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Abstract
In both artificial and biological systems, the centered ker-
nel alignment (CKA) has become a widely used tool for
quantifying neural representation similarity. While cur-
rent CKA estimators typically correct for the effects of
finite stimuli sampling, the effects of sampling a subset
of neurons are overlooked, introducing notable bias in
standard experimental scenarios. Here, we provide a theo-
retical analysis showing how this bias is affected by the
representation geometry. We then introduce a novel es-
timator that corrects the bias for both input and feature
sampling. We use our method for evaluating both brain-to-
brain and model-to-brain alignments and show that it deliv-
ers reliable comparisons even with very sparsely sampled
neurons. We perform within-animal and across-animal
comparisons on electrophysiological data from visual cor-
tical areas V1, V4, and IT, and use these as benchmarks
to evaluate model-to-brain alignment. We also apply our
method to reveal how object representations become pro-
gressively disentangled across layers in both biological
and artificial systems. These findings underscore the im-
portance of correcting feature-sampling biases in CKA and
demonstrate that our bias-corrected estimator provides a
more faithful measure of representation alignment. The
improved estimates increase our understanding of how
neural activity is structured across both biological and
artificial systems.

Keywords: CKA; Representation Alignment; Disentanglement;
Estimation

Introduction
Over the past decade, the concept of representation similarity
has emerged as a powerful framework for comparing complex
neural and computational systems (Kriegeskorte et al., 2008;
Kriegeskorte & Kievit, 2013). One of the most popular tools is
centered kernel alignment (CKA), a measure originally adapted
from kernel-based independence metrics but now widely em-
ployed across fields such as machine learning, neuroscience,
and cognitive science. In machine learning, CKA has become
the de facto standard for quantifying how similarly different
layers—or even entirely different architectures—encode the
same input data (Kornblith et al., 2019). In neuroscience, CKA
has emerged as a core analytical tool to assess whether neural
populations, either within or across brain regions and species,
produce similar activity patterns in response to identical stimuli
(Yamins & DiCarlo, 2016; Schrimpf et al., 2018). Its popularity

1These authors contributed equally to this work.

arises from two advantages: (1) CKA is invariant to orthog-
onal transformations, making it robust to small perturbations
in feature space, and (2) it normalizes for overall variation in
activity levels, facilitating meaningful comparisons based on
alignment.

Despite these strengths, there is a growing consensus that
conventional CKA estimators overlook a critical limitation in
many experimental settings, that the sampling of only a subset
of “features”, as with experimental recordings, can introduce a
systematic bias. This is particularly significant in neuroscience,
where only a fraction of the total neural population is recorded.
Existing CKA estimators often assume that if enough data
points (e.g., stimuli or input images) are provided, the measure
becomes reliable. Yet this assumption ignores the additional
requirement for sufficiently large samples along the “feature”
dimension. Consequently, researchers risk drawing misleading
conclusions about the alignment of brain regions and neural
network layers (Murphy et al., 2024; Cloos et al., 2024; Han et
al., 2023; Sucholutsky et al., 2023).

In this work, we address this pressing concern. First, we
show analytically how the geometry of high-dimensional repre-
sentations contributes to spurious underestimation of similarity
when only limited neuronal or model “units” are observed. Sec-
ond, building on these insights, we introduce a novel estimator
designed to remain consistent even with limited feature sam-
ples. By systematically correcting for finite-sample effects in
both inputs and features, our method offers a more faithful
gauge of representation alignment.

We demonstrate the real-world impact of our estimator
through analyses of convolutional neural networks and multi-
electrode electrophysiological recordings in visual cortices V1,
V4, and IT (Papale et al., 2025). Our new estimator enables
more accurate model-to-brain comparisons, revealing align-
ment trends that are otherwise corrupted by sampling biases.
Beyond model-to-brain alignment, we show that the improved
CKA estimator illuminates how object-category representations
become increasingly disentangled along the primate ventral
stream, similar to the observations in deep neural networks.
Taken together, these results show that accounting for feature
sampling is indispensable for robust representation analysis.
Our work thus not only strengthens the theoretical foundations
of CKA but also expands its practical utility for probing neural
and computational representations.

Problem Statement
There are many scenarios where accurate quantification of
the similarity between representations is of central interest
(Figure 1). For example, for a given stimulus set, one may
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Figure 1: CKA can be considered in multiple different problem setups. Each rectangle represents a measurement matrix, and
the dotted lines indicate specific rows and column indices. (a) Comparing the representations of two neural populations for one
stimulus set. (b) Comparing the representations of two stimulus sets in one neural population. (c) Comparing the representations
of a single population on a single stimulus set across two trials.

want to compare the representations of the brain and a neural
network model. As a baseline for brain-to-model similarity,
it is also useful to measure brain-to-brain similarities across
two individual animals or across trials in one animal. In a
separate scenario, one may be interested in comparing the
neural representations of two stimulus sets, e.g. two image
categories, in a single brain region of one individual animal. In
all these setups, CKA can be used to quantify the similarities.

Suppose one measures two separate neural representation
matrices, X and Y, where each row corresponds to a distinct
stimulus and each column represents a recorded neuron. Here,
assume the data has been preprocessed so that each neuron
has zero mean across all the recorded stimuli. Typically, in its
most intuitive form, the CKA is then computed as

tr(XX⊤YY⊤)√
tr
((

XX⊤
)2
)

tr
((

YY⊤
)2
) (1)

In a hypothetical scenario where one has access to all neurons
and stimuli, CKA takes the value 1 when the representations
are perfectly aligned and 0 when they span orthogonal sub-
spaces. The normalization factor in the denominator keeps
CKA invariant to the scaling of the representations.

In reality, the representation matrices are actually sampled
submatrices of an unobserved larger matrix. Due to practical
limitations, we often do not get to observe all neurons in a brain
region, and it is not possible to present all possible stimuli from
a stimulus set, e.g. natural images. Due to these sampling
effects, computing the naive CKA from the measurement ma-
trices is heavily biased. Currently, the estimator derived from
Song et al. (2012) is widely used in the literature to correct
the bias contributed by stimulus sampling. In this paper, we
show how to correct the bias in the CKA estimator when both
the stimuli and neurons are sampled from the underlying large
matrix.

Our Contribution
We make the following contributions in this paper:

• We find that the popular CKA estimator based on Song et al.
(2012) can take arbitrarily small values under finite sampling
of both the stimuli and neurons, even when the underlying
representations are perfectly aligned. Through theoretical
analysis, we show that the bias increases with the intrinsic
dimensionality of the representation.

• To address this issue, we develop a more general CKA esti-
mator that corrects the bias contributed by both the stimulus
and neuron sampling. We demonstrate its reliability in both
synthetic and neurophysiological data.

• We demonstrate our estimator enables a novel application
of CKA that quantifies the representation disentanglement
in the brain from real data.

Definitions

Centered Kernel Alignment

A neural population φφφ(x) defines a representation of stimuli
x∈X with a large number of neurons. The associated centered
kernel function k(x,x′) measures the similarity of two stimuli in
the representation space of φφφ and is defined as:

k(x,x′) :=
〈

φφφ(x)−E[φφφ] , φφφ(x′)−E[φφφ]
〉
, (2)

where ⟨·, ·⟩ denotes an appropriate inner product. Here, E[φφφ]
denotes the expectation of φφφ over the stimulus space X and is
used to center the population activity.

For two distinct neural populations φφφ
(a)(x) and φφφ

(b)(x), we
measure their similarity using the Hilbert-Schmidt Indepen-
dence Criterion (HSIC), a popular metric in machine learning
(Gretton et al., 2005). HSIC compares two populations based
on the correlations of their kernel functions k(a) and k(b), and
yields, what we call an H -value:

H (k(a),k(b)) := Ex,x′ [k
(a)(x,x′)k(b)(x,x′)]. (3)

A low H -value indicates less similarity and is zero if and only if
the populations φφφ

(a) and φφφ
(b) vary independently.



The centered kernel alignment (CKA) is essentially the nor-
malized version of HSIC (Cortes et al., 2012; Kornblith et al.,
2019) and is defined as

CKA(k(a),k(b)) :=
H (k(a),k(b))√

H (k(a),k(a))H (k(b),k(b))
. (4)

CKA is normalized to the interval [0,1] and invariant to the
overall magnitude of population activations.

Measurement matrix
Greek indices (α,β, · · · ) denote neurons; Latin indices (i, j, · · · )
denote stimuli, and Latin indices (a,b, · · · ) denote distinct pop-
ulations. We use the letter Q for the number of neurons and
P for the number of stimuli. Quantities with a hat (̂) indicate
empirical estimates.

For each population φφφ
(a), we observe Qa neurons φφφα(x) for

α = 1, · · · ,Qa. Each neuron is measured on the same set of
stimuli {xi} for i = 1, · · · ,P, where P is the number of stimuli.
The corresponding measurement matrix ΦΦΦ

(a) ∈ RP×Qa with
elements ΦΦΦ

(a)
iα = φφφ

(a)
α (xi) denotes the response of each neuron

to stimulus xi.
We define the empirical uncentered kernels (also called

Gram matrices) by

K(a) =
1

Qa
ΦΦΦ

(a)
ΦΦΦ

(a)⊤,

and the empirical centered kernels defined in Equation (2) by

K̄(a) = HK(a)H, H = I− 1
P

11⊤, (5)

where H is the centering matrix.

Existing CKA estimators
With these definitions, we now construct estimators of H -value
from finite data. Here, we convey the overall ideas and provide
detailed analyses in Appendix A.

Naive Estimator
Following the definition of H -value in Equation (3), the naive
estimator is

Ĥ0(k(a),k(b)) =
1

P2 tr
(

K̄(a)K̄(b)
)

(6)

To see why this estimator is heavily biased, let us consider a
simpler case where the original kernel is already centered such
that K = K̄. Then, the above can be simply rewritten as

Ĥ0(k(a),k(b)) =
1

P2Q2 ∑
i, j

∑
α,β

vαβ

i j ji where (7)

vαβ

i jlr := Φ
(a)
iα Φ

(a)
jα Φ

(b)
lβ Φ

(b)
rβ

(8)

We need to compute the expected value of Ĥ0(k(a),k(b)) (av-
eraged over the random sampling of neurons and stimuli) to

see its bias. To compute the expected value, we first need to
decompose the above sum as:

P2Q2
〈

Ĥ0(k(a),k(b))
〉

Φ

=

∑
i̸= j

∑
α ̸=β

⟨vαβ

i j ji⟩Φ +∑
i= j

∑
α ̸=β

⟨vαβ

iiii⟩Φ

+∑
i ̸= j

∑
α=β

⟨vαα
i j ji⟩Φ +∑

i= j
∑

α=β

⟨vαα
iiii ⟩Φ (9)

Note that the summand of the first term ⟨vαβ

i ji j⟩Φ is exactly

H (k(a),k(b)), the quantity we want to recover. On the other
hand, the other sums with overlapping indices contribute to the
bias. In general, unbiased estimates are obtained by averaging
over all indices where each stimulus is used at most once
(Hoeffding, 1948).

Now returning to Equation (6), in general, if we assume the
original kernel is not centered, Equation (6) expands to

Ĥ0(k(a),k(b)) = ⟨vαβ

i j ji⟩naive −2⟨vαβ

i j jl⟩naive + ⟨vαβ

i jlr⟩naive (10)

where the notation ⟨·⟩naive is equivalent to averaging over all

indices in the bracket, e.g. ⟨yαβ

i j ⟩naive = 1
Z ∑i, j,α,β yαβ

i j with Z
being the number of summands.

Stimulus-Corrected Estimator
The estimator developed by Song et al. (2012) corrects for the
bias contributed by stimulus sampling. In this case, the term
where two independent stimulus indices (i, j) coincide would
contribute to the bias. Therefore, Song et al. (2012) simply
sums over disconnected (i, j) indices:

ĤS(k(a),k(b)) = ⟨vαβ

i j ji⟩stim −2⟨vαβ

i j jl⟩stim + ⟨vαβ

i jlr⟩stim (11)

where the notation ⟨·⟩stim is equivalent to averaging over all neu-
ron indices and disconnected stimulus indices in the bracket,
e.g. ⟨yαβ

i j ⟩stim = 1
Z ∑i ̸= j ∑α,β yαβ

i j .
The sample corrected estimator for CKA, denoted by

ĈKAS(k(a),k(b)), is obtained by replacing ĤS in Equation (4).
This is the current version of CKA that is used both in deep
learning (Nguyen et al., 2021; Raghu et al., 2021; Davari et al.,
2022) and neuroscience (Murphy et al., 2024).

Note that this estimator removes the bias due to coinciding

stimulus indices. However, the inputs to ĤS(k(a),k(b)) are ker-
nels which involve a sum over neurons. Therefore, if its inputs
have shared neurons as in the case of the denominator of CKA,
a similar bias discussed in Equation (9) occurs, but for neuron
indices. Therefore, assuming that the populations φφφ

(a) and φφφ
(b)

have independent neurons, the numerator of ĈKAS(k(a),k(b))
remains unbiased, but its denominator is biased due to finite
neuron sampling effects (See Appendix B.2, Equation (S14)).

Bias of the Existing Estimator
We find that the representation geometry affects the bias in
the widely-used stimulus-corrected estimator ĈKAS. Assuming



the variance of the ĤS estimate is negligible, and the activation
variance is normalized neuron-wise, the bias of ĈKAS can be
approximated as

E
[
ĈKAS(k(a),k(b))

]
−CKA(k(a),k(b))≈ 1√(

1+ γa−1
Qa

)(
1+ γb−1

Qb

) −1

CKA(k(a),k(b)) (12)

where γa and γb are the intrinsic dimensionalities of the two
underlying representations, quantified by the participation ratio
of the eigenvalues {λi} of K̄ in the infinite samples limit:

γ =
(∑i λi)

2

∑i λ2
i

.

From Equation (12), we make the following observations:

• ĈKAS always underestimates the true CKA on average.

• The scale by which ĈKAS underestimates is independent of
the alignment but only dependent on the intrinsic dimension-
alities and neuron sample sizes.

• Having larger intrinsic dimensionalities contributes to the
greater underestimation of CKA and requires more neuron
samples to mitigate the bias.

Therefore, if intrinsic dimensionality is much greater than
the number of feature samples, γ ≫ Q, ĈKAS can take an arbi-
trarily small value even when two representations are perfectly
aligned. On the other hand, our estimator is not affected by
this issue. For more details, including the bias of ĈKA0, see
Appendix B.2.

Stimulus-Neuron-Corrected Estimator
Unlike the previous two estimators, an unbiased estimator
correcting for both finite stimulus and neuron sampling must
be a function of populations φφφ

(a) rather than their kernels.

In this paper, we develop a novel estimator ĤC that cor-
rects for finite neuron sampling effects when two populations
have correlated, e.g., identical neurons. This can be done by
summing over disconnected stimulus (i, j) and neuron (α,β)
indices:

ĤC(k(a),k(b)) = ⟨vαβ

i j ji⟩both −2⟨vαβ

i j jl⟩both + ⟨vαβ

i jlr⟩both (13)

where the notation ⟨·⟩both is equivalent to averaging over dis-
connected neuron indices and disconnected stimulus indices
in the bracket, e.g. ⟨xαβ

i j ⟩both =
1
Z ∑i̸= j ∑α ̸=β xαβ

i j .
To implement this estimator in practice, each term needs to

be expanded into a linear combination of the regular summa-
tions that do not sum over disconnected indices. For example,
∑i ̸= j xi j can be expanded as ∑i, j xi j−∑i xii, which is much eas-
ier to implement and more efficient in practice. When there are

more than two indices, the expansion becomes non-trivial. We
leave the derivation of the fully expanded form of Equation (13)
to Appendix A. An implementation is provided in Appendix D.

Finally, we define our unbiased CKA estimator as

ĈKAC

(
φφφ
(a),φφφ(b)

)
=

ĤC(φφφ
(a),φφφ(b))√

ĤC(φφφ
(a),φφφ(a))ĤC(φφφ

(b),φφφ(b))

. (14)

Several remarks are in order:

• Our estimator ĤC reduces to the stimulus-corrected esti-
mator ĤS of Song et al. (2012) when two populations φφφ

(a)

and φφφ
(b) have independent neurons, generalizing previous

results.

• When two distinct populations compared, our CKA estimator
ĈKAC corrects the bias in the denominator of ĈKAS and
their numerators remain identical. However, in certain cases,
e.g. trial-to-trial similarity between two measurements of
a single population, the numerator of ĈKAS also becomes
biased.

• Note that while the H -estimator we derive is unbiased, the
proposed CKA-estimator is still biased due to non-linear
operations (multiplication, square-root) involving ĤC. Nev-
ertheless, our CKA estimator is the least biased among the
available estimators. Full analysis on this matter can be
found in Appendix B.3. Also, as shown in the rest of the
paper, we empirically find that the effect of this bias is much
smaller compared to the effect of bias due to finite neuron
sampling. One can also mitigate this bias by empirically

averaging Ĥ over multiple trials and using that to estimate

CKA. If N estimates of Ĥ are available from independent
trials, then this bias falls like O

(
1/N

)
(Appendix B.3). We

will denote the CKA estimator derived from the empirical

average of N number of Ĥ by ĈKAN .

Linear example
Next, we numerically test all three estimators on a simple
synthetic dataset with a known CKA value. We consider
d−dimensional stimuli which are drawn from the distribution
x ∼ N (0,Id). We define a linear population of the form
φφφ
(a)(x) = x⊤w(a), where each weight is drawn from the distri-

bution w(a) ∼ N (0,ΣΣΣa) and corresponds to a single neuron.
Similarly, we define the population φφφ

(b)(x) = x⊤w(b) where
w(b) ∼ N (0,ΣΣΣb). Since the entire stimuli and population dis-
tributions are known, the true CKA in Equation (4) can be
evaluated exactly:

CKA =
tr(ΣΣΣaΣΣΣb)√
trΣΣΣ

2
a trΣΣΣ

2
b

. (15)

We first consider ΣΣΣa = ΣΣΣb = Id in which case both popula-
tions perfectly align with a CKA = 1. As indicated by Equa-
tion (12), however, despite the perfect alignment of populations,
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Figure 2: CKA estimators on the linear CKA example. The blue horizontal line is the true CKA. The vertical error bar indicates the

range of the first and third quartiles of the data (50% of the data). The darker lines are ĈKA’s and the lighter lines are ĈKAN ’s
where N = 500. The yellow dotted lines (labeled as ‘Theory’) are the theoretical predictions: for ĈKAC, this is simply 1; for ĈKAS,
we use Equation (12); for ĈKA0, we use Equation (S16).

the stimulus-corrected estimator ĈKAS can be arbitrarily small
depending on the number of neurons sampled Q, and the
dimensionality γ, which is exactly d in this example. We nu-
merically confirm these findings in Figure 2a and find that both
estimators become highly sensitive when a limited number of
neurons are observed. On the other hand, our estimator is
able to recover the true CKA even at small neuron samples.

We also simulate biologically relevant representations,
whose spectra follow a power-law: λn = n−r Stringer et al.
(2019). In Figures 2b and 2c, we set the powers r of the two
representations to be 0.5 and 0.9, with d = 1000. In Figure 2b,
we simply let ΣΣΣa and ΣΣΣb be diagonal matrices with these eigen-
values on the diagonals. In Figure 2c, we reverse the order of
the diagonal entries of ΣΣΣb to make them misaligned.

In these examples, we observe that ĈKAN ’s and ĈKA’s
almost completely overlap for all three estimators (Figure 2

lighter vs. darker lines), except when Q is very small, ĈKAN
C

and ĈKAC diverge a bit. This means that the bias correction
for H contributes more to the bias correction of CKA than
correcting the bias from the non-linear operations on the H
estimates. The next section shows that this pattern is observed
in neural data as well.

Practical applications in neuroscience
In most of the brain recordings, the observed neurons are
samples of a much larger population. Here, we use electro-
physiological data of the three key cortical regions for visual
processing, V1, V4, and IT, in the order of the processing cas-
cade. It has been shown that the neurons in V1 are simple
filters, but the later regions V4 and IT are sensitive to semantic
information (Hubel & Wiesel, 1962; Majaj et al., 2015; Hung
et al., 2005; Cadena et al., 2024). Papale et al. (2025) pre-
sented 20,000 natural images of 1,854 object categories from
the THINGS dataset (Hebart et al., 2019) to two monkeys and
recorded neural responses with multiple electrode arrays over

V1, V4, and IT, totaling 1046 electrodes in one monkey and
960 in the other. The measurement value is the average spik-
ing voltage levels of neurons adjacent to a given electrode,
averaged over a small time window immediately following an
image presentation. We view the electrodes and images as
rows and columns, respectively.

Brain-to-Brain alignment

Here, use CKA to benchmark the similarity of a given brain
region across individual animals (see Figure 1a). Such brain-to-
brain comparisons provide an essential reference for evaluating
model-to-brain alignments. In our analysis, we first compare
two disjoint sets of electrodes from the same brain region within
a single animal. The ground truth in this within-region compar-
ison is a perfect alignment (CKA = 1) on average. However,
as shown in Figure 3a, both the naive estimator ĈKA0 and the
stimulus-corrected estimator ĈKAS significantly underestimate
the true similarity, with their estimates strongly dependent on
the number of neurons sampled. In contrast, our proposed
estimator ĈKAC closely approximates the true value even with
very limited neuron sampling, thereby highlighting the risk that
conventional CKA estimates may fail to detect even perfect
alignment when undersampling is present.

We further extend the analysis by measuring the similarity
of each brain region across animals. As depicted in Figure 3b,
ĈKAC yields reliable estimates over a range of neuron sam-
pling sizes, whereas the conventional estimators remain highly
sensitive to the sample size. Our results show that V1 rep-
resentations are relatively conserved across individuals (with
CKA around 0.6), IT representations exhibit lower similarity
(around 0.3), and V4 lies in between (approximately 0.45). The
similarity decreases over the layers of visual processing.



Figure 3: a) Each plot shows CKA values between disjoint sets of electrodes sampled from one brain region within one individual
animal. The number of sampled electrodes (Q) is varied. One line for each animal. True CKA is 1. b) Each plot shows CKA values
between animals for one brain region. ĈKA0 and ĈKAS are similar, since the number of stimuli is large: P = 2000. The darker

lines are ĈKA’s and the lighter lines are ĈKAN ’s where N = 1000.
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Figure 4: Comparison of the brain regions (V1,V4, and IT) and models (ResNet18 and CorNet-s) using CKA estimators. The left
three columns show CKAs between each brain region and all model layers. The number of electrodes (Q) is downsampled to
1/16 of all available electrodes in the dataset for each brain region. The right three columns show CKA between a brain region
and the layer that is the most similar to the region. The number of electrodes (Q) varies from the factor of 1/16 to 1 (of all available
electrodes) along the x-axis for each region. P = 1,000 stimuli are used in all plots. The horizontal dotted line is the brain-to-brain

ĈKAC across animals for each brain region from Figure 3b. The darker lines are ĈKA’s and the lighter lines are ĈKAN ’s, where
N = 200. The result for another monkey is shown in Appendix C.1.

Brain-to-Model alignment

The alignment between brain representations and artificial neu-
ral network layers is a topic of considerable interest. It has been
repeatedly observed in the literature that the early visual re-
gions, e.g., V1, have representations that are strikingly similar
to the early layers of CNNs, and the later regions, e.g., IT, are
aligned with the deeper layers (Yamins et al., 2014; Schrimpf
et al., 2018; Nonaka et al., 2021). As depicted in Figure 1b,
here we use the CKA estimators to compare the represen-

tations between brain regions (V1, V4, and IT) and layers of
convolutional neural networks (CNNs), namely ResNet18 and
CorNet-s (He et al., 2016; Kubilius et al., 2018). We then see
how these CKA estimates compare against the brain-to-brain
ĈKAC from the previous section.

We make the same observation of the V1-early layer align-
ment and IT-late layer alignment from all of the estimators.
In the absolute scale, the V1-early layer alignment is gener-
ally higher, but the IT-late layer alignment is generally lower



(Figure 4 left three plots). However, ĈKAC estimates that the
alignment between animals also decreases by a similar fac-
tor. This indicates that in the relative scale, the model-to-brain
alignments for all three regions are similarly close to the animal-
to-animal alignments, an insight that cannot be reliably found
with the other estimators.

We then test the sensitivity of the estimators to the num-
ber of electrodes. In Figure 4 (right three plots), we pick the
best alignment layer for each brain region and see how this
alignment value changes with the number of electrodes. We
observe that all estimators are similar for comparison with V1,
meaning that there is only a small bias in ĈKA0 and ĈKAS.
However, for the comparison with V4 and IT, the gap between
the estimators is generally large, meaning we need our esti-
mator ĈKAC for a reliable measurement. The ĈKA0 and ĈKAS
values are not converged even when all available electrodes
are used.

Object disentanglement

Beyond inter-region comparisons, our estimator enables a
novel application of CKA: quantifying the disentanglement of
semantic information across object categories in the brain. Sim-
ilar to the representation disentanglement observed in deeper
layers of CNNs, the IT cortical region is believed to encode
high-level semantic features that distinguish between objects
(Yamins et al., 2014). In this analysis, we estimate the CKA
between pairs of object categories within a single brain region,
where the columns of the measurement matrix correspond to
stimulus images and the rows correspond to the shared neu-
rons (as illustrated in Figure 1b). A lower CKA in this context
suggests greater semantic disentanglement.

We observe that the estimated CKA between object cat-
egories generally decreases over V1, V4, and IT, indicating
a gradual semantic disentanglement over these regions (Fig-
ure 5). Interestingly, natural object pairs get separated faster
than artificial object pairs. This pattern is more strongly ob-
served in ĈKAC than in ĈKAS. Interestingly, there are many
cases where ĈKAS indicates high disentanglement (small CKA)
but ours ĈKAC indicates low disentanglement (large CKA). This
is observed in V1 for all pairwise comparisons: Our estimator
consistently estimates CKA value near 1, suggesting V1 does
not encode semantic information, whereas the heavily biased
ĈKAS spuriously suggests otherwise. Also, in IT, ĈKAC is near
1 for artificial objects pairs, but the bias in ĈKAS spuriously
suggests the objects are disentangled.

Trial-to-Trial Similarity

As our final application, we evaluate the trial-to-trial similarity
of neural recordings from the same brain region on the same
stimulus set as depicted in Figure 1c. We use the neural
recordings from Papale et al. (2025) of visual cortical areas
V1, V4, and IT over 30 trials on 100 images. This case differs
from the previous analyses since a single population φφφ

(a) is

compared across two trials (φφφ(a)1 and φφφ
(a)
2 ). In this case, ĈKAS

becomes biased in its numerator as well as its denominator,
which our estimator accounts for correctly.

In Figure 6, we calculate the CKA between all pair-wise
single-trial measurements for each brain region and report the
mean of each estimator. As before, our estimator yields con-
sistent estimates across different neuron samplings Q, while
the others remain highly biased. Furthermore, we observe that
trial-to-trial similarities for regions V1 and V4 are significantly
higher than those for region IT. This indicates that the trial-to-
trial variability in IT is larger than in earlier visual regions.

Discussion
Murphy et al. (2024) also highlights the sensitivity of the naive
CKA estimator to the number of features, with a focus on the
ratio of the number of inputs and features. They motivate the
problem by showing that the naive CKA (Equation (1)) between
two independent random matrices X and Y (their entries are
i.i.d. standard normal) takes a non-zero value which depends
on the ratio of the number of stimuli and neurons:

1√(
1+ P

Qa

)(
1+ P

Qb

) (16)

in the limit of large P, Qa, and Qb. They observe that ĈKAS
takes the value 0 in the same setup, resolving this issue of
having spurious similarities between independent random ma-
trices. While this observation is correct, Murphy et al. (2024)
interprets this result as ĈKAS resolving the issue of the naive
CKA being sensitive to Qa and Qb (denoted by P1 and P2 in
their paper), since ĈKAS value is 0 regardless of Qa and Qb.
Extrapolating this interpretation, they apply ĈKAS to real neural
data in an attempt to resolve the issue of CKA sensitivity to the
number of neurons.

However, here we explain that this interpretation is only valid
when the true CKA is 0, and therefore cannot be generalized
to other cases. ĈKAS returns 0 in the random matrix setup, not
because it corrects neuron sampling, but because it corrects
the stimulus sampling. We can see that by taking the number
of stimuli to infinity (P → ∞) in Equation (16), which makes the
CKA estimate approach 0. In practical scenarios, where the
measurement matrices are not random, ĈKAS is still sensitive
to the number of features as we have shown in Equation (12).
ĈKAC presented in this paper resolves this problem.

Finally, our estimator for the H -value can be used for de-
biasing other HSIC-based CKA measures, such as angular-
CKA introduced in Williams et al. (2021) and Representational
Similarity Analysis (RSA) (Kriegeskorte et al., 2008), since
these measures also ignore the bias coming from finite neuron
sampling.

Conclusion
We have addressed a key limitation in applying CKA to scenar-
ios where only a subset of features—such as neurons or model
units—is observable. While CKA is widely used to compare
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Figure 5: Quantifying semantic disentanglement in the brain with CKA. Solid line represents ĈKAC, whereas dotted line represents
ĈKAS. Three separate groups of object images were prepared, and all pairwise comparisons were performed in each group. The
result for another monkey is shown in the Appendix C.2.
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Figure 6: Trial-to-trial CKA estimates of brain regions V1, V4 and IT as a function of neuron sample size Q. Measurements on two
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representations in machine learning and neuroscience, exist-
ing estimators systematically underestimate similarity when
features are undersampled, a common issue in neural data
collection or reduced-dimension network analyses.

Theoretically, we showed how the stimulus-corrected H esti-
mator still fails to yield unbiased CKA under partial column sam-
pling. We derived a bias-corrected estimator that handles both
input and feature sampling, more accurately recovering true
representation similarity. Empirically, our method performed
well on both synthetic data and electrophysiological recordings
from the ventral visual stream (V1, V4, and IT). Conventional
approaches underestimated alignment, particularly for high-
dimensional or semantically complex representations, whereas
our estimator revealed consistent neural similarity patterns and
clearer evidence of object-category disentanglement.
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Supplementary Information
A Full derivation of the H estimators

A.1 Expression of H in terms of the uncentered kernel
Recall that the kernel is defined as k(x,y) =

〈
φ(x),φ(y)

〉
and the centered kernel is k′(x,y) =〈

φ(x)−Ex
[
φ(x)

]
,φ(y)−Ex

[
φ(x)

]〉
. Then H is defined as

H (k(a),k(b)) = Ex,y

[
k′(a)(x,y)k′(b)(x,y)

]
Note that k′ can be written in terms of k:

k′(x,y) =
〈

φ(x)−Ex
[
φ(x)

]
,φ(y)−Ex

[
φ(x)

]〉
= k(x,y)−Ez

[
k(x,z)

]
−Ez

[
k(z,y)

]
+Ez,w

[
k(z,w)

]
.

Plugging this into our definition of H , we arrive at the expression of H explicitly in terms of the original uncentered kernels, k(a)

and k(b):

H (k(a),k(b)) = Ex,y

[
k(a)(x,y)k(b)(x,y)

]
−2Ex,y,z

[
k(a)(x,y)k(b)(x,z)

]
+Ex,y

[
k(a)(x,y)

]
Ex,y

[
k(b)(x,y)

]
We want to derive an estimator where each term has an expected value that is equal to an individual term above.

A.2 Identifying the source of bias in the naive estimator
We begin our analysis by considering the naive H estimator:

Ĥ0(Φ
(a),Φ(b)) =

1
P2 tr

(
HK(a)HK(b)

)
where H = I − 1

P 11⊤ and K(a) = 1
Q Φ(a)Φ(a)⊤. When we expand this, we get

Ĥ0(Φ
(a),Φ(b)) =

1
P2

P

∑
i j=1

K(a)
i j K(b)

i j − 2
P3

P

∑
i jl=1

K(a)
i j K(b)

jl +
1

P4

P

∑
i jlm=1

K(a)
i j K(b)

lm .

Note that K(a) and K(b) are dependent on the stimuli {xi}P
i=1 such that, for example K(a)

i j = k(a)(xi,x j). Now, let us take the

average of Ĥ0 over all possible stimuli sets {xi}P
i=1 sampled from X . We can compute the expected value separately for each

term and add them together for the final result. Let us consider the first term:

E{xi}P
i=1

 1
P2

P

∑
i j=1

K(a)
i j K(b)

i j

=
1

P2E{xi}P
i=1

 P

∑
i j=1

k(a)(xi,x j)k(b)(xi,x j)


=

1
P2

P

∑
i̸= j

Ex,x′
[
k(a)(x,x′)k(b)(x,x′)

]
+

1
P2

P

∑
i
Ex

[
k(a)(x,x)k(b)(x,x)

]
=

(
P−1

P

)
Ex,x′

[
k(a)(x,x′)k(b)(x,x′)

]
+

1
P
Ex

[
k(a)(x,x)k(b)(x,x)

]
= Ex,x′

[
k(a)(x,x′)k(b)(x,x′)

]
+

1
P

(
Ex

[
k(a)(x,x)k(b)(x,x)

]
−Ex,x′

[
k(a)(x,x′)k(b)(x,x′)

])
Notice that in the second equality, we separate the sum into two parts, based on whether the indices overlap or not: i = j vs
i ̸= j. This is essential since the expected values are different for these two cases. Note that in the second term here is O(1/P),
contributing as bias. We would not have gotten this bias if the term 1

P2 ∑
P
i j=1 K(a)

i j K(b)
i j was instead defined as 1

P(P−1) ∑
P
i̸= j K(a)

i j K(b)
i j .

In that case, the expected value does not have a bias:

E{xi}P
i=1

 1
P(P−1)

P

∑
i ̸= j

K(a)
i j K(b)

i j

= Ex,x′
[
k(a)(x,x′)k(b)(x,x′)

]
.

Note that 1
P(P−1) is introduced as a scaling factor since P(P−1) is the number of summand in ∑

P
i ̸= j.



A.3 Derivation of the stimulus-corrected H estimator

Applying the same logic to the rest of the terms in Ĥ0(Φ
(a),Φ(b)), we arrive at an estimator that removes the bias from input

sampling:

ĤS(Φ
(a),Φ(b)) =

1
P(P−1)

P

∑
i ̸= j

K(a)
i j K(b)

i j − 2
P(P−1)(P−2)

P

∑
i ̸= j ̸=l

K(a)
i j K(b)

jl +
1

P(P−1)(P−2)(P−3)

P

∑
i ̸= j ̸=l ̸=m

K(a)
i j K(b)

lm .

This is equivalent to the estimator by Song et al. Note that these sums over disjoint indices, e.g. ∑
P
i̸= j ̸=l , are practically difficult to

compute, so they are decomposed into a linear combination of regular sums. Denoting K(a)
i j K(b)

lm as vi jlm, the first term can be
rewritten as:

P

∑
i̸= j

K(a)
i j K(b)

i j = ∑
i j

vi ji j −∑
i

viiii,

whereas the second term can be:

P

∑
i ̸= j ̸=l

K(a)
i j K(b)

jl = ∑
i jl

vi j jl −∑
i j

viii j −∑
i j

vi j j j −∑
i j

vi ji j +∑
i

2viiii,

and the third term:

P

∑
i̸= j ̸=l ̸=m

K(a)
i j K(b)

lm = ∑
i jlm

vi jlm −∑
i jl

(
vii jl + v jlii +4vi j jl

)
+∑

i j

(
vii j j +4viii j +4vi j j j +2vi ji j

)
−∑

i
6viiii

Replacing the terms in ĤS(Φ
(a),Φ(b)) with these new notations, we arrive at the following expression:

ĤS(Φ
(a),Φ(b)) =

1
P(P−3)

×
∑

i j
vi ji j −∑

i
viiii

− 2
(P−2)

∑
i jl

vi j jl −∑
i j

viii j −∑
i j

vi j j j +∑
i

viiii

+
1

(P−1)(P−2)

∑
i jlm

vi jlm −∑
i jl

vii jl −∑
i jl

v jlii +∑
i j

vii j j



(S1)

ĤS(Φ
(a),Φ(b)) =

1
P3 (P−3)

×

∑
i jlm

((
vi ji j −

viiii

P

)
− 2P

P−2

(
vi j jl −

viii j

P
−

vi j j j

P
+

viiii

P2

)
+

P2

(P−1)(P−2)

(
vi jlm −

vii jl

P
−

v jlii

P
+

vii j j

P2

))
(S2)

Suppose K′ is a version of K whose diagonal elements are 0, and v′i jlm := K′(a)
i j K′(b)

lm . Then, the above expression simplifies to

ĤS(Φ
(a),Φ(b)) =

1
P(P−3)

∑
i j

v′i ji j −
2

(P−2) ∑
i jl

v′i j jl +
1

(P−1)(P−2) ∑
i jlm

v′i jlm



=
1

P(P−3)

(
tr
(

K′(a)K′(b)
)
− 2

(P−2)
1⊤K′(a)K′(b)1+

1
(P−1)(P−2)

1⊤K′(a)11⊤K′(b)1
)

which is the exact expression found in Song et al. (2012).



A.4 Derivation of the stimulus-neuron-corrected H estimator

Our estimator assumes that the features are also sampled, and the features are correlated or identical in (a) and (b). Let us
consider a single term vi jlm from Equation (S2) (redefined here as K(a)

i j K(a)
lm reflecting a = b) and see how the sampling of features

contribute to the bias.

vi jlm = K(a)
i j K(a)

lm =
1

Q2 ∑
αβ

Φ
(a)
iα Φ

(a)
jα Φ

(a)
lβ Φ

(a)
mβ

From here on, we will drop the superscript (a). If we were to take the expected value of vi jlm over the feature sampling, we need
to define how exactly the features are sampled. To this end, we assume that each entry Φiα is determined by

Φiα = φ(xi,wα) (S3)

where xi is some random variable representing an ith stimulus, and wα is some (abstract) latent random variable representing
an αth neuron. Both xi and wα are assumed to be sampled randomly from their respective distributions. More details on these
assumptions are provided in Appendix B. Note that

k(xi,x j) = Ew
[
φ(xi,w)φ(x j,w)

]
(S4)

We want to find an expression for some estimator c′i jlm, an alternative to vi jlm, such that when we average it over the feature

samples (i.e. {wα}Q
α=1), we get

E{wα}Q
α=1

[
c′i jlm

]
= k(xi,x j)k(xl ,xm). (S5)

It is important to note that vi jlm ≡ Ki jKlm is not k(xi,x j)k(xl ,xm) on average. It is, in fact, a biased estimate of k(xi,x j)k(xl ,xm):

E{wα}Q
α=1

[
vi jlm

]
= E{wα}Q

α=1

 1
Q2 ∑

αβ

φ(xi,wα)φ(x j,wα)φ(xl ,wβ)φ(xm,wβ)

 (S6)

=
1

Q2E{wα}Q
α=1

∑
α ̸=β

φ(xi,wα)φ(x j,wα)φ(xl ,wβ)φ(xm,wβ)+
Q

∑
α=1

φ(xi,wα)φ(x j,wα)φ(xl ,wα)φ(xm,wα)

 (S7)

=
Q−1

Q
Ew,w′

[
φ(xi,w)φ(x j,w)φ(xl ,w′)φ(xm,w′)

]
+

1
Q
Ew
[
φ(xi,w)φ(x j,w)φ(xl ,w)φ(xm,w)

]
(S8)

=
Q−1

Q
k(xi,x j)k(xl ,xm)+

1
Q
Ew
[
φ(xi,w)φ(x j,w)φ(xl ,w)φ(xm,w)

]
(S9)

From above, it is clear that the bias comes from the summation where α = β, i.e. ∑
Q
α=1 (the second terms in Equations (S7)

to (S9)), whereas the summation over α ̸= β recovers the quantity of interest k(xi,x j)k(xl ,xm). Therefore, the following should be
an unbiased estimator of k(xi,x j)k(xl ,xm):

c′i jlm =
1

Q(Q−1) ∑
α ̸=β

Φ
(a)
iα Φ

(a)
jα Φ

(a)
lβ Φ

(a)
mβ

=
1

Q(Q−1)

∑
αβ

Φ
(a)
iα Φ

(a)
jα Φ

(a)
lβ Φ

(a)
mβ

−∑
α

Φ
(a)
iα Φ

(a)
jα Φ

(a)
lα Φ

(a)
mα

 .

In the main text we define ci jlm, which is simply c′i jlm without the 1
Q(Q−1) factor, i.e. ci jlm = Q(Q−1)c′i jlm. Therefore, finally, our

estimator can be expressed as

ĤC(Φ
(a),Φ(a)) =

1
P3 (P−3)Q(Q−1)

×

∑
i jlm

((
ci ji j −

ciiii

P

)
− 2P

P−2

(
ci j jl −

ciii j

P
−

ci j j j

P
+

ciiii

P2

)
+

P2

(P−1)(P−2)

(
ci jlm −

cii jl

P
−

c jlii

P
+

cii j j

P2

))
(S10)



B Bias analysis
B.1 Generative process framework
Here we formalize the problem setup by defining a general formulation of the process that generates the measurement matrices.
Consider a pair of measurement matrices Φ(a) and Φ(b) of two systems a and b. Let xi ∈ X be latent variables for the ith rows of
Φ(a) and Φ(b), and uα ∈ U and vα ∈ V be column-latent variables for the αth column of Φ(a), and Φ(b), respectively. Let P be the
number of row-latent variables sampled, and Qa and Qb be the numbers of column-latent variables sampled. Let φa : X ×U → R
be a map that defines the measurement value. Then we assume the entries of Φ(a) ∈ RP×Qa and Φ(b) ∈ RP×Qb are defined as

Φ
(a)
iα = φa(xi,uα),and Φ

(b)
iβ = φb(xi,vβ).

In some cases, a latent space might be fully observed in the measurement. For example, N dimensional layer of neural
network activation is given by a feature map ψ(a) : X → RN , where X is the input space, and the column latent set U of
cardinality N is fully observed. Here, U would be a set of trained neural network weights. The uncentered kernel would be simply
k′(x,x′) = 1

N ψ(x)ψ(x′)⊤. If the latent variables cannot be fully observed, we assume there are probability measures over the latent
spaces: ρX is the probability measures over X and, and similarly for ρU and ρV . Assume φa is square integrable w.r.t. ρX and ρU ,
and similarly φb is also square integrable. The associated uncentered kernels are defined as k′a(x,x

′) =
∫

dρU(u)φa(x,u)φa(x′,u)
and k′b(y,y

′) =
∫

dρV (v)φb(y,v)φb(y′,v). We may also define the associated kernel integral operator:

Tk f =
∫

dρX (x)k′(·,x) f (x). (S11)

Later, the eigenvalues of the operator Tk will be relevant.
We also define associated covariance kernels: k̃′a(u,u

′) =
∫

dρX (x)φa(x,u)φa(x,u′) and k̃′b(v,v
′) =

∫
dρX (x)φb(x,v)φb(x,v′).

B.2 Biases in CKA estimators contributed by the biases in HSIC estimators
Here we derive the analytical expression of the biases of the CKA estimators. Here we assume that each feature is already
centered, i.e.

∫
dρX (x)φa(x, ·) = 0, and

∫
dρX (x)φb(x, ·) = 0 . We first compute the expected values of the HSIC estimators. Let

SX := {xi}P
i=1, FU := {ui}Qa

i=1, and FV := {vi}Qb
i=1 be the sets of latent variables sampled independently from ρX , ρU , and ρV

respectively. The naive HSIC estimator is then given by

Ĥ0(φa,φb,SX ,FU ,FV ) =
1

P2QaQb
∑
i j

∑
α

∑
β

φa(xi,uα)φa(x j,uα)φb(xi,vβ)φb(x j,vβ)

if uα and vβ are independently sampled for all α and β combinations, which corresponds to the numerator of CKA. If the column
latent variables are identical, and φa = φb, this corresponds to the HSICs in the denominator of naive CKA:

Ĥ0(φa,SX ,FU) =
1

P2Q2
a
∑
i j

∑
αβ

φa(xi,uα)φa(x j,uα)φa(xi,uβ)φa(x j,uβ),

Ĥ0(φb,SX ,FV ) =
1

P2Q2
b
∑
i j

∑
αβ

φb(xi,vα)φb(x j,vα)φb(xi,vβ)φb(x j,vβ)

Here, we assume the naive CKA is computed after N trials, across which the empirical means of the HSIC are computed::

ĈKA0(φa,φb,ρX ,ρU ,ρV ) =
∑

N
l=1 Ĥ0(φa,φb,S

(l)
X ,F (l)

U ,F (l)
V )√

∑
N
l=1 Ĥ0(φa,S

(l)
X ,F (l)

U )∑
N
l=1 Ĥ0(φb,S

(l)
X ,F (l)

V )

We assume N is large such that all three Ĥ empirical averages have small variance of order O
(

1
N

)
. In this limit, the following

approximation is valid:

〈
ĈKA0(φa,φb,SX ,FU ,FV )

〉
≈

〈
Ĥ0(φa,φb,S

(l)
X ,F (l)

U ,F (l)
V )
〉

√〈
Ĥ0(φa,S

(l)
X ,F (l)

U )
〉〈

Ĥ0(φb,S
(l)
X ,F (l)

V )
〉 .

This approximation is also valid when P, Qa, and Qb are all large. We empirically observe that the expected value of ĈKA0

obtained via this approximation still accurately predict the expected values of ĈKA0 empirically computed even with N = 1 and



often even in addition to small P, Qa, and Qb. This allows us to understand the bias of ĈKA0 contributed from the biases of
Ĥ0, isolated from the bias contributed by taking products, inverse, and square root of the Ĥ0 estimates, which unnecessarily
complicates the analysis.

First, let us take the expected value of the Ĥ0 in the numerator:〈
Ĥ0(φa,φb,SX ,FU ,FV )

〉
=

1
P2QaQb

∑
i j

∑
α

∑
β

〈
φa(xi,uα)φa(x j,uα)φb(xi,vβ)φb(x j,vβ)

〉
(S12)

=
〈
ka(x,y)kb(x,y)

〉
x,y +

1
P

(〈
ka(x,x)kb(x,x)

〉
x −
〈
ka(x,y)kb(x,y)

〉
x,y

)
(S13)

=
〈
ka(x,y)kb(x,y)

〉
x,y

(
1+

1
P

(
ζab −1

))
(S14)

where we have introduced a new variable ζab := ⟨ka(x,x)kb(x,x)⟩x
⟨ka(x,y)kb(x,y)⟩x,y

that is sensitive to the alignment of the representation. Note

that the expected value of the stimulus-corrected estimator ĤS(φa,φb,SX ,FU ,FV ) can be obtained by taking P → ∞ limit in

Equation (S14), which simply
〈
ka(x,y)kb(x,y)

〉
, which means that the numerator ĤS is unbiased in this problem setup. However,

in an alternative problem setup, such as the trial-to-trial CKA, the numerator ĤS is still biased, since the neurons are identical

across (a) and (b), i.e. uα = vα. The bias of the numerator ĤS in this alternative problem setup is similar to the biases in the

denominator ĤS’s of both problem setup.

Next, let us take the expected value of one of the Ĥ0’s in the denominator:〈
Ĥ0(φa,SX ,FU)

〉
=

1
P2Q2

a
∑
i j

∑
αβ

〈
φa(xi,uα)φa(x j,uα)φa(xi,uβ)φa(x j,uβ)

〉

=
〈

ka(x,y)2
〉
− 1

P

(〈
ka(x,y)2

〉
−
〈

ka(x,x)2
〉)

− 1
Qa

(〈
ka(x,y)2

〉
−
〈

k̃a(w,w)2
〉)

+

1
PQa

(〈
ka(x,y)2

〉
−
〈

ka(x,x)2
〉
−
〈

k̃a(w,w)2
〉
+
〈

φa(x,w)4
〉)

(S15)

=
〈

ka(x,y)2
〉[

1+
1
P

(
γa

ψa
−1
)
+

1
Qa

(
γa

ψ̃a
−1
)
− 1

PQa

(
γa

ψa
+

γa

ψ̃a
− γa

ρa
−1
)]

where we have introduced new variables γa =
⟨ka(x,x)⟩2

⟨ka(x,y)2⟩ , ψa := ⟨ka(x,x)⟩2

⟨ka(x,x)2⟩ , ψ̃a := ⟨k̃a(w,w)⟩2

⟨k̃a(w,w)2⟩ , and ρa =
⟨φa(x,w)2⟩2

⟨φa(x,w)4⟩ . Each of them is

participation ratio (PR), i.e. effective/soft count, of some quantities. For discrete quantities, let us define PR as

(∑i ai)
2

∑i a2
i

.

It is easy to see that, if N number of ai’s take value 1 and the rest 0, then PR is N, indicating it is a soft count of non-zero ai. The
continuous version is (∫

dµ(t) f (t)
)2∫

dµ(t) f (t)2 ,

which we call PR of f w.r.t. to µ. With these definitions, we can interpretγa as the PR of the eigenvalues of Tka , i.e. intrinsic
dimensionality of Tk, ψa as the PR of

∫
dρU(w)φa(·,w)2 w.r.t. ρX , ψ̃a as the PR of

∫
dρX (x)φa(x, ·)2 w.r.t. ρU , and ρa as the PR

of φ2
a w.r.t. ρX ⊗ρU . Suppose Φ

(a)
∞ is the measurement matrix in the limit of infinite stimulus and neuron samples, and K(a)

∞ is the
corresponding Gram matrix, equivalent to Tka . Then we can loosely say γa is the intrinsic dimensionality of K∞, ψa is the effective

number of rows of Φ
(a)
∞ with non-zero lengths, ψ̃a is the effective number of columns of Φ

(a)
∞ with non-zero lengths, and ρa is the

effective number of non-zero entries in Φ
(a)
∞ .

Then, with the expected values of Ĥ0 derived above the expected value of ĈKA0 can be approximated as



〈
ĈKA0(φa,φb,SX ,FU ,FV )

〉
≈

(
1+ 1

P

(
ζab −1

))
CKA√√√√(1+

γa
ψa −1

P +
γa
ψ̃a −1

Qa
−

γa
ψa +

γa
ψ̃a −

γa
ρa −1

PQa

)(
1+

γb
ψb

−1

P +
γb
ψ̃b

−1

Qb
−

γb
ψb

+
γb
ψ̃b

− γb
ρb

−1

PQb

) (S16)

where CKA := ⟨ka(x,y)kb(x,y)⟩√
⟨ka(x,y)2⟩⟨kb(x,y)2⟩

is the true CKA. Taking P → ∞, we obtain the expected value of ĈKAS(φa,φb,SX ,FU ,FV )

estimator: 〈
ĈKAS(φa,φb,SX ,FU ,FV )

〉
≈ CKA√√√√(1+

γa
ψ̃a −1

Qa

)(
1+

γb
ψ̃b

−1

Qb

)

If
∫

dρX (x) φa(x, ·)2 and
∫

dρX (x) φb(x, ·)2 are constant, i.e. the norm of the activation is normalized for each neuron, then
ψ̃a = ψ̃b = 1, which gives 〈

ĈKAS(φa,φb,SX ,FU ,FV )
〉
≈ CKA√(

1+ γa−1
Qa

)(
1+ γb−1

Qb

)
B.3 Analyzing the overall Ĥ -based CKA estimators

All CKA estimators based on Ĥ , including ours, have bias coming from taking the product of Ĥ ’s that are correlated to each other,
taking inverse, and taking the square root. As a simple analog of CKA estimator, consider the following problem. We have fixed
quantities X , A, and B, and corresponding potentially biased estimators x, a, and b, respectively. Here, x, a, and b are correlated.
We wish to study the properties of the estimator

T =
x√
ab

,

as an estimator for

θ =
X√
AB

.

Here, the fixed quantities X , A, and B correspond to the ground truth H values, and x, a, and b correspond to the Ĥ estimators.
We denote

δx = E[x]−X , δa = E[a]−A, δb = E[b]−B,

σ
2
x = Var(x), σ

2
a = Var(a), σ

2
b = Var(b),

σxa = Cov(x,a), σxb = Cov(x,b), σab = Cov(a,b).

We also define the deviations:
∆x = x−X , ∆a = a−A, ∆b = b−B,

with
E[∆x] = δx, E[∆a] = δa, E[∆b] = δb.

We consider the function
f (x,a,b) =

x√
ab

,

and expand it about the point (X ,A,B) to second order:

f (x,a,b)≈ f (X ,A,B)+ fx∆x+ fa∆a+ fb∆b+
1
2

[
fxx(∆x)2 + faa(∆a)2 + fbb(∆b)2 +2 fxa∆x∆a+2 fxb∆x∆b+2 fab∆a∆b

]
with all derivatives evaluated at (X ,A,B).

The zeroth-order term:



f (X ,A,B) =
X√
AB

.

The first order derivatives:

fx(X ,A,B) =
1√
AB

, fa(X ,A,B) =− X
2A

√
AB

, fb(X ,A,B) =− X
2B

√
AB

.

Next, the second-order derivatives:

fxx(X ,A,B) = 0, fxa(X ,A,B) =− 1
2A

√
AB

, fxb(X ,A,B) =− 1
2B

√
AB

,

faa(X ,A,B) =
3X

4A2
√

AB
, fbb(X ,A,B) =

3X
4B2

√
AB

, fab(X ,A,B) =
X

4AB
√

AB
.

Plugging them into our expansion, we get

x√
ab

≈ X√
AB

(
1+

∆x
X

− 1
2

∆a
A

− 1
2

∆b
B

+
3
8
(∆a)2

A2 +
3
8
(∆b)2

B2 − 1
2

∆x∆a
XA

− 1
2

∆x∆b
XB

+
1
4

∆a∆b
AB

)
Now let us take the expected value of the above. We use

E[∆x] = δx, E[∆a] = δa, E[∆b] = δb,

E[(∆x)2] = σ
2
x +δ

2
x , E[(∆a)2] = σ

2
a +δ

2
a, E[(∆b)2] = σ

2
b +δ

2
b,

E[∆x∆a] = σxa +δxδa, E[∆x∆b] = σxb +δxδb, E[∆a∆b] = σab +δaδb.

With these definitions, we get the following as the expected value up to the second order approximation:

E
[

x√
ab

]
≈ X√

AB

(
1+

δx

X
− 1

2
δa

A
− 1

2
δb

B
+

3
8

σ2
a +δ2

a

A2 +
3
8

σ2
b +δ2

b
B2 − 1

2
σxa +δxδa

XA
− 1

2
σxb +δxδb

XB
+

1
4

σab +δaδb

AB

)
.

Therefore, the bias is given by

E
[

x√
ab

]
− X√

AB
≈ X√

AB

(
δx

X
− 1

2
δa

A
− 1

2
δb

B
+

3
8

σ2
a +δ2

a

A2 +
3
8

σ2
b +δ2

b
B2 − 1

2
σxa +δxδa

XA
− 1

2
σxb +δxδb

XB
+

1
4

σab +δaδb

AB

)
.

Now let us put this back into the perspective of the CKA estimation. In that context, δx is the bias of an H -estimator for the
numerator, whereas δa and δb are the bias of the H -estimators in the numerator of CKA estimator. The variances σ2

x , σ2
a, and

σ2
b are the variances of the corresponding H -estimators. Again, X , A, B corresponds to the true H -values in the true CKA. In

our estimator ĈKAC, the ĤC biases δx, δa, and δb are zero, substantially reducing the bias in ĈKAC. However, in ĈKA0 and

ĈKAS, their H estimators have non-zero biases δx,δa,δb > 0 of order O
(

1
P + 1

Q

)
(except, for some setups, δx is zero in ĈKAS),

adding even more bias to the CKA estimations. Note that all H estimators have variance (σ2
x , σ2

a, σ2
b, σxa, σxb, and σab) of

order O
(

1
P + 1

Q

)
. Therefore, as long as CKA estimation is built based on the H estimators, the overall bias of CKA is of order

O
(

1
P + 1

Q

)
.

In a scenario where we have two systems (a) and (b) and we aim to compare the representations in (a) and (b) for a single input
distribution. However, for each trial, one uses a unique set of inputs and observes a unique set of neurons independently drawn
from distributions. Then, instead of taking the empirical average of ĈKA, one can take the empirical averages of Ĥ and use that

average to compute CKA. If there are N trials, these empirical averages of Ĥ have the variance of order O
(

1
N

(
1
P + 1

Q

))
. This

situation corresponds to when N number of labs use distinct individual animals to study V1 and they use distinct sets of natural
images. Alternatively, if one aims to compute trial-to-trial CKA and there are M trials, then by performing all pairwise comparisons,
one can reduce the bias of CKA estimators significantly since N =

(M
2

)
. In summary, having multiple trials allows our estimator

ĈKAC to have bias of O
(

1
N

(
1
P + 1

Q

))
, while the other estimators ĈKA0 and ĈKAS still has bias of O

(
1
P + 1

Q

)
.



C Additional results on neural data
In this section, we present the results on the second monkey subject. Overall, our observations are consistent across the two
monkeys.

C.1 Brain-to-model alignment
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Figure S1: Comparison of the brain regions (V1,V4, and IT) and models (ResNet18 and CorNet-s) using CKA estimators. The left
three columns show CKAs between each brain region and all model layers. The number of electrodes (Q) is downsampled to
1/16 of all available electrodes in the dataset for each brain region. The right three columns show CKA between a brain region
and the layer that is the most similar to the region. The number of electrodes (Q) varies from the factor of 1/16 to 1 (of all available
electrodes) along the x-axis for each region. P = 1,000 stimuli are used in all plots. The horizontal dotted line is the brain-to-brain

ĈKAC across animals for each brain region from Figure 3b. The darker lines are ĈKA’s and the lighter lines are ĈKAN ’s.

The CKA estimates between CNNs and the second monkey is shown in Figure S1.

C.2 Object disentanglement
The CKA estimates object disentanglement in the second monkey is shown in Figure S2.

D Code availability
The code for the estimators and generating all figures is available in https://github.com/badooki/CKA/.

https://github.com/badooki/CKA/


V1 V4 IT
0.4

0.6

0.8

1.0

CK
A

['condiment', 'game', 'animal', 'fruit']

game, condiment
animal, condiment
animal, game
fruit, condiment
fruit, game
fruit, animal

V1 V4 IT
0.4

0.6

0.8

1.0

CK
A

['safety equipment', 'school supply', 'food', 'bird']

school supply, safety equipment
food, safety equipment
food, school supply
bird, safety equipment
bird, school supply
bird, food

V1 V4 IT
0.4

0.6

0.8

1.0

CK
A

['lighting', 'office supply', 'vegetable', 'farm animal']

office supply, lighting
vegetable, lighting
vegetable, office supply
farm animal, lighting
farm animal, office supply
farm animal, vegetable

Figure S2: Quantifying semantic disentanglement in the brain with CKA. Solid line represents ĈKAC, whereas dotted line
represents ĈKAS. Three separate groups of object images were prepared, and all pairwise comparisons were performed in each
group.
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