
Space to Time: Out-of-Distribution Generalization of
Safety Filters via Temporal Disturbance Encoding

Sander Tonkens∗, Nikhil Uday Shinde∗, Azra Begzadić∗, Michael C. Yip, Jorge Cortés, Sylvia Herbert

Abstract—Safe operation is essential for autonomous systems
in safety-critical environments such as urban air mobility. Value
function-based safety filters provide formal guarantees on safety,
wrapping an autonomy stack with a layer of protection on its
outputted action. Recent approaches leverage offline learned
value functions to scale these safety filters to high-dimensional
systems. Yet these methods assume knowing the full operational
domain a priori - information that is typically unavailable
in real world settings. For example, detailed prior knowledge
of all possible sources of model mismatch, in the form of
disturbances, in the environment is highly unrealistic. Even in
well-mapped environments like urban canyons or industrial sites,
drones encounter complex, spatially-varying disturbances arising
from payload-drone interaction, turbulent airflow, and other
environmental factors. We introduce SPACE2TIME, which enables
safe and adaptive deployment of offline-learned safety filters, by
generalizing across unknown, spatially-varying disturbances. The
key idea is to reparameterize spatial disturbances as a time-varying
formulation, allowing the use of temporally varying precomputed
value functions during online operation. We validate SPACE2TIME
through extensive simulations on diverse quadcopter models and
real-world hardware experiments, demonstrating significantly
improved safety performance over worst-case and naive baselines.

I. INTRODUCTION

Autonomous systems are often deployed in safety-critical
environments, where ensuring reliable and safe operation is
of paramount importance. For instance, drones operating in
mapped environments such as urban canyons or shipyards must
remain within known safe regions while subject to complex,
spatially-varying wind disturbances. Rather than synthesizing
or learning a new safe controller for every task, a more effective
approach is to use safety filters that monitor the control at
runtime and intervene only when necessary, ensuring safety
while not impeding an autonomous system from achieving
its non-safety related objectives [1]. A popular approach for
constructing safety filters relies on the concepts of Control
Barrier Functions (CBFs) [2] and Hamilton-Jacobi reachability
(HJR) analysis [3]. Recent efforts have sought to blend these
two approaches and derive value function-based safety filters,
which use the reachability-based value function as a barrier
certificate to ensure formal safety guarantees [4, 5, 6].

However, both of these methods rely on an accurate model of
the system and its operational domain. The operational domain
characterizes the range of conditions we design the system to
operate in, including dynamical changes and environmental
variations. Beyond this challenge, constructing a suitable CBF

∗Equal contribution. The authors are with the University of Califor-
nia San Diego (E-mails: {stonkens, nshinde, abegzadic, yip,
cortes, sherbert}@ucsd.edu)

remains an open problem. On the other hand, while HJR offers
formal safety guarantees, it suffers from poor scalability due to
the curse of dimensionality, limiting its use in high-dimensional
systems. As such, learning-based safety value functions have
risen in prominence to combat the aforementioned scalability
issues [7, 8, 9]. However, these methods also typically assume
a known model and fixed operational domain or attempt
to be robust across the full operational domain [10]. Such
assumptions limit their ability to generalize under distributional
shift, resulting in either unsafe or overly conservative behavior.

This work tackles the challenge of learning safe value
functions for autonomous systems under varying disturbances
in safety-critical environments, such as urban air mobility.
This work provides a first step in bridging the gap between
offline-learned value functions, which address the scalability
challenges of HJR, and the need to handle an evolving or
adapting operational domain online. Specifically, we focus on
unknown spatially-varying disturbances, a common challenge in
urban air mobility, where safe adaptation to such uncertainties
is paramount for successful deployment.

To this end, we introduce SPACE2TIME as outlined in Fig. 1,
a framework that enables the safe deployment of offline-learned
safety filters by adapting to unknown and spatially-varying
disturbances encountered during operation. Our key insight is to
convert the disturbance’s spatial rate of change into a temporal
rate of change, allowing for easy parameterization for offline
learning. Paired with an efficient online algorithm, this allows
for safe navigation that is less conservative than assuming
worst conditions everywhere while being safe, unlike existing
approaches. Such an approach tackles both real-time and
episodic out-of-distribution (OOD) problems, by reformulating
any spatial and temporal disturbances as temporal distribution
shifts [11]. The main contributions of our work are as follows:
• We introduce a time-varying disturbance-conditioned safety

value function formulation, which is a function of state, a con-
stant disturbance bound increase rate, and time. Effectively,
we learn a value function that incorporates disturbances
growing over time.

• We propose SPACE2TIME as shown in Fig. 1, a framework
that ensures safety in the presence of unknown, spatially-
varying disturbances through the use of a time-varying safety
filter leveraging the aforementioned offline-learned value
functions.

• We validate SPACE2TIME through extensive simulations for
a planar quadcopter model and real-world hardware experi-
ments for a planar environment, demonstrating substantial
improvements in safety compared to existing approaches,

mailto:stonkens@ucsd.edu
mailto:nshinde@ucsd.edu
mailto:abegzadic@ucsd.edu
mailto:yip@ucsd.edu
mailto:cortes@ucsd.edu
mailto:sherbert@ucsd.edu


Reparameterization

usafe

x, d, ḋ

Safety Filter

πnom

x, t, ḋ

CI

Value functions

Offline Online
SPACE2TIME

V, V̇ ,∇Vt 0
Fig. 1: Conceptual overview of the SPACE2TIME framework. SPACE2TIME characterizes safety by re-parameterizing the spatial variation
of the disturbance as a temporal change within the system dynamics. Value functions for this transformed system are then learned offline.
This re-parameterization allows the system to maintain safety while leveraging learned value function based safety filters to generate safe,
disturbance-aware control in real time.

without significantly sacrificing performance.

II. RELATED WORK

The past decade has seen major progress in safety filtering
for robotic systems, particularly through approaches grounded
in HJR and CBFs. We highlight relevant approaches to our
setting and point readers to recent surveys [12, 13].

Learning-Based Approaches for Hamilton Jacobi reacha-
bility analysis. HJR produces a value function whose zero level
set encodes the set of initial conditions from which a system
may reach a goal and/or avoid an obstacle despite worst-case
disturbance [3]. Traditional approaches to solve HJR rely on
dynamic programming and therefore scale exponentially with
the dimensionality of the system. In recent years, learning-
based approaches have vastly improved the scalability of HJR.
Reinforcement learning-based methods have been developed
to estimate HJR value function based on a Bellman recursive
framework that learns from samples collected, with success in
many applications [8, 9]. Physics-informed neural networks
(PINNs) have also been employed in a self-supervised manner
to approximate the value function [7]; an extension of this work
learns a parameterized version of the reachability value function
based on different disturbance bounds [14]. This approach
inspires our work, as it can provide safety across a range of op-
erational domains, each with a different maximum disturbance
level. Assuming, however, a set of operational domains fails
to address the shift between operational domains. Accounting
for this shift is crucial for safety in OOD applications.

Learning-Based Approaches for Control Barrier Func-
tions. Safety is also frequently ensured through the use of
CBFs [2, 15, 16, 17]. The construction of a valid CBF
and feasibility of the safety filter remains a challenge [12].
Recently, learning-based approaches have been introduced to
obtain CBFs, but they often lack formal guarantees or rely
on restrictive assumptions [18, 9, 19, 20]. As an alternative,
recent work has shown that CBFs can be constructed directly
using techniques from HJR [4].

III. BACKGROUND

Consider a system of the form ẋ = f̃(x, u, d) = f(x) +
g(x)u+ d(x), where x ∈ Rn is the state, u ∈ U ⊆ Rp is the
control input, d ∈ D ⊆ Rq is the disturbance, and U and D

are convex and compact sets. We consider a time horizon [t, 0],
where the initial time t ≤ 0. For each initial time t ≤ 0, we
denote the sets of admissible control and disturbance signals
by U(t) := {u : [t, 0] → U | u is measurable} and D(t) :=
{d : [t, 0] → D | d is measurable}. Under Assumption 1 in
Appendix A, we denote by ξu,dx,t (τ) a forward trajectory starting
at state x and time t under control and disturbance signals u,
d. The output of this trajectory is the state queried at time τ .

Hamilton-Jacobi Reachability is a model-based optimal
control framework that characterizes the set of initial states
from which a system can reach a target set and/or avoid a
failure set. Here, we introduce both the avoid problem and
the reach-avoid problem. For both problems, we consider a
constraint function g : Rn → R describing the failure set
as F := {x ∈ Rn | g(x) ≤ 0}. Then, the reward function
associated with the avoid problem is:

rA(x, t,u,d) = min
τ∈[t,0]

g(ξu,dx,t (s)). (1)

This encodes the minimum value of g attained by the trajectory
over the time horizon. If this minimum is smaller than 0, the
trajectory entered the failure set. For the reach-avoid problem,
additionally consider the target function l : Rn → R describing
the target set T := {x ∈ Rn | l(x) ≥ 0}. Then, the reward
function associated with the reach-avoid problem is:

rRA(x,t,u,d)= max
τ∈[t,0]

min{l(ξu,dx,t (τ)), min
s∈[t,τ ]

g(ξud
x,t (s))}. (2)

A trajectory has a positive reward if it reaches the target T at
some time τ1, i.e., l(ξu,dx,t (τ1)) > 0 while having stayed clear
of the failure set F , i.e., g(ξu,dx,t (s)) ≥ 0 for all s ∈ [t, τ1].

HJR considers a game in which one player, here the control
u, tries to maximize the reward, whereas a second player,
here the disturbance d, acts antagonistically and attempts to
minimize the reward. The value function of this game is
defined as V (x, t) = mind∈D maxu∈U c(x, t,u,d). For the
avoid problem, the value function encodes the avoid tube
A(F , t) := {x ∈ Rn | V (x, t) ≥ 0}, which is the set of states
that can avoid the failure set for time t. Alternatively, the reach-
avoid tube RA(T ,F , t) := {x ∈ Rn | V (x, t) ≥ 0} represents
the set of states from which the system is guaranteed to safely
reach the target while avoiding the failure set within time t.
In Appendix A and B we show how the two formulations can



be solved directly or approximately by traditional dynamic
programming [3] and self-supervised learning [7].

Control Barrier Functions are a popular technique for
enforcing safety. Typically, CBFs consider control-affine sys-
tems without disturbances, i.e., ẋ = f(x) + g(x)u [2]. A
continuously differentiable function h is a CBF if 1) we
can represent a given safe set C as the 0-superlevel set
of h, and 2) there exists an extended class K function α
such that, for each x ∈ C, there exists u ∈ Rm satisfying
∇h(x)⊤(f(x) + g(x)u) + α(h(x)) ≥ 0. For details on this
formulation, see Appendix A.

If a Lipschitz continuous controller k : Rn → Rm, defined
as u = k(x), satisfies the CBF constraint for all x ∈ C, then a
CBF can be used to ensure safety. Given any nominal control
law unom : Rn → Rp that may violate safety, CBFs allow for
minimal correction using the following optimization problem:

u∗(x) = argmin
u
∥u− unom (x)∥22

subject to ∇xh(x)⊤(f(x) + g(x)u) + α(h(x)) ≥ 0.
(3)

For control-affine dynamics, this is a quadratic program,
resulting in a computationally efficient safety filter. The main
challenge with CBFs is in finding a valid CBF. To address this,
CBFs can be constructed using HJR [4, 6], which incorporates
finite time horizons, control bounds, and disturbance bounds.

IV. PROBLEM STATEMENT

We consider safety-filter synthesis for control-and
disturbance-affine systems operating under spatially varying
disturbances. The disturbance d : X → Rq is unknown, but
its magnitude is bounded by dmax ∈ Rq and it is Lipschitz
continuous with a known constant Ld. Given a prescribed
failure set F ⊂ X , our objective is to design a safety filter
that adapts to the spatially-varying disturbance, guarantees
avoidance of F , and admits an offline-learnable value function
for formal safety certification. We consider the following
existing approaches from literature for this problem.

Constant Maximum Disturbance. Classical reachability-
inspired formulations typically assume a fixed control set U
and a fixed disturbance set D [3, 10]. While control inputs are
often (in practice) spatially invariant across the environment1,
disturbances such as wind may vary more smoothly over space.
Based on the full operational design domain, a maximum
allowable disturbance set Dmax is typically considered to
account for worst-case conditions. However, naively assuming
that the disturbance can take any value within Dmax at all
states might result in a very conservative value function
V (x, t,U ,Dmax), particularly if this maximum disturbance is
localized in the state space.

Perfect Information (Oracle) . An oracle value function
would have perfect access to the complete deterministic state-
dependent disturbance function d(x) ∈ Dmax, and compute
the optimal value function with Doracle(x, t) = {d(x)}, to find
Voracle = V (x, t,Doracle). In practice, however, the disturbance

1Apart from sudden changes due to e.g., actuator failures or restricting the
acceleration limits of a car on a slippery surface such as ice.

function d is unknown prior to deployment (making it unsuit-
able for offline learning), and pretraining for every possible
spatially-varying disturbance landscape is intractable.

Parameterizing the Pretrained Value Function by Con-
stant Disturbance Sets. An alternative is to pretrain a
value function for a range of potential operational domains,
each with a maximum disturbance that is constant across
space, i.e., an ensemble of K value functions, where each
iteration k corresponds to a constant disturbance bound set
Dk satisfying D1 ⊆ · · · ⊆ DK ⊆ Dmax. This yields a family
of value functions V1(x, t), . . . , VK(x, t) that can be used to
approximate the true disturbance-dependent behavior [14, 21].
However, this approach adapts naively to newly observed
measurements online, assuming that the currently observed
disturbance bound will remain constant over space and time.
Thus, this offers no formal safety guarantees in environments
with varying disturbances.

Given the limitations of each approach described above,
there is a need to formulate a value function that is amenable
to offline learning, but can be used in an adaptive manner
online in the face of varying disturbances while maintaining
safety. This is the problem tackled in this paper.

V. SPACE2TIME: TIME-VARYING DISTURBANCES FOR
ADAPTIVE SAFETY

A. Offline Safety Value Function Learning
Our key insight is that changes in disturbance bounds

over space can be encoded as changes in disturbance bounds
over time, as the system moves through the environment,
Fig. 1. We can use this temporal reparameterization with
a pre-defined control invariant safe target set to compute
a reach-avoid value function offline. This computed value
function is used as a minimally invasive safety filter online
to ensure we can always return to this safe set under our
assumed temporal disturbance increase and enables us to safely
navigate through OOD environments with unknown spatially
varying disturbances. For offline learning, we assume that
as the system moves, the disturbance grows linearly over
time. Specifically, the disturbance grows at a rate bounded
by |ḋ(x)| ≤ LdMf̃ = ḋmax, where Mf̃ bounds the system
dynamics f̃ . For notational simplicity, we first consider a one-
dimensional disturbance, i.e., d : X → R. Given a maximum
rate of change of a disturbance ḋmax, we define the worst-case
time-varying disturbance set as

Dtv(x, t) =
{
d ∈ R | |d| ≤ max{0, dmax − |t|ḋmax}

}
. (4)

In practice, we construct an ensemble of K value functions,
each associated with a constant disturbance rate ḋ1 ≤ · · · ≤
ḋK ≤ ḋmax. Intuitively, as the system moves forward in time,
the disturbance set Dtv gets progressively larger. To capture
this evolution, we augment the dynamics to explicitly model
the disturbance rate, resulting in (5) where z = [x, ḋ] is the
joint state and w ∈ [−1, 1] represents the normalized range
of the disturbance. This formulation is particularly relevant
for robotic systems operating in environments where we can
model disturbances to vary over the course of a deployment,
as is typically considered for OOD problems.



4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance regime

V = 0 for varying disturbance rates

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance rate regime

V = 0 for varying disturbance levels

Fig. 2: Safe Sets: The figure on the left shows the 0-level set of the learned value function for a fixed high disturbance level d and increasing
disturbance rates, ḋ,(light to dark blue). Notice that even with higher fixed disturbance, the safe set can be relatively large if the disturbance
rate remains low. The figure on the right shows the 0-level set of the learned value function for a fixed high disturbance rate, ḋ, for increasing
levels of disturbance, d (light to dark blue). As the disturbance magnitude increases, the time to get back and thus the safe set contracts.

ż = f̂(z, u, ω) =

[
ẋ

d̈

]
=

[
f(x) + g(x)u+max{0, dmax − |t|ḋ} · w

0

]
, (5)

Next, we specify a failure set F (e.g., static obstacles such as
buildings) and a fixed static control set U . Additionally, given
the assumption that the disturbance increases over time, our
proposed approach hinges on an a priori learned or expertly-
chosen target set T , which is control-invariant under worst-case
disturbance, i.e., for all d ∈ Dmax. This set can be interpreted
as a fallback zone, such as a docking location or an open-sky
area above a city2. We then construct the associated value
function and corresponding reach-avoid set under dynamics
(5), expressed as V (z, t) = V (x, t, ḋ). Given a disturbance
magnitude d ∈ Rq and its rate of change ḋ ∈ Rq , we compute
the time required to safely return to the control-invariant set as

treturn = min

(
dmax − d

ḋ

)
, (6)

where the minimum is over the q dimensions of d. This
denotes the time at which the disturbance attains its maximum
magnitude under our temporally increasing assumption, and
thus defines the latest time by which the system must re-enter
the prescribed safe set. It is used to query the value function
for the safety filter. To handle multi-dimensional disturbances,
each disturbance dimension is treated independently in time
when computing the value function. The time component in
the value function remains one-dimensional and corresponds
to the minimum time over all disturbance dimensions.

Parameterized for ḋ, the value function for the dynamics
in (5) can be learned offline using the methods in Appendix B,
and provides a more realistic approximation of a spatial
variational environment than existing alternatives. In the next
section, we discuss how to use this value function online.

2We make no prior assumptions on the magnitude of disturbances anywhere
in the state space. This in contrast to methods which assume an initial set with
a fixed disturbance magnitude (typically 0). Our method also applies to such
settings, and solely requires modifying the initial conditions and dynamics.

B. Online Deployment of Temporally-Varying Value Functions
An overview of our framework can be seen in Fig. 1

and Algorithm 1. We consider the setting where ḋ can be
approximated online. While it is possible to assume the worst-
case scenario at all times by setting the disturbance rate ḋ
equal to its maximum possible value, i.e., ḋ = ḋmax for all
states x, this approach can be very conservative. Instead, we
propose an adaptive strategy that leverages recent observations
of the disturbance d and the disturbance rate ḋ. We store the
past H observed values, and select the highest value as our
disturbance sample. This enables adaptation to local disturbance
dynamics without always assuming the worst case, reducing
conservativeness while maintaining a margin of safety.

Algorithm. While the training of our value function is
performed offline, our objective is to learn a representation that
captures variations induced by different disturbance realizations
to use online. Given the current state x, we obtain d(x) and
ḋ(x). Given a nominal control πnom and value function V , we
synthesize a control input u∗ using the VB-CBF-based safety
filter [6] through (7) where the value function V , its gradient
∇xV , and its time derivative ∂

∂tV can be efficiently computed
through the forward and backward pass V of the trained neural
network (NN in Alg. 1. The dynamics f̂(z, u, ω) are provided
in (5). The control law is evaluated at each decision step,
allowing the system to react online to changes in the estimated
disturbance without retraining the value function. Additional
implementation details are provided in Appendix F.

SPACE2TIME guarantees safety as long as the spatial variation
in the disturbance satisfies the Lipschitz assumptions on the
disturbance bounds, ensuring consistency between the true dy-
namics and the assumptions underlying the value function. For
HJR, the value function itself is valid assuming a sufficiently
dense grid; for Deepreach, conformal prediction [22] can be
used to obtain a valid value function with high probability.



Algorithm 1 SPACE2TIME

Require: V (z, t), πnom(x)
1: Measure state x
2: Determine d, ḋ based on approximation scheme ▷ Conservative or recency-based
3: treturn ← min

{
dmax−d

ḋ

}
▷ Time to get back

4: V̇ ,∇zV, V ← NN(V (z, treturn, ḋ))
5: u∗ ← CBF(z, V, ∂∂tV,∇zV, πnom(x)) ▷ see (7)
6: Apply u∗ to system.

TABLE I: Comparison of Our approach against baselines using HJR and Deepreach based value functions. Metrics are generated over 50
trajectories, with 10 goals and 1000 control steps each. % Safety Violations indicates the percentage of failed trajectories, Mean Goal Dist
reflects the average minimum distance to each goal with lower values indicating better goal completion, and Mean Traj Len refers to the
mean trajectory length before failure with a max of 1000. SPACE2TIME provides the greatest balance between safety and performance.

Approach % Safety Violations ↓ Mean Goal Dist ↓ Mean Traj Len ↑

HJR Naive 84% 0.73 529.06
HJR Naive Worstcase 0% 1.90 1000
DeepReach Naive 78% 0.79 510.26
DeepReach Ours 30% 0.78 800.14
HJR Ours 30% 0.66 810.46

VI. EXPERIMENTAL RESULTS

We evaluate the performance of SPACE2TIME extensively
in simulation and showcase how our method can be deployed
directly on hardware. We provide comparisons against baselines
that do not explicitly model for disturbance variations.

Learning Value Functions. We learn value functions using
Deepreach [7], a self-supervised PINN, and parameterize the
dynamics across a range of disturbance rates for our method
(and disturbance values for the baselines). Unlike the baseline
methods, SPACE2TIME requires solving a reach-avoid problem.

Simulation Experiments. We simulate a planar drone
environment with state [x, z, ẋ, ż], where the drone flies in the
x−z plane. We specifically choose this planar setting to enable
validation of our proposed reparameterization against ground
truth computed via a dynamic programming-based HJR method.
This confirms the validity of our formulation and that it can be
effectively approximated through learning. The environment is
shown in Fig. 3. The simulated setting represents a cityscape
with known building configurations. Additional modeling and
implementation details are provided in Appendix D.

The experiments replicate urban inspection or drone delivery
scenarios, where the drone must navigate through and above
a cityscape, including high-disturbance areas near buildings,
to reach multiple sequential goals. We compare HJR and
Deepreach variants of our method with naive baseline con-
trollers: i) HJR Ours: SPACE2TIME using an ensemble of
HJR value functions with fixed disturbance rates ii) Deepreach
(DR) Ours: using learned disturbance rate parameterized
value functions iii) HJR Naive: Considers an ensemble of
HJR value functions for different disturbance bounds iv) HJR
Naive Worst-Case: Considers HJR value function for the
worst case disturbance bounds Dmax v) DR Naive: Using

disturbance parameterized learned value function. Each method
incorporates a recency-based disturbance estimation strategy,
in which the drone uses the most recent disturbance sample
from the environment, updated at 4 Hz. All CBF filters are
implemented consistently across methods. As summarized in
Table I, our approach achieves lower safety violation rates
while demonstrating improved goal-reaching performance. Fig.
3 also shows representative trajectories comparing DR ours to
DR Naive and HJR Worst Case baseline. The HJR Worst case
approach is too conservative, failing to venture out from the
safe target set and DR Naive violates safety and crashes as
it fails to adequately consider the changing disturbance. DR
Ours allows the drone to safely approach the goal.

Hardware Experiments. Like for the simulation exper-
iments, we consider an x, z plane, but to capture realistic
drone behavior we rely on a 6-dimensional drone model
that incorporates delays in setting desired attitudes. The state
includes [x, vx, θx, ωx, z, vz] where θx is the pitch and ωx is
the angular velocity. The control inputs are the desired pitch
θx,des and the whole body thrust T . We replicate the urban
environment in a hardware experiment using Crazyflie drones
with an OptiTrack motion capture setup for state estimation.
The cityscape is recreated with stacked boxes, Fig. 4 and
spatially varying disturbances are introduced as described in
Appendix E. The drone’s control rate runs at 50Hz while
disturbance sampling is run at 5 Hz (as before, ensuring
robustness with H = 10). The higher dimensionality of the
dynamics model (8 dimensional with the parameteric dimen-
sions) prohibits the use of traditional HJR, thus motivating
the use of learning-based value functions, e.g., Deepreach. We
compare SPACE2TIME with a Deepreach-based baseline that
naively switches between different disturbance bounds [14].

u∗(z, t) = argmin
u∈U
∥u− πnom (x)∥22 subject to

∂

∂t
V (z, t) + min

ω∈[−1,1]
∇zV (z, t)⊤f̂(z, u, ω) ≥ −α(V (z, t)), (7)



(a) DR Ours (b) DR Naive (c) HJR Worst Case

Fig. 3: Trajectory Comparison: We visualize the trajectories of Table I of the drone moving through random goals in the city environment.
Fig. 3a (on the left) shows trajectories from SPACE2TIME with a value function generated using Deepreach (DR). Fig. 3b (in the center)
shows trajectories from the naive parameterized baseline where the value function is also generated with DR. Notice that our safety filter
prevents a majority of trajectories from descending too far down the urban canyon and crashing. The baseline trajectories in Fig. 3b are less
dense, as a large percentage of the trajectories are cut short due to collisions. Fig. 3c shows the trajectories when using the safety value
function for the worst case disturbance bounds. Solely considering worst case bounds results in conservative, non-performant trajectories.

Fig. 4: Real-world drone experiment, comparing Ours (left), successfully accounts for the disturbance increase as we descend between the
obstacles. In contrast, a Naive comparison (right) fails to adequately adapt, leading to a crash.

4 3 2 1 0 1 2 3 4
Horizontal Position (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Hardware trajectories: DR Naive
Exp 1
Exp 2
Exp 3
Exp 4

4 3 2 1 0 1 2 3 4
Horizontal Position (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Hardware trajectories: DR Ours
Exp 1
Exp 2
Exp 3
Exp 4

Fig. 5: This visualizes the remaining 4 hardware trajectories, with
DR Naive (left) and DR Ours (right). In comparison to our method,
DR Naive fails to account for the increase in disturbances and crashes
after descending too far down the canyon. These collisions are shown
as colored circles (3 out of 4 crashes).

We show that SPACE2TIME preserves safety, whereas naively
switching between fixed disturbance bounds leads to crashes
(as the drone fails to adequately adapt to the disturbances),
Over 5 trials our method achieves a 100% success rate, with
the baseline succeeding only 20% of the time. Our hardware
experiments are visualized in Fig. 4 and 5. Specifically, by
adjusting naively to new disturbance bounds (Fig 5, left),
the drone flies into a high wind region (near the bottom of

the canyon) and fails to recover, while accounting for these
variations through the temporal rate of change (Fig 5, right)
results in disturbance-aware trajectories that stay out of the high
wind regions. The experimental setup is detailed in Appendix E.

VII. CONCLUSION

This paper introduced SPACE2TIME, a novel framework for
enabling learning value functions offline for deployment in
environments with unknown, spatially-varying disturbances. By
recasting spatial disturbances into a time-varying formulation,
our method leverages the scalability of offline learning, while
providing the adaptability required for real-world operation. We
validated our approach through extensive simulations and real-
world experiments, demonstrating improved safety performance
compared to worst-case and naive baselines. As part of our
future work, we aim to propose more intelligent safety filters
that leverage observed disturbances in known areas of the state
space and provide more principled techniques for conservatively
estimating the disturbance (and its rate of change). Lastly, we
plan to consider a broader class of problems within the OOD
domain, focused on settings where it is unreasonable to assume
a maximal disturbance bound and explicitly decouple variations
across different timescales of operation.



REFERENCES

[1] K.-C. Hsu, H. Hu, and J. F. Fisac, “The Safety Filter: A
Unified View of Safety-Critical Control in Autonomous
Systems,” Annu. Rev. Control. Robotics Auton. Syst.,
vol. 7, 2023.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Con-
trol Barrier Function based quadratic programs for safety
critical systems,” in IEEE Transactions on Automatic
Control, vol. 62, pp. 3861–3876, 2017.

[3] S. Bansal, M. Chen, S. L. Herbert, and C. J. Tomlin,
“Hamilton-Jacobi reachability: A brief overview and recent
advances,” in Proc. IEEE Conf. on Decision and Control,
2017.

[4] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L.
Herbert, “Robust Control Barrier-Value Functions for
safety-critical control,” in Proc. IEEE Conf. on Decision
and Control, 2021.

[5] S. Tonkens and S. Herbert, “Refining Control Bar-
rier Functions through Hamilton-Jacobi reachability,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,
2022.

[6] A. Begzadić, N. Shinde, S. Tonkens, D. Hirsch, K. Ugalde,
M. C. Yip, J. Cortés, and S. Herbert, “Back to Base:
Towards Hands-Off Learning via Safe Resets with Reach-
Avoid Safety Filters,” ArXiv, vol. abs/2501.02620, 2025.

[7] S. Bansal and C. J. Tomlin, “DeepReach: A Deep
Learning Approach to High-Dimensional Reachability,”
in Proc. IEEE Conf. on Robotics and Automation, 2021.

[8] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F.
Fisac, “Safety and Liveness Guarantees through Reach-
Avoid Reinforcement Learning,” in Robotics: Science and
Systems, 2021.

[9] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge,
N. Roy, and C. Fan, “How to Train Your Neural Control
Barrier Function: Learning Safety Filters for Complex
Input-Constrained Systems,” in Proc. IEEE Conf. on
Robotics and Automation, 2024.

[10] D. P. Nguyen, K.-C. Hsu, W. Yu, J. Tan, and J. F. Fisac,
“Gameplay Filters: Robust Zero-Shot Safety through
Adversarial Imagination,” in Conf. on Robot Learning,
2024.

[11] R. Sinha, A. Sharma, S. Banerjee, T. Lew, R. Luo, S. M.
Richards, Y. Sun, E. Schmerling, and M. Pavone, “A
system-level view on out-of-distribution data in robotics,”
2022.

[12] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou,
J. Panerati, and A. P. Schoellig, “Safe Learning in
Robotics: From Learning-Based Control to Safe Rein-
forcement Learning,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[13] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath,
C. J. Tomlin, A. Ames, and M. N. Zeilinger, “Data-Driven
Safety Filters: Hamilton-Jacobi Reachability, Control
Barrier Functions, and Predictive Methods for Uncertain
Systems,” IEEE Control Systems, vol. 43, pp. 137–177,
2023.

[14] J. Borquez, K. Nakamura, and S. Bansal, “Parameter-
Conditioned Reachable Sets for Updating Safety Assur-
ances Online,” in Proc. IEEE Conf. on Robotics and
Automation, 2022.

[15] M. Tayal and S. N. Y. Kolathaya, “Control Barrier
Functions in Dynamic UAVs for Kinematic Obstacle
Avoidance: A Collision Cone Approach,” in American
Control Conference, 2023.

[16] M. Yu, C. Yu, M.-M. Naddaf-Sh, D. Upadhyay, S. Gao,
and C. Fan, “Efficient Motion Planning for Manipulators
with Control Barrier Function-Induced Neural Controller,”
in Proc. IEEE Conf. on Robotics and Automation, 2024.

[17] R. Grandia, A. J. Taylor, A. Ames, and M. Hutter, “Multi-
Layered Safety for Legged Robots via Control Barrier
Functions and Model Predictive Control,” in Proc. IEEE
Conf. on Robotics and Automation, 2020.

[18] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V.
Dimarogonas, S. Tu, and N. Matni, “Learning Control
Barrier Functions from Expert Demonstrations,” in Proc.
IEEE Conf. on Decision and Control, 2020.

[19] M. Tayal, H. Zhang, P. Jagtap, A. Clark, and S. N. Y.
Kolathaya, “Learning a Formally Verified Control Barrier
Function in Stochastic Environment,” in Proc. IEEE Conf.
on Decision and Control, 2024.

[20] L. Manda, S. Chen, and M. Fazlyab, “Learning
Performance-oriented Control Barrier Functions Under
Complex Safety Constraints and Limited Actuation,” in
Conf. on Robot Learning, 2025.

[21] H. J. Jeong, Z. Gong, S. Bansal, and S. L. Herbert,
“Parameterized Fast and Safe Tracking (FaSTrack) using
Deepreach,” in Learning for Dynamics & Control, 2024.

[22] A. Lin and S. Bansal, “Verification of neural reachable
tubes via scenario optimization and conformal prediction,”
in Learning for Dynamics & Control, 2024.

[23] S. L. Herbert, J. J. Choi, S. Qazi, M. T. Gibson,
K. Sreenath, and C. J. Tomlin, “Scalable Learning
of Safety Guarantees for Autonomous Systems using
Hamilton-Jacobi Reachability,” in Proc. IEEE Conf. on
Robotics and Automation, 2021.



APPENDIX

A. Theoretical Background
Consider a system of the form

ẋ = f̃(x, u, d) = f(x) + g(x)u+ d(x), (8)

where x ∈ Rn is the state, u ∈ U ⊆ Rp is the control input,
d ∈ D ⊆ Rq is the disturbance, and U and D are convex and
compact sets. Throughout this work, we make the following
assumption about the dynamics f̃ .

Assumption 1: The function f̃ : Rn×U×D → Rn is above
bounded by Mf̃ and globally Lipschitz.
This assumption ensures the existence of a unique solution
x : [t, 0] → Rn to (8) with x(t) = x, which we denote by
ξu,dx,t .

Recall that Hamilton–Jacobi reachability (HJR) formulates
the problem as a differential game between two players: the
control input u, which seeks to maximize the reward, and the
disturbance d, which acts adversarially to minimize it. Then,
the value function of this game is defined by (9) In general,
solving the value function optimization problem in (9) is non-
convex and therefore challenging. However, using dynamic
programming (backwards in time), the value function V is the
unique viscosity solution of the following Hamilton-Jacobi-
Isaacs Variational Inequality (HJI VI)

0 = min{g(x)− V (x, t),max{l(x)− V (x, t),

∂

∂t
V (x, t) +H(∇V (x, t), x)}},

(10)

with terminal cost V (x, 0) = min{l(x), g(x)} and Hamiltonian
defined by H(λ, x) = maxu∈U mind∈D λ

⊤f(x, u, d). The
gradients of this function enable the computation of the optimal
safety control u∗(x, t) such that

u∗(x, t) = argmax
u∈U

min
d∈D
∇V (x, t)⊤f̃(x, u, d). (11)

Value functions can be computed effectively via dynamic
programming in low-dimensional systems by discretizing the
state space to form a high-resolution grid. However, the
reliance on grid-based discretization makes such methods scale
exponentially with the system’s state dimension, making these
methods unsuitable for systems with more than 5 − 6 state
variables.

Constructing valid CBFs for complex systems with input
bounds and disturbances is often challenging, especially when
the safe set is difficult to characterize analytically. By leveraging
reachability analysis, one can systematically synthesize CBF-
like safety filters to ensure safety. For instance, HJR reach-avoid
problems, with value function hv , can be integrated with CBFs,
leading to the following definition.

Definition A.1: (Viscosity-Based Control Barrier Func-
tion [6]) Consider a continuous function hv : Rn×(−∞, 0]→
R, and for each t ≤ 0, let Cv(t) = {x ∈ Rn | hv(x, t) ≥ 0}.
Then hv is a viscosity-based control barrier function (VB-CBF)

for system (8) on Cv(·) if there exists an extended class K
function α such that for all t < 0 and all x ∈ Cv(t), the inequal-
ity ∂

∂thv(x, t) + maxu∈U mind∈D∇xhv(x, t)⊤f̃(x, u, d) ≥
−α(hv(x, t)) holds in a viscosity sense.
Given a nominal control policy unom that may violate input or
safety constraints, viscosity-based control barrier functions
enable minimal modification of the nominal input via a
quadratic program. The resulting minimally invasive safety
filter not only ensures constraint satisfaction but also guides
the system away from unsafe regions and back toward the
desired target set.

B. Learning-Based Reachability Analysis
Several learning-based approaches have been developed

to approximate the reach-avoid reachability value function.
Although our framework is compatible with a broad range of
methods (including self-supervised learning [7] and reinforce-
ment learning [8]), we implement our method using Deepreach:

Self-Supervised Learning of Reachability Value Functions
To avoid solving HJI-VI with grid-based discretization, we
employ a Physics-Informed Neural Network (PINN) to learn the
value function used in minimally invasive safety filters. In par-
ticular, we leverage the DeepReach framework to approximate
the safety value function by employing a sinusoidal deep neural
network architecture [7]. Consequently, the computational and
memory demands of training depend on the intrinsic complexity
of the value-function approximation rather than on the grid
resolution. For a reach-avoid problem, the loss function L used
for training DeepReach is given by

L(θ) = Ez,t

[∥∥∥∥∥min

{
g(x)− Vθ(z, t),

max

{
l(x)− Vθ(z, t),

∂Vθ
∂t

+H(∇zVθ, z)
}}∥∥∥∥∥,

(12)

where Vθ(z, t) = min{l(x), g(x)}− t ·NNθ(z, t), with z =
[x, p] the joint state, x the model state and p the parameterized
state, which are discussed in more detail in Appendix D.

The loss function (12) involves nested min and max
operations; These operations induce non-smooth behavior in
the loss function This poses a challenge for neural networks,
as learning relies on backpropagation and smooth gradient
flow to update the model parameters effectively. Moreover, the
smoothness of the learned value function is critical, as our
safety filter relies directly on the gradient of the value function
to ensure safe control inputs (motivating [7]’s use of sinusoidal
activation functions, which we also employ).

To improve the learning process, we leverage a key observa-
tion relevant to our application; The target set characterizing
the reach-avoid tube problem is control invariant. That is,
once the drone reaches the target set, it can remain within
this set and maintain safety under any level of disturbances.
This property allows reformulating the learning objective by

V (x, t) = min
d∈D(t)

max
u∈U(t)

rRA(x, t,u,d) = min
d∈D(t)

max
u∈U(t)

max
τ∈[t,0]

min{l(ξu,dx,t (τ)), min
s∈[t,τ ]

g(ξu,dx,t (s))}. (9)



t

d d

x

Fig. 6: Change in disturbance bounds over state x is encoded as change
in bounds over time t. The disturbance bounds increase towards the
red region in the left image. This is encoded as a temporal disturbance
increase shown in the plot on the right.

shifting the focus from learning a value function to reach
a target while avoiding unsafe regions over time, to instead
learning or defining a control-invariant set and learning a value
function to avoid unsafe regions over time, while only implictly
encoding the reaching of the target in the boundary condition.
Hence, the modified reach-avoid control-invariant loss function
for DeepReach is given by

L(θ) = Ez,t
[∥∥∥∥min

{
g(x)− Vθ(z, t),

∂Vθ
∂t

+H(∇zVθ, z)
}∥∥∥∥, (13)

where Vθ(z, t) = min{l(x), g(x)} − t · NNθ(z, t), like before.
We empirically observe smoother gradients and a better-learned
solution employing (13).

C. DeepReach Training Details
To evaluate our method and relevant baselines, we adopt a

modified, parameterized version of DeepReach (DR) to learn
the value function under different environmental conditions.

For the DR Naive baseline, the parameterized inputs
correspond to the disturbance magnitude (applied to position
and velocity in x and z directions in the 4D model and only
to the velocity components in the x and z directions in the 6D
model).

For the DR ours, the parameterized inputs correspond to the
disturbance slope, which defines how the disturbance magnitude
varies with the environment. This includes slopes over position
and velocity disturbance magnitudes in the x and z directions in
the 4D model and slopes for the velocity disturbance magnitude
in the x and z directions in the 6D model.

Parameterized Value Function Using DeepReach. To
incorporate these parameters, we modify DR following the
approach in [14] to account for the environmental conditions,
such as disturbance bounds or slopes, as part of the input
space. We augment the system with the disturbance rate ḋ
as in (5) and compute the backward reachable tube for the
resulting parameterized system using DR. Accordingly, the
neural network takes as input the state z = [x, ḋ] and time t,
and outputs the corresponding value function Vθ(z, t), where θ
denotes the network parameters. For the baselines we consider
the joint state z = [x, d], with d the disturbance magnitude.
We generate training inputs using uniform sampling over
both the state and parameter dimensions, covering the desired
range of environmental conditions. The model is trained with
default Deepreach settings, most importantly a batch size of
65k states, over 100k steps with a learning rate η = 2e−5.

It uses the default parameters of the Deepreach repository
https://github.com/smlbansal/deepreach/tree/public release. For
the 4D simulation model, we use (12) for the loss, which
had adequate performance for this setting. However, for the
6D hardware experiments, we adopt the reach-avoid control-
invariant loss (13) which leads to a better solution.

Training Challenges. For the DR baselines, we initially
aimed to learn a time-invariant always-avoid value function for
the environment with varying maximum disturbance bounds.
However, due to convergence difficulties, this approach did
not yield a sufficiently performant solution. To ensure a
fair comparison, we instead trained DR on a reach-avoid
formulation toward the same target set as our method, while
instead parameterizing over the disturbance bounds. This
formulation enabled successful training and produced reliable
value functions. During deployment, we evaluated the value
function solely at the final time point, effectively considering
an avoid-only value function, which allowed us to construct a
time-invariant, minimally invasive safety filter.

Interpreting learned value functions Figures 7 and 8
visualize the 0-level sets of the learned value functions in the
considered environment. Specifically, the left, center, and right
figures in Fig. 7 showcase a varying disturbance magnitude level
(from light blue to dark blue) for fixed low, medium and high
disturbance rates. This showcases that even for high disturbance
magnitudes as long as the disturbance rate is small (left) the
safe region is relatively large, while for a high disturbance
rates the safe region is much smaller (right).

Next, the left, center, and right figures in Fig. 8 showcase a
varying disturbance rate (from light blue to dark blue) for fixed
low, medium, and high disturbance magnitudes. This figures
showcases that as long as the current disturbance magnitude
is small (left) the safe region is relatively large even for high
disturbance rates, while for high current disturbance magnitudes
(right) the safe region is only slightly larger than the control
invariant set (right).

D. Simulation Experiments
We consider a 4D drone dynamics model given by

ṗx
ṗz
v̇x
v̇z

 =


vx + d1
vz + d2
gu1 + d3
u2 − g + d4

 , (14)

where the control input is denoted by [u1, u2]
⊤ and the

state vector is given by [px, pz, vy, vz]
⊤, with py and pz

denoting the position of drone, and vx and vz representing
the corresponding velocity components3. The disturbances
d1, d2, d3 and d4 represent wind, and g is gravity. We choose
this low-dimensional model to facilitate comparison with
classical methods, which are less prone to approximation
errors inherent in learned approaches. Moreover, it allows us
to demonstrate that our method generalizes across various
strategies for computing the value function. While wind

3In the main body of the work we consider the state [x, z, ẋ, ż] which
overloads the notation on xtherefore consider position p and velocity v with
subscripts for its components

https://github.com/smlbansal/deepreach/tree/public_release


4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Low disturbance rate regime

V = 0 for varying disturbance levels

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Medium disturbance rate regime

V = 0 for varying disturbance levels

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance rate regime

V = 0 for varying disturbance levels

Fig. 7: The 0-level set of the learned value function for a fixed disturbance rate ḋ for increasing levels (light to dark blue) of disturbance d.
Left-to-right visualizes a low fixed disturbance rate, a medium disturbance rate, and a high disturbance rate respectively. This is evaluated for
the vx = 0, vz = 0 slice. ḋ is encodes through the parameterized state, whereas d is encoded through the time slice of the value function
with t = (dmax − d)/ḋ

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Low disturbance regime

V = 0 for varying disturbance rates

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Medium disturbance regime

V = 0 for varying disturbance rates

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance regime

V = 0 for varying disturbance rates

Fig. 8: The 0-level set of the learned value function for a fixed disturbance level d for increasing (light to dark blue) disturbance rates ḋ.
Left-to-right visualizes a low fixed disturbance level, a medium disturbance level, and a high disturbance level respectively. This is evaluated
for the vx = 0, vz = 0 slice. ḋ is encodes through the parameterized state, whereas d is encoded through the time slice of the value function
with t = (dmax − d)/ḋ.

typically only affects the velocity components of the dynamics,
we include the positional disturbances to circumvent the CBF
(and value function) from learning to cancel out the disturbances
directly in the control input (and thus effectively just reducing
the control input bounds). Instead, by considering positional
disturbances, the problem is interesting (while remaining
tractable to solve with HJR methods).

Environment Setup. We design a city-like environment with
multiple tall buildings that the drone must avoid during its
operation. The environment is defined in between px ∈ [−5, 5]
and pz ∈ [−0.2, 2.8], and includes three rectangular buildings
located at: (px, pz) ∈ [−3.1,−1.3] × [0, 1.5], (px, pz) ∈
[0.0, 1.2] × [0.0, 1.0], and (px, pz) ∈ [2.0, 3.2] × [0.0, 2.0].
A spatial boundary restricts the drone to remain within
px ∈ [−4.0, 4.0] and pz ∈ [0.0, 2.5], and the velocity of
the drone is constrained within [−1.9, 1.9] for both vx and
vy. A safe target region, representing a designated flyover

corridor above the cityscape, is defined as a rectangular set
with (px, pz) ∈ [−2.5, 1.5] × [1.7, 2.3]. To render the set
approximately control invariant, both vx and vz are restricted
to the range [−1.0, 1.0] within the target region.

The wind intensity is modeled as an exponential function of
the drone height, z, with wind intensifying near the ground in
an urban canyon. These wind effects are represented as direct
disturbances on position and velocity in system dynamics f
on both x and z.

The dynamics are simulated at 40 Hz, while environmental
disturbances are updated at 4 Hz using our proposed adaptive
strategy for H = 10 to ensure robustness for real-world
disturbance estimation. All obstacles and boundaries are
indicated in red while the target region is depicted in green
in Figure 10. Wind is modeled as a deterministic disturbance
acting within the urban canyons formed between buildings, with
a fixed direction given by the vector [1,−1] in directions x and



(a) Real-world setup with obstacles and unknown disturbances

Worst case

DR naive
DR ours

Safe target set
Target set

(b) Simulation environment

Fig. 9: Fig. 9a illustrates our real world experiment setup using crazyflies in an optitrack arena made to mimic the cityscape visualized in our
simulation environment shown in Fig. 9b. Fig. 9b illustrates the cityscape simulation environment along with simulation results. The blue
color gradient indicates increasing wind disturbance in the urban canyons. The drones in the figure show a comparison of our method vs.
baselines when attempting to go to the goal region denoted by the dark gray oval.

Fig. 10: Environment setup used in our simulations. This environment
shows a quadcopter flying in a 2D px, pz slice where px is the
horizontal axis and pz is the vertical axis. The quadcopter is denoted
using a blue oval, while a current goal is shown using a green oval.
All the obstacles in the environment, that denote unsafe regions for
the quadcopter to enter, are shown in red. The safe control invariant
target set that is used for our method is the translucent rectangle
in free space shown in green. The wind between the urban canyon
is shown in blue, where the darkness of the color corresponds to
increased wind magnitude. For our experiments all wind disturbance
is in the positive x direction and negative z direction.

z. The magnitude of the wind is bounded and increases toward
the bottom of the canyons, capturing the channeling effects of
urban geometry. The wind is shown in blue in Figure 10. The
darkness of the blue corresponds to the wind magnitude which
increases as we descend (lower pz). We model the increase in

wind magnitude using an exponential function defined as

f(WL) = D ·W ·
(
1− exp

(
− r · (WL −Wmin)

(Wmax pos −Wmin)

))
(15)

where D denotes the disturbance factor. W is the maximum
wind value magnitude. r is the exponential ramp rate. WL

is wind location which denotes the state of the robot where
the wind is to be evaluated.Wmin is the lower bound of the
state range where the wind is defined. Wmax pos is the position
of the maximum wind value. This wind function defines the
magnitude of the wind between Wmin,Wmax and the wind
magnitude is 0 outside these bounds. These wind functions are
defined for every state dimension and composed.

This function increases the wind magnitude to the pre-known
maximum at a set height. For the experiments shown in Table I,
in the main body of the paper, this height is fixed at Wmax pos =
0.1, and the exponential growth rate of each wind field is
set to r = 5. The resulting maximum wind magnitude is
[0.75, 1.5] for the position and velocity disturbances in the
HJR experiments, and [0.75, 1.0] in the DR experiments.

Value Function Learning. In simulation, we compare both
the HJR and DR variants of our method against corresponding
HJR and DR implementations of a baseline approach. Below,
we outline the specific setup used for each method.

DR Ours. The DeepReach network is trained to
approximate the reach-avoid value function over a time horizon
from 0.0 to 5.0 seconds. The training time is approx. 2 hours.

DR Naive. As discussed in Section B, due to
challenges in obtaining a good performing value function for
the avoid-only problem, we train DR to solve a reach-avoid
problem, over a time horizon from 0.0 to 5.0 seconds. The
training time is approx. 2 hours.

HJR Ours We compute the value function using
dynamic programming via the JAX-based HJ Reachability
Toolbox, https://github.com/StanfordASL/hj reachability. The

https://github.com/StanfordASL/hj_reachability


TABLE II: Comparison of Our approach against baselines using HJR and Deepreach based value functions. Metrics are generated over 100
trajectories, with 15 goals and 1500 control steps each. The trajectories are run over randomly generated environment where the exponential
rate for the wind as well as the position of the max wind is varied for each wind field. Each method is evaluated across the same 100 random
environments for a fair comparison. % Safety Violations indicates the percentage of failed trajectories, Mean Goal Dist reflects the average
minimum distance to each goal with lower values indicating better goal completion, and Mean Traj Len refers to the mean trajectory length
before failure with a max of 1500. The table highlights how SPACE2TIME provides the greatest balance between safety and performance of
the compared methods.

Approach % Safety Violations ↓ Mean Goal Dist ↓ Mean Traj Len ↑

HJR Naive 100% 1.13 393.03
HJR Naive Worstcase 0% 2.09 1500
DeepReach Naive 93% 1.15 533.70
DeepReach Ours 60% 1.00 961.31
HJR Ours 58% 0.96 985.21

extended dynamics system, including disturbances, is of
dimension 8 and therefore cannot be computed directly using
grid-based dynamic programming (limited to 4− 5 dimensions
on a GPU, 6 dimensions on a CPU, albeit taking hours
to solve). Therefore, to account for varying environmental
conditions, we precompute 5 value functions corresponding to
disturbance slope magnitudes evenly spaced between zero and
the maximum disturbance magnitude (with equivalent relative
size for each disturbance dimension). During runtime, the safety
filter associated with the smallest precomputed slope bound that
exceeds the detected slope magnitude is selected and applied.

HJR Naive This approach uses the same dynamic
programming framework as HJR Ours. In this case, the five
precomputed value functions correspond to different maximum
disturbance magnitudes, evenly spaced between zero and the
upper bound. At runtime, the safety filter associated with
the smallest disturbance bound that exceeds the detected
disturbance magnitude is selected for execution.

HJR Worst Case This method computes a single
safety value function using dynamic programming, based on
the worst-case disturbance bounds observed in the environment.

Experimental Results. We evaluate performance across
50 trajectories, each consisting of 10 random goals, with the
drone navigating through the city environment under the wind,
as summarized in Table I in the main paper. The drone is
controlled using a naive nominal controller based on Linear
Quadratic Regulation (LQR), which does not account for
obstacles in the environment. Goals are generated in a cyclical
manner every 100 time steps to ensure diversity in target
locations while remaining reachable by the nominal controller.
Specifically, the first goal is placed above a randomly selected
urban canyon, the second is set near the bottom of that same
canyon, and the third is placed near the top. This three-step
cycle is repeated to yield 10 goals per trajectory.

Here, we provide the additional experimental results. In
this setting, each trajectory consists of 15 goals generated
using the same cyclical procedure described previously. To
further evaluate generalization, the environment is randomized
across trajectories. For each wind field, the exponential rate
governing the wind magnitude profile is sampled uniformly
between 3 and 7, while the height at which the wind reaches its
maximum is selected randomly between 0.1 and one-third of
the wind field height. Results averaged over 100 randomized

trajectories are shown in Table II. We visualize all of the
trajectories pertaining to our method in Figure 11 and all the
baseline trajectories in Figure 12. From these figures we see
the major impact of our method, where by properly reasoning
about the potential increase in spatial disturbances our method
does not descend far in the urban canyons and thus remains
safe. Meanwhile, the naive baselines fail to reason about the
spatially changing disturbances and ends up crashing (therefore
cutting their trajectories short). This is also visible by looking
at the density of the trajectory traces, where our ability to
fly safely for longer is visualized through denser trajectory
traces compared to the baselines that fail. The HJR Worst Case
baseline, while safe, ends up being too conservative and is
confined to a very small region of the environment.

E. Hardware experiments

This hardware experiment setup discussion supplements
the discussion in the main paper, Sec. VI. The hardware
experiments are conducted in a planar x− z plane, with the
following state range px ∈ [−4.0, 4.0] and pz ∈ [0.0, 2.0].
On a quadcopter, unlike in simulation, we cannot set the
pitch rate θx directly. Instead, we consider a cascaded model,
inspired by [23], with as inputs the desired pitch rate Sx
and the combined thrust T . The control inputs for the full
system are Sx, Sy, ψ̇, and T , with Sy the desired roll rate
and ψ̇ the yaw rate. The nominal controller is an LQR-based
controller for xLQR = [px, vx, py, vy, pz, vz, ψ]. Then, Sx,nom =
Kpx(px−px,goal)+Kvxvx, Sy,nom = Kpy (py−py,goal)+Kvyvy ,
ψ̇nom = Kψ(ψ − 0), and Tnom = Kpz (pz − pz,goal) +Kvzvz .
Specifically, we set Kpx = Kpy = Kvx = Kvy = −0.2,
Kψ = −20.0 and Kpz = Kvz = −10.0 As our experiments
are planar the nominal model considered for our CBF is
unom = [Sx,nom, T ]. The nominal desired roll attitude and yaw
rate are directly fed into the system, with the objective of
keeping py = py,goal = 0.0 throughout the trajectory and
keeping ψ = 0. We consider a 6D drone dynamics model
given by 

ṗx
v̇x
θ̇x
ω̇x
ṗz
v̇z

 =


vx

g tan(θx) + dx − cxvx
−d1θx + ωx
−d0θx + n0Sx

vz
kTTz − g + dz

 (16)



(a) DR Ours (b) HJR Ours

Fig. 11: Our Method Trajectories: Figures showing 100 of our trajectories moving between 15 random goals through the city environment
with randomized wind fields. Notice that our safety filter prevents a majority of our trajectories from going too far down the urban canyon in
response to increasing disturbance slope estimates. This leads to safer trajectories that fail less often. Fig. 11a (on the left) shows these
trajectories using our method with a learned value function using Deepreach with the 4 dimensional quadcopter model. Fig. 11b shows these
trajectories using our method with value functions computed using HJR with the 4D quadcopter model.

(a) DR Naive (b) HJR Naive (c) HJR Worst Case

Fig. 12: Baseline Trajectories: Figures showing 100 of our trajectories moving between 15 random goals through the city environment with
randomized wind fields. Fig. 12a (on the left) shows trajectories from the naive parameterized baseline using a value function learned with
deepreach. Fig. 12b (in the center) shows trajectories from the naive parameterized baseline using a value function computed using HJR.
Notice that these trajectories fail to properly consider the unknown spatially varying disturbance and as a result go much further down the
canyon and end up crashing. Notice that compared to our method showin in Figures 11a and 11b the trajectory tracks are less dense. This is
as a majority of the naive trajectories are cut short by the drones crashing whereas our method is able to continue for much longer. Finally
Fig. 12c shows the trajectories when using the HJR computed safety value function for the worst case disturbance bounds. Only considering
the worst case results in extremely conservative, non-performant trajectories that fail to move beyond a small set away from the obstacles.

where the desired pitch is given by Sx and the state vector is
given by [px, vx, θx, ωx, pz, vz]

⊤, with px and pz denoting
the position of drone, vx and vz representing the corresponding
velocity components, θx denoting pitch, and ωx denoting pitch
rate. The disturbances dx and dz represent wind, and g is
gravity. Extending upon [23], we consider a drag term which
we found to be necessary to achieve a good model fit. The
parameters cx, d1, d0, n0, kT that we used were fit using system-
identification on a 1 minute trajectory with random setpoints
in [px, py, pz] updated every 6 seconds, and are cx = 0.3,
d1 = 4.5, d0 = 20.0, n0 = 18.0, and kT = 0.83.

Environment Setup. Our hardware experiments are con-
ducted in an OptiTrack motion capture arena for precise

state estimation. To emulate the simulation conditions, we
construct a mock urban environment consisting of three tower-
like obstacles built from stacked boxes. However, due to the
space constraints of the flight arena the boundary’s and each
obstacle’s x positions are scaled by a factor of 0.8 and z
positions are scaled by a factor of 0.75. For the results shown
in Figure 4, we introduce artificial disturbances into the state
measurements to mirror the simulated dynamics. Specifically,
we use the OptiTrack system to measure the drone’s state in
real time, evaluate the corresponding disturbance (using the
same wind function employed in our simulation experiments),
and add the resulting values into the velocity components along
the x and z axes, vx and vz . This setup effectively spoofs the



model to think it is perturbed by actual wind, thus allowing
for consistent (non-turbulent) airflow, while mimicking the
wind profile of urban canyons. This setup enables consistent
comparison between our proposed method and baselines under
equivalent disturbance profiles. The fans are placed in the
environment for conceptual visualization only. The reasons for
not using fans are two-fold: 1) The airflow profile of radial fans
causes a very rapid increase in wind disturbance at the edge
of the fans, destabilizing the drone. 2) Measuring the wind
disturbance without an airflow sensor is difficult and relying
on single-step error measurements from the Optitrack system
has too much variance to provide useful estimates. The drone
platform itself has very limited compute and is purely used
for state estimation using its IMU (in combination with the
external Optitrack system) and sending input commands.

Value Function Training. We evaluate different strategies
for learning value functions under varying environmental
conditions and disturbance models:

DR Ours. We train a reach-avoid value function for
the 6D quadrotor model in the urban environment, parameter-
ized by the disturbance slope affecting the x and z velocity
components, vx and vz . The environment includes time-varying
dynamics, with maximum disturbance magnitudes of 0.75 in
both velocity directions, and maximum disturbance rate of 1.5
in both velocity directions. The time horizon is from 0.0 to 5.0
seconds and the value function is learned using the reach-avoid
control-invariant loss (13).

DR Naive. As in the simulation experiments, directly
learning an avoid-only safety value function leads to poor
convergence and suboptimal performance. Instead, we train
a reach-avoid value function under time-invariant dynamics
with maximum disturbance magnitudes of 0.75 in both velocity
directions. The time horizon is from 0.0 to 5.0 seconds and the
value function is learned using the reach-avoid control-invariant
loss (13).

F. Algorithmic design details
Here, we provide implementation details of Algorithm 1.

Specifically, L2 computes d, ḋ. We ensure that our environments
do not exceed dmax and ḋmax, however, we clamp the values
to [0, dmax] and [0, ḋmax] respectively to ensure we do not
extrapolate beyond data observed in training. Then, given d, ḋ
we compute treturn in L3, which again is clamped to [0, tmax] to
ensure the input to the neural network is in distribution. Lastly,
if ḋ = 0 we instead set ḋ = (dmax − d)/tmax, as setting ḋ = 0
effectively corresponds to considering d = dmax for all time
(thus recovering the most-conservative value function).


	Introduction
	Related Work
	Background
	Problem Statement
	space2time: Time-Varying Disturbances for Adaptive Safety
	Offline Safety Value Function Learning
	Online Deployment of Temporally-Varying Value Functions

	Experimental Results
	Conclusion
	Appendix
	Theoretical Background
	Learning-Based Reachability Analysis
	DeepReach Training Details
	Simulation Experiments
	Hardware experiments
	Algorithmic design details


