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Fig. 1: VIDEOMIMIC is a real-to-sim-to-real pipeline that converts monocular videos into transferable humanoid skills, letting robots
learn context-aware behaviors (terrain-traversing, stairs-climbing, sitting) in a single policy. Video results are available on our webpage:
https://videomimic.github.io/.

Abstract—How can we teach humanoids to climb staircases
and sit on chairs using the surrounding environment context?
Arguably, the simplest way is to just show them—casually capture
a human motion video and feed it to humanoids. We introduce
VIDEOMIMIC, a real-to-sim-to-real pipeline that mines everyday
videos, jointly reconstructs the humans and the environment, and
produces whole-body control policies for humanoid robots that
perform the corresponding skills. We demonstrate the results of

our pipeline on real humanoid robots, showing robust, repeatable
contextual control such as staircase ascents and descents, sitting
and standing from chairs and benches, as well as other dynamic
whole-body skills—all from a single policy, conditioned on the
environment and global root commands. VIDEOMIMIC offers a
scalable path towards teaching humanoids to operate in diverse
real-world environments.

https://videomimic.github.io/


I. INTRODUCTION

How do we learn to interact with the world around us—
like sitting on a chair or climbing a staircase? We watch
others perform these actions, try them ourselves, and gradually
build up the skill. Over time, we can handle new chairs and
staircases, even if we have not seen those exact ones before.
If humanoid robots could learn in this way—by observing ev-
eryday videos—they could acquire diverse contextual whole-
body skills without relying on hand-tuned rewards or motion-
capture data for each new behavior and environment. We refer
to this ability to execute environment-appropriate actions as
contextual control.

We introduce VIDEOMIMIC, a real-to-sim-to-real pipeline
that turns monocular videos—such as casual smartphone
captures—into transferable skills for humanoids. From these
videos, we jointly recover the 4D human-scene geometry,
retarget the motion to a humanoid, and train an RL policy to
track the reference trajectories. We then distill the policy into
a single unified policy that observes only proprioception, a
local height-map, and the desired root direction. This distilled
policy outputs low-level motor actions conditioned on the
terrain and body state, allowing it to execute appropriate be-
haviors—such as stepping, climbing, or sitting—across unseen
environments without explicit task labels or skill selection.

We develop a perception module that reconstructs 3D
human motion from a monocular RGB video, along with
aligned scene point clouds in the world coordinate frame. We
convert the point clouds into meshes and align them with
gravity to ensure compatibility with physics simulators. The
global motion and local poses are retargeted to a humanoid
with constraints that ensure physical plausibility, account-
ing for the embodiment gap. The mesh and retargeted data
seed a goal-conditioned DeepMimic [32]-style reinforcement-
learning phase in simulation: we warm-start on MoCap data,
then train a single policy to track motions from multiple
videos in their respective height-mapped environments while
randomizing mass, friction, latency, and sensor noise for ro-
bustness. Once our tracking policy is trained, we distill it using
DAgger [41] to a policy that operates without conditioning on
target joint angles. The new policy observes proprioception,
an 11 × 11 height-map patch centered on the torso, and
the vector to the goal in the robot’s local reference frame.
PPO fine-tuning under this reduced observation set yields a
generalist controller that, given height-map and root direction
at test time, selects and smoothly executes context-appropriate
actions such as stepping, climbing, or sitting. In particular,
every step of our policy relies only on observations available
at real-world deployment, making it immediately runnable on
real hardware.

Our approach bridges 4D video reconstruction and robot
skill learning in a single, data-driven loop. Unlike earlier
work that recovers only the person or the scene in isolation,
we jointly reconstruct both at a physically meaningful scale
and represent them as meshes and motion trajectories suitable
for physics-based policy learning. We train our approach on

123 monocular RGB videos, which will be released. We
validate the approach through deployment on a real Unitree
G1 robot, which shows generalized humanoid motor skills
in the context of surrounding environments, even on unseen
environments. We will release the reconstruction code, policy
training framework, and the video dataset to facilitate future
research.

II. RELATED WORK

Method Env. Real-to-Sim Context. Ctrl Real Robot

DeepMimic / SfV [32, 33] ✗ ✗ ✗
Egocentric Loco [1] ✗ ✓ ✓
ASAP [7] ✗ ✗ ✓
Humanoid Loco. [34] ✗ ✗ ✓
H2O / ExBody2 [6, 13] ✗ ✗ ✓
Parkour [8, 63] ✗ ✓ ✓

VideoMimic (Ours) ✓ ✓ ✓

TABLE I: Comparison of methods across different features.
VIDEOMIMIC transfers both human motion and scene geometry
from real videos to simulation, learns context-aware control in
simulation, and successfully deploys the resulting policy on real-
world environments.

Learning Skills on Legged Robots. Recent progress in
legged-robot motor skills follows two complementary streams.
Reward-based methods use model-free RL in simulation,
shaping behavior with handcrafted objectives that mix task
terms (e.g., velocity tracking) and motion-naturalness regular-
izers; thanks to massive parallel physics engines [11, 27], this
paradigm has produced agile locomotion on quadrupeds and
humanoids without motion data. However, each new behavior
demands tuning of user-defined rewards and environment
scripting [12, 18, 17, 1, 34, 8, 49, 22]. Data-driven methods
instead imitate reference motion, originally MoCap clips or
monocular video, training a simulated character to track them
and porting the idea to robots [32, 33, 56, 25, 6, 13]. For
example, recent work [35, 36] frames legged locomotion as a
next- token prediction task and pre-trains a policy on human
data in kinematic space, showing strong performance. While
imitation bypasses reward engineering [7], existing works
typically assume flat ground or manually designed setups,
limiting context-aware whole-body control; even animation
systems that model human-scene contact rely on instrumented
MoCap stages and thus lack scalability [5, 30]. Our system
conditions on visual observations, the local height-maps, and
learns environment-aware skills such as stair-climbing and
chair-sitting directly from monocular RGB videos. Joint 4D
human–scene reconstruction provides physically consistent
reference motions, which RL distills into policies that transfer
to a real humanoid (Table I).
Human and Scene Reconstruction from Images and
Videos. Early monocular-video methods regress pose and
shape of humans [23] in a camera-relative frame with deep
networks [23, 14, 15], which suffices for rendering, action
recognition, or single-person tracking [31, 28, 37, 26, 38]
but leaves the global trajectory—and thus context-aware
dynamics—undefined; pioneers like SfV hand-tuned a global



scale and even assumed a static camera, limiting gener-
ality. Recent methods combine human motion priors with
SfM/SLAM to recover metric trajectories [54, 58, 16], yet
still model only the person and camera. Advances in general
scene parsing [20, 61, 50] have enabled joint human-scene
reconstruction that resolves scale via multi-view cues or
learned priors [29, 21], but these systems have not been
validated on robots. Parallel work injects physics constraints
in post-processing or simulation [57, 59, 47, 62, 19], trading
scalability for realism. Our pipeline unifies these threads:
it simultaneously estimates metric human motion and sur-
rounding geometry from in-the-wild videos—without Mo-
Cap, pre-scanned scenes, or reward engineering—and outputs
simulator-ready trajectories that respect contacts and colli-
sions, enabling scalable learning of whole-body humanoid
skills.

III. REAL-TO-SIM DATA ACQUISITION

Our real-to-sim pipeline proceeds as summarized in Fig-
ure 2. We extract per-frame human poses and a raw scene
point cloud from the input video (Sec. III-A); jointly optimize
them to obtain metrically aligned human trajectories and scene
geometry (Sec. III-B); apply gravity alignment and convert
the filtered point cloud into a lightweight mesh (Sec. III-C);
and retarget the refined trajectories to the humanoid under
joint-limit, contact, and collision constraints. The resulting
motion–mesh pairs are ready for policy learning in Sec. IV.

A. Preprocessing

We preprocess monocular RGB videos with off-the-shelf
state-of-the-art human pose estimation and SfM methods.
First, people are detected and associated across frames using
Grounded SAM2 [39, 40]. For each detected person, we
recover per-frame 3D SMPL [23] parameters with VIMO [51],
obtaining per-frame local pose θt, shape β, and SMPL 3D
joints J t

3D ∈ RJ×3. We detect 2D keypoints J t
2D, i.e.,

body joint pixel positions, with ViTPose [53]. Foot contact
is regressed by BSTRO [9]. For scene reconstruction, we
obtain the world point cloud from either MegaSaM [20] or
MonST3R [61], which is parameterized as per-frame depth
Dt, camera pose [Rt|tt], and a shared camera intrinsic matrix
K. Note that the resulting point cloud is not metrically
accurate.

To coarsely position the person in the world frame, we
follow the initialization strategy of SLAHMR [54], using
(i) the camera focal length predicted by SfM and (ii) the
ratio between the average 2D limb length from the ViTPose
detections J̃ t

2D and the corresponding metric scale 3D limb
length in J t

3D, we estimate a similarity factor per frame that
yields a coarse global trajectory (ϕt0 , γt0). Separately, we also
lift J̃ t

2D to 3D by un-projecting each pixel (u, v) with its depth
Dt

u,v and intrinsics K from SfM: J̃ t
3D = K−1[u, v, 1]⊤Dt

u,v .
The lifted joints are then used to jointly optimize human
poses and scene geometry scale, as described in the following
section.

B. Joint Human–Scene Reconstruction

Our pipeline jointly optimizes the human trajectory and the
scene scale. The variables are the humans’ global translations
γ1:T , global orientations ϕ1:T , local poses θ1:T , and the
scene point-cloud scale α. Because MegaSam pointclouds
are scale-ambiguous, the metric human height prior in the
SMPL body models serves as the metric reference, while the
lifted joints J̃ t

3D refine both the global trajectory and the local
pose. We therefore solve for α simultaneously, reconciling any
residual mismatch between the human-derived scale and the
scene geometry.

Inspired by He et al. [6], we optionally run a scale-
adaptation pass that searches for an SMPL shape β⋆ whose
height and limb proportions match those of the G1 robot,
prior to joint human-scene optimization. The SMPL joints
are then extracted from the reshaped mesh. This use of a
prefitted G1-scale SMPL β effectively rescales the scene
geometry to G1 size, improving the feasibility of humanoid
motion—e.g., enabling actions like running or climbing over
large obstacles—and facilitating reference motion learning.
For real-world deployment, we skip this step and operate
directly on the original metric-scale scene.

The objective combines joint-distance losses in 3D (L3D),
computed as the L1 distance between J̃ t

3D and J t
3D, and 2D

projection losses (L2D), along with a temporal smoothness
regularizer (LSmooth) that discourages frame-to-frame jitter:

arg min
α,γ,ϕ,θ

w3DL3D + w2DL2D + LSmooth.

We optimize this objective with a Levenberg–Marquardt
solver implemented in JAX [55]. Running on an NVIDIA
A100 GPU, the optimizer processes a 300-frame sequence in
approximately 20 ms after compilation.

C. Generating Simulation-Ready Data

To deploy the monocular reconstruction in a physics engine,
we (i) align it with real-world gravity using GeoCalib [48] and
(ii) convert the noisy, dense point cloud into a lightweight
mesh that imposes meaningful geometric constraints and sup-
ports memory-efficient parallel training. We use NKSR [10]
for meshification.

IV. POLICY LEARNING
Given the kinematic reference from our clips and scenes,

our policy learning pipeline produces a context-conditioned
policy that can perform skills from the references when
prompted by the appropriate environmental context. Figure 3
gives an overview of our pipeline, detailed below.

Policy Learning. We use Proximal Policy Optimization
[43] implementation from Rudin et al. [42] for training our
policy. Our learning takes place in the IsaacGym simulator
[27].
Observations. Our policies are conditioned on both propri-
oceptive and target-related observations. The proprioceptive
inputs include a history of the robot’s joint positions (q),
joint velocities (q̇), angular velocity (ω), projected gravity
vector (g), and previous actions (at−1); we use a history



Deep Visual SLAM2D Pose DetectionSMPL Motion Reconstruction

Human-World Alignment Kinematic Retargeting World-Frame 4D Outputs

Monocular Video Input Priors from Pretrained Models

Fig. 2: VideoMimic Real-to-Sim. A casually captured phone video provides the only input. We first reconstruct per-frame human motion and
2D keypoints, along with a dense scene point cloud. An efficient optimization jointly aligns the motion and point cloud, recovers statistically
accurate metric scale using a human height prior, and registers the human trajectory based on human-associated points. The point cloud is
then converted to a mesh, aligned with gravity, and the motion is retargeted to a humanoid in the reconstructed scene. This yields world-frame
trajectories and simulator-ready meshes that serve as inputs for policy training.

length of 5 in practice. In addition, the policy receives local
target observations: the target joint angles, target root roll and
pitch, and the desired root direction, specified by relative x-y
offset and yaw angle between the robot’s current root position
and the target root, all expressed in the robot’s local frame.
For policies conditioned on heightmaps, we further provide
an elevation map around the torso. This is represented as
an 11 × 11 grid sampled at 0.1m intervals, which captures
local terrain geometry. Finally, the critic receives additional
privileged observations.

Batched Tracking. Our system utilizes a batched variant
of DeepMimic [32] in order to learn to imitate motions
using RL. We implement Reference State Initialization [32]
in addition to motion load balancing similar to Tessler et al.
[46], upweighting motions with a lower success rate.

Rewards. Our RL reward is designed entirely around data-
driven tracking terms—specifically, link and joint positions,
joint velocities, and foot-contact signals—so that raw demon-
strations can be translated into physically executable motions
with minimal hand-tuning. We have two objectives: (1) re-
ducing reliance on manually crafted priors that are typically
introduced through reward engineering, and (2) ensuring
physical feasibility of the resulting motions. These two goals
can conflict: because the reference trajectories are purely
kinematic data from humans, exact tracking may result in
non-physical motion. We therefore introduce an action-rate
penalty along with several other penalty criteria designed to
discourage exploiting simulator physics. We train our policy
over the stages described below.

Stage 1: MoCap Pre-Training. MoCap pre-training lets a

policy learn challenging skills from noisy video reconstruction
while keeping hand-crafted priors to a minimum and bridging
the human-to-robot embodiment gap. Earlier work tackles
this either by sampling start poses with multi-agent RL [33]
or by having a privileged simulator imitate the motion [7].
Radosavovic et al. [36] and Singh et al. [45] instead employed
a form of kinematic pre-training on human data. We adopt a
simpler yet effective strategy: first pre-train the policy on Mo-
Cap trajectories, then fine-tune it on our reconstructed video
data—both stages use reinforcement learning in a physics
simulator. Even the MoCap-only policy can be deployed
directly on the real robot. We used LAFAN motion capture
data [4] retargeted to Unitree G1. For the pretrained policies,
the conditioning the policy receives is the target joint angles,
target root roll/pitch, and desired root direction.

Stage 2: Scene-Conditioned Tracking. After MoCap pre-
training, we initialize the policy from MPT checkpoints and
introduce scene awareness by conditioning on the environment
heightmap. The heightmap is integrated via a projection
into the MPT policy’s latent space residually with an initial
weight of 0. We then randomly sample motions and per-
form DeepMimic-style tracking across reconstructed terrains.
During this stage, the policy continues to receive motion-
specific tracking conditioning, including target joint angles,
root roll/pitch, and desired root directions.

Stage 3: Distillation. Following the stage of batched tracking,
we distill via DAgger [41] to a policy that does not observe
target joint angles or root roll/pitch observations. We are
then able to use the desired root directions observations as
conditioning signals to control the robot’s position, which can
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Fig. 3: Policy training in sim. Our pipeline of training RL starts with a dataset of Motion Capture trajectories. We then inject a heightmap
observation and track whole-body reference trajectories from our videos in various environments. We proceed to distill a policy conditioned
only on the root position of the robot. We then finetune this policy directly with RL using the same reduced observation set. Our pipeline
is motivated by three goals: (a) producing motions that are fast and faithful to the original video demonstrations; (b) ensuring observations
are available in real-world settings; and (c) training a generalist policy that distills knowledge from all video demonstrations into a single
model applicable beyond the training set.

be fed either from a joystick or potentially a path provided
by a high-level controller. In this way, our framework unifies
the previously separate approaches of joystick tracking and
global reference following. Our distilled policy benefits from
the fact that the teacher is also trained with observation
randomization, hence it learns actions under some uncertainty,
which would not be the case if we started by training with
full body observations; this has been shown to be helpful in
other contexts with policy learning [24].
Stage 4: Under-conditioned RL Finetuning. After distilling
our policies to be exclusively conditioned on the root of our
trajectories, we perform another round of RL. This is because
behaviours which are learned conditioned on target joints may
be sub-optimal for policies which are not conditioned on
such targets. In practice, we found that this can significantly
boost performance as compared to distilled policies. It also
makes it possible to add lower-quality reference motions
to the reference set since removing targets from the actor
in effect makes it a “data-driven” reward signal with an
under-constrained actor which is able to follow references
appropriate to context.

V. RESULTS
We demonstrate that humanoid robots can learn context-

aware skills in diverse environments by imitating everyday
human videos. We first evaluate the robustness of our recon-
struction pipeline against baselines. Next, we demonstrate its
versatility, highlighting its potential impact on future research.
We then detail our curated video dataset. Finally, we ablate
the MPT component and present demonstrations successfully
transferred from simulation policies to a physical robot.

A. Reconstruction and Data

Evaluation. We evaluate the robustness of our reconstruction
pipeline on a subset of the SLOPER4D dataset [2], assessing

both human trajectory and scene geometry reconstruction.

Methods WA-MPJPE W-MPJPE Chamfer Distance

WHAM* [44] 189.29 1148.49 –
TRAM [51] 149.48 954.90 10.66

Ours 112.13 696.62 0.75

TABLE II: Comparison of Reconstruction. *: WHAM does not
recover the environment.

We compare our method against baselines following the
standard evaluation protocol [44, 51]. As summarized in Ta-
ble II, our method consistently achieves the best performance,
outperforming prior work in both human trajectory accuracy
(WA/W-MPJPE) and scene geometry (Chamfer Distance).
Versatility. Figure 4 highlights the breadth of our reconstruc-
tion pipeline, showcasing (i) robust environment reconstruc-
tion from an Internet video involving dynamic human-scene
interaction, (ii) multi-human reconstruction and retargeting.
Furthermore, the dense point cloud reconstruction enables
ego-view RGB-D rendering via simple rasterization. While
not used in our current policy, this offers a promising direction
for future work—especially given the challenges of rendering
naturalistic images in simulation.
Video Data. We curated 123 casually recorded smartphone
videos of people performing everyday activities in diverse
indoor and outdoor settings, including sitting, standing up
from furniture, walking up/down stairs (even backwards), and
stepping onto blocks.
MPT ablation. We ablate the impact of pretraining on motion
capture data. MPT has multiple effects: first, reference mo-
tions are noisy and thus harder to learn to track tabula rasa.
Second, initial positions of the robot are often not entirely
statically stable or may have some interpenetrations with the
scene. Hence, MPT can help stabilize learning during the
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Fig. 4: Versatile capabilities of our Real-to-Sim pipeline. VideoMimic enables (i) robust tracking of Internet videos with challenging
motion and diverse environments, (ii) simultaneous reconstruction and retargeting of multiple humans, and (iii) ego-view RGB-D rendering
for embodied perception—though not used in our current policy, it highlights the framework’s broader applicability across inputs and tasks.

Fig. 5: The policy performing various skills on the real robot: traversing complex terrain, standing, and sitting. All these skills are in a
single policy, which decides what to do based on the context of its heightmap and joystick direction input. Top row: the policy stands from
a seated position after sitting down. Second row: the policy walks up a flight of stairs. Third row: the policy walks down a flight of stairs.
Bottom row: the policy walks over a kerb and onto a rough terrain. Please find the video results on our webpage.

https://videomimic.github.io
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Fig. 6: Impact of MoCap pre-training (MPT). Pre-training the
policy on motion-capture data facilitates learning on video captures
despite noisy references.

initial phases, whereas a policy from scratch may not even be
able to learn how to balance. As shown in Figure 6, removing
MPT significantly hinders the policy’s ability to learn effective
behaviors.

B. Real-world Deployment

Setup. We deploy our controller on a 23-DoF Unitree G1
humanoid and run it onboard at 50 Hz. Following [60], we set
relatively low joint gains, Kp = 75, to avoid excessively fast
or overly stiff behaviour—which helps to avoid excessively
violent contact when the robot makes heavy contact with
objects such as chairs or stairs. Height-maps are computed
in real time using Fast-lio2 [52] and probabilistic terrain
mapping [3, 22]. We feed joystick targets from a human
operator. Including policy running, all operations are run on-
board. We found two critical ingredients for successful motion
deployment through iterative sim-to-real trials: (i) relaxing the
episode-termination tolerances with respect to the reference
motion, and (ii) injecting realistic physics perturbations during
training.
Real-world evaluation. Figure 5 and the accompanying video
showcase the policy executing a wide range of whole-body
behaviors on the Unitree G1. Without any task-specific tuning,
the same network—driven only by proprioception and a noisy
LiDAR height-map that provides a full 360◦ view around the
torso—climbs and descends indoor and outdoor staircases,
traverses steep earthen slopes and rough vegetation, and
reliably sits down on or stands up from chairs and benches.
The controller is surprisingly resilient: after unexpected foot
slides while descending stairs, it recovers by momentarily
hopping on a single leg before regaining nominal gait.
To the best of our knowledge, this is the first real-world
deployment of a context-aware humanoid policy learned from
monocular human videos, jointly demonstrating perceptive lo-
comotion and environment-prompted whole-body skills such
as sitting, standing, and climbing stairs. Additional qualitative
results are available on the project webpage.

VI. LIMITATIONS

Our pipeline delivers encouraging real-world results, yet
several practical weaknesses remain.

Reconstruction. Monocular 4D human–scene recovery is
still brittle in the wild. Camera pose drift in MegaSaM often
yields duplicate “ghost” layers of the same surface. Due
to its inability to refine the dynamic points, the dynamic
points from the person are mistakenly fused into the static
point cloud or inaccurately placed (e.g., feet buried beneath
the environment). In particular, we found that MegaSaM
performs poorly on images with low texture. Depth filtering
and spatio-temporal subsampling remove many outlier points,
but aggressive thresholds leave holes that hinder meshing.
NKSR mitigates noise, yet may oversmooth fine geometry
(e.g., narrow stair treads); such high-frequency details are
crucial for robot control, and we discard videos where these
details are missing after reconstruction. Also, during point-
to-mesh conversion, spiky artifacts may appear due to stray
points.

Retargeting. The kinematic optimizer assumes every ref-
erence pose can be made feasible once scaled to the robot.
In cluttered scenes, this is not always true, and conflicting
costs—strict foot-contact matching versus collision avoid-
ance—can trap the solver in poor local minima that the RL
controller must subsequently “clean up.”

Sensing and policy input. At test time, the controller re-
ceives only proprioception and an 11×11 LiDAR height-map.
This coarse grid is adequate for terrain and chairs but
lacks the resolution for precise contacts, manipulation, or
reasoning about overhanging obstacles. Incorporating richer
perceptual inputs—such as RGB-D data or learned occupancy
grids—would likely broaden the method’s applicability and
improve its semantic understanding of the environment.

Simulation fidelity. We assume the scene can be rep-
resented as a single rigid mesh. Scaling to articulated or
deformable objects will require more expressive simulators
and object-level reconstruction pipelines—open problems for
future work.

VII. CONCLUSION

We introduced VIDEOMIMIC, a real-to-sim-to-real pipeline
that converts everyday human videos into environment-
conditioned control policies for humanoids. The system (i)
reconstructs humans and surrounding geometry from monoc-
ular clips, (ii) retargets the motion to a kinematically fea-
sible humanoid, and (iii) uses the recovered scene as task
terrain for dynamics-aware RL. The result is a single pol-
icy that delivers robust, repeatable contextual control—e.g.,
stair ascents/descents and chair sit-stand—all driven only by
the environment geometry and a root direction command.
VIDEOMIMIC offers a scalable path for teaching humanoids
contextual skills directly from videos. We expect future work
to extend the system to richer human–environment interac-
tions, multi-modal sensor-based context learning, and multi-
agent behavior modeling, among other directions.

https://videomimic.github.io/
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