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Abstract001

Enhancing the reasoning capabilities of large002
language models (LLMs), particularly for com-003
plex tasks requiring multi-step logical deduc-004
tions, remains a significant challenge. Tradi-005
tional inference time scaling methods utilize006
scalar reward signals from process reward mod-007
els to evaluate candidate reasoning steps, but008
these scalar rewards lack the nuanced qualita-009
tive information essential for understanding and010
justifying each step. In this paper, we propose011
a novel inference-time scaling approach – step-012
wise natural language self-critique (PANEL),013
which employs self-generated natural language014
critiques as feedback to guide the step-level015
search process. By generating rich, human-016
readable critiques for each candidate reasoning017
step, PANEL retains essential qualitative infor-018
mation, facilitating better-informed decision-019
making during inference. This approach by-020
passes the need for task-specific verifiers and021
the associated training overhead, making it022
broadly applicable across diverse tasks. Experi-023
mental results on challenging reasoning bench-024
marks, including AIME and GPQA, demon-025
strate that PANEL significantly enhances rea-026
soning performance, outperforming traditional027
scalar reward-based methods.028

1 Introduction029

Large language models (LLMs) have signifi-030

cantly transformed natural language processing031

by enabling sophisticated reasoning and problem-032

solving abilities. However, enhancing the reason-033

ing capabilities of LLMs, especially in complex034

tasks that require multi-step logical deductions, re-035

mains a significant challenge. One critical tech-036

nique for addressing this challenge is inference037

time scaling, which strategically allocates com-038

putational resources during inference to explore a039

broader space of potential reasoning paths beyond040

single, deterministic trajectories. Recent meth-041

ods employing inference time scaling have demon-042

strated the effectiveness of this strategy in improv- 043

ing the robustness and accuracy of LLMs’ reason- 044

ing processes (Yao et al., 2024; OpenAI, 2024; 045

Snell et al., 2025; Guo et al., 2025; Team, 2024). 046

A prominent framework for implementing infer- 047

ence time scaling is step-level tree search, which 048

iteratively explores possible reasoning steps to con- 049

struct a solution path (Villalobos and Atkinson, 050

2023; Luo et al., 2024; Wan et al., 2024). Central 051

to this framework is the mechanism for evaluat- 052

ing and selecting the most promising reasoning 053

paths. Traditional approaches assess the quality 054

of each candidate step using step-level verifiers, 055

which often utilize scalar reward signals derived 056

from process reward models (PRMs) (Lightman 057

et al., 2024a; Wang et al., 2024). These verifiers 058

output numerical scores representing the correct- 059

ness or desirability of steps, guiding the search 060

algorithm towards paths with higher scores. 061

However, relying on scalar rewards introduces 062

significant limitations. First, reducing complex rea- 063

soning steps to single numerical values inevitably 064

sacrifices nuanced qualitative information essen- 065

tial for understanding and justifying each step. Im- 066

portant insights, justifications, and potential errors 067

may be overlooked, hindering the model’s ability 068

to perform complex reasoning. Second, effective 069

verifiers are often task-specific and require substan- 070

tial training on annotated datasets that may not 071

be available for many advanced reasoning tasks, 072

particularly in STEM domains. Finally, the devel- 073

opment and integration of these verifiers impose 074

considerable computational overhead and complex- 075

ity (Guo et al., 2025). 076

In this paper, we present a novel inference- 077

time scaling approach called stepwise natural lan- 078

guage self-critique (PANEL). Instead of relying 079

on scalar reward signals from an external verifier, 080

PANEL employs self-generated natural language 081

(NL) critiques as a feedback mechanism to guide 082

the step-level tree search process. By generating 083
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rich, human-readable critiques for each candidate084

reasoning step, the model retains the qualitative085

information necessary for comprehensive under-086

standing and justification. This approach offers087

several key advantages:088

1. NL critiques provide detailed explanations of the089

strengths and weaknesses of each reasoning step,090

facilitating better-informed decision-making dur-091

ing the search process.092

2. Unlike task-specific verifiers, NL critiques can093

be generated by the policy model itself across094

diverse tasks without requiring specialized train-095

ing data. This makes PANEL suitable for a wide096

range of complex reasoning problems.097

3. By reusing the policy model to generate cri-098

tiques, PANEL circumvents the considerable099

overhead associated with training dedicated veri-100

fiers, streamlining the inference process.101

The remainder of this paper is organized as fol-102

lows: Section 2 details the proposed PANEL frame-103

work, elaborating on the integration of NL critique104

within the step-level search algorithm and the mech-105

anisms for leveraging critique feedback to guide106

the search process. Section 3 presents a compre-107

hensive empirical evaluation of PANEL across a108

range of challenging reasoning tasks, demonstrat-109

ing its effectiveness and advantages over existing110

approaches. We discuss related work in Section 4111

and conclude with our findings in Section 5.112

Our main contributions are as follows:113

1. We propose PANEL, a novel inference time scal-114

ing framework that incorporates rich natural lan-115

guage self-critique to guide step-level search116

in reasoning tasks, moving beyond traditional117

scalar correctness scores.118

2. We provide a comprehensive analysis demon-119

strating how PANEL addresses the limitations of120

existing scalar verifiers, offering a more informa-121

tive, versatile, and efficient approach applicable122

to diverse reasoning tasks.123

3. We conduct extensive experiments on challeng-124

ing reasoning benchmarks to validate the effec-125

tiveness of PANEL, showcasing significant im-126

provements in reasoning performance by lever-127

aging nuanced NL feedback.128

2 PANEL 129

This section provides an overview of PANEL, our 130

novel framework designed to enhance LLMs rea- 131

soning capabilities. PANEL innovatively integrates 132

natural language (NL) critique as a feedback mech- 133

anism directly into a step-level search process. Our 134

core motivation stems from the recognition of nat- 135

ural language as a universal and robust feedback 136

signal (Ke et al., 2024), uniquely suited to address 137

the diverse challenges of complex reasoning tasks 138

across various domains. 139

2.1 PANEL Framework 140

We introduce PANEL, the first strategy to introduce 141

natural language critique into the step-wise search 142

algorithm, and validate its effectiveness in LLM 143

reasoning across not only mathematical reasoning 144

tasks but also various STEM tasks. 145

Stage1: Sampling Candidates The initial phase 146

of PANEL mirrors the candidate expansion phase 147

in conventional step-level search algorithms. To ef- 148

fectively balance both certainty and diversity in our 149

candidate pool, we employ a dual sampling strat- 150

egy. Firstly, to capture more certain and likely next 151

steps, we utilize greedy decoding. This approach 152

selects the highest probability token at each decod- 153

ing step, aiming to generate reasoning steps that the 154

LLM deems most probable. Secondly, to introduce 155

diversity and explore a broader range of potential 156

reasoning pathways, we complement greedy de- 157

coding with random sampling with temperature1. 158

This combination ensures that our candidate set 159

encompasses both highly probable and more ex- 160

ploratory directions for the subsequent stages of 161

the PANEL framework to evaluate. 162

Stage2: Natural Language Self-Critique In the 163

second stage, the PANEL framework harnesses the 164

expressive power of NL self-critique to evaluate 165

the quality of each candidate’s reasoning step gen- 166

erated in Stage 1. Critically, unlike conventional 167

approaches relying on scalar metrics, this stage 168

leverages natural language critique to provide nu- 169

anced and human-interpretable justifications for the 170

strengths and weaknesses of each candidate. 171

This is particularly significant because natural 172

language critique can be inherently task-specific, 173

drawing upon relevant domain knowledge and con- 174

textual understanding that is often inaccessible to 175

fixed scalar evaluation strategies. For instance, as 176

1Temperate is 0.6 across all the experiments.

2



The reasoning assumes a constant force, which 
contradicts the problem’s context. ✘

The calculation of the force is incorrect because 
Newton's second law was misapplied.

Looks fine to me.

✘

✔

Si Si+1,2

Si+1,1

Si+1,3 Si+2,2

Si+2,1

Si+2,3

I will select Si+1,3 
for next step search. 

Stage 1: 
Sampling Candidates

Stage 2: 
Natural Language Self-Critique

Stage 3: 
Decision Making

Figure 1: An illustration of our PANEL framework. Instead of relying on scalar scores produced by task-specific
verifiers, PANEL employs NL feedback, offering nuanced insights into the strengths and weaknesses of each
reasoning step. Moreover, PANEL dynamically selects the best candidates, a fundamentally different approach from
conventional verifier-based strategies that always select the candidates with the maximal PRM score.

demonstrated in Figure 1, NL self-critique effec-177

tively pinpoints reasoning errors in candidate Si+1,1178

where errors stemming from incorrect assumptions179

and candidate Si+1,2 where the Newton’s second180

law is misapplied. Both of these instances of incor-181

rect reasoning are explicitly specific to the Physics182

domain, showcasing the capacity of NL critique183

to provide feedback grounded in the nuances of184

task-relevant knowledge, a capability absent in con-185

ventional scalar-based evaluation.186

Critically, NL critique offers a robust signal that187

is broadly applicable, moving beyond the limita-188

tions of task-specific verifiers. To ensure this ro-189

bustness, our NL critique is carefully designed to be190

effective across a wide range of complex reasoning191

tasks within the STEM domain, from mathemat-192

ical problem-solving to physics and beyond (see193

Appendix ??). This stage facilitates a more com-194

prehensive and adaptable assessment of reasoning195

step quality with natural language critiques.196

Stage3: Decision Making The final stage of the197

PANEL is decision Making, which deviates signif-198

icantly from conventional step-level search algo-199

rithms. Instead of relying on a pre-defined scalar200

metric or external verifier to directly select the can-201

didate with the maximal score, PANEL dynamically202

leverages the LLM itself to make the selection. As203

demonstrated in Figure 1, the policy model ana-204

lyzes the nuanced feedback associated with each205

candidate’s reasoning step. Then the policy model206

assesses the overall quality and potential of each207

candidate and selects the candidate Si+1,3 based208

on its justification with the NL critiques. Con-209

sequently, PANEL transcends simple scalar-based210

selection by enabling a more sophisticated and 211

context-aware decision process, allowing the frame- 212

work to dynamically choose the most promising 213

candidate to extend the reasoning trace. 214

Finally, once the candidate is selected, a new iter- 215

ation of searching steps would start until reaching 216

the final answer. Through this process, PANEL in- 217

troduces the NL critique as the feedback signal into 218

step-level searching algorithms. 219

2.2 Formulation 220

This subsection details how PANEL leverages Natu- 221

ral Language (NL) self-critiques to refine step-level 222

tree search. Unlike conventional methods that max- 223

imize scalar rewards, PANEL aims to identify step 224

sequences justified by favorable NL critiques. 225

We begin by contrasting with the standard ob- 226

jective of value-based search algorithms. Given a 227

question prompt x, a policy model θ, and a PRM 228

verifier Vϕ, the traditional goal is to maximize the 229

expected cumulative reward: 230

argmax
s1,...,sN

N∑
t=1

Est∼p(·|s<t,x;θ)[Vϕ(st|s<t)], (1) 231

where st represents the state at step t, and 232

Vϕ(st|s<t) is the scalar reward from the PRM veri- 233

fier for transitioning to st. 234

NL Critique as Step-Level Justification In 235

PANEL, instead of scalar rewards, we use NL cri- 236

tiques to provide richer step-level justifications. For 237

each step t, the policy model θ generates a set of 238

candidate steps Ct = {ct,1, ..., ct,K}. A critique 239
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model Qψ then produces corresponding NL cri-240

tiques Qt = {qt,1, ..., qt,K} for each candidate:241

Qt = {Qψ(ct,k|s<t)|ct,k ∈ Ct}. (2)242

Critique-Driven Step Selection The core of243

PANEL lies in using these critiques to guide step se-244

lection. The policy model θ is designed to process245

both candidate steps Ct and their critiques Qt. The246

probability of selecting a candidate step ct,k at step247

t is conditioned on both sets, alongside historical248

context s<t:249

p(Ak|s<t, Ct,Qt; θ). (3)250

Effectively, instead of directly maximizing a251

scalar reward, PANEL aims to find a step sequence252

associated with a globally "favorable" set of NL253

critiques Q = {Q1, ...,QN}. This can be concep-254

tually represented as optimizing:255

argmax
s1,...,sN

N∑
t=1

EAt∼p(A|s<t,Ct,Qt;θ)[U(Qt, At; θ)],256

where U(Qt, At; θ) is a utility function, implicitly257

learned or designed within the policy θ, that eval-258

uates the desirability of critiques Qt to guide step259

selection. This function allows the policy to inter-260

pret and leverage the nuanced information within261

NL critiques for enhanced reasoning.262

3 Experiment263

3.1 Setup264

Benchmarks We conduct experiments on two265

benchmarks that assess the reasoning capabilities266

required for solving various scientific problems:267

• AIME (MAA Committees): a dataset from the268

American Invitational Mathematics Examination,269

which tests problem-solving skills across multi-270

ple areas of mathematics (e.g., algebra, count-271

ing, geometry, and number theory). We include272

the two most recent test sets – AIME2024 (30273

problems) and AIME2025-Part1 (15 problems).274

• GPQA Diamond (Rein et al., 2024): a chal-275

lenging dataset of 198 multiple-choice questions276

written by domain experts in biology, chemistry,277

and physics.278

Baselines We compare our approach with two279

representative Self-Evaluation methods:280

• Self-Consistency (Wang et al., 2023b): This 281

method first samples N reasoning paths and then 282

selects the most consistent answer by marginal- 283

izing over the sampled reasoning paths. 284

• Step-Level Self-Evaluation (Xie et al., 2024): 285

This method introduces a stepwise self- 286

evaluation mechanism to guide and calibrate the 287

reasoning process of LLMs. Specifically, it in- 288

tegrates self-evaluation guidance via stochastic 289

beam search, facilitating an efficient search in 290

the reasoning space. 291

In addition, we also consider two solution-level 292

self-evaluation methods: 293

• Solution-Level Self-Evaluation: Instead of 294

selecting the most consistent answer as done 295

in Self-Consistency, this algorithm allows the 296

model itself to select the final answer from the 297

sampled N reasoning paths. 298

• Solution-Level Self-Evaluation with NL Self- 299

Critique: This method enhances the above 300

method by incorporating a NL self-critique stage. 301

After sampling N reasoning paths, the model 302

generates a self-critique for each solution, as- 303

sessing its correctness and plausibility. These 304

self-critiques help the model to evaluate the qual- 305

ity of each reasoning path. The final answer 306

is then selected based on this self-assessment 307

process, aiming to improve the accuracy and re- 308

liability of the selected solution by promoting 309

more informed decision-making. 310

We consider two backbone LLMs of different 311

model sizes and capabilities, including Llama 3.1- 312

8B-Instruct and Llama 3.3-70B-Instruct models. 313

We generate 5 candidates at each step in the step- 314

wise search process. 315

3.2 Main Results 316

Table 1 presents the performance comparison of our 317

proposed PANEL framework against several base- 318

line methods on the AIME and GPQA Diamond 319

benchmarks, using two backbone LLMs: Llama3.1- 320

8B-Instruct and Llama3.3-70B-Instruct. We have 321

the following key observations. 322

PANEL Outperforms Baselines Across Tasks 323

and Model Sizes. On the AIME-Math dataset, 324

PANEL achieves an accuracy of 4.4% with the 325

Llama3.1-8B-Instruct model, ranking the second- 326

best methods in this setting. When utilizing the 327
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Methods AIME (Math) GPQA Diamond

2024 2025 All Biol. Chem. Phys. All

Llama3.1-8B-Instruct
Baseline 0.0 0.0 0.0 47.4 19.4 27.9 25.8
Self-Consistency 3.3 0.0 2.2 36.8 28.0 31.4 30.3
Solution-Level Self-Evaluation 3.3 0.0 2.2 36.8 22.6 37.2 30.3

+ NL Self-Critique 13.3 0.0 8.9 36.8 26.9 37.6 32.5
Step-Level Self-Evaluation 6.7 0.0 4.4 57.9 26.9 34.9 33.3
PANEL(Ours) 6.7 0.0 4.4 52.6 32.3 43.0 38.9

Llama3.3-70B-Instruct
Baseline 30.0 6.7 22.2 63.2 41.9 58.1 51.0
Self-Consistency 33.3 6.7 24.4 63.2 44.1 57.0 51.5
Solution-Level Self-Evaluation 26.7 13.3 22.2 63.2 40.9 61.6 52.0

+ NL Self-Critique 26.7 13.3 22.2 63.2 40.9 62.8 52.5
Step-Level Self-Evaluation 23.3 6.7 17.8 63.2 39.8 61.6 51.5
PANEL(Ours) 30.0 13.3 24.4 63.2 43.0 65.1 54.5

Table 1: Experimental results on different reasoning tasks show that our method PANEL outperforms both solution-
level and step-level search algorithms by a significant margin. We highlight the best result in each individual domain
in italics and the best overall result in bold. For a fair comparison, we use Self-Consistency with N = 5 examples.
To better understand the impact of critique in search, we also present the results of using an external critique model.

larger Llama3.3-70B-Instruct model, PANEL im-328

proves the accuracy to 24.4%, surpassing all other329

baselines. This demonstrates the effectiveness of330

PANEL in enhancing the reasoning capabilities of331

LLMs, particularly as model size increases.332

On the GPQA Diamond benchmark, which en-333

compasses challenging questions from Biology,334

Chemistry, and Physics domains, PANEL consis-335

tently achieves superior performance. With the336

Llama3.1-8B-Instruct model, PANEL obtains the337

highest overall accuracy of 38.9%, outperforming338

both solution-level and step-level self-evaluation339

methods. Notably, PANEL achieves the best in340

the Chemistry (32.3%) and Physics (43.0%) do-341

mains. When using the larger Llama3.3-70B-342

Instruct model, PANEL further improves the overall343

accuracy to 54.5%, again surpassing all baselines344

and achieving the highest accuracy in the Physics345

domain (65.1%). These results highlight PANEL’s346

ability to handle intricate reasoning required in347

complex scientific domains.348

Effectiveness of Natural Language Self-Critique.349

The superior performance of PANEL can be at-350

tributed to its novel application of natural language351

self-critique as a feedback mechanism during the352

reasoning process. Introducing NL self-critique353

improves reasoning accuracy in both solution-level354

and step-level self-evaluation methods across dif- 355

ferent tasks and model sizes. Unlike traditional 356

scalar reward verifiers used in self-evaluation meth- 357

ods, rich natural language critiques provide nu- 358

anced and interpretable feedback that guides the 359

model toward more accurate reasoning paths. This 360

approach enables the model to retain qualitative 361

information about each reasoning step, directly 362

addressing the limitations of existing scalar ver- 363

ifiers. For instance, on the GPQA Diamond test 364

set, NL self-critique improves reasoning accuracy 365

over solution-level self-evaluation by 2.2% for the 366

Llama3.1-8B-Instruct model and by 0.5% for the 367

Llama3.3-70B-Instruct model. With the Llama3.3- 368

70B-Instruct model, applying NL self-critique at 369

the step level improves reasoning accuracy on the 370

AIME and GPQA Diamond tasks by 6.6% and 371

3.0%, respectively. Figure 2 shows an example of 372

how NL self-critique improves reasoning accuracy 373

for the LLama3.3-70B-Instruct model. 374

3.3 Scalability of PANEL 375

To further assess the scalability of PANEL, we ex- 376

amine the pass@k accuracy on the AIME2024-25 377

benchmark (see Figure 3). This analysis explores 378

how increasing the number of generated solutions k 379

affects model performance, highlighting the trade- 380

off between computational cost and accuracy. 381
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The parabola with equation $y=x^{2}-4$ is rotated $60^{\circ}$ counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its 
image intersect has $y$-coordinate $\frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a+b+c$.

Step 1: Understand the problem involves rotating the parabola $y=x^2-4$ by $60^\circ$ counterclockwise and finding the $y$-coordinate of the intersection point in the fourth 
quadrant in the specified form.

Step 6: The $y$-
coordinate is $y = 
\frac{3 - \sqrt{57}}{2} 
= \frac{a - \sqrt{b}}{c}
$, so $a = 3$, $b = 57$, 
$c = 2$, and $a + b + c 
= 3 + 57 + 2 = 62$.

Step 3: Attempt to find the equation of 
the rotated parabola in the form $y'$ as 
a function of $x'$ by eliminating the 
parameter $x$

Step 4: Hypothesize that intersection 
points could be found by assuming both 
$x’=x$ and $y' = y$

Step 5: Make assumption about the 
fourth quadrant requiring positive $x$) 
and proceeded to calculate the 
corresponding $y$-coordinate.

Recognized that directly expressing 
$y'$ in terms of $x'$ was an inefficient 
approach and suggested that a better 
method would be to find intersection 
points.

Approach was flawed, failing to utilize 
the derived parametric equations and 
incorrectly assuming $(x', y') = (x, y)$, 
and recognized equating the original and 
rotated parabola equations. Calculated $y$-coordinate was positive, 

contradicting the fourth quadrant 
requirement, and that the current form 
of $y$ did not match the desired format, 
thus suggesting to use the other root $x 
= \frac{\sqrt{3} - \sqrt{19}}{2}$ to find 
a $y$-coordinate.

✘

✘

✘

✔

✔

✔

✔

Step 2: Apply the rotation matrix for $60^\circ$ counterclockwise to transform a point $(x,y)$ to $(x',y')$, where $x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y$ and $y' = 
\frac{\sqrt{3}}{2}x + \frac{1}{2}y$.

Step 5: Solve the quadratic equation 
$x^2 - \sqrt{3}x - 4 = 0$ to get $x = 
\frac{\sqrt{3} \pm \sqrt{19}}{2}$, and 
find the corresponding $y$-coordinate 
$y = x^2 - 4 = \frac{3 \pm \sqrt{57}}
{2}$. For the fourth quadrant, choose 
$x = \frac{\sqrt{3} + \sqrt{19}}{2}$ 
and $y = \frac{3 - \sqrt{57}}{2}$.

Step 4: Assume the intersection point 
has the same $y$-coordinate on both the 
original and rotated parabola, so set $y' 
= y = x^2 - 4$, which gives the equation 
$\frac{\sqrt{3}}{2}x + \frac{1}{2}(x^2 
- 4) = x^2 - 4$.

Step 3: Substitute $y = x^2 - 4$ into the 
rotation equations to get parametric 
equations of the rotated parabola: $x' = 
\frac{1}{2}x - \frac{\sqrt{3}}{2}(x^2 - 
4)$ and $y' = \frac{\sqrt{3}}{2}x + 
\frac{1}{2}(x^2 - 4)$.

Figure 2: A case study from AIME25 where PANEL produces correct results while step-level self-evaluation fails.
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Figure 3: Pass@k accuracies of our PANEL and the baseline model. For reference, we also provide the results of
PANEL without NL Self-Critique (i.e., "Self-Level Self-Evaluation" in Table 1).

Our findings show that PANEL consistently out-382

performs the baseline model across various val-383

ues of k and model sizes. With the Llama3.1-8B-384

Instruct model, PANEL achieves a pass@1 accuracy385

of 6.1%, nearly doubling the baseline’s 3.5%. As k386

increases, the performance gap widens; at pass@8,387

PANEL attains an accuracy of 25.3%, significantly388

surpassing the baseline’s 13%. This indicates that389

PANEL is more effective at generating correct solu-390

tions when multiple attempts are allowed.391

We also investigate the impact of NL self-392

critique by comparing PANEL with and without393

it. Removing the self-critique leads to a noticeable394

decline in accuracy across all k values and model 395

sizes. For instance, with the Llama3.1-8B-Instruct 396

model at pass@4, accuracy drops from 17.1% with 397

self-critique to 14.0% without it. This demonstrates 398

that NL self-critique provides valuable feedback 399

that guides the model toward more accurate reason- 400

ing paths. The benefits of NL self-critique are even 401

more pronounced with larger models. Using the 402

Llama3.3-70B-Instruct model at pass@8, incorpo- 403

rating self-critique boosts accuracy by 5.9%, reach- 404

ing 40.3%. This suggests that larger models are 405

better able to leverage the detailed feedback from 406

self-critique to refine their reasoning processes. 407
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Critique AIME24-25 GPQA

Solution-Level Self-Evaluation
Self (8B) 8.9 32.5
External (70B) 11.1 35.4

Step-Level Self-Evaluation
Self (8B) 4.4 38.9
External (70B) 4.4 32.3

Table 2: Performance comparison of Llama3.1-8B-
Instruct using self-critique versus an external larger
(70B) critique model.

In summary, the pass@k analysis illustrates408

that PANEL enhances the reasoning capabilities409

of LLMs, especially when generating multiple out-410

puts at test time. By integrating NL self-critique,411

PANEL effectively improves accuracy while scal-412

ing with increased computational resources, align-413

ing with our objective to promote more informed414

decision-making through qualitative feedback.415

3.4 Analysis416

In this section, we present a qualitative analysis to417

provide some insights into how PANEL improves418

reasoning accuracy.419

NL Self-Critique is More Effective than Larger420

External Critique in Step-Level Self-Evaluation.421

We first investigate the impact of using an exter-422

nal critique model larger than the policy model on423

both solution-level and step-level self-evaluation424

methods. As shown in Table 2, employing an exter-425

nal 70B critique model improves performance in426

solution-level self-evaluation for both AIME24-25427

(from 8.9% to 11.1%) and GPQA (from 32.5% to428

35.4%). However, in step-level self-evaluation, the429

self-critique approach using the policy model itself430

(8B) outperforms the external critique on GPQA431

(38.9% vs. 32.3%) and matches performance on432

AIME24-25 (both at 4.4%). This indicates that433

while larger external critique models can offer im-434

provements at the solution level, the self-generated435

critiques from the policy model are more effective436

at refining reasoning steps, particularly in complex437

problem-solving tasks. The findings highlight the438

strength of our proposed PANEL in leveraging self-439

critique to enhance reasoning without relying on440

larger external models.441

NL Self-Critique Significantly Influences Early442

Reasoning Steps. Figure 4 shows the impact of443
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at each reasoning step. The "divergence ratio" denotes
the proportion of decisions that differ when using NL
self-critique versus not using it.

NL self-critique on decision making at each reason- 444

ing step. Incorporating NL self-critique markedly 445

affects the decision-making process of PANEL, par- 446

ticularly during the initial reasoning steps. The 447

divergence ratio of decision making is highest at 448

the first reasoning step across all models and bench- 449

marks, and it decreases in subsequent steps. For in- 450

stance, when evaluating the Llama3.1-8B-Instruct 451

model on the AIME benchmark, the divergence 452

ratio at the first reasoning step is 62.2%, indicat- 453

ing that more than half of the decisions differ due 454

to the introduction of NL self-critique. This ratio 455

decreases to 31.1% at the second step and drops 456

sharply to 6.7% at the third step, suggesting that the 457

influence of NL self-critique diminishes as the rea- 458

soning progresses. A similar pattern is observed on 459

the GPQA benchmark, where the divergence ratio 460

for the same model starts at 66.2% and decreases to 461

0.5% by the fifth step. Similar trend can be found 462

for the larger Llama3.3-70B model. These findings 463

suggest that NL self-critique primarily influences 464

the initial stages of the reasoning process, guiding 465

the models toward more accurate or refined initial 466

decisions. As the reasoning unfolds, the effects 467

of self-critique become less pronounced, possibly 468

because the initial decisions set the trajectory for 469

subsequent steps. 470

4 Related Work 471

Our work is closely related to three key areas of re- 472

search: inference time scaling, reward verification, 473

and natural language critique. This section reviews 474

recent advancements in these areas. 475
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Inference Time Scaling LLM reasoning extends476

to complex tasks such as logical inference (Ko-477

jima et al., 2022; Brown et al., 2020), step-by-step478

problem-solving (Wei et al., 2022), and understand-479

ing cause-effect relationships (Wang et al., 2022;480

Zhou et al.). Reasoning structures like Tree-of-481

Thoughts (Yao et al., 2024; Xie et al., 2024) and482

Graph-of-Thoughts (Besta et al., 2024) incorporate483

meta-cognitive patterns like planning (Wang et al.,484

2023a) and difficulty estimation (Fu et al., 2023).485

Extending inference computation enhances reason-486

ing abilities (Snell et al., 2025). Techniques such as487

Self-Consistency (Wang et al., 2023b; Cobbe et al.,488

2021) sample diverse reasoning paths to select the489

most consistent answers. Improved methods like490

boosted Self-Consistency (Pitis et al., 2023) and491

increased sampling (Brown et al., 2024; Wu et al.,492

2025) enhance question coverage, yet selecting493

promising candidates remains challenging.494

In this paper, we focus on step-level tree search495

to guide the LLM towards the promising reasoning496

trace. In contrast to solution-level scaling, our work497

introduces step-level algorithms with NL critique498

as the candidate selection strategy.499

Reward Models and Verifiers Reward models500

and verifiers are crucial components in enhancing501

LLM reasoning. Traditionally, reward models pri-502

marily serve as learning signals for Reinforcement503

Learning (RL) of LLMs (Ouyang et al., 2022; Tou-504

vron et al., 2023). Building upon outcome-based505

rewards, Process Reward Models (PRMs) were in-506

troduced (Lightman et al., 2024b) to provide step-507

level feedback, demonstrably improving LLM rea-508

soning performance. The effectiveness of PRMs509

in step-level RL training has motivated their use510

as inference-time verifiers. One line of research511

focuses on training PRMs using policy rollout data512

and subsequently deploying them for online rea-513

soning (Wang et al., 2024; Li et al., 2023; Hosseini514

et al., 2024; Lin et al., 2024b). Another direction515

integrates PRMs as verifiers within Monte Carlo516

Tree Search (MCTS), aiming to mitigate the rollout517

overhead associated with MCTS frameworks (Luo518

et al., 2024; Wan et al., 2024; Tian et al., 2024).519

Unlike previous methods that use scalar scores520

for step evaluation, we leverage NL critiques as a521

novel reward signal. This fundamentally diverges522

from existing methodologies by moving beyond523

scalar feedback to leverage the rich information524

encoded in NL critiques.525

Natural Language Critique NL critique, the 526

process of generating natural language justifi- 527

cations for LLM reasoning, has emerged as a 528

promising area. Research demonstrates that LLM- 529

generated critiques can effectively evaluate and re- 530

fine the reasoning of other LLMs (Lin et al., 2024a). 531

Consequently, NL critique has been leveraged to 532

enhance agent performance across various tasks 533

(Kim et al., 2023; Shinn et al., 2024; Gou et al., 534

2024), with some works focusing on training ded- 535

icated critique models (Cui et al., 2023; Ke et al., 536

2024; Li et al., 2024). These studies collectively 537

highlight the potential of NL critique for Critique- 538

Correcting Reasoning in diverse applications. 539

In contrast to this line of work, our paper ex- 540

plores the use of NL critiques and self-evaluation 541

for inference-time search scaling at the step level. 542

While recent studies have integrated NL critique 543

into search algorithms (Xie et al., 2024; Zhang 544

et al., 2024), their primary motivation is to improve 545

verifier reward scores; Another study (Xi et al., 546

2024), though utilizing step-level critique, mainly 547

relies on an external strong LLMs to provide NL 548

critique feedback. In contrast, we posit that NL self- 549

critique is strong enough to guide policy search for 550

self-improvement. This represents a fundamental 551

departure from prior approaches. 552

5 Conclusion 553

In this work, we presented PANEL, a novel 554

inference-time scaling framework that enhances 555

LLMs reasoning by incorporating stepwise natural 556

language self-critique into the step-level search pro- 557

cess. Unlike traditional methods relying on scalar 558

reward signals from external PRMs, PANEL utilizes 559

self-generated natural language critiques, providing 560

rich, qualitative feedback essential for understand- 561

ing and justifying complex reasoning steps. This 562

approach addresses significant limitations of exist- 563

ing methods, such as the loss of nuanced informa- 564

tion, the need for task-specific verifiers, and the as- 565

sociated computational overhead. Our experiments 566

on challenging reasoning benchmarks demonstrate 567

that PANEL significantly outperforms traditional 568

scalar reward-based methods, achieving substantial 569

improvements in reasoning performance. 570

By leveraging NL feedback, PANEL opens new 571

avenues for enhancing LLM reasoning capabilities 572

across diverse tasks. Future work may explore 573

further integration of NL feedback mechanisms 574

and their applications in other domains. 575
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Limitations576

While this work introduces a promising direction577

by leveraging natural language critiques for step-578

level inference scaling, limitations warrant consid-579

eration and future research. As a novel approach,580

this work represents an initial exploration of NL cri-581

tique for step-level search. While we provide empir-582

ical evidence supporting its effectiveness, a deeper583

theoretical understanding of why and when NL584

critiques are most beneficial is still needed. More-585

over, quantifying and comparing information rich-586

ness presents a methodological challenge. While587

we posit that NL critiques offer richer step-level588

feedback compared to scalar reward values, estab-589

lishing a direct quantitative comparison of this in-590

formation richness is inherently difficult. Future591

research could investigate the information content592

and characteristics of effective NL critiques, and593

develop theoretical frameworks to better predict the594

performance gains achievable with this approach595

compared to existing methods.596
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A Prompt for NL self-critique in PANEL812

We provide the prompts employed in PANEL for NL self-critique, each specifically designed for distinct813

domains.814

Math

You are an expert mathematician specializing in problem-solving and step-by-step reasoning.
Your task is to check the correctness of **the latest reasoning step** in solving a mathematical
problem.

**Important Instructions:**
- Your goal is to determine if the current reasoning step contains any **logical, mathematical,
or contextual errors**.
- You should **focus on correctness**:
- If the step is mathematically and logically valid given the context, mark it as "correct"
regardless of whether it is incomplete or lacks further steps.
- Do not penalize the step for not including subsequent steps unless its omission leads to a
misunderstanding or error.

**Common Errors to Look For:**
1. Arithmetic or algebraic mistakes (e.g., incorrect simplifications or incorrect application
of operations).
2. Misapplied theorems or incorrect assumptions (e.g., an unjustified jump to a conclusion).
3. Logical inconsistencies (e.g., a contradiction in the reasoning).
4. Misinterpretation of the problem statement or prior steps.

Based on the above guidelines, determine whether the current step is correct or incorrect.
1. If it is correct, you should return "correctness": "correct" and "critique": "" (empty).
2. If it is incorrect, you should return "correctness": "incorrect" and provide the explanation
of the error in "critique".
- Emphasize the core mistake(s) (location/reason).
- **Keep it short and straightforward**. Avoid unnecessary detail.
- If multiple errors, list them succinctly (e.g., bullet points).

Figure 5: Prompt of NL self-critique for math reasoning task.
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Physics

You are an expert physicist specializing in problem-solving and step-by-step reasoning
across various subdomains of physics, including but not limited to Classical Mechanics,
Electromagnetism, Quantum Mechanics, Thermodynamics, Relativistic Mechanics, Astrophysics, and
Optics. Your task is to check the correctness of **the latest reasoning step** in solving a
physics problem.

**Important Instructions:**
- Your goal is to determine if the current reasoning step contains any **logical, mathematical,
or conceptual errors** specific to physics.
- You should **focus on correctness**:
- If the step is physically and logically valid given the context, mark it as "correct"
regardless of whether it is incomplete or lacks further steps.
- Do not penalize the step for not including subsequent steps unless its omission leads to a
misunderstanding or error.

**Common Errors to Look For:**
1. **Mathematical Errors**:
- Incorrect calculations, algebraic manipulations, or unit conversions.
- Misapplication of formulas or equations.
2. **Conceptual Errors**:
- Misinterpretation of physical laws or principles (e.g., Newton’s laws, conservation of energy,
or Maxwell’s equations).
- Incorrect assumptions or simplifications.
3. **Logical Errors**:
- Contradictions in the reasoning or unjustified jumps to conclusions.
- Misinterpretation of the problem statement or prior steps.

**Examples of Critique:**
- "The calculation of the force is incorrect because Newton’s second law was misapplied."
- "The energy conservation principle was violated in this step, leading to an incorrect result."
- "The reasoning assumes a constant velocity, which contradicts the problem’s context."

Based on the above guidelines, determine whether the current step is correct or incorrect.
- If it is correct, you should return "correctness": "correct" and "critique": "" (empty).
- If it is incorrect, you should return "correctness": "incorrect" and provide the explanation
of the error in "critique".
- Emphasize the core mistake(s) (location/reason).
- **Keep it short and straightforward**. Avoid unnecessary detail.
- If multiple errors, list them succinctly (e.g., bullet points).

Figure 6: Prompt of NL critique for Physics task.
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Chemistry

You are an expert chemist specializing in problem-solving and step-by-step reasoning across
various subdomains of chemistry, including but not limited to Organic Chemistry, Inorganic
Chemistry, Physical Chemistry, and Analytical Chemistry. Your task is to check the correctness
of **the latest reasoning step** in solving a chemistry problem.

**Important Instructions:**
- Your goal is to determine if the current reasoning step contains any **logical, mathematical,
or conceptual errors** specific to chemistry.
- You should **focus on correctness**:
- If the step is chemically and logically valid given the context, mark it as "correct"
regardless of whether it is incomplete or lacks further steps.
- Do not penalize the step for not including subsequent steps unless its omission leads to a
misunderstanding or error.

**Common Errors to Look For:**
1. **Mathematical Errors**:
- Incorrect calculations, stoichiometric ratios, or unit conversions.
- Misapplication of formulas or equations (e.g., ideal gas law, equilibrium constants).
2. **Conceptual Errors**:
- Misinterpretation of chemical principles or laws (e.g., Le Chatelier’s principle, reaction
mechanisms, or periodic trends).
- Incorrect assumptions or simplifications (e.g., ignoring side reactions or assuming ideal
behavior).
3. **Logical Errors**:
- Contradictions in the reasoning or unjustified jumps to conclusions.
- Misinterpretation of the problem statement or prior steps.

**Examples of Critique:**
- "The stoichiometric calculation is incorrect because the mole ratio was misapplied."
- "The reaction mechanism violates the conservation of mass due to an unbalanced equation."
- "The reasoning assumes ideal gas behavior, which contradicts the problem’s context of high
pressure."

Based on the above guidelines, determine whether the current step is correct or incorrect.
- If it is correct, you should return "correctness": "correct" and "critique": "" (empty).
- If it is incorrect, you should return "correctness": "incorrect" and provide the explanation
of the error in "critique".
- Emphasize the core mistake(s) (location/reason).
- **Keep it short and straightforward**. Avoid unnecessary detail.
- If multiple errors, list them succinctly (e.g., bullet points).

Figure 7: Prompt of NL self-critique for chemistry task.
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Biology

You are an expert biologist specializing in problem-solving and step-by-step reasoning across
various areas of biology. Your task is to check the correctness of **the latest reasoning step**
in solving a biology problem.

**Important Instructions:**
- Your goal is to determine if the current reasoning step contains any **logical, factual, or
conceptual errors** specific to biology.
- You should **focus on correctness**:
- If the step is biologically and logically valid given the context, mark it as "correct"
regardless of whether it is incomplete or lacks further steps.
- Do not penalize the step for not including subsequent steps unless its omission leads to a
misunderstanding or error.

**Common Errors to Look For:**
1. **Factual Errors**:
- Incorrect use of biological facts, terminology, or definitions (e.g., confusing mitosis with
meiosis or misidentifying biomolecules).
- Misinterpretation of experimental data or observations.
2. **Conceptual Errors**:
- Misapplication of biological principles or theories (e.g., natural selection, central dogma,
or Mendelian inheritance).
- Incorrect assumptions or simplifications (e.g., ignoring environmental factors or assuming
ideal conditions).
3. **Logical Errors**:
- Contradictions in the reasoning or unjustified jumps to conclusions.
- Misinterpretation of the problem statement or prior steps.
4. **Mathematical Errors**:
- Incorrect calculations or statistical analyses (e.g., error in population genetics or enzyme
kinetics).

**Examples of Critique:**
- "The reasoning incorrectly assumes that all mutations are harmful, which contradicts the concept
of neutral mutations."
- "The calculation of the allele frequency is incorrect because the Hardy-Weinberg equilibrium
conditions were not met."
- "The interpretation of the experimental results ignores the possibility of confounding
variables."

Figure 8: Prompt of NL self-critique for biology task.
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B Case Study of PANEL on STEM Task815

Example of PANEL Inference-Time Search We also provide a case study of our PANEL inference-time816

search examples in STEM fields (i.e. GPQA Diamond in Physics) in Figure 9.

Figure 9: A case study from GPQA Diamond where PANEL produces the correct reasoning trace while step-level
self-evaluation fails.

817
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