by ¢, can

be evaluated by either ¢, = Zszl >4k Ejlk OF €y =

Zszl ok (D2 j 41 €51k)» Where the later is weighted by the

estimated mixing proportions. Then the weight w,, for the
-1

vth base clustering is w, = =v*—.
Jj=1%j

https://github.com/EAkeweje/GPmix

Learning Mixtures of Gaussian Processes through Random Projection

Both the number of projection functions V' and the number
of clusters K can be determined according to proper inter-
nal clustering validation criteria. Given that we employ the
parametric model GMM on the projection coefficients, we
can alternatively identify the optimal K value through the
Bayesian Information Criterion (BIC) or Akaike Informa-
tion Criterion (AIC). In our Python package, we fit multi-
ple GMM:s to the projection coefficients {{z; — 1, 8) }1 4,
where (3 is the first eigen-function of the population kernel
Y (s,t), and the optimal K is with the GMM having the
minimum BIC or AIC value.

4. Theoretical Analysis
4.1. Identifiability of GP Mixtures

A finite mixture model is identifiable if a given dataset leads
to a uniquely determined set of estimated parameters up to
a permutation of the clusters. (Teicher, 1961) and (Teicher,
1963) pioneered the study of identifiability for finite mix-
ture distributions; (Yakowitz & Spragins, 1968) showed that
finite mixtures of multivariate Gaussian distributions with
variable mean vectors and covariance matrices are identifi-
able. We here give sufficient conditions for the identifiability
of GP mixtures.

In the Karhunen-Loeve expansion, the Gaussian random
function X, can be written down as

X (t) = p(t) + Z Aoy (L),

where the random coefficient aj, is given by ap, =
(XK — ttk, bro), and satisfy the following: Elag,] =
0, var(agy) = Aky and Elagyag,| = 0 for any r # v. Even
though the expansion is infinite dimensional, in application,
a finite number V}, exists for a given functional dataset, such
that the first leading V}, eigen-functions can efficiently rep-
resent the sample functions. Therefore, we approximate Xy,
by the truncated Karhunen-Loeéve expansion:

Vi
Xi(t) = pr(t) + > ambro(t), k=1,..., K.
v=1

We let Hy = {ue(t) + 0 avbro(t) : ay, €
R,v = 1,...,V} denote the finite-dimensional linear
space spanned by the mean function and eigen-functions
from the truncated Karhunen-Logve expansion of Xj.

If we project X}, onto the finite-dimensional space H; at-
tributed to X;, we obtain the projection:

Vi
Po, (Xi) = m(t) + > af,bi(t).
v=1

If the two distributions GP(ux, Xy) and GP(u;,%;) are
non-identifiable, then the expected value (w.r.t. the distri-

bution of X}) of the L2-norm || X — Py, (X})| will be
approximately zero. Hence the magnitude of the discrep-
ancy || X — Pa, (Xy)|| unravels the identifiability between
the GP mixture components X and X;. If the expected
value of the discrepancy || X, — Py, (X})|| is large for any
mixture component X; (I # k), then the true cluster mem-
bership of any x ~ G P(uk, X) can be easily identified.

Theorem 4.1. Let R, = X} — Xk = Z:O:Vk+1 Akrbior
denote the residual random function for Xy. The squared

L2-distance between X, and Py, (X},) has the following
form:

Vi
X = Py (X7 = N = pall® + 2 ano(pn — p1a, b
v=1
Vi Vi Vi
+[D ak, =Y (X = b)?] + (R bi) .
v=1 v=1 v=1

“

If the eigen-value Ay, decays rapidly for v > V}, such that
1% ZjO:VkH Ak converges to 0 as Vi, — oo and V| —

oo, then the last term ZXL:1<RI<7 biy)? converges to 0 in
probability.

Theorem 4.1 was adapted from Theorem 1 of (Chiou & Li,
2007). In Equation (4), the two terms in the upper line are
related to the two mean functions, while the terms within
the square brackets are related to the two sets of eigen-
functions. In general, if the two mean functions pj and
v are not identical (with respect to the Lebesgue measure
on T), or if uy ¢ H;, then the expected value of the 13-
norm || Xy, — P, (X3)|| will be bounded away from 0. In
particular, if the following two pathological phenomena
do not occur, then the discrepancy || X — P, (Xk)| is
expected to be distinguishable:

e If the two mean functions puj and p; are identical,
and moreover by, € {Z:/lzl ayby @ ar € Ryr =
1,...,V}, forv = 1,...,Vj, then the discrepancy
| X5 — Pr, (Xg)|| reduces to the residual term, and

hence its expected value converges to 0.

e If the two mean functions p; and #l are not identi-
cal, but up € H; and by, € {>°,L; arbyr = ar €
R,r =1,...,V;} forv = 1,...,Vj, then again the
discrepancy reduces to the residual term, and hence
GP(py,) and GP(u, X;) are non-identifiable.

4.2. Random Projection

In the context of learning high-dimensional GMMs, pro-
jection to lower-dimensional subspaces has proven to be
indispensable (Dasgupta, 1999; Bingham & Mannila, 2001).
One important property is that data from a mixture of K

Learning Mixtures of Gaussian Processes through Random Projection

Gaussians can be projected into subspaces of O(log(K))
dimensions, while still retaining the approximate level of
separation between the Gaussian components. In this sec-
tion, we study the probability that a 1-dimensional random
projection achieves a separation of ¢ or higher.

Let H(T,R) be a separable Hilbert space. (When T is
a closed and bounded interval, then for any continuous
function z : T — R, we have € H(T,R).) For any
function § € H(T,R), the marginal distribution of the
projection coefficient (x; — u, 8) is the univariate GMM
22{:1 FkN(<,uk — W, ,8), Zloil)\kl<bkl7 ﬁ>2) A Borel prob—
ability measure g on H (T, R) is called Gaussian if each
of its one-dimensional projections is Gaussian. It is non-
degenerate if, in addition, each of its one-dimensional pro-
jections is non-degenerate. Theorem 4.2 is reproduced from
Theorem 4.1 of (Cuesta-Albertos et al., 2007).

Theorem 4.2. Let X and Y be two random elements taking
values in H(T,R). Let X ~ GP(p,X) be a Gaussian ran-
dom function. Let g be a non-degenerate Gaussian measure
on H(T,R), independent of the probability laws of X and

Y. If g ({5 € H(T,R) : (3, X) 2 <B,Y)}> > 0, where

the notation - stands for equality in distribution, then the
probability law of Y is GP(u, X).

Theorem 4.1 in (Cuesta-Albertos et al., 2007) does not as-
sume that the random function X is Gaussian, but only that
the distribution of X is determined by its moments. A ran-
dom function X is moment-determined if, e.g., the absolute
moments m, = E[||X||"] are finite and satisfy the Carle-
man condition: 3° o, m,(X)~Y/" = occ. It can be readily
proved that Gaussian random functions satisfy the Carle-
man condition and hence are moment-determined. Theorem
4.2 establishes that, given a reference Gaussian probability
measure g, if two Gaussian random functions have differ-
ent probability laws, then the g-probability of finding two
one-dimensional projections identically distributed is zero.
Therefore, Theorem 4.2 justifies our implementation of ran-
dom projection in step 3 of Algorithm 1.

The projection function [is generated at random from the
Gaussian distribution g. One appropriate Gaussian measure
is the strictly stationary Ornstein-Uhlenbeck process with
mean O and covariance function cov(U;, Us) = e~ ls—tl
that is, the mean-reversion coefficient is 1, and 5(t) ~
N(0, 1) for any ¢ € T. We below explain another approach,
and provide an upper bound on the expected number of
projections required to achieve e-separation.

Let {b, } yen denote a functional basis of H(T,R), and we
approximate each Gaussian random function X} by X
Xi(t) = > P | akyby(t), where p is large enough to offer
a good approximation for each random function. To gen-
erate a projection function 3(t), we randomly generate a
coefficient vector a = (a1, ...,a,)” from the standard nor-

mal distribution: a,, ~ N(0,1) forv =1,...,p, and write
B(t) = >°P_, ayby(t). It can be readily proved that the
projection function £ is from a Gaussian distribution. Note
that the Gaussian measure associated with [is degenerate;
a non-degenerate Gaussian process can be 3 + 34, with 3,
a Gaussian process tightly concentrated around zero, albeit
employing 3 or 5 + 3, has negligible effects in practice.

We then replace the 1-dimensional projection (X, B) by
(X, B), and we have

p p
<Xk:7 B> = <Z akvbva Z arbr> = (Bak)Taa (5)
v=1 r=1

where B = [(by, b,)]pxp, and @ = (g1, ., cpp)T
is a Gaussian random vector. Equation (5) reduces the
1-dimensional projection of the random function X to
the 1-dimensional projection of the random vector Bay,.
For k = 1,..., K, let N(ug,Xy) denote the Gaussian
distribution of Bay. By projecting the functional data
{x;}, onto the linear space expanded by {b, }?_,, the pro-
jected multivariate data confirm to the multivariate GMM
Z,If:l mN(ug, Xx). For two p-variate Gaussian distribu-
tions N(uy,) and N(u;, X;), where the covariance ma-
trices are semi-positive definite, we have the following theo-
rem (reproduced from (Kushnir et al., 2019)):

Theorem 4.3. Let a = (a1,...,a,)" denote the random
projection vector, where a,, ~ N(0,1) forv = 1,...,p.
Then the probability that the two projected Gaussians
achieve a separation of € or higher:

(g, a) — (u;, a)|
VaTSia+ /alTs;a

>€),

is lower bounded by

-1 -1

Q((1+7)2 g) [1exp (2= [r—log(1+7)]) |,
pP—=C 2

where T > 0 is a free parameter, Q(x) = Pr(X > x|X ~

N(0,1)) is the complementary cumulative distribution func-

tion, and

= 2p€* Aoz (B + 25)

Jup — w2

Let n(e€) denote the expected number of random projec-
tions required to attain e-separation in I-dimension, we

. 1 . _
have lim,_, ., m(e) < BT If € is such that (=
(log(log(p)))'=", where n > 0 is a free parameter, then

n(e) is sub-logarithmic in p: n(e) = o(log(p)).

Theorem 4.3 establishes that for sufficiently separated Gaus-
sians, after o(log(p)) random projections, a good direction
will be found that yields e-separation in 1-dimension.

Learning Mixtures of Gaussian Processes through Random Projection

4.3. Polynomial Learnability

Given the 1-dimensional GMM of e-separation from step
3, we now turn to the algorithmic problem of provably
recovering good estimates of the unknown parameters in
the univariate GMM, in polynomial time and a polynomial
number of samples.

We adapt the ideas from (Moitra & Valiant, 2010) to pro-
vide the theoretical guarantees on step 4 of Algorithm 1.
Theorem 4.4 below is on the polynomial learnability in the
sample size, and Theorem 4.5 below is on the polynomial
learnability in the runtime. Our proofs for the two theorems
differ from the approach taken by (Moitra & Valiant, 2010).

Theorem 4.4. Let X follow the univariate GMM
Zszl Tk N(ug, 03), and let x1,xXa,...,X,, be indepen-
dent draws from the univariate GMM. The univariate GMM
is in isotropic position, and T, > € forany 1 < k < K.
Then with probability at least 1 — 0,

1 &= . _ 1
- " _ E[X” 2 < —0OfeT
e R BP0 (),
where E [X"] is the rth order raw moment, and the hidden
constant on the big-Oh depends on the order r.

Theorem 4.5. Let X follow the univariate GMM
Zle 1 N(uk, 0%). Assume that m, > € and |uy, — u;| +
|U,§ — 0]2.| > ¢ foranyl < j # k < K, and that
X has zero mean and a bounded variance: E[X] = 0
and var(X) < 1. Given a target accuracy £ < € and
an integer R, we can find (in polynomial time) the pa-
rameter estimate (71,11,6%, ..., 7K, K, 6%) that gives
|E[X"] — E[X"]| < ¢ forany 1 < r < R. Here, X
is the random variable defined by the univariate GMM
Zle #xN(iy, 63). Moreover, we have iy, > €/2 and
|Gy, — Q5] + 67 — 67| > €/2, forany 1 < j # k < K.

In Theorem 4.4, for any target accuracy ¢ < e, if we
let the sample size m be polynomial in £~!, §~! and
el m = (£6)7'O (¢~ %), then with probability at least
1 — 6, the rth-order sample moment will be within & of
the corresponding true moment, for any r = 1,..., R.
The proof for Theorem 4.5 indicates that, through a brute-
force search over a uniform grid, we will find a grid point
(f1,171,06%, ..., 7k, dK,0%) that, for any r = 1,..., R,
the moment E[X"] is within £ from the true moment E[X"].
Moreover, the grid width 7 is polynomial in the target
accuracy & v = O(¢ §+1), with the big-Oh depending
on K, and therefore the runtime is polynomial in the tar-
get accuracy. In practice, we can only calculate the dif-
ference between the estimated and sample moments, i.e.,
|E[X"]— LS x7|, rather than calculating the difference
between the estimated and true moments |E[X"] — E[X"]|;
Theorem 4.4 and 4.5 together indicate that, with probabil-
ity at least 1 — 4, the method of moments will find a grid

point (in polynomial time and and a polynomial number of
samples) at which the raw moment E[X"] is within 2¢ of
the true moment E[X"], forany r = 1,..., R.

We might let © = (m1,u1,0%, ..., Tk, UK, 0%) and its es-
timate © = (71, 41,67, ..., 7K, Gk, 6%). We note that the
moment difference function 1,.(0, ©) := E[X"] — E[X"]
is a polynomial of 6K variables (i.e., the 6 K model pa-
rameters). Let I, be the ideal in the (Noetherian) ring
of polynomials, which are generated by the polynomials
{t1,1a,...,%,}. Then we have an increasing sequence
of ideals I; C I, C I3 C ---. Define I = U2, 1,
which is an ideal according to the ascending chain con-
dition. By the Hilbert basis theorem, the ideal [is finitely
generated. In particular, there exists an integer R such that
Ir = Iry1 = ---;thatis, I contains all the generators of
I: for any r > R, we can write

wT(Gv é) = Z Cj(®v é)%(@, é)v

Jj=1

where each coefficient ¢;(©,©) is a polynomial of the
6K parameters. We can conclude that, if the two mo-
ments E[X"] and E[X"] coincide for all orders from 1 to
R (namely, ¥,.(0, é) =0forr =1,...,R), then the two
moments E[X"] and E[X"] coincide for any order r > 1.
Therefore, we claim that the distribution function of X (not
the parameter ©) can be uniquely identified via the moments
{E[X"] : » = 1,...,R}. Note that (1) if the univariate
GMM f(z;0) = ZkK:l Trp(x; ug, o) is identifiable, in
that f(x;01) # f(x;©2) for any ©; # O, then the set of
parameters © can be uniquely identified via the moments
{E[X"] : r =1,..., R}; (2) we here only prove that finitely
many moments are able to uniquely identify the distribution
function of X; (Moitra & Valiant, 2010) proved that the
exact number of moments required is R = 4K — 2.

For many distribution families, identifying the values of
model parameters uniquely is impossible, due to the fact
that multiple parameter values can yield the same probability
distribution. We now prove that, for the univariate GMM
f(x; ©), if the mixture components have non-zero pairwise
parameter distance and non-zero weights, then the model
parameter O is identifiable.

Theorem 4.6. Let X follow the univariate GMM
Zszl TN (ug, 0}). Assume that m, > € and |uy, — u;j| +
lo? — 0]2-| > ¢ forany 1 < j # k < K. Then the model
parameter © is identifiable.

5. Experiments

We validate the efficacy of GPmix (Algorithm 1) on 12 syn-
thetic datasets and 10 real datasets, benchmarking it against
existing functional data clustering algorithms available in

Learning Mixtures of Gaussian Processes through Random Projection

R or Python. We adopt the widely used Adjusted Rand
Index (ARI) and Adjusted Mutual Information (AMI) for
performance evaluation. In Appendix G.1, we explain the
arguments in our GPmix Python package and elaborate on
the specific configurations tailored to each dataset for all the
seven algorithms involved in the benchmarking study.

5.1. Simulated Datasets

To ensure a comprehensive assessment, we investigate 12
simulation scenarios, covering a range of cluster sizes, sam-
ple sizes, and noise levels. Some scenarios are adopted from
prior studies, while others draw inspiration from the same
sources. Details of these simulation scenarios are provided
in Appendix G.2. For each scenario, we apply the clustering
algorithms on 100 randomly generated datasets. The result-
ing mean and standard deviation of the 100 AMI scores are
given in Table 1, and for the ARI scores, in Table 2.

The GPmix algorithm consistently ranks within the top three,
emerging as the top performer in 6 out of the 12 simulation
scenarios. For scenario J, all the seven algorithms struggled
to identify the true underlying structure. This difficulty
arises because the clusters in this scenario have an identical
mean function, making the GP mixture unidentifiable.

‘We note that the first six simulation scenarios (A to F) are
not a GP mixture model, yet our algorithm adeptly gen-
erated clusters that accurately mirror the underlying data
structure in all of these scenarios. The latter six datasets (G
to L) are from the GP mixture model, wherein Algorithm
1 is theoretically expected to excel. As observed, the algo-
rithm effectively fulfills these expectations by consistently
producing either the optimal clustering or one that closely
rivals the best in all six scenarios.

5.2. Real Datasets

We evaluated the seven algorithms on 10 real datasets from
the UEA & UCR Time Series Classification Repository:
ArrowHead (AH), BirdChicken (BC), CBF, DiatomSizeRe-
duction (DSR), ECG200 (ECG), FaceFour (FF), GunPoint
(GuP), Meat, Strawberry (SB), and Symbols (SYM). These
datasets, characterized by their substantial sizes and diverse
underlying structures, present a notable challenge for many
clustering algorithms.

Each algorithm underwent the clustering procedure ten
times to mitigate the impact of initialization, and we re-
ported the highest scores for each dataset in Table 3. Our
GPmix algorithm outperforms the others on 8 out of the 10
datasets. Generally, the AMI and ARI scores are lower than
those observed in the simulation study, indicating the com-
plexity of these real datasets. However, in comparison to
the other six algorithms, our GPmix algorithm consistently
demonstrates superior performance. In Appendix G.3, we

Table 1. Mean (upper line) and standard deviation (lower line) of
the AMI score for the 12 simulation scenarios.

Sim. GPMiIx FEM HDD cLu FC KM ADP
A 0.79 0.66 0.63 0.16 0.71 040 0.62

0.02 0.01 0.06 0.18 0.01 0.08 0.02
B 0.32 0.00 0.15 0.01 0.52 0.00 0.11

0.23 0.01 0.25 0.02 0.21 0.01 0.05
C 049 0.41 047 0.00 0.64 0.07 0.52
D

0.06 0.09 0.05 0.01 0.16 0.05 0.07
0.54 0.08 0.47 0.04 0.62 0.01 045
0.10 0.04 0.10 0.07 0.11 0.01 0.11

E 097 0.00 048 036 097 0.00 1.00
0.02 0.01 0.05 0.22 0.14 0.01 0.03
F 097 041 074 030 0.83 040 0.88
0.03 0.08 0.07 0.17 0.03 0.11 0.10
G 046 0.06 049 0.01 0.49 0.07 041
0.05 0.05 0.05 0.02 0.08 0.04 0.07
H 097 023 072 0.18 095 026 0.95
0.02 0.26 0.12 0.28 0.02 0.11 0.02
I 0.74 0.10 0.13 0.12 0.67 0.27 0.73

0.06 0.02 0.03 024 0.02 0.11 0.05
J 0.08 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.01 0.01 0.00 0.00 0.00 0.01
K 096 099 1.00 0.00 0.60 0.51 0.70
0.04 0.07 0.01 000 032 041 0.18
L 070 0.03 0.04 0.00 0.67 026 0.67
0.08 0.02 0.02 001 0.15 0.11 0.09

Table 2. Mean (upper line) and standard deviation (lower line) of
the ARI score for the 12 simulation scenarios.

SmM. GPmix FEM HDD cLu FC KM ADP
A 074 057 053 0.14 0.63 033 0.52
0.03 0.03 0.08 0.16 0.02 0.09 0.04
B 034 000 0.18 0.01 0.61 0.00 0.09
0.30 0.02 0.31 0.03 0.27 0.01 0.06
C 042 029 036 0.00 0.57 0.04 043
0.08 0.09 0.07 0.01 0.21 0.04 0.09
D 055 0.08 044 0.04 0.60 000 0.43
0.12 0.04 0.11 0.06 0.13 0.01 0.11

E 098 0.00 041 035 096 0.00 1.00
0.02 0.01 0.05 0.23 0.16 0.01 0.03
F 096 027 063 023 0.76 0.29 0.82
0.05 0.08 0.09 0.14 0.04 0.12 0.15
G 037 0.04 042 0.00 0.43 005 035
0.05 0.04 0.06 0.01 0.09 0.04 0.07
H 099 023 059 020 098 026 098
0.01 030 0.21 0.31 0.01 0.13 0.01
I 0.75 0.09 0.11 0.13 0.71 0.27 0.78

0.14 0.02 0.03 0.28 0.08 0.14 0.10
J 0.11 0.00 0.00 0.00 0.00 0.00 0.00
0.13 0.01 0.01 0.01 0.01 0.01 0.01
K 098 099 1.00 0.00 0.65 0.54 0.78
0.02 0.05 0.01 0.01 0.36 042 0.19
L 075 0.03 0.03 0.00 0.69 026 0.72
0.08 0.02 0.02 0.01 0.18 0.12 0.10

provide a detailed illustration of the clustering procedure
of the GPmix algorithm using two datasets: one simulated
data (Scenario F) and one real data (CBF).

Learning Mixtures of Gaussian Processes through Random Projection

Table 3. AMI scores (upper line) and ARI scores (lower line) for
the 10 real datasets.

DAtrA GPmix FEM HDD cLu FC KM ADP
AH 0.37 025 0.22 0.05 024 0.28 0.19
0.36 0.29 0.21 0.01 025 026 0.18
BC 0.24 0.03 0.06 0.22 0.08 0.10 0.08
0.29 0.04 0.07 0.15 0.10 0.10 0.10
CBF 0.84 0.37 0.47 0.01 0.53 0.34 0.40
0.87 035 0.44 0.00 044 031 0.31
DSR 0.94 0.79 0.82 0.00 0.83 0.72 0.78
0.95 083 0.86 0.01 0.86 0.73 0.82
ECG 0.37 0.15 0.17 0.03 0.37 0.17 0.07
0.38 026 0.28 0.03 0.37 0.28 0.14
FF 0.77 047 040 0.06 056 0.50 0.44
0.76 041 0.36 0.08 0.54 0.45 0.32
GuP 0.34 0.00 0.00 0.02 0.00 0.15 0.01
0.25 0.00 0.00 0.02 0.00 0.07 0.01
MEAT 0.70 0.93 0.54 0.36 0.54 0.66 0.72
0.69 095 0.44 037 049 0.69 0.69
SB 0.32 0.08 0.00 0.03 0.12 0.07 0.03
0.30 0.00 0.00 0.03 0.04 0.07 0.05
SYM 0.75 0.63 0.77 0.00 0.85 0.69 0.37
0.66 0.53 0.67 0.00 0.80 0.62 0.30

Table 4 outlines the computation runtimes for the seven al-
gorithms, each executed with the optimal configuration. All
experiments were conducted on a PC with a 3.20GHz pro-
cessor, 16 CPU cores, and 32GB of RAM. We excluded the
time spent on smoothing from the benchmark timings, since
this preprocessing step is essential for all seven clustering
algorithms. Clearly, clu, FC and ADP struggle when con-
fronted with complex datasets. In contrast, GPmix proves
to be both effective and efficient, clustering the real datasets
in less than a second. The SYM dataset comprises 1020
sample curves, each evaluated at 398 points. Comparing
the computation runtime of GPmix on SYM to that of other
algorithms demonstrates the scalability of the GPmix algo-
rithm.

Table 4. The run time for the real datasets.

DATASET RUNTIME (MILLISECONDS)
GPMix FEM HDD cLu FC KM ADP

AH 107 120 59 2112 290k 215 396
BC 18 27 20 242 2m 66 45
CBF 242 2174 3959 102k 57k 893 5909
DSR 625 481 3256 6338 1.2m 507 1034
ECG 53 49 37 20k 14k 121 378
FF 157 413 147 390 1.4m 192 158
GUP 50 283 106 18k 47k 134 400
MEAT 58 744 108 1548 2Mm 160 167
SB 144 1608 1546 1.6M 570K 683 14K
SYM 551 9803 3992 1.2M 3.4m 2917 40K

-2
-4 -4
-5 -5

BC ECG GuP SB AH CBF Meat DSR FF SYM B] K D E H I L G A C F
Dataset Dataset

Figure 1. Difference between actual and predicted cluster quanti-
ties, with datasets ordered by increasing cluster counts.

5.3. Number of Clusters

In the above study, for each algorithm, the number of clus-
ters is fixed at the true count. We now contrast their per-
formance by comparing their estimated cluster numbers.
Step 4 in Algorithm 1 allows us to utilize model selection
techniques such as BIC or AIC for determining the optimal
number of mixture components. Specifically, in our Python
package, we conduct eigen-decomposition of the population
kernel X(s, t), followed by evaluating the AIC/BIC score of
the GMM fitted to the fPC scores associated with the first
eigen-function, as it explains the most variation in the data.
The mixture model with the lowest AIC/BIC score indicates
the optimal model, and its number of components represents
the number of clusters. Figure 1 plots the estimation errors
on the number of clusters for each dataset. The datasets
are arranged in ascending order according to their cluster
numbers. FEM, HDD, and clu base their cluster numbers on
the BIC score, while the remaining three algorithms rely on
the Silhouette score. GPmix provides estimates within one
unit of the true count in 10 simulation scenarios and 8 real
datasets. Following GPmix, the FC algorithm demonstrated
commendable performance.

6. Conclusion

We developed a simple yet efficient technique for learn-
ing GP mixture models. Our method involves projecting
functional data onto multiple one-dimensional functions,
and learning a univariate GMM for each projection. We
established a lower bound on the expected number of pro-
jections required to achieve effective separation within the
1-dimensional mixture components. For univariate GMMs,
our algorithm ensures accurate estimation of unknown pa-
rameters in polynomial time and with a polynomial num-
ber of samples. This development significantly extends
the applicability of GP mixture models in cluster analysis.
Notably, our numerical study demonstrated the robust per-
formance of our method even in cases where the functional
data are not Gaussian.

Learning Mixtures of Gaussian Processes through Random Projection

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 101002240) and funding from the Science Foundation
Ireland under Grant number 21/RC/10295_P2. We are grate-
ful to the four anonymous reviewers for their valuable com-
ments.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Atienza, N., Garcia-Heras, J., and Muifioz-Pichardo, J.
A new condition for identifiability of finite mixture
distributions. Metrika, 63(2):215 — 221, 2006. doi:
10.1007/s00184-005-0013-z.

Bingham, E. and Mannila, H. Random projection in di-
mensionality reduction: Applications to image and text
data. In Proceedings of the Seventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pp. 245-250. Association for Computing Ma-
chinery, 2001. doi: 10.1145/502512.502546.

Bouveyron, C., Fauvel, M., and Girard, S. Kernel discrimi-
nant analysis and clustering with parsimonious Gaussian
process models. Statistics and Computing, 25(6):1143—
1162, 2015. doi: 10.1007/s11222-014-9505-x.

Chen, H., Reiss, P. T., and Tarpey, T. Optimally weighted L2
distance for functional data. Biometrics, 70(3):516-525,
2014.

Chiou, J.-M. and Li, P--L. Functional clustering and identi-
fying substructures of longitudinal data. Journal of the
Royal Statistical Society Series B: Statistical Methodol-
0gy, 69(4):679-699, 2007.

Cuesta-Albertos, J. A., Fraiman, R., and Ransford, T. A
sharp form of the cramér-wold theorem. Journal of
Theoretical Probability, 20(2):201 — 209, 2007. doi:
10.1007/s10959-007-0060-7.

Dasgupta, S. Learning mixtures of Gaussian. In 40th
Annual Symposium on Foundations of Computer Sci-
ence (Cat. No.99CB37039), pp. 634-644, 1999. doi:
10.1109/SFFCS.1999.814639.

Golovkine, S., Klutchnikoff, N., and Patilea, V. Clustering
multivariate functional data using unsupervised binary

10

trees. Computational Statistics & Data Analysis, 168:
107376, 2022.

Hall, P, Miiller, H.-G., and Wang, J.-L. Properties of princi-
pal component methods for functional and longitudinal
data analysis. Annals of Statistics, 34(3):1493 — 1517,
2006. doi: 10.1214/009053606000000272.

Huang, M., Li, R., Wang, H., and Yao, W. Estimating mix-
ture of Gaussian processes by kernel smoothing. Jour-
nal of Business and Economic Statistics, 32(2):259-270,
2014. doi: 10.1080/07350015.2013.868084.

Jackson, E., Davy, M., Doucet, A., and Fitzgerald, W. J.
Bayesian unsupervised signal classification by Dirich-
let process mixtures of Gaussian processes. In 2007
IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP '07, volume 3, 2007. doi:
10.1109/ICASSP.2007.366870.

Jacques, J. and Preda, C. Funclust: A curves clustering
method using functional random variables density ap-
proximation. Neurocomputing, 112:164—171, 2013. doi:
10.1016/j.neucom.2012.11.042.

Jacques, J. and Preda, C. Model-based clustering for multi-
variate functional data. Computational Statistics & Data
Analysis, 71:92-106, 2014. doi: 10.1016/j.csda.2012.12.
004.

James, G. M. and Sugar, C. A. Clustering for sparsely
sampled functional data. Journal of the American
Statistical Association, 98(462):397-408, 2003. doi:
10.1198/016214503000189.

Jiang, J., Lin, H., Peng, H., Fan, G.-Z., and Li, Y. Cluster
analysis with regression of non-Gaussian functional data
on covariates. Canadian Journal of Statistics, 50(1):221-
240, 2022. doi: 10.1002/cjs.11680.

Kushnir, D., Jalali, S., and Saniee, I. Towards clustering
high-dimensional gaussian mixture clouds in linear run-
ning time. In Chaudhuri, K. and Sugiyama, M. (eds.),
Proceedings of the Twenty-Second International Confer-
ence on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pp. 1379-
1387. PMLR, 16-18 Apr 2019.

Li, T. and Ma, J. Dirichlet process mixture of Gaussian
process functional regressions and its variational EM al-
gorithm. Pattern Recognition, 134:109129, 2023. doi:
10.1016/j.patcog.2022.109129.

Maitra, R. and Melnykov, V. Simulating data to study per-
formance of finite mixture modeling and clustering algo-
rithms. Journal of Computational and Graphical Statis-
tics, 19(2):354-376, January 2010. doi: 10.1198/jcgs.
2009.08054.

Learning Mixtures of Gaussian Processes through Random Projection

Meng, Y., Liang, J., Cao, F., and He, Y. A new distance with
derivative information for functional k-means clustering
algorithm. Information Sciences, 463-464:166—-185, 2018.
doi: 10.1016/.ins.2018.06.035.

Moitra, A. and Valiant, G. Settling the polynomial learn-
ability of mixtures of Gaussians. In 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science,
pp- 93-102, 2010. doi: 10.1109/FOCS.2010.15.

Rasmussen, C. and Ghahramani, Z. Infinite mixtures of
Gaussian process experts. In Dietterich, T., Becker, S.,
and Ghahramani, Z. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 14. MIT Press, 2001.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

Rivera-Garcia, D., Garcia-Escudero, L. A., Mayo-Iscar, A.,
and Ortega, J. Robust clustering for functional data based
on trimming and constraints. Advances in Data Analysis
and Classification, 13(1):201-225, 2019. doi: 10.1007/
s11634-018-0312-7.

Ross, J. and Dy, J. Nonparametric mixture of Gaussian
processes with constraints. In Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 1346~
1354, 2013.

Seitz, S. Mixtures of Gaussian Processes for regression
under multiple prior distributions. arXiv, 2021. doi:
10.48550/ARXIV.2104.09185.

Shi, J. and Wang, B. Curve prediction and clustering with
mixtures of Gaussian process functional regression mod-
els. Statistics and Computing, 18(3):267-283, 2008. doi:
10.1007/s11222-008-9055-1.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. Hier-
archical Gaussian process mixtures for regression. Statis-
tics and Computing, 15(1):31-41, 2005. doi: 10.1007/
s11222-005-4787-7.

Teicher, H. Identifiability of mixtures. The annals of Math-
ematical statistics, 32(1):244-248, 1961.

Teicher, H. Identifiability of finite mixtures. The annals of
Mathematical statistics, 34(4):1265-1269, 1963.

Wu, D. and Ma, J. A two-layer mixture model of Gaus-
sian process functional regressions and its MCMC EM
algorithm. [EEE Transactions on Neural Networks
and Learning Systems, 29(10):4894-4904, 2018. doi:
10.1109/TNNLS.2017.2782711.

Yakowitz, S. J. and Spragins, J. D. On the identifiability of
finite mixtures. The Annals of Mathematical Statistics,
39(1):209 — 214, 1968. doi: 10.1214/aoms/1177698520.

11

Yellamraju, T. and Boutin, M. Clusterability and cluster-
ing of images and other “real” high-dimensional data.
IEEE Transactions on Image Processing, 27(4):1927-
1938, 2018. doi: 10.1109/T1P.2017.2789327.

Zhang, M. Weighted clustering ensemble: A review. Pattern
Recognition, 124:108428, 2022. doi: 10.1016/j.patcog.
2021.108428.

Zhang, M. and Parnell, A. Review of clustering methods for
functional data. ACM Trans. Knowl. Discov. Data, 2023.
doi: 10.1145/3581789.

Learning Mixtures of Gaussian Processes through Random Projection

A. Proof of Theorem 3.1 The proof for K being self-adjoint is straightforward: for

everyy € H(T,R),
The function domain T is a compact interval, and hence if Yy ()

Y (s, t) is a Hilbert-Schmidt kernel, then the integral opera-
tor K will be compact. We have (Ka,y) = / (Ka) (¢)y(t)dt
-

|, [= opasa = [([ste.ateias fotoyi

-1/ \fwkEuxk(t)—u(t))(Xk(s)—u(smfdsdt = [a([s mtorie)as

2 = <x7 Ky>
/ /T Z R LK () —) (Xi(s) — ()| sl
© B. Motivation for the Ensemble Approach
/ / Z T2E[(Xy (t) — u(t))?]E[(X1(s) — u(s))?]dsdt Based on the relation presented in Equation (3), it is evident
Tk that fitting a univariate GMM to the projection coefficients

(7 {aip}™, would enable us to infer each cluster label z;

K 9 from its posterior distribution. However, the quality of the
= Z ﬂi (/ E[(Xk(t) — u(t))Q]dt) inferred cluster labels {z;}7 is highly influenced by the
k=1 T degree of overlap among the component univariate Gaussian

K 9 distributions. For example, a mixture of two univariate Gaus-

= Z 2 (/ E[(X5(t) — pr(t) + pa(t) — u(t))Q}dt) sian distributions with equal standard deviations is bimodal
T only if their means differ by at least twice the common stan-

< 00. 8) dard deviation. Therefore, if we want to correctly identify
the hidden cluster labels from the mixture modeling of only

Here, we have applied Jensen’s inequality for (6) and one coefficient set {;, }7" ;, the K component univariate
Cauchy-Schwarz inequality for (7). The random functions Gaussian distributions have to be adequately far apart from
{X}} are Gaussian, and hence the inequality (8) is valid, each other and have low overlapping degree among them.
from which we conclude that (s, t) is a Hilbert-Schmidt ~ Apparently, it is a formidable computational and statisti-
kernel and that K is compact. cal challenge to determine the function 3, onto which the

) projections of the GP components are well separated. There-
> : . L. .
Next, we show that {Kz,) > 0 for every z € H(T, R) fore, rather than finding one perfect projection function, we

(Kz, z) utilize multiple imperfect projection functions and employ

’ an ensemble clustering method to aggregate the different
= / (Ka)(t)z(t)dt univariate GMMs.

-

Note that, for any sample function x;, while two fPC scores

= / (/ (s, t)x(s)ds) x(t)dt @ik and a;y, are always independent, the projection coeffi-

T TK cients ok, and oy, are not independent:
— [[S mEIX0) - n)(Xalo) — sl (s)a(t)dsi

TIT —1 0 0o

K - cov(iy, oir |2 =B D airi(bii, Bo) aikg (brg, Br)]
=Y mE / / (X0 (8) — u(8)][Xx(s) - u(s)tx(s)x(t)dsdt} =1 =1

LJT JT

9) Z 1{bkt, Bo) (bri, Br)-

k=1 In other words, the two base clusterings obtained from the

>0, two sets of projection coefficients {«;, 7, and {a;, }7

are dependent. This is a blessing rather than a curse. Oth-

where we have applied Fubini’s theorem for (9) to swap the erwise, if the datasets {«, }7; forv = 1,2,... are com-

order of expectation and integration. Therefore, the operator ~ pletely independent, then there is no strength to be bor-
K is positive. rowed” across the different projections.

12

Learning Mixtures of Gaussian Processes through Random Projection

C. Proof of Theorem 4.1

We re-arrange the terms in Equation (4):

| Xk — Pr, (Xe) H2

Vi
= [l — pul|? +Zakv +2) aro{pn — pu, beo)
v=1 v=1

(10)

Vi Vi
= (X = s bn)” + Y (Ri, b))
v=1 v=1

Building on the orthonormality of the eigen-functions
{b1,}32, we have

Xk — P, (X)) ||

Vi
= | Xk — = > af,bi|
v=1
\%]
= 1 Xk — mll® + 11D ag, bl — 2

v=1

— M, Z alvblv

Vi
= | X — ll® +) _l(af)? — ;b))

v=l

— 2@;21 <Xk

For the first term, we have

1K — pu?
Vi

= Nk = i+ Y arubrol|?
v=1

Vi Vi
= Nl = mall® 4 1) arobroll® + 2 aro ik — 1, bro)

v=1 v=1
Vi Vi
= ”:uk - ;u'lH2 + Zai” +2 Zakv<,uk — M, bkv>-
v=1 v=1

For the second term, with the decomposition af, = (X}, —

ti1, b)) = (Xg — i, bi) + (Ri, br), we have
Vi
> l(ag,)? = 2af, (Xg — pu, biy)]

v=l
Vi

= Z[(<Xk — 1, bry) + <Rkvblv>)2

v=l
=2 (Ko = 1, bua) + (Riesbun)) (Ko =, bua)]

Vi Vi
= = Xk — s biw)® + > (Ri, bio)?
v=lI v=lIl

Piecing together the above equations completes the proof of
Equation (10).

13

Now we investigate the residual term in Equation (10):

3 (i) =i(>

v=1 v=1 \r=Vi+1

Vi 00 00
= Z Z Z AfrAks <bk’7’7 blv> <bk57 blv> .

v=1r=Vi+1s=V,+1

2
Qfr <bkr7 blv>>

Taking expectation w.r.t. the distribution of X, and utilizing
the uncorrelatedness of ay, and ay, it follows that

7
ZEKRkv blv>2]

Vi oo oo
= Z Z Elagraxs| Ok, biv) (Ors, biv)
v=1r=Vi+1s=Vi+
Vi [eS)
- Z)\k7'<bk7'a blv>
v=1r=Vi+1
Vi 0o
Z Z)\kr bk’l“u bk:r> <bl'U7 blv>
v=1r=Vi+1
=Vi > Mk
r=Vi+1

which converges to 0 by assumption, implying that
lezl Ry, bip)? converges to 0 in probability.

D. Proof of Theorem 4.4

By Chebyshev’s inequality, we have that for any x > 0,

1 & 1
<var(— —var(X") < —E[X*].
Varmg var() < 5 (X7
Recall that the univariate GMM Zle e N(ug, 07) is in
isotropic position: E[X?] = 1, and that the mixing weights
are all bounded by e. Therefore, we have

K
X% = 37 mB [Y2Y ~ Ak, 0F)]

k=1

Mx

E [YV?Y ~ N (ug,0})],

x>~
Il
—

Learning Mixtures of Gaussian Processes through Random Projection

from which we obtain E [Y?2|Y ~ N (uy,07)] < e
Given Y ~ N (uy, 0%), it follows that
i = (B[V)? < B[V?) < 7,
and
=E[Y?] -

Finally, we have that

(E[Y))? <E[Y?] <!

K
=Y " mE [Y¥|Y ~ N (ug, 0})]

k=1

E [X*7]

and that

E [Y*Y ~ N (ug,o})]
=E [(uk + O‘kZ)2T|Z ~ N(O, 1)]

Z <2r) 23 2r QJE[Z2r 2]]
j=0

< _iO (;Z) (2r —2j — DN

from which the theorem follows.

E. Proof of Theorem 4.5

A brute force approach for parameter estimation is to (1)
evaluate the moment E[X"] over a uniform grid in the pa-
rameter space; (2) compare the sample moment - >°™ | x7
with the moments E[X"] evaluated at all the grid points.
The final parameter estimate is the grid point at which the
moments of order from 1 to R all well match the sample mo-
ments. We let the identical width of the grid cell be denoted
by 7, and hence every parameter estimate is a multiple of ~.
Let (#1,41,06%, ..., 7Kk, UK, 5%) denote the optimal grid
point w.r.t. the agreement with the sample moments and the
constraint that Zszl 7, = 1. Then we have |7y, — x| < 7,
lup — Q| < vand|of — 62| <, forany 1 <k < K.

From the problem definition, we have min{m; : k
1,....,K} > e If e < 2v, then min{fy k
1,...,K} >y >¢€/2. If e > 27, then |, — 7| < v < €/2
and therefore 7, > 7 — v > € — €/2 = ¢/2. To conclude,
we always have min{7y : k=1,..., K} > ¢/2.

Given |uy — uj| + |0} — 02| > €, we might let |u, —
uj| = 0 and hence |0} — 0| > e. With the constraint
that >, 7y, = 1, the difference |62 — 67| is a non-zero
multiple of . Moreover, we can prove that o — 67| +]0% —
Az\ < 1. Therefore, if € < 27, then |67 — A2| >y >€/2.
If € > 2, then |6} — 63| > |of — o3| — (lo} — 67| +
|03 — 67]) > € —~ > €/2. Therefore, we always have
|62 — O'j2| > €/2. By analogy, if [uj, — u;| + |0 — 07| > €
and |0} — o3| = 0, we can prove that |, — ;| > €/2. For

14

the general case, we can write [uy, — u;| = €1, [0} — 07| =
€2 and €; + e > €. We then independently prove that
g — 4| > €1/2 and |67 — 67| > €3/2; and therefore we

have |y, — ;] + |67 — 63| > €/2,forany 1 < j # k < K.

‘We now evaluate the moment difference between the true
and estimated GMMs. We have var(X) E[X?]

Zszl mE [Y2|Y ~ N (ug, 07)], and therefore

1>

K
Z Y2|Y N./\/'(uk,oﬁ)]
k=1

K
> e E[Y?Y ~ N(u,0p)] -
k=1

Again, given Y ~ N (uy, 03), we have
up = (B[Y])? <E[Y?] <€,

and
= E[Y?] - (E[Y])? <E[Y?] <€l
If r is even, we write 7 = 2v and

E[Y'Y ~ N(ug,03)] = E[(u, + 04 %)"|Z ~ N(0,1)]

20\ 95 20-2j0r20-2;
=3 (30)utror etz

J=0

< 0(e™). (11)

Then the difference in the moments is
B[V = WY ~ N (i, 63), Y ~ N (g, 07)]
v 2
=30 () o2 - o it
=0 N2

We might let ui, > 0. With the difference between the true
and estimated parameters being bounded by : |ug — G| <
v and |07 — 67| < v, we have the following inequality:

G2 5202 g2 520
|1y, 0 U o |
< (Uk +’7) (0_ +’7)U J uijo_iv—%

2j 20-2j 72+ 27Uk Y \v—j
=u o " [(1+ ")J(1+U—%)v 7 1]

2
<e Y2 -1) max{ﬂ

2}

k

where we have utilized the inequality that, when ¢ < 1,
(I+¢)» =1 < (2¥ — 1)c. Therefore, we have |[E[Y"] —
E[Y"]| < O(e™").

If we were given the true mixing weights, the difference
in the moments |E[X"] — E[X"]| would be bounded by K
times of O(e~"y). In the brute force approach, we have

Learning Mixtures of Gaussian Processes through Random Projection

|7 — 7x| < 7, and Equation (11) gives the upper bound
on every component moment; therefore, the rounding of
the weight will contribute an extra of at most O(e~v).
Adding the two bounds together, we get that each moment
E[X"] can be off from the true one E[X"] by at most K x
O(e7?y) 4+ O(e~ V7). Therefore, letting v = cx&’Tt =
CK§%+1, where the constant cx depends on K, then the
moment E[X2?] will be within ¢ of E[X?2Y].

If r is odd, then we write r = 2v + 1 and

E [\yrw ~ N (ug,o7)]

2v+1 . 2j+1 2025
= Z (2] n 1) (2v—2j —)" o
< O(e_(”‘*'i)).

By analogy, we have

~27+1 ~2v—275 25+1 2v—-2j
e —Ug O |

k
< (uk +7)¥ (o} + v)“ J

_uij+1 20—2j5 [(1+

2]—0—1 20—2j

— Uy Oy
Lyt Ly -]
Ok

v
5}
Ok

< e~(wtz)(guiitl _) max{—

Therefore, the error bound for [E[X?2"+1] — B[X2"*1]| is

(F3)y) + O~)y).

K x Oe™
Letting v = cx€TE = &5t then the moment
E[X27H] will be within ¢ of E[X20+1].

F. Proof of Theorem 4.6

Our proof is built on the sufficient condition given by
(Atienza et al., 2006) for a finite mixture of distributions to
be identifiable. In Lemma F.1, A€ denotes the accumulation
set of A C R?, consisting of all points for which every
neighborhood contains infinitely many distinct points of A.

Lemma F.1. Let F be a family of distributions. Let M
be a linear (one-to-one) mapping which transforms any
F € Finto a real function Mg with domain Dr C R, Let
D3 ={x € Dp : Mp(x) # 0}. Suppose that there exists
a point xq verifying
Xo € [M<k<k D}k]ca

for any finite collection of distributions Fy, Fs, ... Fg €
F. If the order

]\/[FZ (X) _

Mp, (x) — 0

Fy < Fy if and only if limy 5,

is a total ordering on F, then any finite mixture of distribu-
tions of F is identifiable.

15

If we have ZkK:ll T = ZkKil #1Fy, where Fy, < F),
Fy < Fiy, Fk < Fk+1 and K; < K, then the proof

for Lemma F.1 affirms that 7, = 7, and Fk = Fy, for
k=1,. Kl,andthatzk K+17Tk:Fk—0

Let F be the family of univaritate Gaussian cumulative
distribution functions: F = {Fy, = N (ug,0%) : 1 <k <
K}. Let M be the map which transforms Fj, € F into its
moment generating function, a real function. In fact, M is
an integral transform and we can readily prove that it is a
linear and one-to-one mapping.

For any F}, € F, we have

1
Mp, (x) = exp (ukx + 20%5:{2).
The domain of the moment generating function M, is
the real line: D}, = Dp, = (—00,+00), and therefore
the accumulation set is (D7,)¢ = [~o0, +00]. We pick
X = 400, and it follows that

Xg € [ﬁlngK D;k]c

For any Fy, F; € F, we have

Mp,(x) exp <[
5 (%)

MFIc (X)
Mp
To have the property that limsy ., 77- (X) = 0, the expo-

wlx -+ 5o - olx?).

nent need approach to —oo, or equlvalently,

72~ ot <0orfo? ~ of =Oandu; — uy <0 (12

The condition (12) naturally leads to our definition of the
total order <; that is, we have F, < Fj if either [0']2- -0l <

0] or [0F — o = 0 and u; — uy < 0).

Finally, we note that the condition (12) is equivalent to the
condition that |03 — 07| 4 |u; — ug| > €. The requirement
on m > € is intuitive, and the proof is complete.

G. Supplementary Materials for the
Experiments

G.1. Details on Algorithm Configuration

For each algorithm, the argument for the number of clusters
is set to the true cluster number in the dataset.

1. FEM (from R package funFEM): The other arguments
are set to model = "all", crit = "bic",
init = "kmeans", maxit = 50, eps
le-06. This configuration enables the application
of all 12 supported models (“DkBk”, “DkB”, “DBk”,
“DB”, “AkjBk”, “AkjB”, “AkBk”, “AkBk”, “AjBk”,
“AjB”, “ABK”, “AB”). For each dataset, the clustering
result is given by the model with the lowest BIC value.

https://www.rdocumentation.org/packages/funFEM/versions/1.2/topics/funFEM

Learning Mixtures of Gaussian Processes through Random Projection

2. HDD (from R package funHDDC): The other
arguments are set to model c ("AkjBkQkDk",

"Ak jBQkDk", "AkBkQkDk", "ABkQkDk",
"AkBQkDk", "ABQkDk"), init="kmeans",
threshold=0.1, criterion = "bic",

itermax 200. For each dataset, the clustering
result is given by the model with the lowest BIC value.

clu (from R package Funclustering): The other argu-
ments are set to nbInit 20, thd 0.05,
increaseDimension FALSE, hard =
FALSE, fixedDimension integer (0).

FC (from R package fdapace): The package supports
two clustering methods “EMCluster” and “kCFC”.
For the “kCFC” method, the other arguments are
set to cmethod = "kCFC", optnsFPCA
NULL, optnsCS NULL, and for the “EMClus-
ter” method, the other arguments are set tocmethod
= "EMCluster", optnsFPCA = NULL,
optnsCS NULL. For each dataset, the clustering
result is given by the method with the highest AMI or
ARI score.

. km (the kmeans_align function from R package
fdasrvf): The other arguments are set to seeds
= NULL, centroid_type "mean",
alignment FALSE.

. ADP (from R package FADPclust): The package sup-
ports two clustering methods “FADP1” and “FADP2”.
For the “FADP1” method, the other arguments are
set to method = "FADP1", proportion
NULL, f.cut 0.15, and for the “FADP2”
method, the other arguments are set to method
"FADP2", proportion NULL, f.cut
0.15. For each dataset, the clustering result is given
by the method with the highest AMI or ARI score.

For the GPmix algorithm, we need to specify the family
of projection functions, the number of projection functions,
and pertinent hyper-parameters associated with the chosen
projection family. Our package offers six types of projec-
tion functions: eigen-functions from the fPC decomposi-
tion (fPC), random linear combinations of eigen-functions
(rl-fPC), B-splines, Fourier basis, discrete wavelets, and
Ornstein-Uhlenbeck (OU) random functions. A detailed
explanation of each projection family is available in the
package’s documentation file. Table 5 gives the configura-
tion of the GPmix algorithm for the ten real datasets and
12 simulation scenarios. For the wavelet families, namely
{db10, haar, rbiol.3, rbio6.8, sym17, bior2.4}, we need to
specify a lower resolution, which together with the num-
ber of projection functions determine the location and scale
shifts of the mother wavelet. For B-splines, we need to

16

Table 5. Specification of the projection family, the number of pro-

jection functions, and if applicable, the hyper-parameter (HP) value

for the selected projection family.

DATA FamiLy No. HP \ SiM. FAMILY No. HP
AH DB10 8 1 A HAAR 64 1
BC B-SPLINE 2 1 B RBIOL.3 2 2
CBF HAAR 14 1 C BIOR6.8 32 1
DSR (018 32 - D HAAR 32 1
ECG HAAR 6 4 E FPC 2 -
FF BIOR2.4 64 8 F B-SPLINE 16 3
GUP BIOR2.4 6 1 G RL-FPC 16 -
MEAT BIOR2.4 10 8 H FOURIER 2 -
SB RBI06.8 6 2 I HAAR 64 1
SYM FOURIER 16 - J B-SPLINE 16 3

K RBIO6.8 8 4

L RL-FPC 16 -

specify the order. In Table 5, the optimal configuration was
selected in a grid search strategy according to the ARI and
AMI scores. In real applications, we rely on internal clus-
tering validation indices such as the Silhouette validation
index (SIL) or Davies-Bouldin score.

G.2. Details on the Real and Simulated Data

In Figures 2 and 3, we plot the functions for each dataset,
colored by their cluster labels. For the 10 real datasets from
the UEA & UCR Time Series Classification Repository,
we included the sample curves from both the training and
testing datasets. The configurations of the 12 simulation
scenarios are explained below.

¢ Scenario A (Golovkine et al., 2022): We randomly
simulate a set of 1000 curves. Each curve is evaluated
at 101 equidistant points in the interval [0, 1]. These
curves are generated from a mixture of 5 components,
each having an equal mixing proportion of 0.2. The
random functions are formulated as follows:

Xi1(t) = pa(t) + a1 (t) + bpa(t) + cos(t),

Xo(t) = pa(t) + dor(t) + ed2(t) + fos(t),

X3(t) = pa(t) + agi(t) + boa(t) + cos(t),

Xa(t) = p2(t) + dp1(t) + eda2(t) + fos(t),

X5(t) = p2(t) + déi(t) + eda(t) + fos(t) — 15¢,
where

dr(t) = V2sin ((k —0.5)nt), k=1,2,3,

and

i (1) 20 S) 2

T T+exp(—t T Ttexp(—t)
The coefficients are Gaussian variables: a ~ N(0, 16),
b ~ N(0,64/9), ¢ ~ N(0,16/9), d ~ N(0,1), e ~
N(0,4/9), and f ~ N(0,1/9).

https://www.rdocumentation.org/packages/funHDDC/versions/1.0/topics/funHDDC
https://www.rdocumentation.org/packages/Funclustering/versions/1.0.2/topics/funclust
https://www.rdocumentation.org/packages/fdapace/versions/0.5.9/topics/FClust
https://www.rdocumentation.org/packages/fdasrvf/versions/2.0.2/topics/kmeans_align
https://cran.r-project.org/web/packages/FADPclust/FADPclust.pdf

Learning Mixtures of Gaussian Processes through Random Projection

Xt

X0

Xt

Figure 2. Plots of smoothed version of the 10 real datasets.

* Scenario B (Jacques & Preda, 2013): We randomly

generate 200 curves from a population of two clusters,
where the mixing proportions are 0.7 and 0.3. The
curves are evaluated at 51 equidistant points in the
interval [1, 21]. The random functions are formulated
as:

X1(t) = ahq(t) + bha(t) + €(t),
Xg(t ah1(t) + G(t),
where hq(t) = [6 — |t — 7|]+, ha(t) = [6 — |t — 15]]+,
a~N(0,1/12),b ~ N(0,1/12), and €(¢) is a white
noise such that var(e(t)) = 1/12.

* Scenario C (Jacques & Preda, 2014): We generate

17

Xt

Figure 3. Plots of the 12 simulated datasets.

200 curves from a mixture of five random functions,
each having an equal mixing proportion of 0.2. For
1 < k < 5, the random function X}, takes the form:

Learning Mixtures of Gaussian Processes through Random Projection

—21 kt
X (t) = T—i—t—i—k‘Ul cos <1O>+k:U2 sin (k + 1O>—i—e(t)7

where Uy, Us ~ N(1,1) and €(t) is the unit-variance
white noise. The curves are evaluated on 101 equidis-
tant points in the interval [1, 21].

Scenario D (Jiang et al., 2022): We generate 200
curves from a mixture of three random functions,
each having an equal mixing proportion of 1/3. For
1 < k < 3, the random function X, takes the form:

Xi(t) = exp ([gx(t) + Urk + ex(t)]/4)

where ¢1(t) = exp(t) — 1, g2(t) = sin(nt), and
g3(t) = —0.5t2 + 0.5. €, (t) is a GP with zero mean

and covariance function cov(eg(t), €x(s)) = okp;: sl

where (02, p1) = (0.1,0.3), (02, p2) = (0.15,0.35),
and (02, p3) = (0.2,0.4). The random value U; is
generated from the (0, 1) uniform distribution.

Scenario E (Meng et al., 2018): We generate 200
curves from a mixture of three random functions, each
having an equal mixing proportion of 1/3. The random
functions are formulated as:

X1(t) = cos(1.57t) + €(t),

Xs(t) = sin(1.57t) + e(t),

X5(t) = sin(wt) + €(t),
where €(t) is a white noise of zero mean and unit vari-

ance. The curves are evaluated on 101 equidistant
points in the interval [0, 1].

Scenario F: With a Gaussian kernel X(¢,s) =
exp(—3(t — s)?), we define the following models:

Cy(p,t) ~t+GP (pcos(?;), E(t,t))
+GP (psm(p + 10) E(t,t)) + €(t),
Co(p,t) ~ t + GP (psin(i%),E(t,t))

+GP (pcos(p+ o) 2(515751:))

+GP <p (\/E+ 1t0> S8t 8t)> +e(t),

where €(t) is a zero-mean white noise of variance
1/64. We generate 200 curves from a mixture of 6
random functions, each having an equal mixing propor-
tion of 1/6 Xl(t) = Cl(l,t), Xg(t) = Cl(Q,t),
X3(t) = Ci(3,1), Xu(t) = Ca(Lt), X5(t) =
C3(2,1), X6(t) = C2(3,1). The curves are evaluated
on 30 equidistant points in the interval [0, 50].

18

¢ Scenario G (Chen et al., 2014): We generate 200

curves from a GP mixture of four components, each
having an equal mixing proportion of 1/4. The random
functions are formulated as

X1(t) ~ GP(u1(t), S(t,£:1,0.1)),

Xo(t) ~ GP(us(t), S(t,:1,0.15)),
X3(t) ~ GP(us(t), S(t,:1,0.20)),
Xy(t) ~ GP(pa(t), X(t,1;1,0.25)),

where the covariance function take the form
Y(t,s;8,0°%) = 0%(28) 'exp (=t — s).

The mean functions are

i (t) = — sm(t —1)In(t +0.5),

p2(t) = cos(t) In(t + 0.5),

pi3(t) = —0.25 — 0.1 cos(0.5(t — 1))t-5/5¢5 + 0.5,
pa(t) = 0.6 cos(t) In(t + 0.5)/(t + 0.5).

Each curve is evaluated at 101 equidistant points in the
interval [0, 5].

Scenario H: We simulate 500 curves from a GP mix-
ture of 3 components, where the mixing proportions
are 0.5, 0.25 and 0.25. The random functions are for-
mulated as:

X1(t) ~14+GP(pi(t), 2
Xo(t) ~ 2+ GP(uz(t), X
X3(t) ~ GP(/-L3()72())) +€()

where $(t,s) = exp(—3(t — $)?), i (t) = cos(t),
pa(t) = cos(t) — 0.5¢, usz(t) = —0.5¢t + 0.5, and
e(t) ~ N(0,0.04) is a white noise. The curves are
evaluated at 30 equidistant points in the interval [0, 20].

Scenario I: The simulation configuration is the same
as that of scenario H, except that there is no white noise
in the component GP processes.

Scenario J: To investigate the case where the compo-
nent GPs have the same mean function but different
covariance functions, we simulate 200 curves from a
mixture of two components, where the mixing pro-
portions are 0.4 and 0.6. The random functions are
formulated as:

Xa(t) ~ GP(p(t), X1(t, 1))
XQ(t) ~ Gp(u(t)a Eg(t,t)),

where p(t) = cos(t), $1(t, s) = exp(—1(t — 5)?),
and ¥5(t, 5) = (1++/3|t —s|) exp(—+/3|t —s]|). Each
curve is evaluated at 50 equidistant points in the inter-
val [0, 10].

Learning Mixtures of Gaussian Processes through Random Projection

* Scenario K: The simulation configuration is the same
as that of scenario J, except that the two GPs now
have different mean functions: pq(t) = cos(t) and

ua(t) = cos(3t).

¢ Scenario L: We simulate 200 curves from a mixture
of three components, where the mixing proportions
are 0.4, 0.3 and 0.3. The components are GPs with
different mean functions:

where X(¢, 5) = exp(—5(t — s)?), p1(t) = [3 — |t —
Ay palt) = 3 — |t = 811, and pig(t) = cos(t).
Each curve is evaluated at 100 equidistant points in the
interval [0, 10].

G.3. Details on the Cluster Analysis of Two Datasets

Here, we provide an illustration of the clustering process
using two datasets: one simulated data (Scenario F) and one
real data (CBF). In Figure 4, we depict the projection func-
tions for the simulated data (left) and the CBF data (right).
The 16 projection functions in the left panel are orthonor-
malized B-splines, while the 14 projection functions in the
right panel are wavelets from the Haar wavelet family.

0
H

Butt)

But)

Figure 4. Projection functions for the simulated data (left) and the
CBF data (right).

The projection process generates different sets of projection
coefficients by projecting the curves onto the various pro-
jection functions. In Figure 5, we provide histogram plots
of the different sets of projection coefficients for the simu-
lated data, with the red curves representing Gaussian density
functions from the estimated univariate GMM. Moving to
Figure 6, we showcase the distributions of projection coef-
ficients for the CBF data. Unlike the fPC decomposition,
where the distribution of fPC scores tends to become more
uni-modal, the histogram plots in Figure 5 and Figure 6 con-
sistently exhibit different modes. In comparison to Figure
5, the density curves in Figure 6 exhibit a greater degree
of overlapping, amplifying the complexity of the clustering
problem. Nevertheless, our theoretical study asserts that,

19

after o(log(p)) random projections, a good direction will be
found that yields good separation in 1-dimension. In Figure
6, the mixture components associated with the second pro-
jection function demonstrate clear separation, highlighting
the effectiveness of the clustering approach.

Density
Density

Density
Density

oars l"
- Alm AN

Ai \

. De}nsitz
 Density
, Densiy

_ oensiy

. :Degnsiéy .
. E;engsit:y .-
. Dger;sit:y -

. :Der;sit;y .-

. :De?sitg/ .

. ?erésit)é .

4 [f‘?ensiity g £
3 ?e:ns.i_ty.“_ g g

Figure 5. Histogram plots of the projection coefficients (for the
simulated data), overlaid with the estimated density curves.

Dfn:kg -

. geqfk! o -
Deq;ﬁ{ .

. Dgnsit;y .

s
10
livli II
[0 |\
14 i' ||I|| ||||n.,
T

||||I
ol H

Density
Density
Density

il

l"

Density

m
W
||i..‘,

|| 'I ' |
Y il
o ‘ I||| il I}

Density
Density

Density
Density

rll

, A"l imb 1||||I
% oo

k|||||li.:
02

If

sl

o :.l!llm
- —

Density
Density

Figure 6. Histogram plots of the projection coefficients (for the
CBF data), overlaid with the estimated density curves.

Learning Mixtures of Gaussian Processes through Random Projection

Following the learning of individual GMMs, we calculate
the weight for each base clustering based on the degree of
overlapping among its mixture components. Figure 7 plots
the two sets of weights. For the CBF dataset, mixture com-
ponents over the first projection function exhibits relatively
higher overlapping, therefore receiving lowest weight. Sim-
ilarly, for the simulated dataset, the mixture components
over the tenth projection function demonstrate significantly
lower overlap, resulting in the highest weight for the tenth
base clustering. Figure 8 presents the two clustering results,
with each curve color-coded according to its cluster label.

0.200

0.1751

0.150 1

0.1254

wy

0.100

0.075 1

0.050 1

0.025 4

Figure 7. Base clustering weights, calculated according to the over-
lapping degree of mixture components.

Figure 8. Final clustering results, left for the simulated data and
right for the CBF data.

20

