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ABSTRACT

Fine-tuning pre-trained models has become the standard approach to endow them
with specialized knowledge, but it poses fundamental challenges. In particular,
(i) fine-tuning often leads to catastrophic forgetting, where improvements on a
target domain degrade generalization on other tasks, and (ii) merging fine-tuned
checkpoints from disparate tasks can lead to significant performance loss. To
address these challenges, we introduce LiNeS, Layer-increasing Network Scaling,
a post-training editing technique designed to preserve pre-trained generalization
while enhancing fine-tuned task performance. LiNeS scales parameter updates
linearly based on their layer depth within the network, maintaining shallow layers
close to their pre-trained values to preserve general features while allowing deeper
layers to retain task-specific representations. In multi-task model merging scenar-
ios, layer-wise scaling of merged parameters reduces negative task interference.
LiNeS demonstrates significant improvements in both single-task and multi-task
settings across various benchmarks in vision and natural language processing.
It mitigates forgetting, enhances out-of-distribution generalization, integrates
seamlessly with existing multi-task model merging baselines improving their per-
formance across benchmarks and model sizes, and can boost generalization when
merging LLM policies aligned with different rewards via RLHF. Our method
is simple to implement, computationally efficient and complementary to many
existing techniques. Our source code is available at github.com/wang-kee/LiNeS.

1 INTRODUCTION

Pre-trained models have become the backbone of modern machine learning pipelines (Bommasani
et al., 2021; Touvron et al., 2023). Their introduction has shifted the paradigm from end-to-end
training to fine-tuning (Zhuang et al., 2020), leading to the proliferation of thousands of fine-tuned
checkpoints derived from a few foundation models (Rombach et al., 2022; Team et al., 2023). To
improve downstream performance across multiple tasks or align with multiple preferences (Singh
& Jaggi, 2020; Matena & Raffel, 2022; Ilharco et al., 2023; Yadav et al., 2023; Ramé et al., 2024a),
model merging techniques combine available checkpoints, avoiding the costly process of joint
fine-tuning (Ilharco et al., 2023; Yadav et al., 2023). However, specializing models introduces
trade-offs, such as the forgetting of previously acquired knowledge (Aghajanyan et al., 2021) – a
phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989). Furthermore, merging
checkpoints fine-tuned on different tasks can lead to significant performance degradation due to
task interference (Yadav et al., 2023; Wang et al., 2024).
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To mitigate catastrophic forgetting, many works propose regularizing the fine-tuning process
(Aghajanyan et al., 2021; Kumar et al., 2022; Gouk et al., 2021; Razdaibiedina et al., 2023).
Leveraging the insight that shallow layers capture generalizable representations (Yosinski et al.,
2014; Neyshabur et al., 2020), Howard & Ruder (2018); Dong et al. (2022) apply lower learning
rates to the shallow layers to retain general features. However, modifying the fine-tuning process
can be complex and computationally expensive. This motivates the development of post-training
model editing and model merging methods that directly edit the checkpoints in the weight space.
For instance, Wortsman et al. (2022b); Ramé et al. (2022) mitigate catastrophic forgetting by
interpolating weights between pre-trained and fine-tuned models. In multi-task settings, Yadav
et al. (2023); Wang et al. (2024) propose methods to reduce interference among tasks when merging
multiple checkpoints. Yet, significant performance degradation persists when merging multiple
models, leaving this as an open challenge.

Most model merging methods, however, treat all layers equally, overlooking the earlier insight that
shallow layers should remain close to their pre-trained weights to avoid losing the general represen-
tations they encode. In this paper, we explore whether this insight can be leveraged post-training.
We find that reducing the magnitude of shallow-layer updates after fine-tuning can retain single-task
performance gains while significantly mitigating forgetting.

We propose LiNeS, Layer-increasing Network Scaling, a post-training, plug-and-play method that
directly edits the residual, i.e., the difference between the fine-tuned and pre-trained checkpoint,
by applying a scaling coefficient that linearly increases with layer depth. This scaling effectively
preserves the general features captured in the shallow layers of the pre-trained model while retaining
task-specific features in the deep layers of the fine-tuned model. Moreover, we extend LiNeS to
the multi-task model merging setting, where contributions from one task distort the general features
also required by other tasks. By preserving the general features in the shallow layers, LiNeS
mitigates task interference and improves multi-task performance.

LiNeS demonstrates remarkable performance on diverse test scenarios and is orthogonal to existing
post-training merging algorithms. It modifies the fine-tuned checkpoint to consistently retrieve
nearly full performance on the fine-tuned task while significantly restoring generalization on other
tasks. Furthermore, it can be seamlessly integrated with existing weight interpolation methods for
improving out-of-distribution generalization (Wortsman et al., 2022b). When merging multiple
models, LiNeS improves baseline methods for merging checkpoints fine-tuned on multiple tasks
in both computer vision and NLP benchmarks (Ilharco et al., 2023; Yadav et al., 2023; Wang
et al., 2024) and also enhances performance when merging checkpoints fine-tuned on the same task
(Wortsman et al., 2022a) and merging LLM policies aligned with different rewards (Ramé et al.,
2024a) via Reinforcement Learning with Human Feedback (RLHF) (Christiano et al., 2017).

Our contributions are as follows:

• We propose LiNeS, a post-training editing technique that preserves the zero-shot
generalization of pre-trained models while retaining fine-tuned knowledge by applying
layer-wise scaling on parameter updates. For example, in image-classification tasks with
CLIP ViT-B/32 checkpoints, LiNeS maintains on average 99.8% of performance on the
fine-tuned task while preserving 97.9% performance of the pre-trained model on other
control tasks, effectively mitigating catastrophic forgetting.

• We demonstrate that LiNeS significantly enhances multi-task model merging baselines,
consistently improving performance across benchmarks and architectures in both vision
and NLP domains. For instance, we observe a 3.1% and 4.0% improvement over Task
Arithmetic (Ilharco et al., 2023) and Ties-merging (Yadav et al., 2023) respectively, for a
20-task computer vision benchmark with ViT-L/14.

• We show that LiNeS can be applied to enhance existing weight interpolation methods
across various scenarios, improving out-of-distribution generalization, merging multiple
checkpoints fine-tuned on the same task with different hyper-parameter configurations,
and merging LLM policies aligned with different rewards.

Our proposed method is simple to implement1, orthogonal to many existing approaches, and im-
proves performance in a wide variety of settings.

1PyTorch pseudo-code in Appendix A.
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2 RELATED WORK

Representation collapse and regularized fine-tuning Pre-trained models such as CLIP exhibit
strong zero-shot performance across diverse data distributions due to the robust and transferable
feature representations learned during pre-training (Radford et al., 2021; Jia et al., 2021). However,
fine-tuning on specific tasks often harms the zero-shot generalization performance on distributions
different from the fine-tuning domain (Wortsman et al., 2022b; Goyal et al., 2023; Aghajanyan
et al., 2021). This degradation arises from the distortion of pre-trained features during fine-tuning
(Kumar et al., 2022), a phenomenon referred to as representation collapse by Aghajanyan et al.
(2021). To mitigate representation collapse, many works have proposed to regularize the fine-tuning
process to preserve the general pre-trained features (Kumar et al., 2022; Goyal et al., 2023; Gouk
et al., 2021; Zhang et al., 2022; Razdaibiedina et al., 2023; Shen et al., 2021; Lee et al., 2022). Some
of these approaches take into account that different layers of a model learn distinct features, with
the shallower layers capturing more general features and deeper layers specializing in task-specific
representations (Neyshabur et al., 2020; Yosinski et al., 2014; Adilova et al., 2024). Specifically,
they apply layer-wise learning rate decay, preserving more of the pre-trained features in the shallow
layers while allowing deeper layers to specialize for the target domain (Clark et al., 2020; Bao
et al., 2022; Dong et al., 2022; Howard & Ruder, 2018; Zhang et al., 2021). However, modifying
the fine-tuning process is orders of magnitude more computationally expensive compared to
post-training merging methods.

Weight interpolation and model merging Garipov et al. (2018); Draxler et al. (2018) showed that
two solutions derived from separate training runs can be connected by nonlinear paths of low loss,
while linear mode connectivity (Frankle et al., 2020) extended the paths to the linear case. These
insights enabled the transfer of the benefits regarding robustness of (traditional) output ensembles
(Hansen & Salamon, 1990; Lakshminarayanan et al., 2017) to weight ensembles, reconciling the
bias-variance trade-off (Belkin et al., 2019) while eliminating the computational cost of multiple in-
ferences (Fort et al., 2020). These findings can be leveraged to improve performance on single-task
(Izmailov et al., 2018; Wortsman et al., 2021; Ramé et al., 2022; Wortsman et al., 2022a; Jang et al.,
2024), out-of-distribution (Wortsman et al., 2022b; Ramé et al., 2023), multi-task (Ilharco et al.,
2022; Dimitriadis et al., 2023; 2025) and multi-objective alignment (Zhong et al., 2024; Ramé et al.,
2024b) settings. Furthermore, model merging can also applied as a scalable approach to unify multi-
ple task-specific models into a single model with multi-task capabilities (Ilharco et al., 2023; Yadav
et al., 2023), despite performance loss compared to individual models. Several methods have tried to
improve multi-task model merging by preserving the important parameters defined via the Fisher In-
formation Matrix (Matena & Raffel, 2022; Tam et al., 2024), using heuristics (Davari & Belilovsky,
2023; Luo et al., 2023; Jin et al., 2023), randomly dropping and rescaling the task vector parameters
(Yu et al., 2024) or by focusing on resolving weight interference caused by sign disagreements and
redundant parameters (Yadav et al., 2023; Wang et al., 2024). Recent works use gradient descent
to learn the layer-specific merging coefficients per task, e.g., Ada-merging (Yang et al., 2024) mini-
mizes entropy in unlabeled test data while aTLAS (Zhang et al., 2024) optimizes using cross-entropy
loss on validation data. Compared to LiNeS, these methods do not incorporate any prior knowledge
on early vs. deep layers and require training, resulting in significant computational overheads.

3 POST-TRAINING LAYER-WISE SCALING MITIGATES FORGETTING

In this section, we present the key insight of our work: Scaling down the updates of shallow lay-
ers after fine-tuning can mitigate catastrophic forgetting and restore zero-shot generalization while
preserving performance on the target task.

Notation We consider a pre-trained model θ0 ∈ RN with N parameters. Fine-tuning on a specific
task t results in the fine-tuned weights θt. The difference between these two sets of weights, τt =
θt − θ0, is referred to as the task vector or residual for task t (Ilharco et al., 2023) and represents
the updates made during fine-tuning.

Fine-tuning leads to catastrophic forgetting We quantitatively demonstrate the phenomenon
of catastrophic forgetting with the following experiments. Consider the 8-task image classification
benchmark studied in Ilharco et al. (2023). We fine-tune a CLIP ViT-B/32 model on each task,
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Figure 1: Downscaling the shallow layers maintains the fine-tuned performance on target tasks
(orange line, left), while restoring zero-shot performance from pre-trained model on control tasks
(orange line, right). The performance for downscaling deep layers instead is presented in blue lines,
which underperforms downscaling shallow layers in both cases. γ represents the minimum scaling
factor applied to the layers, where a smaller γ leads to stronger downscaling strength, with γ = 1
restoring the original fine-tuned model.

measuring performance on the fine-tuned task – referred to as the target task – and the remaining 7
tasks – the control tasks. The averaged results over all target and control task combinations, shown
in Table 1, demonstrate that while fine-tuning significantly improves accuracy on the target task,
it drastically reduces accuracy on the control tasks, underscoring the loss of the model’s zero-shot
generalization abilities.

Table 1: Fine-tuning harms generalization
on control tasks. Our proposed post-training
edition leads to a superior trade-off between
performance on target and control tasks.

Model / Accuracy Target Control

Pre-trained 48.3 48.3
Fine-tuned 90.5 38.0

Fine-tuned+LiNeS (ours) 90.3 48.0

Shallow-layer updates impact minimally on
target task accuracy Most parameter updates
during the fine-tuning process are redundant,
as similar performance is achievable without
updating most pre-trained weights (Yadav et al.,
2023; Wang et al., 2024; He et al., 2025).
Moreover, prior work shows that task-specific
features are often concentrated in deeper layers
of the network (Neyshabur et al., 2020; Yosinski
et al., 2014; Raghu et al., 2019). Based on these
observations, we hypothesize that updates to the
shallow layers contribute minimally to target tasks. To test this, we progressively downscale the
updates to shallow layers after fine-tuning. Specifically, we apply a scaling factor to the updates to
the ℓ-th layer τ (ℓ), defined as: λ(ℓ) = γ + (1− γ) ℓ−1

L−1 , ∀ℓ ∈ [L], γ ∈ [0, 1], This linearly scales the
updates from a factor of γ for the first layer to 1 for the last one. As a result, fine-tuning updates to
the shallow layers are scaled down more aggressively, with later layers experiencing progressively
smaller reductions. We then reintroduce the scaled task vector into the pre-trained model and
measure its performance on the fine-tuned task. Figure 1 (left) shows the results of this experiment
for the CLIP ViT-B/32 checkpoint fine-tuned across the 8 tasks, where γ is progressively decreased
to strengthen the downscaling effect. We observe that, even with strong downscaling of shallow
layers, the target task accuracy remains nearly unaffected. In contrast, when we downscale the
deeper layers, target task accuracy drops significantly. These results support our hypothesis that
shallow-layer updates are largely unnecessary for maintaining accuracy on the target task.

Shallow-layer updates undermine zero-shot generalization While shallow-layer updates have
minimal impact on target-task accuracy, they distort the general features learned during pre-training,
which reside primarily in the shallow layers (Neyshabur et al., 2020; Yosinski et al., 2014; Raghu
et al., 2019). We hypothesize that the degradation of performance on control tasks is largely due
to these distortions in the shallow layers. Using the same experimental setup, we now evaluate the
zero-shot performance on the control tasks, i.e., the other 7 unseen tasks. As shown in Figure 1
(right), as the strength of the shallow-layer downscaling increases, the accuracy on control tasks
approaches the original pre-trained model’s performance. This shows that by reducing the shallow-
layer updates, we can restore most of the zero-shot performance that is lost during fine-tuning.
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Figure 2: Our linear scaling (LiNeS) retains
performance on both control and fine-tuned target
tasks. Each dot represents a different model.

Improved trade-off between target and con-
trol performance To optimize the trade-off
between target and control task performance,
we select a scaling coefficient γ for each
model that maximizes a weighted balance be-
tween these two objectives, as detailed in Ap-
pendix C.1. After selecting the optimal scaling
coefficient, the test results are shown in the fi-
nal row of Table 1. Our post-training method
preserves target task accuracy with a minimal
0.2% difference while improving control task
performance by 10%, compared to the fine-
tuned model.

We further apply the same method to a 20-task
computer vision benchmark (Wang et al.,
2024). For evaluation, we report both the target
task normalized accuracy and the control task
normalized accuracy on the 19 tasks, where
accuracy is normalized by the performance of
the fine-tuned model for the target task and the
zero-shot accuracy of the pre-trained model for the control tasks. We compare to fine-tuned models
on each task and the pre-trained model as baselines. Figure 2 shows that fine-tuning degrades
zero-shot generalization, as indicated by the performance drop on control tasks. In contrast, our
post-training scaling method significantly improves generalization while maintaining near-full
target task accuracy. On average, our method achieves a target task normalized accuracy of 99.8%
and a control task normalized accuracy 97.9%. This demonstrates its effectiveness in preserving
both task-specific knowledge from fine-tuned checkpoints and the generalization capabilities of the
pre-trained model. The full breakdown of results by task is available in Figure 6 in Appendix.

In Appendix, we show that catastrophic forgetting happens with models fine-tuned with LoRA (Hu
et al., 2022) as well. As shown in Table 11, higher expressivity in the form of higher ranks increases
target accuracy for LoRA but at the cost of lower performance on control tasks. Still, LiNeS
significantly improves control performance while minimally affecting target accuracy. Furthermore,
in Figure 10 of the appendix, we show that similar benefits can be observed for convolutional
architectures such as ConvNeXt (Liu et al., 2022). Finally, we provide a performance comparison
between editing models with LiNeS and regularized-fine-tuning-based methods in Appendix C.8,
including applying different learning rates per layer. Also in these cases, LiNeS demonstrates
superior performance on control tasks, while being much more computationally efficient.

4 METHOD

Motivated by the results of the previous section for mitigating forgetting, we propose LiNeS
for Layer-increasing Network Scaling, a simple post-training technique that linearly rescales the
updates of different layers in the task vector based on their depth in the network. LiNeS is designed
to retain general features in the shallow layers while preserving the task-specific adaptations in the
deeper layers.

Given a task vector τ with L layer blocks we apply the layer-wise linear scaling to adjust the con-
tributions of shallow and deep layers using the following formulation:

τLiNeS = concat
(
λ(1)τ (1), . . . , λ(L)τ (L)

)
, where λ(ℓ) = α+ β

ℓ− 1

L− 1
, ∀ℓ ∈ [L]. (1)

As a result, the layers in τ are progressively scaled with a factor between α for the first layer and
α+β for the last layer, with intermediate layers scaled with a linearly increasing schedule depending
on their depth. The final model θ is then obtained by summing the pre-trained model weights and
the edited task vector, i.e., θ = θ0 + τLiNeS. Notice that, in Equation 1, τ can correspond to either
a single-task residual or, in the context of model merging, a multi-task vector obtained by merging
the residuals of multiple checkpoints fine-tuned starting from a common initialization. Additional
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Figure 3: Application of LiNeS to WiSE-FT (Wortsman et al., 2022b) improves performance
on ImageNet and five different distribution shifts, resulting in a dominating Pareto Front over
WiSE-FT. LP initialization refers to the model initialized from a linear probe (Kumar et al., 2022).

details on this process are provided in the next section. Setting α = β = 0 corresponds to the pre-
trained model, while α = 1, β = 0 is the fine-tuned model in the case that τ is a single-task vector.

In practice, we find that tuning just one hyper-parameter (either α or β) is often sufficient to
achieve a good balance between target task performance and generalization. Specific details
on hyper-parameter tuning for different applications are provided in the experimental sections.
The linear scaling method introduced in Section 3 corresponds to LiNeS by setting α = γ and
β = 1 − γ. This formulation generalizes our previous approach, offering a flexible way to adjust
the contributions of different layers based on the task requirements.

5 MODEL MERGING EXPERIMENTS

We empirically verify the effectiveness of applying LiNeS across diverse application domains.
Section 5.1 presents results for improving robust fine-tuning (Wortsman et al., 2022b) for OOD
generalization; Section 5.2 focuses on improving existing multi-task merging methods (Ilharco
et al., 2023; Yadav et al., 2023; Wang et al., 2024) in both vision and NLP benchmarks. In
Section 5.3, we apply LiNeS and improve the merging of single-task fine-tuned models within
the setting of Model Soups (Wortsman et al., 2022a), and finally, we enhance merging foundation
models fine-tuned on different rewards (Ramé et al., 2024a) in Section 5.4.

5.1 IMPROVING ROBUST FINE-TUNING FOR OOD GENERALIZATION

We first consider the setting of robust fine-tuning or WiSE-FT (Wortsman et al., 2022b), where lin-
early interpolating between the pre-trained and the fine-tuned weights improves model performance
on OOD datasets. The interpolation is equivalent to scaling the residual τ : (1−γ)θ0+γθ = θ0+γτ ,
for γ ∈ [0, 1]. We apply LiNeS to the residual τ . Following Wortsman et al. (2022b), we evaluate
CLIP models fine-tuned on ImageNet (Deng et al., 2009), considering 5 OOD datasets, namely Im-
ageNetSketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021), ImageNet-R (Hendrycks
et al., 2020), ObjectNet (Barbu et al., 2019), ImageNet-V2 (Recht et al., 2019).

We apply this LiNeS to each of the 70 fine-tuned checkpoints2 provided by Wortsman et al. (2022a)
setting α = β = 0.5. We present the average results in Figure 3, comparing the performance of
WiSE-FT with and without applying LiNeS on the 5 OOD datasets. Without applying WiSE-FT,

2The checkpoints are CLIP ViT-B/32 models fine-tuned on ImageNet with different hyper-parameters.
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Table 2: Results for multi-task model merging in vision classification benchmarks of 8 tasks (Ilharco
et al., 2023), 14 tasks, and 20 tasks (Wang et al., 2024) for different vision transformer architectures.
Applying LiNeS improves baseline performance for all benchmark/architecture combinations.

Method with
LiNeS

ViT-B/32 ViT-L/14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zero-shot 48.3 57.3 56.1 64.8 68.3 65.3
Fine-tuned 90.5 89.5 90.4 94.0 93.3 94.0

Task Arithmetic ✗ 69.7 65.0 60.3 84.0 79.2 74.0
✓ 74.2 (+4.5) 69.1 (+4.1) 63.4 (+3.1) 86.5 (+2.5) 82.2 (+3.0) 77.1 (+3.1)

Ties-Merging ✗ 73.6 67.6 63.1 85.6 79.3 75.6
✓ 77.2 (+3.6) 72.1 (+4.5) 67.2 (+4.1) 88.0 (+2.4) 82.5 (+3.2) 79.6 (+4.0)

Consensus Merging ✗ 74.5 70.1 65.3 85.2 81.9 78.7
✓ 77.6 (+3.1) 73.6 (+3.5) 68.6 (+3.3) 87.3 (+2.1) 84.0 (+2.1) 81.0 (+2.3)

LiNeS already enhances both the ID and OOD performance of the fine-tuned models by a
notable margin. Starting from this edited model and applying the WiSE-FT interpolation with the
pre-trained weights leads to a Pareto Front (Caruana, 1997) that consistently dominates the one by
WiSE-FT across all distribution shifts, illustrating the applicability of the proposed method across
various distribution shifts. A granular result for applying LiNeS to each of the 70 checkpoints is
provided in Appendix C.10.2, further highlighting its universal effectiveness across models. We
also report similar findings in Figure 11 in Appendix for a CLIP ViT-B/16 checkpoint fine-tuned on
ImageNet, using the same hyper-parameters as Wortsman et al. (2022b).

5.2 IMPROVING MULTI-TASK MODEL MERGING

In this section, we extend LiNeS to improve multi-task merging algorithms, aiming to combine
multiple models fine-tuned independently on different tasks into a single model (Matena & Raffel,
2022; Ilharco et al., 2023; Ortiz-Jimenez et al., 2023; Yadav et al., 2023; Hazimeh et al., 2024).
Task arithmetic (Ilharco et al., 2023) proposed to decouple the contributions of the pre-trained
model and individual task vectors, first generating a multi-task vector τMTL = g(τ1, . . . , τT ) with
a merging function g : RN × · · · × RN 7→ RN , and then adding back to the pre-trained checkpoint
with a scaling factor to construct a multi-task model θ = θ0 + λ · τMTL. The scalar coefficient λ is
tuned using a held-out validation set. Recent works (Yadav et al., 2023; Wang et al., 2024) follow
the same protocol while improving the merging function g for retaining more task information. We
refer to Appendix B.1 for a more detailed explanation of these methods.

However, significant performance loss occurs between the merged multi-task model and the original
fine-tuned checkpoints. This performance decrease partially stems from interference (Yadav et al.,
2023; Wang et al., 2024) among task vectors, where the contribution of one task negatively impacts
performance on others, leading to overall degradation. Task interference is linked to catastrophic
forgetting, as the individual task vectors lose a significant amount of generalization ability to other
tasks after fine-tuning and merging them leads to interference among each other. Therefore, we can
edit each task vector with LiNeS before merging to restore the generalization to other tasks, or for
simplicity, edit directly the merged multi-task vector to preserve the shallow and general features
that are beneficial across tasks.

We enhance the merging methods by applying LiNeS on the merged multi-task vector τMTL. For
the linear scaling schedule, we tune only β and set α using a heuristic that adjusts based on both
the number of merged models and the merging method. Specifically, for task arithmetic which
aggregates the individual task vectors through a simple summation operation: τsum =

∑Nmodels
i=1 τi,

we set α = 1/Nmodels. For other merging strategies which result in τMTL with different magnitudes
of norms, e.g., aggregation with summation leads to a norm ×Nmodels larger compared to averaging,
we further multiply by a scaling term ∥τsum∥ /∥τMTL∥ to normalize their norm to simple summation.
Overall, we set the intercept α to:

α =
1

Nmodels

∥τsum∥
∥τMTL∥

, where τsum =

Nmodels∑
i=1

τi (2)
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Table 3: Results for multi-task model merging methods in three NLP benchmarks with T5-large
model. LiNeS improves baseline performance across merging methods and benchmarks.

Method with
LiNeS

T5-large (Lester et al., 2021)

7 NLP tasks (Yadav et al., 2023) 8 QA tasks (Zhou et al., 2022) 11 NLP tasks (Wang et al., 2024)

Zero-shot 44.9 33.1 36.9
Fine-tuned 85.9 80.7 78.7

Task Arithmetic ✗ 71.9 63.8 63.6
✓ 76.4 (+4.5) 67.6 (+3.8) 66.2 (+2.6)

Ties-Merging ✗ 71.6 63.0 64.0
✓ 72.0 (+0.4) 66.0 (+3.0) 66.4 (+2.4)

Consensus Merging ✗ 73.5 68.6 67.5
✓ 75.4 (+1.9) 69.3 (+0.7) 67.5 (+0.0)

Therefore, we only tune β and search over the same range as the constant scaling λ used by
the aforementioned merging techniques. As a result, LiNeS shares the same computational
requirements as the baseline merging methods; we provide more details for the hyper-parameters
in Appendix B.2.1, as well as a sensitivity analysis to the hyper-parameters in Appendix C.6.
Specifically, we consider various multi-task model merging baselines, namely Task Arithmetic
(Ilharco et al., 2023), Ties-merging (Yadav et al., 2023), Consensus Merging (Wang et al., 2024),
enhancing them with LiNeS and evaluate on both computer vision and NLP benchmarks.

5.2.1 COMPUTER VISION

We experiment with the 8-task image classification benchmark proposed by Ilharco et al. (2023),
as well as the more challenging 14-task and 20-task benchmarks from Wang et al. (2024). Detailed
descriptions of task composition appear in Appendix B.2.2. We also examine the efficacy of LiNeS
across the model scale axis, studying three vision transformer (Dosovitskiy et al., 2021), namely
ViT-B/32, ViT-B/16 and ViT-L/14, as CLIP visual encoders (Radford et al., 2021) .

Table 2 presents the results for ViT-B/32 and ViT-L/14, while Appendix C.4 contains the ViT-B/16
experiments. We observe that LiNeS provides a significant improvement to all baseline merg-
ing methods across all tested scenarios, regardless of model sizes and total number of tasks. For
example, for the 8-task benchmark with ViT-B/32, LiNeS improves task arithmetic by 4.5%, Ties-
merging by 3.6% and consensus merging by 3.1%. For the challenging 20-task benchmark with
ViT-L/14, LiNeS leads to consistent and significant improvements, improving task arithmetic by
3.1%, Ties-merging by 4.0% and consensus merging by 2.3%. The detailed performance on indi-
vidual tasks for each tested scenario is presented in Appendix C.11.

5.2.2 NATURAL LANGUAGE PROCESSING

We also evaluate the effectiveness of LiNeS in NLP domain, including a 7-task NLP benchmark
(Yadav et al., 2023), an 8-task Question-Answering benchmark (Zhou et al., 2022), and their
combined 11-task benchmark (Wang et al., 2024). Appendix B details the experimental settings.
Following Tam et al. (2024), we adopt a variant of T5-large model (Raffel et al., 2020), namely
T5-large-LM-Adapt (Lester et al., 2021), and use their provided checkpoints. While T5-large con-
tains both encoder and decoder networks, we apply LiNeS only to the decoder, as our findings in
Appendix C.5 indicate that applying the edition to the decoder leads to similar observations to vision.

The performance of applying LiNeS to baseline methods with T5-large across various NLP tasks
is summarized in Table 3. LiNeS consistently improves multi-task performance across baseline
merging methods and benchmarks with a notable margin. For example, on the 7 NLP tasks
benchmark, LiNeS improves task arithmetic by 4.5 points, and consensus merging by 1.9 points.
Meanwhile, LiNeS outperforms Ties-merging by 3.0% and 2.4% for the 8-QA benchmark and
11-NLP benchmark, respectively.

5.3 IMPROVING MODEL SOUPS FOR MERGING SINGLE-TASK MODELS

Averaging in weight space multiple models fine-tuned on the same task derived from the same
pre-trained model has been shown to increase target performance (Wortsman et al., 2022a; Ramé
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Table 4: LiNeS improves performance over
Model Soups (Wortsman et al., 2022a), for both
uniform and greedy soup in merging multiple
checkpoints fine-tuned on ImageNet with different
hyper-parameter configurations.

Method Enhancements ImageNet Acc.

Averaged accuracy / 77.98
Best individual model / 80.36

Uniform soup
/ 79.99
Task Arithmetic 80.17
LiNeS 80.47 (+0.48)

Greedy soup
/ 81.01
Task Arithmetic 81.01
LiNeS 81.16 (+0.15)
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Figure 4: Applying LiNeS to Rewarded
Soups (Ramé et al., 2023) improves merging
of LLM policies RL fine-tuned on different
rewards with a dominating Pareto Front.

et al., 2022). In this section, we investigate whether LiNeS can enhance the test performance when
merging single-task models.

We follow the setting in Model Soups (Wortsman et al., 2022a) and merge 70 CLIP ViT-B/32
checkpoints fine-tuned on ImageNet (Deng et al., 2009) using different hyper-parameters, plus the
pre-trained checkpoint. We consider both variants introduced in Wortsman et al. (2022a), namely
uniform and greedy soup. We refer to Appendix B.3 for details regarding these methods and exper-
imental settings. For both cases, the weight-averaging process can be decomposed as follows:

θsoup = θ0 + τsoup, where τsoup =
1

Nmodels

Nmodels∑
i=1

(θi − θ0) (3)

We apply LiNeS to τsoup fixing α = 1 and searching over β. As a baseline, we also consider
task arithmetic, where we search for a constant scaling factor on τsoup. Note that both settings
introduce one hyper-parameter to vanilla model soups, and refer to Appendix B.3 for a detailed
description of the modifications. Table 4 summarizes the results and shows that LiNeS improves
over vanilla soups and task arithmetic for both uniform and greedy soup by 0.48% and 0.15%
on ImageNet, respectively. We report the best-performing model and the average performance as
baselines. Finally, our proposed method compounds the gains from the greedy soup and leads to
the best-performing model.

5.4 IMPROVING REWARDED SOUPS

In this section, we explore the effectiveness of LiNeS for merging foundation models fine-tuned on
different rewards. We consider the Rewarded Soups setting (Ramé et al., 2023), which interpolates
the weights θ1 and θ2 of two LLM policies, each optimized for a distinct reward R1 and R2,
respectively.

Starting with an LLM parameterized by weights θ0, we first fine-tune it using supervised fine-tuning
(SFT) on labeled demonstrations. From the resulting weights θSFT, we then apply Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022), training two
independent policies via Proximal Policy Optimization (PPO) (Schulman et al., 2017) to maximize
the rewards R1 and R2 respectively. To merge these policies, we linearly interpolate the residuals
τ1 = θ1 − θSFT and τ2 = θ2 − θSFT, defining a continuous set of rewarded policies:

θRS = θSFT + λτ1 + (1− λ)τ2, λ ∈ [0, 1], (4)

where the coefficient λ models the user’s preferences. We apply LiNeS to the weighted-sum
residual: λτ1 + (1− λ)τ2, fixing α = β = 1 for computational reasons.

In our experiment, we use LLaMA-2 7B (Touvron et al., 2023) and the Reddit Summary task (Stien-
non et al., 2020), which consists of 14.9k post-summary pairs. We fine-tune the model using LoRA
(Hu et al., 2022) with rLoRA = 64, αLoRA = 128, and 0.05 dropout. We employ two reward models:
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GPT2-reward-summarization – which scores summaries based on human preferences – and BART-
faithful-summary-detector (Chen et al., 2021) – which evaluates the faithfulness of the generated
summary to the source post. To evaluate the models, we use a subset of 1k samples from the test set,
generate the responses, and compute the average score for each reward dimension.

In Table 4, we present the empirical Pareto Fronts for both Rewarded Soups and Rewarded
Soups+LiNeS. LiNeS consistently outperforms the vanilla Rewarded Soups across the full prefer-
ence space, Pareto dominating the baseline. This result highlights the generality of LiNeS.

6 DISCUSSION
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Figure 5: Comparison of the scalings
obtained by different methods on 8-task
merging benchmark with CLIP ViT-B/32.

We compare LiNeS with prior work that optimizes
the scaling coefficients via backpropagation. Specifi-
cally, Ada-merging (Yang et al., 2024) minimizes the
entropy loss of the predictions on the test set, while
aTLAS (Zhang et al., 2024) minimizes a cross en-
tropy loss on validation samples. Both methods op-
erate on a more fine-grained level and introduce co-
efficients per layer and per task, requiring all T + 1
checkpoints, for task vectors and pre-trained model
respectively, to be stored in memory during their fine-
tuning process.

We consider the 8-task computer vision benchmark
with the ViT-B/32 visual encoder, and present the
per-layer scalings in Figure 5. For aTLAS and Ada-
merging, we report the average optimized scaling co-
efficients for attention and linear layers in each block
across tasks. Without requiring training, LiNeS leverages the inductive bias of neural networks
to achieve scaling very close to Ada-merging or aTLAS , but with much less computational cost.
Apart from the excessive memory overhead, both aTLAS and Ada-merging require multiple training
epochs, making it challenging to scale for large models. As we demonstrate in Section 5.4, LiNeS
efficiently scales to large models like LLaMA (Touvron et al., 2023).

7 CONCLUSION

In this work, we presented LiNeS, a novel method designed to mitigate catastrophic forgetting
after fine-tuning process. By reducing the magnitude for parameter updates in the shallower
layers, LiNeS improves the generalization performance of the edited model on control tasks
while almost fully preserving performance on the fine-tuned tasks. Furthermore, we demonstrated
the versatility of LiNeS in addressing task interference in multi-task model merging, where it
consistently improves the baseline model merging methods across vision and NLP benchmarks. Our
experiments confirm the broad applicability of LiNeS across various scenarios, from improving
OOD generalization to enhancing multi-task and single-task model merging strategies, as well as
improving merging LLM policies aligned with different rewards. Given its simplicity and ease of
integration with existing methods, LiNeS offers a practical and inexpensive solution for boosting
the generalization and robustness of fine-tuned models in diverse application domains.
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A LINES PSEUDOCODE

We provide here a python pseudocode for the scaling the task vectors.

def line_scaling(task_vector, alpha=0.0, beta=1.0, num_blocks=12):
"""
Progressively scales the task vector based on layer depth.

Parameters:
-----------
task_vector : dict

A dictionaryves control performantween the fine-tuned
checkpoint and the pre-trained checkpoint.

alpha : float
The minimum scaling factor for the blocks.

beta : float
The maximum scaling coefficient difference between the last and first
block.

num_blocks : int
The total number of layer blocks in the model.

Returns:
--------
scaled_task_vector : dict

A copy of `task_vector` where each key is scaled based on the layer
depth.

"""

import copy

# Deep copy the task vector to avoid modifying the original
scaled_task_vector = copy.deepcopy(task_vector)

# Generate the key blocks corresponding to the layers of the model
key_blocks = [f".layer{i}." for i in range(num_blocks)]

# Create a scaling dictionary to store the scaling factor for each key
scaling_dic = {}
for k in task_vector.keys():

# Find the layer block in the key and assign scaling factor based
# on layer depth
for layer, block in enumerate(key_blocks):

if block in k:
scaling_dic[k] = alpha + beta * (layer / (num_blocks - 1))
break

# Scale the task vector based on the scaling dictionary
scaled_task_vector.vector = {

# Use alpha if layer is outside residual blocks
k: task_vector.vector[k] * scaling_dic.get(k, alpha)
for k in task_vector.keys()

}

return scaled_task_vector

# example: scale single-task fine-tuned residual
task_vector = {k: theta_t[k] - theta_0[k] for k in theta_0.keys()}
scaled_task_vector = line_scaling(

task_vector, alpha=gamma, beta=1.0 - gamma, num_blocks=12
)

# example: Scale the multi-task vectors
mtv = {

k: sum(theta_ft[k] - theta_0[k] for theta_ft in ft_models)
for k in theta_0.keys()

}
scaled_mtv = line_scaling(

mtv, alpha=1 / len(ft_models), beta=beta, num_blocks=12
)
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B EXPERIMENTAL DETAILS

B.1 DESCRIPTIONS OF BASELINE MODEL MERGING METHODS

• Task Arithmetic (Ilharco et al., 2023) generates a multi-task vector by summing the in-
dividual task vectors for each task. This multi-task vector is then added to the pre-trained
checkpoint, with a scaling factor chosen based on validation set performance.

• Ties-Merging (Yadav et al., 2023) resolves parameter conflicts during model merging by
first pruning parameters with lower magnitudes from the individual task vectors, followed
by addressing sign mismatches, and finally merging parameters with consistent signs with
averaging operation. The resulting multi-task vector is then added to the pre-trained check-
point using a scaling factor determined from the validation set.

• Consensus Merging (Wang et al., 2024) enhances existing model merging techniques by
eliminating redundant weights in the multi-task vector. It first identifies the relevant subset
of parameters for each task, then filters out weights that are relevant to either none or only
one task. After removing these redundant weights, the refined multi-task vector is added to
the pre-trained checkpoint with a scaling factor selected from the validation set.

While consensus merging can be applied to various merging methods, in all our experiments, we
evaluate only its application to task arithmetic.

B.2 EXPERIMENTAL DETAILS FOR MULTI-TASK MODEL MERGING

B.2.1 HYPER-PARAMETERS TUNING

We list here the hyper-parameter search space for each model merging method in Table B.2.1, while
we suggest the authors to the original papers for a detailed description of these hyper-parameters.
We highlight that applying LiNeS does not introduce extra computational cost in hyper-parameter
search for the baseline merging methods.

Method With
LiNeS

Hyper-parameter search space

Task Arithmetic ✗ constant scaling term for multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

✓ scaling term β in Eq. 1 for the multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Ties-Merging ✗ constant scaling term for multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5]

✓ scaling term β in Eq. 1 for the multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5]

Consensus Merging ✗
constant scaling term for multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0];
weight-pruning threshold: [1, 2]

✓
scaling term β in Eq. 1 for the multi-task vector: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0];
weight-pruning threshold: [1, 2]

B.2.2 BENCHMARKS

Image classification For the benchmarks used in image classification, we utilized the 8-task
benchmark initially proposed by Ilharco et al. (2023), as well as the 14-task and 20-task bench-
marks expanded by Wang et al. (2024).

• The 8-task benchmark comprises the following tasks: Cars (Krause et al., 2013), DTD
(Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011),
MNIST (LeCun, 1998), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016), and
SVHN (Netzer et al., 2011).

• The 14-task benchmark includes the original eight tasks plus additional ones: CIFAR100
(Krizhevsky & Hinton, 2009), STL10 (Coates et al., 2011), Flowers102 (Nilsback & Zis-
serman, 2008), OxfordIIITPet (Parkhi et al., 2012), PCAM (Veeling et al., 2018), and
FER2013 (Goodfellow et al., 2013).

• The 20-task benchmark builds on the 14-task benchmark with the addition of: EMNIST
(Cohen et al., 2017), CIFAR10 (Krizhevsky & Hinton, 2009), Food101 (Bossard et al.,
2014), FashionMNIST (Xiao et al., 2017), RenderedSST2 (Socher et al., 2013; Radford
et al., 2019), and KMNIST (Clanuwat et al., 2018).
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Natural Language Processing For our NLP experiments, we utilized benchmarks established by
Yadav et al. (2023), Tam et al. (2024), and Wang et al. (2024).

• The 7 NLP Tasks benchmark, as explored in Yadav et al. (2023), includes the following
datasets: QASC (Khot et al., 2020), QuaRTz (Tafjord et al., 2019), PAWS (Zhang et al.,
2019), Story Cloze (Sharma et al., 2018), WikiQA (Yang et al., 2015), Winogrande (Sak-
aguchi et al., 2021), and WSC (Levesque et al., 2012).

• The 8 QA Tasks (Tam et al., 2024) comprises the following datasets: CosmosQA Huang
et al. (2019), QASC (Khot et al., 2020), QuAIL Rogers et al. (2020), QuaRTz (Tafjord
et al., 2019), PAWS (Zhang et al., 2019), ROPES Lin et al. (2019), SocialIQA Sap et al.
(2019), and WikiQA (Yang et al., 2015).

• The 11 NLP Tasks benchmark is a union of these two benchmarks, as studied in Wang et al.
(2024). It contains the following tasks: QASC (Khot et al., 2020), QuaRTz (Tafjord et al.,
2019), PAWS (Zhang et al., 2019), Story Cloze (Sharma et al., 2018), WikiQA (Yang et al.,
2015), Winogrande (Sakaguchi et al., 2021), WSC (Levesque et al., 2012), CosmosQA
Huang et al. (2019), QuAIL Rogers et al. (2020), ROPES Lin et al. (2019), and SocialIQA
Sap et al. (2019).

B.3 EXPERIMENTAL DETAILS FOR SINGLE-TASK MODEL MERGING

B.3.1 DESCRIPTION OF MODEL SOUPS

Model soups (Wortsman et al., 2022a) is a model merging method which averages the weights of
multiple fine-tuned models with different hyper-parameter configurations, improving accuracy of the
merged model without increasing inference or memory costs. The authors of model soups proposed
two methods:

• Uniform soup: Averages the weights of all fine-tuned checkpoints, providing a simple and
efficient way to improve performance.

• Greedy soup: Starting with the best-performing checkpoint, greedily and iteratively adds
the next best-performing checkpoint to the soup, keeping those that improve accuracy of
current collection of model checkpoints.

B.3.2 EXPERIMENTAL DETAILS FOR MODIFICATIONS TO MODEL SOUPS

We describe in detail the modifications to model soups, namely task arithmetic and our proposed
LiNeS. For reference, model soups merges the checkpoints by averaging the weights of the indi-
vidual checkpoints:

θvanilla
soup = θ0 + τsoup (5)

Enhancing Model Soups with Task Arithmetic We enhance model soups with task arithmetic,
by introducing a scaling factor λta to τsoup in Equation 5. We search for this hyper-parameter within
the range of [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]. Note that λta = 1.0 yields the vanilla
model soups.

θta
soup = θ0 + λta · τsoup (6)

Enhancing Model Soups with LiNeS We enhance model soups with LiNeS, by applying
LiNeS to τsoup in Equation 5. For the scaling, we apply directly the scaling introduced in Equation 1
to create a scaled task vector τ LiNeS

soup , fixing α to 1 while searching the value for β within the range of
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. Note that β = 0.0 yields the vanilla model soups.

θLiNeS
soup = θ0 + τ LiNeS

soup (7)

We further note that, both Task Arithmetic and our proposed method introduce only one hyper-
parameter to model soups, while the computational cost for hyper-parameter search is the same.
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When applying the modifications to greedy soup, we only apply them directly to the selected subset
of checkpoints after the greedy selection process.

We search for the hyper-parameter within the validation set and report the performance on test set
with the best hyper-parameter based on validation performance.

C ADDITIONAL RESULTS

C.1 DIFFERENT TRADE-OFFS FOR RETENTION OF TASK AND CONTROL TASK PERFORMANCE

In Section 3, we need to balance two competing objectives: maximizing accuracy on the target task
while preserving performance on the control task. To account for different user preferences, we
scalarize these objectives by assigning varying weights to the target task accuracy. This weighting
scheme can be adjusted depending on the scenario to reflect different priorities. Let wtarget represent
the weight assigned to the target task accuracy, and Mtarget and Mcontrol denote the normalized accu-
racies for the target and control tasks, respectively. The optimal value of γ is selected to maximize
the following weighted trade-off on the validation set:

wtargetMtarget + Mcontrol

To account for the high variance in control task performance and to emphasize the target task, we
assign it a weight of 2, signifying that its accuracy is prioritized twice as much as the control task’s
accuracy.

Table 5: Validation results on the target vs control performance benchmark, presented in Section 3,
averaged over the 8 tasks. We balance two competing objectives with various scalarization weights
wtarget. In the main text, we use wtarget = 2.

wtarget
Averaged normalized accuracy (%)

Target task Control tasks

1 99.8 101.9
2 100.0 101.5
5 100.2 100.8

C.2 DETAILED LABELS FOR FIGURE 2

We provide in Figure 6 the detailed labels corresponding to each scatter dot. Each scatter dot cor-
responds to applying a specific model (FT for fine-tuned model; PT for pre-trained model; LS for
fine-tuned model edited with LiNeS) on different tasks.

C.3 ABLATIONS OF DIFFERENT CHOICES OF SCALING FUNCTION

We provide in this section an ablation study on applying different scaling functions for LiNeS. In
LiNeS we used directly λ(ℓ) = α+ β · ℓ−1

L−1 to scale different layers. Here we test the performance
on multi-task model merging in vision benchmarks with the following choices for scaling functions
f(·): linear scaling, quadratic scaling and square root scaling:

• linear scaling: λ(ℓ) = α+ β · ℓ−1
L−1

• square root scaling: λ(ℓ) = α+ β ·
(

ℓ−1
L−1

) 1
2

• quadratic scaling: λ(ℓ) = α+ β ·
(

ℓ−1
L−1

)2

We provide in Table C.3 the performance of different choices of scaling on vision benchmarks with
ViT-B/32. While using quadratic scaling sometimes outperforms using identify function, especially
with a larger number of tasks during merging, the improvement is not substantial. Therefore, we
choose the linear scaling to keep the method simple and general.
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Figure 6: Figure 2 with detailed label information. Each scatter dot corresponds to applying a
specific model (FT for fine-tuned model; PT for pre-trained model; LS for fine-tuned model edited
with LiNeS) on different task.

Table 6: Ablation study for applying different scalings for LiNeS on vision benchmarks with ViT-
B/32.

Method Scaling function ViT-B/32

8 tasks 14 tasks 20 tasks

Task Arithmetic
linear 74.2 69.1 63.4

square root 73.9 67.5 62.4
quadratic 73.8 69.2 64.6

Ties-Merging
linear 77.2 72.1 67.2

square root 76.9 70.4 65.6
quadratic 76.1 71.6 67.4

Consensus Merging
linear 77.6 73.6 68.6

square root 77.1 72.5 67.3
quadratic 77.1 73.9 69.0

C.4 RESULTS FOR VIT-B/16 FOR MULTI-TASK MERGING

We provide in Table C.4 the results complementary to Table 2 for using ViT-B/16 as the image en-
coder, where we observe similar performance gains and observations by using LiNeS as in Table 2.

Table 7: Complementary to Table 2, for results obtained with ViT-B/16 as image encoder.

Method with
LiNeS

ViT-B/16

8 tasks 14 tasks 20 tasks

Zero-shot 55.5 61.4 59.8
Fine-tuned 92.6 91.6 92.3

Task Arithmetic ✗ 74.6 70.4 65.7
✓ 77.6 (+3.0) 72.7 (+2.3) 67.7 (+2.0)

Ties-Merging ✗ 79.1 73 68.1
✓ 79.9 (+0.8) 75.2 (+2.2) 71.2 (+3.1)

Consensus Merging ✗ 78.9 73.9 70.2
✓ 79.5 (+0.6) 75.8 (+1.9) 72.0 (+1.8)
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C.5 RESULTS FOR EDITING T5 WITH LINES

We repeat here similar experiments we performed on ViT-B/32 model in Section 3 with T5-large
(Raffel et al., 2020). T5-large contains both encoder and decoder structure, with sequential residual
blocks in both structures. We investigate separately how the shallow-layer updates in the encoder
and decoder infect the target and control task accuracy.

We consider the 8-question-answering benchmark (Zhou et al., 2022), and plot in Figure 7 the
averaged target and control task accuracy after applying LiNeS to

1. only the decoder part (left),
2. only the encoder part (middle),
3. both the encoder and decoder part (right).

1.0 0.8 0.6 0.4 0.2 0.0
Æ

40

60

80

100

A
cc

u
ra

cy
(%

)

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale on decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale only encoder

Target task accuracy Control tasks accuracy

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale both encoder and decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

40

60

80

100

A
cc

u
ra

cy
(%

)

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale on decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale only encoder

Target task accuracy Control tasks accuracy

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale both encoder and decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

40

60

80

100

A
cc

u
ra

cy
(%

)

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale on decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale only encoder

Target task accuracy Control tasks accuracy

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale both encoder and decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

40

60

80

100

A
cc

u
ra

cy
(%

)

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale on decoder

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale only encoder

Target task accuracy Control tasks accuracy

1.0 0.8 0.6 0.4 0.2 0.0
Æ

Fine-tuned (target task)

Pre-trained

Fine-tuned (control tasks)

Downscale both encoder and decoder

Figure 7: The impact of downscaling the shallower-layer parameter updates on T5-large model
within the 8-question-answering benchmark (Raffel et al., 2020). Downscaling only on the decoder
(left) architecture preserves full target performance, while slightly improving the control tasks per-
formance. Downscaling on the encoder leads to performance degradation on target tasks.

We observe that, only downscaling on the decoder architecture fully preserves full target perfor-
mance, while downscaling on the encoder, or on both encoder and decoder, leads to performance
drop on the target tasks. On the other hand, downscaling on the decoder part slight improves control
generalization of the fine-tuned model, which we do not observe from downscaling on the encoder,
or simultaneously on the encoder and decoder. We also note that, unlike the case in vision, the fine-
tuned checkpoints on this NLP benchmark actually improve over the zero-shot performance of the
pre-trained model on control tasks.

These results motivate us to apply LiNeS to only the decoder part of T5-large when merging mul-
tiple checkpoints, which preserves full target task accuracy while slightly improving control task
performance, leading to similar observation in applying LiNeS to the ViT-B/32 architecture in vi-
sion,

C.6 SENSITIVITY ANALYSIS FOR HYPER-PARAMETERS

We provide in this section the sensitivity analysis for the hyper-parameters of LiNeS. Specifically,
we consider the setting in multi-task merging in the 8-task vision classification benchmark with
ViT-B/32 CLIP model.

As explained in Section 5.2, LiNeS fixes α with a heuristic value by Equation 2 and only tunes β
for multi-task merging. The slope hyper-parameter β is tuned within the same range as the uniform
scaling coefficient λ for the baseline merging methods. We compare in Figure 8 the sensitivity of
averaged multi-task validation accuracy to the respective hyper-parameters, i.e., to λ for baseline
merging methods and β for the LiNeS-enhanced merging methods. The results show that, for
all three merging methods, including Task arithmetic, Ties-merging and Consensus, enhancing with
LiNeS is less sensitive to hyper-parameter choices compared to the corresponding baseline method.

Furthermore, we perform an ablation treating α as a hyper-parameter and analyze the sensitivity to
both α and β for LiNeS in a two-dimensional grid for the same benchmark. The results are pre-
sented in Figure 9. The results clearly demonstrate the necessity for applying layer-increasing scal-
ing, as the optimal performance is obtained with both α > 0 and β > 0 for all three merging method.
Note that the optimal configurations found by the ablation study are very close to the configurations
found in our method, as shown in Table 8, by setting α via the heuristic and searching only for β.
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Figure 8: Sensitivity to hyper-parameters in multi-task merging for the 8-task benchmark with
CLIP ViT-B/32 model. The y-axis represents the averaged multi-task validation accuracy and x-axis
represents the hyper-parameter value, i.e., λ for the baseline method and β for the method enhanced
with LiNeS.
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Figure 9: Sensitivity to both α and β in multi-task merging for the 8-task benchmark with CLIP
ViT-B/32 model. The heatmap represents the averaged multi-task validation accuracy, while x and
y axis represent the β and α respectively. The optimal configuration is annotated with a red box.

C.7 EXPERIMENTS WITH CNN ARCHITECTURES

In this section, we apply LiNeS to CNN architectures. Specifically, we consider the ConvNeXt
(Liu et al., 2022) architecture. First, we repeat the experiments presented in Section 3 regarding
mitigating catastrophic forgetting. The final results are presented in Figure 10, where we observe
similar findings with CLIP ViTs, i.e., LiNeS greatly improves the performance on control tasks
when applied to the fine-tuned checkpoints while preserving most of the accuracy on target tasks.
Furthermore, we present in Table 9 the results on multi-task model merging, following the experi-
mental protocol established in Section 5.2. Again, we see that LiNeS improves the performance of
baseline merging methods.

C.8 EXPERIMENTS WITH REGULARIZED FINE-TUNING

In this section, we evaluate LiNeS against several regularized fine-tuning methods, focusing on
their ability to preserve general features and mitigate catastrophic forgetting. The regularization
strategies applied during fine-tuning are described below:

1. Fine-tuning with Linear Layer-Wise Learning Rate Decay (LinLR): Applies a linear
learning rate schedule where the learning rate linearly increases from 0.0 to the maximum
value for all the layers.

2. Fine-tuning with Exponential Layer-Wise Learning Rate Decay (ExpLR): Applies an
exponential learning rate schedule where the learning rate is set to maximum for the deepest
layers and decays by a factor of 0.5 by each layer for the shallower layers.

3. Fine-tuning with First Half of Blocks Frozen (HalfFT): Freezes the parameters of the
first half of the model’s blocks during training.

4. Fine-tuning only the Final Block (LastFT): Freezes all blocks except the final block of
the feature encoder.

26



Published as a conference paper at ICLR 2025

Table 8: α and β values for α set by our proposed heuristic in Equation 2.

Method α β

Task Arithmetic 0.125 0.3
Ties-merging 0.21 1.4

Consensus merging 0.21 0.9
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Figure 10: Our linear scaling (LiNeS) retains performance on both control and fine-tuned target
tasks for ConvNext architecture.

We present the results in Table 10. We observe that LiNeS, as a post-training editing method,
outperforms the regularized fine-tuning methods in terms of restoring the zero-shot performance on
the control tasks. We further emphasize that compared with the regularized fine-tuning methods,
LiNeS benefits from many advantages such as efficiency, flexibility and computational cost.

C.9 EXPERIMENTS WITH LORA FINE-TUNING

We explore the applicability of the method on models fine-tuned with LoRA (Hu et al., 2022). For
a layer with pre-trained weights W0 ∈ Rm×n, LoRA adds trainable matrices A ∈ Rm×r and
B ∈ Rn, for rank r ≪ min(n,m). The weights of the layer become:

W = W0 +
α

r
BA

for α ∈ R. Following common practice, we set α = r and fine-tune with the same protocol used for
full fine-tuning. We consider only the case of ViT-B/32 fine-tuned on 8 tasks and replicate the exper-
iment presented in Table 1. Specifically, for each of the 8 LoRA-fine-tuned models, we compute the
accuracy on the same (target) task as well as the average performance for each of the 7 remaining
control tasks. Table 11 reports the average over the 8 cases for ranks r ∈ {16, 32, 64, 128}. We
observe that LoRA fine-tuning has lower target performance compared to full fine-tuning and that
increasing target performance comes at the cost of more forgetting. In all the cases, LiNeS restores
control performance while minimally affecting target performance.

C.10 ADDITIONAL RESULTS FOR IMPROVING WISE-FT WITH LINES

C.10.1 RESULTS FOR USING VIT-B/16 AS VISUAL ENCODER

We provide in Figure 11 the results for applying LiNeS for improving WiSE-FT, using ViT-B/16
as visual encoder. The ViT-B/16 checkpoint obtained through fine-tuning the CLIP checkpoint on
ImageNet with the same hyper-parameter configurations in Wortsman et al. (2022b). From Figure 11
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Table 9: Multi-task model merging results using a ConvNeXt architecture. LiNeS improves the
results compared to uniform scaling for both Task Arithmetic and Ties-merging.

Method LiNeS Acc (%) Norm. Acc (%)

Task Arithmetic ✗ 77.9 83.8
✓ 79.0 [+1.1] 84.8 [+1.0]

Ties-merging ✗ 79.7 85.8
✓ 80.3 [+0.6] 86.3 [+0.5]

Table 10: Performance of different methods on target and control tasks, averaged over all target and
control task combinations in the 8-task vision benchmark (Ilharco et al., 2023).

pre-trained fine-tuned FT+LiNeS FT+LinLR FT+ExpLR FT+HalfFT FT+LastFT

Target (%) 48.3 90.5 90.3 90.7 89.6 90.4 85.6
Control (%) 48.3 38.0 48.0 46.9 46.0 46.8 46.6

we observe that LiNeS improves over WiSE-FT for both ID and OOD accuracies, leading to similar
observations as the results obtained with ViT-B/32.
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Figure 11: Results for improving WiSE-FT with LiNeS on with ViT-B/16 model fine-tuned on
ImageNet.

C.10.2 INDIVIDUAL RESULTS FOR 70 CHECKPOINTS

We provide in Figure 12 individual results separately for the experiments on the 70 individual model
checkpoints. Note that here y-axis represents the averaged accuracy over 5 OOD datasets. From
the figure, we observe that LiNeS consistently improves WiSE-FT in terms of both ID and OOD
accuracies for most of the individual checkpoints.

C.11 DETAILED PERFORMANCE ON INDIVIDUAL TASKS FOR MULTI-TASK MODEL MERGING

Image Classification We provide the detailed performance on each individual task for multi-task
model merging in image classification benchmarks, complementary to the results in Table 2 and
Table C.4 where the accuracies are averaged on the individual tasks.
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Table 11: Similar to Table 1, LoRA Fine-tuning harms generalization on control tasks. Increased
target performance rsults in higher levels of forgetting. Still, our proposed method LiNeS restores
control performance for all ranks considered while minimally affecting target performance.

Target Control

Pre-trained 48.3 48.3

Fine-tuned 90.5 38.0
Fine-tuned +LiNeS 90.3 48.0

r = 16 84.4 44.2
r = 16 + LiNeS 84.3 46.7
r = 32 85.8 42.8
r = 32 + LiNeS 85.5 46.7
r = 64 86.6 41.6
r = 64 + LiNeS 86.4 46.2
r = 128 87.5 41.6
r = 128 + LiNeS 87.2 46.3

The single-task performance is presented in Figure 13 for ViT-B/32, Figure 14 for ViT-B/16, and
Figure 15 for ViT-L/14. From the results we observe that our method demonstrates a noticeable
improvement over baseline merging techniques across individual tasks in all test scenarios.

Natural Language Processing We provide in Figure 16 the detailed single-task performance for
the three NLP benchmarks using T5-large, complementary to the results in Table 3. Similar to the
observation in vision, our method provides a consistent improvement over baselines across individ-
ual tasks.
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Figure 12: Performance of applying LiNeS to WiSE-FT to each ViT-B/32 checkpoint fine-tuned on
ImageNet.
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Figure 13: Single-task accuracies for multi-task merging on image classification benchmarks for
ViT-B/32.
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Figure 14: Single-task accuracies for multi-task merging on image classification benchmarks for
ViT-B/16.
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Figure 15: Single-task accuracies for multi-task merging on image classification benchmarks for
ViT-L/14.
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Figure 16: Single-task accuracies for multi-task merging on NLP benchmarks for T5-large.
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