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Abstract

In the WHO glioma classification guidelines grade, IDH mutation and 1p19q co-deletion
play a central role as they are important markers for prognosis and optimal therapy plan-
ning. Therefore, we propose a fully automatic, MRI based, 3D pipeline for glioma segmen-
tation and classification. The designed segmentation network was a 3D U-Net achieving
an average whole tumor dice score of 90%. After segmentation, the 3D tumor ROI is ex-
tracted and fed into the multi-task classification network. The network was trained and
evaluated on a large heterogeneous dataset of 628 patients, collected from The Cancer
Imaging Archive and BraTS 2019 databases. Additionally, the network was validated on
an independent dataset of 110 patients retrospectively acquired at the Ghent University
Hospital (GUH). Classification AUC scores are 0.93, 0.94 and 0.82 on the TCIA test data
and 0.94, 0.86 and 0.87 on the GUH data for grade, IDH and 1p19q status respectively.
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1. Introduction

In the most recent WHO glioma classification guidelines three (genetic) markers, important
for prognosis and optimal therapy planning, play a central role: WHO grade (glioblastoma,
GBM versus lower-grade glioma, LGG), IDH mutation and 1p19q co-deletion (Louis et al.,
2016; Yan et al., 2009; Weller et al., 2017). Biopsies to determine molecular information
involve risks, are subject to sampling error and related to reduced OS compared to a wait-
and-scan approach (Jackson et al., 2001; Wijnenga et al., 2017). Therefore, accurate non-
invasive assessment of genetic mutations is desired. Most of the existing studies are not
fully automatic, 2D, depend on expert opinion and are trained and evaluated on a small
dataset (Yang et al., 2018; Choi et al., 2019; Akkus et al., 2017). In this study we propose a
non-invasive fully automatic 3D pipeline to segment glioma and predict clinically relevant
markers according to the most recent WHO guidelines. We collected a large dataset from
multiple public databases and an independent dataset from our University Hospital (UH)
to test generalization.
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2. Materials and Methods

2.1. Data and Pre-processing

To acquire a large dataset, data was collected from multiple public databases: the TCGA-
GBM (Scarpace et al., 2016), TCGA-LGG (Pedano et al., 2016) and 1p19qDeletion (Er-
ickson et al., 2017) collections on The Cancer Imaging Archive (TCIA) (Clark et al., 2013)
and the BraTS 2019 dataset (only patients not already included in the TCGA collections)
(Menze et al., 2015; Bakas et al., 2017). Inclusion criteria were: a histologically proven
glioma of WHO grade II, III or IV and the availability of preoperative T1ce MRI together
with a T2 and/or FLAIR sequence of sufficient quality. In total 628 patients were included
with known WHO grade. IDH mutation status was available for 380 patients and 1p19q
co-deletion status for 280 LGG patients. Additionally, data was retrospectively acquired at
our university hospital with permission of the local ethics committee (registration number
withheld in anonymous version). We collected data from 110 patients with known WHO
grade (61 GBM). IDH and 1p19q co-deletion status was determined for 86 (32 IDHmut)
and 40 (12 co-deleted) patients respectively.

All MRI were co-registered, interpolated to 1 mm3 voxel sizes, skull-stripped and in-
dependently normalized by subtracting the mean and dividing by the standard deviation.
Tumor segmentation was done using a 3D U-Net (similar to Isensee et al. (2019)), trained on
the BraTS 2019 training dataset and evaluated on the validation set by the online evaluation
platform (https://ipp.cbica.upenn.edu). By randomly setting channels to zero during
training (while making sure that at least the T1ce and a T2 or FLAIR sequence remained),
the network shows increased robustness to missing modalities. This is beneficial as not all
four MRI (T1, T1ce, T2, FLAIR) are available for every patient. An average whole tumor
dice score of 90% is achieved based on all four MRI, 0.89 with only T1ce and FLAIR and
0.87 with T1ce and T2. This is close to performance of state-of-the art algorithms of the
BraTS 2019 challenge according to the validation leaderboard (Bakas and Sako, 2019).

2.2. Multi-task Classification

After segmentation, a 3D tumor ROI (bounding box) is extracted and used as input to the
subsequent classification network (Figure 1). The adaptive average pool layer allows the
network to process different ROI input sizes hence no resizing to a fixed shape is required.
The network is trained to simultaneously predict WHO grade, IDH mutation and 1p19q
co-deletion status. This so-called multi-task learning helps the network to learn features
that are relevant for multiple tasks and reduces the risk of overfitting. Moreover, as not all
ground truth labels are available for every patient, multi-task learning allows us to train
one network on all data instead of training separate networks for each task on a smaller
dataset. The network is implemented in PyTorch and trained with AdamW optimization
(lrinit = 1·10−5), L2 weight decay of 10−2, batch size of eight and focal binary cross-entropy
loss on an Nvidia RTX 2080Ti. The loss is calculated for each task on all samples in the
batch with known ground truth labels and averaged to a global loss. The 628 patients
are split into a training set of 458 (264 GBM vs. 194 LGG, 123 IDHmut vs. 87 IDHwild
and 83 1p19qDel vs. 100 1p19qIntact), a validation set of 70 (27 GBM, 41 IDH mut
and 20 1p19qDel) and a test set of 100 (46 GBM, 48 IDHmut and 30 1p19qDel) patients.
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The dataset was augmented with random flipping, axial rotations, intensity scaling, elastic
transform and setting input channels to zero as was done to train the segmentation network.
For patients in the validation and test set, all ground truth labels were available and test
patients were not used in the training set of the segmentation network in order to evaluate
the system on new cases that both the segmentation and classification stages have never
seen before. Data from the GUH was used to evaluate the performance on an entirely
independent dataset.
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Figure 1: Schematic illustration of the classification architecture. Every convolutional layer
is succeeded with instance normalisation and a ReLU activation

3. Results and Discussion

The AUC, accuracy, sensitivity and specificity scores on the TCIA and GUH test data
are included in Table 1. The sensitivity scores indicate the percentage of GBM, IDHmut
and 1p19qDel cases that are correctly classified as such. For binary grade prediction, very
high accuracies of 90% are achieved on both the TCIA and GUH test data. This shows
that the network is able to accurately distinguish GBM from LGG and generalizes well to
unseen data from different institutions. The IDH prediction performance is high on the
TCIA test set (AUC of 0.94) but lower on the GUH data (AUC of 0.86). Especially a
lower specificity of 70% compared to 88% is observed. This difference might be because for
the GUH data, IDH status was assesed through immunohistochemistry (IHC) while for the
TCGA data gene sequencing was used. However, a negative IDH status using IHC does
not necessarily mean an IDH wildtype tumor (Louis et al., 2016). Hence some IDH mutant
astrocytoma might be missed with IHC resulting in more false positives of the model and
thus a lower specificity. For 1p19q status we only included LGG cases as this marker is
only considered for those patients in the WHO guidelines. Including the GBM cases (all
1p19qIntact) would increase the overall prediction accuracy but would introduce a large data
imbalance and thereby decrease the performance for LGG cases. The GUH dataset only
contains 12 1p19q co-deleted cases which might be too small to obtain reliable performance
estimations. Depending on the classification threshold, the sensitivity for 1p19q status can
also be optimized. For example, with a threshold of 0.45 the sensitivity on the GUH dataset
increased to 75% with the same specificity.
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Table 1: Classification results on both the TCIA and University Hospital test data

TCIA | GUH test data AUC Acc. Sens. Spec.
GBM vs. LGG 93.3 | 94.0 90.0 | 90.0 93.5 | 90.1 87.0 | 89.8
IDH status 94.0 | 86.2 89.0 | 75.6 89.6 | 84.4 88.5 | 70.4
1p19q co-deletion 82.1 | 86.6 83.3 | 75.0 86.7 | 58.3 79.2 | 82.1

4. Conclusion

In conclusion, we developed a fully automatic 3D pipeline to segment glioma and non-
invasively predict important (molecular) markers according to the WHO classification guide-
lines with high diagnostic performance. The networks were trained on a large multi-
institutional database and evaluated on an independent dataset which demonstrated the
robustness and generalizability of the algorithm.
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