
LDSA: Learning Dynamic Subtask Assignment in
Cooperative Multi-Agent Reinforcement Learning

Mingyu Yang1, Jian Zhao1, Xunhan Hu1, Wengang Zhou1,3†, Jiangcheng Zhu2, Houqiang Li1,3†
1University of Science and Technology of China, 2Huawei Cloud

3Hefei Comprehensive National Science Center, Institute of Artificial Intelligence
{ymy,zj140,cathyhxh}@mail.ustc.edu.cn

zhujiangcheng@huawei.com, {zhwg,lihq}@ustc.edu.cn

Abstract

Cooperative multi-agent reinforcement learning (MARL) has made prominent
progress in recent years. For training efficiency and scalability, most of the MARL
algorithms make all agents share the same policy or value network. However, in
many complex multi-agent tasks, different agents are expected to possess specific
abilities to handle different subtasks. In those scenarios, sharing parameters indis-
criminately may lead to similar behavior across all agents, which will limit the
exploration efficiency and degrade the final performance. To balance the training
complexity and the diversity of agent behavior, we propose a novel framework to
learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically,
we first introduce a subtask encoder to construct a vector representation for each
subtask according to its identity. To reasonably assign agents to different subtasks,
we propose an ability-based subtask selection strategy, which can dynamically
group agents with similar abilities into the same subtask. In this way, agents dealing
with the same subtask share their learning of specific abilities and different subtasks
correspond to different specific abilities. We further introduce two regularizers to
increase the representation difference between subtasks and stabilize the training
by discouraging agents from frequently changing subtasks, respectively. Empir-
ical results show that LDSA learns reasonable and effective subtask assignment
for better collaboration and significantly improves the learning performance on
the challenging StarCraft II micromanagement benchmark and Google Research
Football.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has recently received much attention due
to its broad prospects on many real-world challenging problems, such as traffic light control [1],
autonomous cars [2] and robot swarm control [3]. Compared to single-agent scenarios, multi-agent
tasks pose more challenges. On the one hand, the observation transition function of each agent is
related to the policies of other agents, which are constantly updated during training. Hence, from
the perspective of any individual agent, the environment is extremely non-stationary, which will be
exacerbated with more agents. On the other hand, the joint action-observation space of the multi-agent
task grows exponentially with the number of agents. These two issues prevent MARL algorithms
from scaling to more agents.

To cope with a large number of agents, most of the recent MARL works, including value-based [4–9]
and policy gradient [10–15], utilize a technique of policy decentralization with shared parameters [16],

†Corresponding authors: Wengang Zhou and Houqiang Li

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

whereby all agents share a decentralized policy or value network. There are several merits that make
parameter sharing so popular in MARL. First and foremost, it considerably reduces the total number
of trainable parameters and makes the learning complexity tractable. Besides, agents with the same
parameters can share training experience with each other, which can effectively mitigate the slowdown
of convergence rate due to non-stationarity [17]. However, many complex multi-agent tasks consist of
a set of subtasks, where the transition or reward functions are distinct [18, 19]. Solving every subtask
requires some specific abilities. In contrast, fully-shared parameters may cause all agents to behave
similarly and hinder the diversity of agents’ policies. For example, on the Google Research Football
task [20], all agents will compete for the ball if sharing parameters [16]. The similar behaviors across
all agents will limit the exploration efficiency and degrade the final performance [21]. Therefore, it’s
difficult for a single neural network to learn the specific abilities required by all subtasks.

Alternatively, another solution is to learn a separate policy for each agent without any parameter
sharing, which allows diverse policies but leads to high training complexity. To balance the training
complexity and the diversity of agents’ behaviors, a better method is to learn a distinct neural network
for each subtask and group the agents by subtasks. Agents dealing with the same subtask typically
learn similar policies and thus can share their training experiences to accelerate training. However, this
method poses two new problems: (1) how to decompose a multi-agent task into subtasks and (2) how
to assign agents to subtasks. Most of the previous works [22–25] predefine the task decomposition by
using a rich prior knowledge of application domains, which may not be available in practice. To the
best of our knowledge, only one recent work, RODE [26], learns explicit task decomposition without
prior domain knowledge. RODE defines the subtasks based on joint action space decomposition
during pretraining. Specifically, RODE learns effect-based action representations to cluster actions
and then treats each cluster of actions as a subtask, where each subtask only needs to fulfill the
functionality of a subset of actions. But it may fail to solve subtasks when some basic actions
are necessary for all subtasks, such as the actions of moving in the StarCraft II micromanagement
tasks [27]. What’s more, the effect of each action changes dynamically with the environment and
thus it may be difficult to determine the actions’ effect only through pretraining.

In this work, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooper-
ative MARL. Our method first proposes a subtask encoder that constructs a vector representation for
each subtask according to its identity. The action-observation history typically reflects the behavioral
habits and potential abilities of each agent, which is an important clue for selecting subtasks. There-
fore, we employ a trajectory encoding network to obtain the action-observation history of each agent.
Then, for every timestep, each agent acquires a categorical distribution of subtask selection based on
the cosine similarity of its action-observation history and representations of all subtasks, and samples
a subtask using Gumbel-Softmax [28] for training, which is a reparameterization trick allowing
backpropagate through samples. After that, we learn a separate policy for each subtask and enable
agents dealing with the same subtask to share their learning. To associate the policy of each subtask
with its representation, we introduce a subtask decoder to generate the policy parameters of each
subtask based on its representation, which can also avoid similar policies between different subtasks.
Furthermore, we introduce two regularizers to increase the representation difference between subtasks
and avoid agents changing subtasks frequently to stabilize training, respectively.

We evaluate our method on the challenging StarCraft II micromanagement tasks (SMAC) [27]. The
results show that our LDSA significantly improves the learning performance on the SMAC benchmark
compared to the baselines, especially on Hard and Super Hard scenarios. Additional experiments
on Google Research Football (GRF) [20] further demonstrate the effectiveness of LDSA on various
multi-agent tasks. The ablation studies confirm the benefits of the two regularizers and the high
efficiency of LDSA. Moreover, visualizations on SMAC reveal that LDSA could reasonably and
effectively decomposes the task with dynamic subtask assignment for better collaboration.

2 Preliminaries

In this section, we introduce the necessary background knowledge to understand this paper. We first
describe the problem formulation and the definition of subtasks for a fully cooperative multi-agent
task. Then, we present the value function factorization methods with the centralized training with
decentralized execution (CTDE) paradigm [29, 30], which will be adopted in this paper.

2

2.1 Problem formulation

This work is focused on a fully cooperative multi-agent task with only partial observation for each
agent. This task is typically modeled as a decentralized partially observable markov decision process
(Dec-POMDP) [31] defined by a tuple G = ⟨A,S, U, P, r, Z,O, γ⟩, where A ≡ {g1, g2, · · · , gn}
denotes the finite set of agents, γ ∈ [0, 1) is the discount factor and S is the set of global state of the
environment. At each timestep, each agent ga ∈ A selects an action ua ∈ U , forming a joint action
u ∈ Un, where a ∈ {1, 2, · · · , n} is the agent identity. This leads to a transition on the environment
according to the state transition function P (s′|s,u) : S × Un × S → [0, 1] and all agents receive a
shared team reward r(s,u) : S×Un → R, where s ∈ S describes the global state. Due to the partial
observability, each agent ga only obtains a partial observation oa ∈ Z according to the observation
function O(s, ga) : S ×A → Z and holds an action-observation history τa ∈ T ≡ (Z × U)∗. The
joint action-observation history of all agents is denoted as τ .

To achieve scalability, a popular approach adopted by many recent MARL works [4–8] is that each
agent ga constructs a decentralized policy πa(ua|τa; θ) with shared parameters θ. However, such
simple parameter sharing may fail to deal with many complex multi-agent tasks that require diverse
abilities among agents. To this end, we propose to decompose a fully cooperative multi-agent task
into subtasks. We present the definition of subtasks in the following.

Definition 1 (Subtasks). For a fully cooperative multi-agent task G = ⟨A,S, U, P, r, Z,O, γ⟩, we
assume there exists a set of k subtasks, denoted as Φ ≡ {ϕ1, ϕ2, · · · , ϕk}, where k ∈ N+ is unknown
and we consider k as a tunable hyperparameter. Each subtask ϕi is defined by a tuple ⟨xϕi

, Gϕi
, πϕi

⟩,
where i ∈ {1, 2, · · · , k} is the identity of subtask, xϕi

∈ Rm is a vector representation (or latent
embeddings) of subtask ϕi, Gϕi

= ⟨Aϕi
, S, U, P, r, Z,O, γ⟩ is the Dec-POMDP model of subtask ϕi,

and πϕi : T × U → [0, 1] is the policy of subtask ϕi. Aϕi is the set of agents assigned to subtask
ϕi and each agent can only select one subtask to solve at each timestep, i.e.,

⋃k
i=1 Aϕi

= A and
Aϕi

⋂
Aϕj

= ∅ if i ̸= j. Each agent ga ∈ Aϕi
shares the policy parameters of πϕi

.

Our objective is to learn a optimal set of subtasks Φ∗ so as to maximize the expected global return
QΦ

tot(τ ,u) = Es1:∞,u1:∞ [
∑∞

t=0 γ
trt|s0 = s,u0 = u,Φ], where rt is the team reward at timestep t.

Therefore, we are required to learn the vector representation xϕi , the agent assignment Aϕi and the
policy πϕi for each subtask ϕi, which will be introduced in detail in Sec. 3.

2.2 Value function factorization with CTDE paradigm

To make policy learning stable and scalable in MARL, the paradigm of CTDE [29, 30] has been
proposed and gained substantial attention. In this paradigm, agents learn their policies together
with access to global information during training in a centralized way and only rely on their local
observations during execution in a decentralized way. The CTDE paradigm has been exploited by
many recent MARL algorithms [4–8, 10, 11], among which value function factorization methods [4–
8] have shown superior performance on challenging cooperative multi-agent tasks [27]. These
methods factorize the global Q-value function Qtot into individual Q-value functions Qa for each
agent ga, where Qa is only based on the local action-observation history τa for decentralized execution.
To guarantee the consistency between greedy action selection in global and individual Q-values, such
factorization has to satisfy Individual-Global-Maximum (IGM) principle [6] as follows:

argmax
u

Qtot(τ ,u) =

(
argmax

u1

Q1(τ1, u1), · · · , argmax
un

Qn(τn, un)

)
. (1)

In this work, we consider a representative value function factorization method, QMIX [5], which
estimates global Q-value as a non-linear combination of individual Q-values as follows:

Qtot(τ ,u) = fw (Q1(τ1, u1), · · · , Qn(τn, un)|s) , (2)

where fw is a monotonic function that conditions on the global state s, i.e., ∂fw
∂Qa

≥ 0,∀a ∈
{1, 2, · · · , n}. Although Eq. 2 is only sufficient and unnecessary to IGM, QMIX is a lightweight and
efficient method showing state-of-the-art performance on SMAC [27].

3

Trajectory

Encoder

𝑥𝜏𝑎

𝑥𝜙1

...

𝑥𝜙2

𝑥𝜙𝑘

0

𝑜𝑎

(a) (b) (c)

Subtask

Encoder

ℎ𝑎
1 ℎ𝑎

1′

𝑜𝑎 𝑜𝑎

ℎ𝑎
2 ℎ𝑎

2′

0

1

Gumbel

Softmax

Sampling

...

𝑥𝜙𝑘
ℎ𝜏𝑎

𝑄𝑎,𝜙𝑘

Subtask

Decoder

𝜃𝜙𝑘

One-hot

𝑄𝑎
Mixing

Network

𝑸−𝑎

𝑄𝑡𝑜𝑡

FC

FC

GRU
GRU

𝑥𝜙𝑖

𝑑𝑖

FC

FC FC

FC

𝑥𝜏𝑎 ...Subtask

𝝓𝟏 policy

Subtask

𝝓𝟐 policy

Subtask

𝝓𝒌 policy

ℎ𝜏𝑎

Figure 1: Overview of LDSA framework. (a) The subtask representation learning structure (shown in
blue). (b) Architecture of subtask selection for each agent (shown in green). (c) The policy learning
for each subtask (shown in purple).

3 Method

In this section, we present the LDSA learning framework as shown in Fig. 1. We first introduce how
to construct a set of distinct subtasks for decomposing a multi-agent task. Next, we discuss how
each agent selects a subtask according to its abilities. After grouping agents by subtasks, we present
the policy of each subtask that is representation-dependent. Finally, we show the overall training
objective and the inference strategy.

3.1 Distinct subtask representation

Many complex multi-agent tasks involve a set of subtasks that have different responsibilities. For
example, running a company requires multiple departments to work together. Previous work typically
leverages the prior domain knowledge to decompose a complex task, which is not practical for many
uncertain environments. To remove the dependence on prior knowledge and apply it to broader
multi-agent tasks, we propose to learn a vector representation xϕi

for each subtask ϕi according to its
identity i.

Specifically, we use a two-layer fully-connected (FC) network with a tanh activation function in
Fig. 1(a) to learn a subtask encoder fe(·; θe) : Rk → Rm, parameterized by θe. The subtask encoder
maps the one-hot identity di ∈ Rk of subtask ϕi to an m-dimensional representation space. The tanh
activation function is to constraint the value range of the representation space. Then, we employ the
subtask encoder to construct a vector representation xϕi

∈ Rm for each subtask ϕi, i.e.,

xϕi
= fe(di; θe),∀i ∈ {1, 2, · · · , k}. (3)

If subtasks are similar, the task decomposition makes little sense. Therefore, to keep differences
between subtasks, we propose a regularizer that maximizes the L2 distance between representations
of different subtasks as follows:

Lϕ(θe) = ED

[
−

∑
i̸=j

∥xϕi
− xϕj

∥2
]
, (4)

where D is the replay buffer. The subtask representation learning continues throughout the training
process, which can automatically adapt to the dynamic changes in the environment. The overall
optimization objective of the subtask encoder will be introduced in Sec. 3.4.

3.2 Ability-based subtask selection

With the representation of subtasks, we need to design a subtask selection strategy for each agent
based on its ability. In real life, we can easily infer a person’s role from the trajectory of his or her

4

behavior. Similarly, the action-observation history of an agent can reflect its behavioral habits and
potential abilities. Therefore, we utilize a shared trajectory encoder (shown in Fig. 1(b)) consisting of
a GRU [32] and two fully-connected networks to obtain the action-observation history of each agent.
The trajectory encoder fh(·; θh), parameterized by θh, encodes the action-observation history of each
agent ga into a vector xτa ∈ Rm, which has the same length with the subtask representation. Then,
agent ga treats xτa as its ability representation and selects a subtask to solve based on xτa .

In our implementation, for each agent ga, we first calculate the cosine similarity of its action-
observation history representation xτa and representations of all subtasks xΦ := [xϕi]

k
i=1, i.e.,

similarity(xτa , xϕi) = (xT
τaxϕi)/(∥xτa∥∥xϕi∥). Since representations of all subtasks have the

same value range through the tanh activation function, we use xT
τaxϕi

to approximate the cosine
similarity for simplicity. Then, we employ softmax function on the cosine similarity and obtain a
categorical distribution of subtask selection p(Φ|xτa , xΦ) := [p(ϕi|xτa , xΦ)]

k
i=1. p(ϕi|xτa , xΦ) is

the probability that agent ga selects subtask ϕi, given by:

p(ϕi|xτa , xΦ) =
exp(xT

τaxϕi)∑k
j=1 exp(x

T
τaxϕj

)
,∀i ∈ {1, 2, · · · , k}, (5)

where exp(·) is the exponential function. Sampling a subtask directly from the categorical distribution
p(Φ|xτa , xΦ) is not differentiable. To make the subtask selection process trainable, we use the
Straight-Through Gumbel-Softmax Estimator [28] to sample a subtask ϕj that will be discretized as
a k-dimensional one-hot vector, i.e., the one-hot subtask identity dj .

For every timestep, each agent will select a subtask to dynamically cooperate with each other. This
dynamic subtask assignment scheme may make training unstable when an agent frequently changes
the subtask in an episode. To smooth the agents’ subtask selection and stabilize training, we introduce
a second regularizer to minimize the KL divergence between the subtask selection distributions for
any two adjacent timesteps as follows:

Lh(θe, θh) = ED

[∑
a

DKL
(
p(Φ|xτa , xΦ)∥p′(Φ′|x′

τa , x
′
Φ)

)]
, (6)

where p′(Φ′|x′
τa , x

′
Φ) is the subtask selection distribution at the next timestep, DKL(·∥·) is the KL

divergence operator and the sum is performed across all agents.

3.3 Representation-dependent subtask policy

After grouping agents to different subtasks based on their abilities, we learn the policy for each
subtask which is illustrated in Fig. 1(c). Generally, agents dealing with the same subtask share
the policy parameters and different subtasks have distinct policy parameters. To this end, we first
use a new shared trajectory encoder fτ (·|θτ) with parameters θτ to generate the action-observation
history of each agent ga, denoted as hτa . The new trajectory encoder fτ (·|θτ) only consists of a
fully-connected network and a GRU. The policy of each subtask ϕi is a fully-connected network
fϕi

(·; θϕi
) with parameters θϕi

. Then, for each agent ga ∈ Aϕi
that solves the subtask ϕi, we feed its

action-observation history hτa into the subtask policy fϕi
(·; θϕi

) and generate the individual Q-value
Qa. To associate the policy of each subtask with its representation, we utilize a subtask decoder
fd(·|θd) conditioning on the subtask representation to generate the policy parameters of each subtask.
The subtask decoder fd(·|θd) with parameters θd is just a single-layer fully-connected network, which
maps xϕi to θϕi for each subtask ϕi. By virtue of the differences between subtask representations,
such subtask decoder can further increase the diversity of subtask policies.

In our implementation, for each agent ga, we feed hτa into all subtask policies to get the individual
Q-value Qa,ϕi

for every subtask ϕi. The individual Q-value Qa is the sum of [Qa,ϕi
]ki=1 weighted by

the one-hot identity of the selected subtask. If agent ga selects subtask ϕj , Qa is actually equal to
Qa,ϕj . Hence, each agent only trains the policy parameters of its selected subtask. In this way, agents
with similar abilities tend to select the same subtask and thus can share their experiences to accelerate
training and improve performance. Moreover, on the tasks that require to assign different subtasks
to agents with similar trajectories, since each agent’s observation input contains its one-hot identity,
LDSA could learn to put more weights on the agent’s identity input, and make the agent’s identity

5

input become the main factor of the output subtask selection distribution. Then two agents can have
distinct subtask selection distributions even if they have similar observation from the environment.

3.4 Overall training and inference

Similar to value function factorization methods [4–8], we use a mixing network with parameters
θw to map all agents’ individual Q-values (Qa,Q−a) into the global Q-value Qtot, where Qa is the
individual Q-value of agent ga and Q−a are the individual Q-values of other agents. In this work,
we adopt the mixing network introduced by QMIX [5] thanks to its simple structure and superior
performance. It can be easily extended to other more complex mixing networks [7, 8]. Then, all the
parameters θ := (θe, θh, θτ , θd, θw) of our framework can be optimized by minimizing the TD loss
of Qtot as follows:

LTD(θ) = ED

[(
r + γmax

u′
Qtot(τ

′,u′; θ−)−Qtot(τ ,u; θ)
)2

]
, (7)

where θ− are the parameters of the target network that are periodically copied from θ. Considering
the two regularizers in Eq. 4 and Eq. 6, the overall optimization objective of LDSA is:

L(θ) = LTD(θ) + λϕLϕ(θe) + λhLh(θe, θh), (8)

where λϕ and λh are positive coefficients of the two regularizers, respectively. During the inference
phase (i.e., test the decentralized policy), each agent ga selects the subtask with the maximum
probability on the subtask selection distribution, i.e., argmaxϕi p(ϕi|xτa , xΦ) and then chooses a
greedy action according to the individual Q-value Qa for decentralized execution.

4 Experiments

In this section, we conduct several experiments to investigate the following questions: (1) Can
LDSA improve the performance compared to the baselines? (Sec. 4.2) (2) How do the two proposed
regularizers influence the performance? (Sec. 4.3) (3) Whether the superior performance of our
method comes from the increase in the number of parameters? If not, which component contributes
the most to our method? (Sec. 4.3) (4) Can LDSA learn dynamic subtask assignment and group
agents reasonably? If so, agents with similar abilities solve the same subtask and each subtask has
specific responsibility. (Sec. 4.4)

4.1 Experimental setup

Environment We evaluate LDSA on the SMAC benchmark [27], a challenging benchmark for
cooperative MARL. There are two armies of units in the SMAC environment. Each ally unit is
controlled by a decentralized agent that can only act based on its local observation and the enemy
units are controlled by built-in handcrafted heuristic rules. The goal of the MARL algorithm is to
maximize the test win rate for each battle scenario. In this paper, we adopt the default environment
settings for SMAC. The version used in this work is SC2.4.10. We consider all 14 scenarios on the
SMAC benchmark that can be classified into three different levels of difficulties: Easy, Hard and
Super Hard scenarios.

Baselines We select QMIX [5], ROMA [33] and RODE [26] as our baselines. All of the baselines
and LDSA belong to value function factorization methods and use the QMIX-style mixing network [5]
for a fair comparison. Therefore, LDSA differs from the baselines only by the individual Q-value
networks. QMIX is a natural baseline in which all agents share the individual Q-value network.
ROMA and RODE are two recent works that learn implicit and explicit task decomposition in MARL,
respectively. We implement all the baselines using their open-source codes based on PyMARL [27].
Note that, our experiments are conducted under the assumption that there is no prior knowledge
about the environment. As mentioned in Sec. 1, RODE may not work when some basic actions
are necessary for all subtasks. In the SMAC environment, there are four actions representing the
agents’ movement in four cardinal directions, which are important for all subtasks. To be effective,

6

Figure 2: Comparison of our method against baselines on three Super Hard SMAC scenarios:
corridor, 3s5z_vs_3s6z, 6h_vs_8z and three Hard SMAC scenarios: 5m_vs_6m, 2c_vs_64zg,
3s_vs_5z. The solid line shows the median test win rate across 5 seeds and the shaded areas
correspond to the 25-75% percentiles.

RODE uses several rules based on prior knowledge of the environment in its implementation, which
manually enforce the four actions of moving be available to some subtasks forever under certain
conditions. Therefore, to not involve prior knowledge, we remove these rules when we implement
RODE. We use "RODE_nr" to represent RODE without manual rules in our experiments.

Hyperparameters For all experiments, the number of subtasks is set to 4 and the length of subtask
representations is set to 64, i.e., k = 4, m = 64. We carry out a grid search for regularizers’
coefficients λϕ and λh on the SMAC scenario corridor and then set them to 10−3 and 10−3,
respectively, for all scenarios. All the common hyperparameters of our method and baselines are
set to be the same as that in the default implementation of PyMARL. We use lightweight network
structures for the subtask encoder, subtask decoder, trajectory encoder and subtask policy. The
detailed hyperparameters and network structures will be provided in Appendix A.

4.2 Performance on SMAC

We compare LDSA with the baselines across all 14 scenarios on the SMAC benchmark [27]. For
every scenario, we carry out 5 independent runs with 5 different random seeds for all methods and
show the median performance and 25-75% percentiles. Fig. 3 presents the averaged median test
win rate across all 14 scenarios. We can observe that LDSA significantly improves the learning
performance and surpasses about 7% median test win rate averaged across all 14 scenarios.

0.0 0.5 1.0 1.5 2.0
Timesteps(M)

0

15

30

45

60

75

Av
er

ag
ed

 M
ed

ia
n

Te
st

 W
in

 R
at

e(
%

)

LDSA
QMIX
ROMA
RODE_nr

Figure 3: The averaged median test win
rate across all 14 scenarios on the SMAC
benchmark.

Fig. 2 shows the learning curves of LDSA and the base-
lines on six Hard or Super Hard scenarios. The results
on the other eight scenarios are shown in Appendix B.
LDSA outperforms all the baselines on all Super Hard
and Hard scenarios with faster convergence. Specifically,
on the scenarios that require diverse micromanagement
techniques: corridor, 3s5z_vs_3s6z and 6h_vs_8z,
the test win rate of LDSA exceeds that of the baselines at
least 15%. On the Easy scenarios, LDSA shows similar
performance as QMIX, which indicates that our method
may not improve the learning performance on simple tasks
not requiring task decomposition. Moreover, ROMA that
learns implicit task decomposition performs even worse
than QMIX on most of the scenarios. Without using rules
based on prior knowledge, RODE fails to learn efficient

7

Figure 4: Ablation studies regarding the two proposed regularizers. "NP" and "NR" mean to remove
Lh and Lϕ from the overall optimization objective of LDSA, respectively. The best performance of
QMIX is shown as a dashed line.

Figure 5: Ablation studies regarding components of LDSA. "LDSA_NoDecoder" represents LDSA
without the subtask decoder. "LDSA_RanSele" indicates that LDSA randomly selects a subtask for
each agent at each timestep. "QMIX_Large" means to increase the number of parameters in QMIX to
be similar as that in LDSA. The best performance of QMIX is shown as a dashed line.

policies for subtasks, which demonstrates that discovering subtasks based on joint action space
decomposition and restricting the action space of subtasks may severely limit the learning of subtask
policies. These results further confirm that LDSA can learn effective task decomposition with dy-
namic subtask assignment to solve complex tasks. In Appendix D, we compare LDSA with another
baseline CDS [16] that celebrates diversity among agents, and show the benefits of LDSA to balance
the training complexity and the diversity of agent behavior. We also evaluate LDSA on Google
Research Football (GRF) [20] to demonstrate the effectiveness of LDSA on various multi-agent tasks
in Appendix E.

4.3 Ablation studies

In this subsection, we conduct ablation studies on three scenarios: corridor, 5m_vs_6m and
2c_vs_64zg, to show the effect of the two regularizers and test which component contributes most to
LDSA. Fig. 4 reports the performance of LDSA when we remove each or both of the two regularizers
Lh and Lϕ. It can be observed that the performance of LDSA without both of the two regularizers
is even worse than that of QMIX. Either of the two regularizers can improve performance and Lϕ

improves more than Lh, which indicates that keeping differences between subtasks is more important
while Lh can stabilize training.

To figure out why LDSA performs better than QMIX, we investigate the contributions of three
components of LDSA: the increase in the number of parameters, the ability-based subtask selection
and the subtask decoder. As shown in Fig. 5, QMIX with similar parameters as LDSA can’t improve
performance and even may make training slower and degrade performance, which proves that
the superior performance of LDSA is not due to the increase in the number of parameters. The
performance of LDSA without the subtask decoder is lower than that of LDSA, which demonstrates
that associating subtask policy with subtask representation benefits the performance. What’s more,
the large margin between the performance of LDSA with random subtask selection and that of LDSA
reveals that the ability-based subtask selection contributes the most to our method. In summary, the
superior performance of LDSA is largely due to the efficient subtask assignment. We also study
the effect of the number of subtasks in Appendix C and conduct two more ablations for LDSA in
Appendix F.

8





 












(a) (b) (c)

subtask 𝜙2 subtask 𝜙3subtask 𝜙1 subtask 𝜙4

Figure 6: Visualizations of dynamic subtask assignment in one episode (114 timesteps) on corridor.
Different colors indicate different assigned subtasks. (a) The subtask assignment for six ally agents
along the whole episode. (b) and (c) show the game screenshots at t = 3 and t = 64, respectively,
where each ally agent is marked by a colored number. The number represents the agent identity and
the color indicates the assigned subtask.

4.4 Visualization of dynamic subtask assignment

In this subsection, we visualize the dynamic subtask assignment in one episode on the SMAC scenario
corridor as shown in Fig. 6. The scenario corridor consists of 6 ally Zealots and 24 enemy
Zerglings. Due to the huge disparity in the number of allies and enemies, it’s hard to win if all ally
Zealots rush to attack the enemy. Therefore, at the beginning (t = 3), our method learns to sacrifice
two allies (agents g1 and g4) to attract most enemies and then the other 4 allies (agents g2, g3, g5 and
g6) can focus fire to kill a small part of enemies. After that, the remaining enemy Zerglings controlled
by heuristic rules will go through a narrow corridor, and stay at the bottom left corner of the scenario
if there are no Zealots within the sight range. In the middle of the episode (t = 64), the remaining
enemy forces are still strong, our method assigns the healthiest ally (agent g2) to draw out a small
number of enemies and kill them with the other allies (agents g3, g5 and g6). This process will repeat
until all enemies are killed. Moreover, we find that our method will assign the dead allies (agents g1
and g4) to a fixed subtask (subtask ϕ3), which can prevent them from interfering with the learning of
other subtasks. Besides, it is worth noting that subtask ϕ1 and subtask ϕ4 have similar responsibilities
that agents focus fire to kill enemies, but under different situations related to the agent’s health point.
When an agent needs to focus fire to kill enemies, it tends to select subtask ϕ1 if it has a good health
point otherwise select subtask ϕ4. These visualizations demonstrate the effectiveness and rationality
of the dynamic subtask assignment in our method.

5 Related work

Value-based MARL Value-based MARL algorithms have achieved great progress in recent years.
IQL [34] simply trains an independent Q-value network for each agent, which treats the other
agents as part of the environment. This method may not converge due to the non-stationarity of the
environment caused by the changing policies of other agents. The other extreme method is to treat
all agents as a single agent and learn a global Q-value based on the joint action-observation space,
which alleviates the non-stationarity but suffers from the scalability challenge, as the joint action-
observation space grows exponentially with the number of agents. To trade off these two methods,
most of the value-based MARL algorithms factorize the global Q-value into individual Q-values
for centralized training and decentralized execution. VDN [4] and QMIX [5] factorize the global
Q-value by additivity and monotonicity, respectively. QTRAN [6] transforms the original global
Q-value function into an easily factorizable one to expand the representation capacity. QPLEX [8]
proposes a duplex dueling network architecture to implement the complete IGM [6] function class.
These methods focus on designing the mixing network. There are other value-based works studying
MARL from the perspective of communication [35, 36], exploration [37, 38] and robustness [39, 40].

Parameter sharing in MARL To learn efficiency and scalability, most of the MARL works
employ the technique of parameter sharing among agents [4–15]. Terry et al. [17] demonstrate
that parameter sharing can effectively alleviate the non-stationarity problem in MARL. Despite its
efficiency, fully-shared parameters among agents may destroy the diversity of agent behavior in
many complex multi-agent tasks [20, 27]. To trade off experience sharing and behavioral diversity
among agents, SePS [21] groups agents based on their identities during pretraining and each group

9

shares one policy for training. CDS [16] proposes to decompose the policy of each agent as the sum
of a shared part and a non-shared part. In this work, we don’t fix the group each agent can share
with. Each agent in our method can adaptively choose a group to share based on its trajectory during
training, which enables dynamic parameter sharing.

Task decomposition in MARL Task decomposition plays an important role in many complex
real-world multi-agent systems, such as software engineering [41], healthcare [42] and traffic man-
agement [43]. Once the multi-agent task is decomposed, agents can be assigned to the restricted
subtasks that are easier to solve, and thus the learning complexity is greatly reduced. However, it is
challenging to come up with a set of subtasks that can effectively decompose the whole multi-agent
task. The most straightforward way is to predefine the subtasks by leveraging the prior domain
knowledge [22–25]. But the prior knowledge may not be available in many uncertain environments.
To solve this problem, ROMA [33] introduces the concept of roles for each agent based on its local
observation and conditions agents’ policies on their roles. Nguyen et al. [44] redesign the first layer of
the mixing network in QMIX [5] and view the output nodes of the first layer as different roles. These
two works focus on implicit task decomposition. RODE [26] explicitly defines the roles/subtasks
based on joint action space decomposition during pretraining, where each subtask corresponds to a
subset of actions. In this work, we learn vector representations for subtasks that can automatically
adapt to the environment during training.

6 Conclusion

Task decomposition is an important approach to simplify complex multi-agent tasks and has not
been well solved without using prior knowledge. To this end, we propose to decompose the task
into several subtasks represented by latent embeddings. Agents select subtasks according to their
abilities, which are indicated by their action-observation histories. In this way, agents dealing with
the same subtask can share their learning to solve the subtask, which can learn the specific abilities
required by all subtasks under a tractable training complexity. Although the embedding representation
for each subtask may be abstract, it essentially clusters agents with similar abilities into the same
group and thus agents can dynamically share their experiences to accelerate training and improve
performance. After training, each agent is aware of all subtask policies and can adaptively choose
the most appropriate subtask policy to execute based on its ability. The empirical results further
demonstrate that LDSA learns effective task decomposition with dynamic subtask assignment and
significantly improves the learning performance compared to the baselines. We hope our method
could provide a new perspective on task decomposition and subtask learning in MARL.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Contract
61836011 and 62021001, and by the Huawei Cloud project "Multi-agent Competitive Decision
Scenario Algorithm and Technology Research". It was also supported by GPU cluster built by MCC
Lab of Information Science and Technology Institution, USTC.

References
[1] T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and D. O. Wu, “Multi-agent deep reinforcement

learning for urban traffic light control in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 8, pp. 8243–8256, 2020.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent
coordination,” IEEE Transactions on Industrial informatics, vol. 9, no. 1, pp. 427–438, 2012.

[3] M. Hüttenrauch, A. Šošić, and G. Neumann, “Guided deep reinforcement learning for swarm systems,”
arXiv preprint arXiv:1709.06011, 2017.

[4] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat,
J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-agent learning,” arXiv
preprint arXiv:1706.05296, 2017.

10

[5] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning,” in Proceedings of the International
Conference on Machine Learning. PMLR, 2018, pp. 4295–4304.

[6] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning,” in Proceedings of the International Conference on
Machine Learning. PMLR, 2019, pp. 5887–5896.

[7] Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and H. Tang, “Qatten: A general framework for
cooperative multiagent reinforcement learning,” arXiv preprint arXiv:2002.03939, 2020.

[8] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “Qplex: Duplex dueling multi-agent q-learning,” in
Proceedings of the International Conference on Learning Representations, 2021.

[9] S. Iqbal, C. A. S. De Witt, B. Peng, W. Böhmer, S. Whiteson, and F. Sha, “Randomized entity-wise
factorization for multi-agent reinforcement learning,” in Proceedings of the International Conference on
Machine Learning. PMLR, 2021, pp. 4596–4606.

[10] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed
cooperative-competitive environments,” in Proceedings of the Neural Information Processing Systems,
vol. 30, 2017.

[11] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy
gradients,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[12] M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung, “Learning implicit credit assignment for cooperative
multi-agent reinforcement learning,” in Proceedings of the Neural Information Processing Systems, vol. 33,
2020, pp. 11 853–11 864.

[13] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang, “Dop: Off-policy multi-agent decomposed policy
gradients,” in Proceedings of the International Conference on Learning Representations, 2020.

[14] J. Su, S. Adams, and P. A. Beling, “Value-decomposition multi-agent actor-critics,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 13, 2021, pp. 11 352–11 360.

[15] T. Zhang, Y. Li, C. Wang, G. Xie, and Z. Lu, “Fop: Factorizing optimal joint policy of maximum-entropy
multi-agent reinforcement learning,” in Proceedings of the International Conference on Machine Learning.
PMLR, 2021, pp. 12 491–12 500.

[16] L. Chenghao, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang, “Celebrating diversity in shared multi-agent
reinforcement learning,” in Proceedings of the Neural Information Processing Systems, vol. 34, 2021.

[17] J. K. Terry, N. Grammel, A. Hari, and L. Santos, “Parameter sharing is surprisingly useful for multi-agent
deep reinforcement learning,” arXiv preprint arXiv:2005.13625, 2020.

[18] H. Tianfield, J. Tian, and X. Yao, “On the architectures of complex multi-agent systems,” in Proceedings
of the Workshop on Knowledge Grid and Grid Intelligence. Citeseer, 2003, pp. 195–206.

[19] C. Witteveen and M. De Weerdt, “Multi-agent planning for non-cooperative agents.” in Proceedings of the
AAAI Spring Symposium: Distributed Plan and Schedule Management, 2006, p. 169.

[20] K. Kurach, A. Raichuk, P. Stańczyk, M. Zając, O. Bachem, L. Espeholt, C. Riquelme, D. Vincent,
M. Michalski, O. Bousquet et al., “Google research football: A novel reinforcement learning environment,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4501–4510.

[21] F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht, “Scaling multi-agent reinforcement
learning with selective parameter sharing,” in Proceedings of the International Conference on Machine
Learning. PMLR, 2021, pp. 1989–1998.

[22] J. Pavón and J. Gómez-Sanz, “Agent oriented software engineering with ingenias,” in Proceedings of the
International Central and Eastern European Conference on Multi-Agent Systems. Springer, 2003, pp.
394–403.

[23] M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita, “The passi and agile passi mas meta-models
compared with a unifying proposal,” in Proceedings of the International Central and Eastern European
Conference on Multi-Agent Systems. Springer, 2005, pp. 183–192.

[24] N. Spanoudakis and P. Moraitis, “Using aseme methodology for model-driven agent systems development,”
in International Workshop on Agent-Oriented Software Engineering. Springer, 2010, pp. 106–127.

11

[25] N. Bonjean, W. Mefteh, M.-P. Gleizes, C. Maurel, and F. Migeon, “Adelfe 2.0, handbook on agent-oriented
design processes,” 2014.

[26] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang, “Rode: Learning roles to decompose
multi-agent tasks,” in Proceedings of the International Conference on Learning Representations, 2021.

[27] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr,
J. Foerster, and S. Whiteson, “The starcraft multi-agent challenge,” arXiv preprint arXiv:1902.04043, 2019.

[28] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv preprint
arXiv:1611.01144, 2016.

[29] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate q-value functions for decentralized
pomdps,” Journal of Artificial Intelligence Research, vol. 32, pp. 289–353, 2008.

[30] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a rehearsal for decentralized planning,”
Neurocomputing, vol. 190, pp. 82–94, 2016.

[31] F. A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs. Springer, 2016.

[32] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[33] T. Wang, H. Dong, V. Lesser, and C. Zhang, “ROMA: Multi-agent reinforcement learning with emergent
roles,” in Proceedings of the International Conference on Machine Learning. PMLR, 2020, pp. 9876–
9886.

[34] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente, “Multiagent
cooperation and competition with deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395,
2017.

[35] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to communicate with deep multi-agent
reinforcement learning,” in Proceedings of the Neural Information Processing Systems, vol. 29, 2016.

[36] T. Wang, J. Wang, C. Zheng, and C. Zhang, “Learning nearly decomposable value functions via com-
munication minimization,” in Proceedings of the International Conference on Learning Representations,
2020.

[37] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven: Multi-agent variational exploration,” in
Proceedings of the Neural Information Processing Systems, vol. 32, 2019.

[38] T. Gupta, A. Mahajan, B. Peng, W. Böhmer, and S. Whiteson, “Uneven: Universal value exploration for
multi-agent reinforcement learning,” in Proceedings of the International Conference on Machine Learning.
PMLR, 2021, pp. 3930–3941.

[39] K. Zhang, T. Sun, Y. Tao, S. Genc, S. Mallya, and T. Basar, “Robust multi-agent reinforcement learning
with model uncertainty,” in Proceedings of the Neural Information Processing Systems, vol. 33, 2020, pp.
10 571–10 583.

[40] J. Zhao, Y. Zhao, W. Wang, M. Yang, X. Hu, W. Zhou, J. Hao, and H. Li, “Coach-assisted multi-agent
reinforcement learning framework for unexpected crashed agents,” arXiv preprint arXiv:2203.08454, 2022.

[41] D. Smolko, “Design and evaluation of the mobile agent architecture for distributed consistency man-
agement,” in Proceedings of the International Conference on Software Engineering. IEEE, 2001, pp.
799–800.

[42] T. Alsinet, R. Béjar, C. Fernanadez, and F. Manyà, “A multi-agent system architecture for monitoring
medical protocols,” in Proceedings of the International Conference on Autonomous Agents, 2000, pp.
499–505.

[43] F. Logi and S. G. Ritchie, “A multi-agent architecture for cooperative inter-jurisdictional traffic congestion
management,” Transportation Research Part C: Emerging Technologies, vol. 10, no. 5-6, pp. 507–527,
2002.

[44] D. Nguyen, P. Nguyen, S. Venkatesh, and T. Tran, “Learning to transfer role assignment across team sizes,”
arXiv preprint arXiv:2204.12937, 2022.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Sec. 4.2, we mention that our

method may not improve the learning performance on simple tasks not requiring task
decomposition.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Although
we haven’t evaluated our method on real applications, we believe our work doesn’t
have potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
code, data, and instructions needed to reproduce the main experimental results in the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4.1 and Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the median performance as well as the 25-75%
percentiles across 5 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We implement our

method based on the open-sourced PyMARL framework, which has been cited in
Sec. 4.1.

(b) Did you mention the license of the assets? [Yes] PyMARL is licensed under the Apache
License 2.0.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Preliminaries
	Problem formulation
	Value function factorization with CTDE paradigm

	Method
	Distinct subtask representation
	Ability-based subtask selection
	Representation-dependent subtask policy
	Overall training and inference

	Experiments
	Experimental setup
	Performance on SMAC
	Ablation studies
	Visualization of dynamic subtask assignment

	Related work
	Conclusion

