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Abstract

Synthesizability in generative molecular design remains a pressing challenge.1

Existing methods to assess synthesizability span heuristics-based methods, ret-2

rosynthesis models, and synthesizability-constrained molecular generation. The3

latter has become increasingly prevalent and proceeds by defining a set of permitted4

actions a model can take when generating molecules, such that all generations are5

anchored in "synthetically-feasible" chemical transformations. To date, retrosynthe-6

sis models have been mostly used as a post-hoc filtering tool as their inference cost7

remains prohibitive to use directly in an optimization loop. In this work, we show8

that with a sufficiently sample-efficient generative model, it is straightforward to9

directly optimize for synthesizability using retrosynthesis models in goal-directed10

generation. Under a heavily-constrained computational budget, our model can11

generate molecules satisfying a multi-parameter drug discovery optimization task12

while being synthesizable, as deemed by the retrosynthesis model.13

1 Introduction14

Generative molecular design for drug discovery has recently seen a surge of experimental validation,15

with many candidate molecules progressing into clinical trials1. However, the synthesizability of16

generated designs remains a pressing challenge. Regardless of how "good" generated molecules are,17

they must be synthesized and experimentally validated to be of use, and work has shown that many18

generative models propose molecules for which finding a viable synthetic route for, is at the very19

least not straightforward2,3. Existing works tackle synthesizability in generative molecular design20

either by heuristics4,5, learning synthetic complexity from reaction corpus6, retrosynthesis models21

which predict synthetic routes7–18, or enforce a notion of synthesizability directly in the generative22

process19–29.23

Recently, synthesizability-constrained generative models19–29 have become increasingly prevalent.24

A typical metric to quantify synthesizability is whether a retrosynthesis model can solve a route for25

the generated molecules28,29. It is common practice to apply retrosynthesis models during post-hoc26

filtering due to their inference cost2,3.27

On the other hand, sample efficiency is also a pressing challenge, which concerns with how many28

oracle calls (computational predictions of molecular properties) are required to optimize an objective29

function. When these oracle calls are computationally expensive, such as in binding affinity pre-30

dictions, there is a practical limit to an acceptable oracle budget for real-world model deployment.31

The Practical Molecular Optimization (PMO) benchmark30 highlighted the importance of sample32

efficiency and since then, more recent works have explicitly considered an oracle budget31–40.33

Recently, Saturn40, which is a language-based molecular generative model leveraging the Mamba4134

architecture, displayed state-of-the-art sample efficiency compared to 22 models. In this work, we35
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build on Saturn and show that with a sufficiently sample-efficient model, one can treat retrosynthe-36

sis models as an oracle42 and directly optimize for generating molecules where synthesis routes37

can be solved for (Fig. 1). We compare to the recent Reaction-GFlowNet (RGFN)29 model and38

show that Saturn can optimize their proposed multi-parameter optimization (MPO) task to generate39

molecules with good docking scores (to predict binding affinity) and is synthesizable (as deemed by40

a retrosynthesis model) with 1/400th the oracle budget (1,000 calls instead of 400,000).41

We strictly emphasize that we neither claim to solve synthesizability nor claim our model42

guarantees synthesizability. Rather, the take-home message of this work is that if one wants43

to optimize certain properties, then they should be included in the MPO objective function. If the44

downstream metric is whether a retrosynthesis tool can solve a route for the generated molecules2,28,29,45

then the tool itself should be part of the objective function (given that the model is not synthesizability-46

constrained).47

2 Related Work48

Figure 1: Overview of algorithmic methods to handle synthesizability in generative molecular design.

Synthesizability Metrics. Quantifying and defining synthesizability is non-trivial and early metrics49

assess molecular complexity rather than synthesizability explicitly. Exemplary works include the50

Synthetic Accessibility (SA) score4 and SYnthetic Bayesian Accessibility (SYBA)5 which are51

based on the frequency of chemical groups in databases. The Synthetic Complexity (SC) score6 is52

trained on Reaxys data to measure molecular complexity and implicitly considers the number of53

synthetic steps required to make a target molecule. There is a correlation between these scores and54

whether retrosynthesis tools can solve a route43. The recent Focused Synthesizability (FS) score4455

incorporated domain-expert preferences45 to assess synthesizability.56

Retrosynthesis Models. Given a target molecule, retrosynthesis models propose viable synthetic57

routes by combining commercial building blocks (starting reagents) with reaction templates (coded58

patterns that map chemical reaction compatibility) or template-free approaches (learned patterns from59

data). Exemplary examples include the first work applying Monte Carlo tree search (MCTS) for60

retrosynthesis10, SYNTHIA46,47, AiZynthFinder11–13, ASKCOS15, Eli Lilly’s LillyMol retrosynthe-61

sis model48, Molecule.one’s M1 platform49, and IBM RXN16,50,51. We further highlight surrogate62

models including Retrosynthesis Accessibility (RA) score14 and RetroGNN17 trained on the output of63

retrosynthesis models for faster inference. Note that these models output a score rather than synthetic64

routes.65

Synthesizability-constrained Molecular Generation. More recently, molecular generative models66

have been designed with a notion of synthesizability, for example by enforcing transformations67

from a set of permitted reaction templates. Expansion methods include SYNOPSIS19, Design68

of Genuine Structures (DOGS)20, and RENATE52. Other models include MOLECULE CHEF21,69
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Synthesis Directed Acyclic Graph (DAG)22, ChemBO23, SynNet26, and SyntheMol27. Models70

that also use reinforcement learning (RL) include Policy Gradient for Forward Synthesis (PGFS)24,71

Reaction-driven Objective Reinforcement (REACTOR)25, and LibINVENT53. Recent works have72

equipped GFlowNets54 with reaction templates, including SynFlowNet28 and RGFN29. Finally, very73

recent work proposes a new paradigm of "projecting" unsynthesizable molecules into similar, but74

synthesizable analogs55.75

Goal-directed Generation with Synthesizability Metrics. An alternative to synthesizability-76

constrained molecular generation is to task molecular generative models to also optimize for synthe-77

sizability metrics44, with common ones being SA score2,3. Although SA score assesses molecular78

complexity, it is correlated with whether AiZynthFinder can solve a route43. Generally, more con-79

fidence is placed on the output of retrosynthesis models in assessing synthesizability and this is80

reflected in works that assess model performance on whether generated molecules have a solved81

route28,29,55. In this work, we propose to directly incorporate retrosynthesis tools as an oracle in the82

MPO objective function and show that generated molecules satisfy MPO objectives.83

We end this section by reinforcing that quantifying synthesizability is non-trivial and neither reaction84

templates nor retrosynthesis tools guarantee synthesizability. Notably, reaction templates depend on85

the granularity of their definition, for instance with the inclusion or omission of incompatibilities86

which affects the false positive rate of matching reagents56,57. A concrete example of this is the87

original paper reporting Enamine REAL which is a "make-on-demand" commercial database with88

a stated ~80% synthesis success rate58. Recently, SyntheMol27 which enforces reaction templates89

during molecular generation, ordered 70 compounds from Enamine REAL with 58 successful90

syntheses (~83%). We wish to emphasize that the point of drawing attention to this is strictly to91

support our statement that neither reaction templates, make-on-demand libraries (often generated by92

reaction templates), nor retrosynthesis tools guarantee synthesizability. "Make-on-demand libraries"93

are a remarkable resource.94

3 Methods95

In this section, we describe in detail the experimental design and highlight caveats in the results.96

Firstly, we use Saturn40 as the generative model which uses RL for goal-directed generation and has97

high sample efficiency. For details of the model, we refer to the original work40. In Saturn, we newly98

implement AiZynthFinder11–13 and QuickVina2-GPU-2.159–61 (for docking) as oracles to match the99

case study in RGFN29.100

The RGFN work assesses the synthesizability of generated molecules using the quantitative estimate101

of drug-likeness (QED)62, SA score4, and whether AiZynthFinder11–13 can solve a route. The authors102

state that the latter better estimates synthesizability. This statement is supported by recent work103

highlighting how AiZynthFinder predictions can augment medicinal chemists’ decision-making,104

which led to real-world impact in commercial drug discovery projects63. The RGFN work features105

three case studies where the objective function is either to optimize a proxy model for docking scores,106

optimize a proxy model for biological activity classification, or optimize QuickVina2-GPU-2.159–61107

docking scores directly. We choose to compare our model on the latter task because proxy models,108

while offering faster inference, suffer from domain out-of-applicability if generated molecules deviate109

too far from the training data. This was also stated by the authors and was the motivation for designing110

the docking case study29.111

Experimental Caveats. As the code for RGFN29 is not released, we implement their oracle function112

ourselves. In Appendix C, we describe the steps we took to reproduce their case study faithfully. Here,113

we instead highlight caveats that make the comparison not exactly apples to apples for transparency.114

1. Pre-training: Saturn is pre-trained with either ChEMBL 3364 or ZINC65. These datasets,115

containing bio-active molecules, inherently bias the learned distribution to already known116

synthesizable entities2. On the other hand, RGFN defines a state space based on reaction117

templates and building blocks. We note, however, that these are common pre-training118

datasets that many generative models in literature are pre-trained with.119

2. Quantifying Synthesizability: RGFN handles synthesizability by combining building120

blocks with reaction templates. By contrast, Saturn is handling synthesizability by op-121

timizing AiZynthFinder. It could be the case that RGFN’s reaction templates represent122
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"true" synthesizability better in some cases. We note, however, that RGFN also evaluates123

synthesizability using AiZynthFinder, and in principle, any building blocks and templates124

used in RGFN could be added to a retrosynthesis model.125

3. Docking Results Filtering. RGFN filters the best generated molecules by whether they pass126

PoseBusters66 checks (plausible physicality). We do not consider this as this is essentially an127

artefact of the oracle. Provided a more accurate oracle, failure naturally decreases. We note128

that QuickVina2-GPU-2.1 outputs almost all pass the PoseBusters checks (see Appendix129

H in the RGFN29 work). Subsequently, RGFN filters molecules to be dissimilar (< 0.4130

Tanimoto similarity) to known aggregators based on the Aggregation Advisor dataset67131

as the final set. We also do not consider this. RGFN reports statistics before this final132

aggregator filtering and these are the results we compare to (Table 1 in the RGFN29 work).133

4. Objective Function. The RGFN work (which also reports results for GraphGA68, Synthe-134

Mol27, and FGFN69), defines the objective function to only optimize for docking score, but135

assesses generated molecules also by their QED and SA scores. It is unclear the performance136

of these models if the objective function were modified to also enforce these properties.137

Still, despite these caveats, the message we convey is that if one wants to optimize for downstream138

metrics, then they should be included in the MPO objective function. This is often impractical139

because certain oracles are computationally expensive and generative models are not efficient enough140

to directly optimize them. Provided a model is sufficiently sample-efficient, generative models can be141

tasked to optimize anything (this does not mean that it will always be able to optimize the objective142

under the budget).143

Experimental Setup. Following the RGFN29 work, the case study is to generate synthesizable144

molecules with good docking scores (using QuickVina2-GPU-2.159–61) to ATP-dependent Clp145

protease proteolytic subunit (ClpP). The objective function is:146

RRGFN (x) = Docking Score(x) (1)

where x is a generated molecule. In Saturn, we apply reward shaping so that RRGFN (x) ∈ [0, 1]. As147

the purpose of this short paper is to convey that retrosynthesis models can be directly optimized as an148

oracle, we further define two objective functions:149

RAll MPO(x) = (Docking Score(x)× QED(x)× SA Score(x)× AiZynthFinder(x))
1
4 ∈ [0, 1] (2)

RDouble MPO(x) = (Docking Score(x)×AiZynthFinder(x))
1
2 ∈ [0, 1] (3)

See Appendix H for reward shaping details to normalize Eq. 2 and 3 ∈ [0, 1] and the exponential150

term which is from the product aggregator that outputs the final reward. The rationale for RAll MPO151

(Eq. 2) is because RGFN evaluates generated molecules also by their QED, SA score, and whether152

AiZynthFinder can solve a route. Since these are the downstream metrics, we include them in the153

objective function. The rationale for RDouble MPO is to illustrate a contrast in optimization difficulty154

as RAll MPO is inherently more challenging. Still, we show in the Results section that both objective155

functions can be optimized.156

All Saturn experiments are run across 10 seeds (0-9 inclusive) with 1,000 oracle calls. We note this is157

1/400th of the oracle budget of the RGFN work (400,000 calls). We compare with RGFN and also158

GraphGA68, SyntheMol27, and Fragment-based GFlowNet (FGFN)69. We do not run these models159

ourselves and take the results from the RGFN work.160

Metrics. Following the RGFN29 work, a Mode is defined as a molecule with docking score < -10.161

Discovered Modes denotes the set of generated Modes that also possess Tanimoto similarity < 0.5162

to every other mode. We note that Modes with > 0.5 Tanimoto similarity with other Modes are still163

valuable, as given a pair of "similar" molecules, there can be a clear preference if for example, one of164

the molecules contains an undesired substructure. For Saturn results, we additionally report Yield165

which denotes the total number of unique molecules generated with docking score < -10.166
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4 Results and Discussion167

We devise three experiments: optimizing only docking score (following the RGFN29 work), jointly168

optimizing docking and AiZynthFinder, and lastly, showing that AiZynthFinder can still be directly169

optimized as an oracle even if none of the molecules in the training data for the generative model can170

be solved by AiZynthFinder. We construct a custom dataset for this last case study.171

4.1 Experiment 1: Optimizing only docking score leads to unreasonable molecules172

Figure 2: Experiment 1: Optimizing only docking scores. a. Distribution of docking scores at varying
oracle budgets. The best docking score across comparison methods (taken from the RGFN29 work)
are annotated as dotted lines. b. Example lipophilic molecules generated by Saturn with the best
docking scores.

We first present results for the RRGFN (Eq. 1) objective function which only optimizes for docking173

scores against ClpP. It is generally not advised to optimize this in isolation because docking oracles174

can be highly exploitable, such that lipophilic (lots of carbon atoms and high logP) molecules175

(promiscuous binders with solubility issues70) receive good docking scores. We show that with176

10,000 oracle calls, Saturn (trained on ChEMBL 3364) generates molecules with approximately177

the same best QuickVina2-GPU-2.159–61 docking scores compared to GraphGA68, SyntheMol27,178

FGFN69, and RGFN29 which were run with 400,000 oracle calls (40x higher budget). We perform179

one replicate here as we only want to convey that the objective function is highly exploitable. Fig. 2a180

shows the distribution of docking scores at varying oracle budgets. We illustrate how the docking181

oracle can be exploited in Fig. 2b which shows the best molecules generated by Saturn. Although182

possessing good docking scores, they are lipophilic with high molecular weight and low QED.183

Consequently, these are not meaningful molecules. Table 1 in the RGFN29 work shows that the184

best generated molecules across various models also have low QED: GraphGA (~0.32), FGFN185

(~0.22), and RGFN (~0.23), suggesting that they are also exploiting the docking oracle. We note that186

SyntheMol has slightly higher QED (~0.45).187

4.2 Experiment 2: Directly optimizing for synthesizability using AiZynthFinder188

In the previous section, we have shown that generative models can exploit docking oracles. Yet,189

docking scores can be valuable as they can be correlated with better binding affinity71 and should be190

optimized in combination with oracles that modulate physico-chemical properties. In this section,191

we run Saturn with the RAll MPO (jointly maximize QED, minimize SA score, minimize docking192

score, and is AiZynthFinder solvable) and RDouble MPO (jointly minimize docking score and is193

AiZynthFinder solvable) objective functions.194

Quantitative Results. Table 1 shows the Saturn results and also results taken from RGFN’s29195

work. As stated previously, since the comparison to RGFN is not apples to apples, we focus our196
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Table 1: Synthesizability metrics for top-k Modes (molecules with docking score < -10). Results are
taken from the RGFN29 paper (it was not stated how many replicates the models were run for). Mol.
weight, QED, and SA score results are for the top-500 Modes. AiZynth results are for the top-100
Modes. NR denotes "not reported". All Saturn experiments were run across 10 seeds (0-9 inclusive).
The mean and standard deviation are reported. Both Yield and Modes are reported. The number after
the configuration denotes the number of successful replicates out of 10 (Modes ≥ 1). For Saturn,
none of the configurations found 100 Modes in 1,000 oracle calls so the metrics are reported for
however many Modes were found.
a Less than 400,000 oracle calls as SyntheMol27 roll-outs took time. The RGFN authors decided to
match the wall time instead.

Method Modes (Yield) Mol. weight (↓) QED (↑) SA score (↓) AiZynth (↑) Oracle calls
(Wall time)

Previous work top-500 top-500 top-500 top-100

GraphGA 68 NR 521.0 ± 31.8 0.32 ± 0.07 4.14 ± 0.51 0.00 400,000 (NR)

SyntheMol 27 NR 458.2 ± 60.7 0.45 ± 0.16 2.86 ± 0.56 0.56 100,000a (72h)

FGFN 69 NR 548.6 ± 42.9 0.22 ± 0.03 2.94 ± 0.54 0.25 400,000 (NR)

RGFN 29 NR 526.2 ± 37.6 0.23 ± 0.04 2.83 ± 0.22 0.65 400,000 (72h)

RAll MPO (ours) 4 objectives (Docking, QED, SA, AiZynth)

Saturn-ChEMBL (10) 4 ± 1 (5 ± 3) 367.7 ± 15.7 0.70 ± 0.13 2.11 ± 0.19 0.91 ± 0.11 1,000 (2.9h ± 34m)

Saturn-GA-ChEMBL (10) 7 ± 6 (10 ± 9) 373.3 ± 20.9 0.67 ± 0.09 2.08 ± 0.23 0.82 ± 0.17 1,000 (2.1h ± 24m)

Saturn-ZINC (9) 6 ± 3 (8 ± 10) 368.7 ± 27.6 0.79 ± 0.08 2.15 ± 0.22 0.87 ± 0.19 1,000 (2.1h ± 29m)

Saturn-GA-ZINC (10) 7 ± 4 (10 ± 7) 382.8 ± 27.9 0.71 ± 0.08 2.10 ± 0.15 0.85 ± 0.17 1,000 (2.0h ± 26m)

RDouble MPO (ours) 2 objectives (Docking, AiZynth)

Saturn-ChEMBL (10) 49 ± 19 (175 ± 94) 442.3 ± 26.2 0.36 ± 0.05 2.36 ± 0.17 0.84 ± 0.06 1,000 (2.0h ± 31m)

Saturn-GA-ChEMBL (10) 43 ± 19 (99 ± 54) 436.1 ± 17.2 0.39 ± 0.04 2.35 ± 0.13 0.77 ± 0.07 1,000 (1.7h ± 16m)

Saturn-ZINC (10) 24 ± 17 (71 ± 64) 414.0 ± 20.2 0.52 ± 0.11 2.30 ± 0.25 0.90 ± 0.07 1,000 (1.9h ± 22m)

Saturn-GA-ZINC (10) 30 ± 11 (64 ± 28) 408.1 ± 12.4 0.46 ± 0.05 2.19 ± 0.10 0.86 ± 0.07 1,000 (1.6h ± 16m)

discussion on Saturn. The central message of this section is that molecules satisfying the objective197

functions can be found within 1,000 oracle calls. An important note is that all RGFN results (top198

half of Table 1) report results for the top-500 (for Mol. weight, QED62, SA score4) and top-100 (for199

AiZynthFinder11–13) Modes. Saturn does not find 100 Modes in all configurations with 1,000 oracle200

calls so the metrics are reported for however many Modes were found. Finally, we run Saturn with201

and without GraphGA-augmented experience replay40,68 (see Appendix I for details) and pre-trained202

with both ChEMBL 3364 and ZINC 250k65 (see Appendix B for pre-training details). The purpose is203

to show that the MPO task can be optimized in 1,000 oracle calls using both popular pre-training204

datasets. We make the following observations: by including AiZynthFinder in the objective function,205

Saturn generates AiZynthFinder solvable molecules. Including QED and SA score in the objective206

function also optimizes these metrics (contrast RAll MPO with RDouble MPO results). Mol. weight207

is also implicitly minimized because it is a component of QED. RDouble MPO finds notably more208

Modes than RAll MPO because the optimization task is easier. In all cases, 1/400th the oracle budget209

is sufficient to find at least some molecules that optimize the objectives (and are AiZynthFinder210

solvable). The wall times are not 1/400th because AiZynthFinder is the slowest oracle, even with211

multi-threading (see Appendix D). Finally, we highlight that although the raw number of Modes212

generated when using the RAll MPO objective function is relatively low (in 1,000 oracle calls), if213

AiZynthFinder does accurately predict "true" synthesizability, then these Modes are immediately214

actionable. Importantly, they satisfy every metric in the objective function (low docking score, high215

QED, low SA, and is AiZynthFinder solvable). In practice, one wants to identify a small set of216

excellent candidate molecules as fast as possible (oracle calls and/or wall time). See Appendix G217

for additional experiments, and particularly how also optimizing for QED is a considerably more218

difficult task.219

Qualitative Results. Fig. 3 shows the docking pose for the generated molecules with the best220

docking score (no cherry-picking) across all Saturn configurations. In all cases, the pose conforms to221

the geometry of the binding cavity and the molecule itself is AiZynthFinder solvable (see Appendix222

F for the solved routes). Generated molecules using RDouble MPO have better docking scores than223
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Figure 3: Docked pose of the reference ligand (PDB ID: 7UVU) and generated molecules with the
best docking score (DS) across all Saturn configurations and across all 10 seeds (0-9 inclusive). The
reference pose is in gray and all generated molecules are in green. All molecules are AiZynthFinder
solvable. a. Molecules generated using RAll MPO. b. Molecules generated using RDouble MPO.

RAll MPO, which is expected as the optimization task is easier. In the case of RDouble MPO, the224

best molecules have docking scores and QED values similar to the best molecules generated by225

RGFN29 in 400,000 oracle calls (Fig. 2). We highlight that the molecules from RDouble MPO possess226

extensive carbon rings and are likely exploiting the docking oracle.227

4.3 Experiment 3: Directly optimizing for synthesizability using AiZynthFinder starting from228

an unsuitable training distribution229

Generative models are pre-trained to model the training data distribution. The experiments thus far230

use Saturn40 which has been trained on either ChEMBL 3364 or ZINC 250k65. These datasets contain231

bio-active molecules and pre-trained models can already generate molecules that can be solved by a232

retrosynthesis model2. In this section, we pre-train Saturn on the fraction of ZINC 250k that is not233

AiZynthFinder11–13 solvable. This model will be referred to as "Purged ZINC" (see Appendix E for234

details). The message we convey is that even with an unsuitable training distribution, both RAll MPO235

and RDouble MPO can still be optimized under a 1,000 oracle budget.236

We showcase how curriculum learning (CL)72 (decompose a complex optimization objective into237

sequential, simpler objectives) can be used by defining two phases of goal-directed generation.238

Firstly, "Purged ZINC" is tasked to minimize SA score4 (500 oracle budget) as it is correlated with239

AiZynthFinder43. Fig. 4a shows the optimization trajectory and the resulting model is referred to as240

"Purged ZINC SA". The 500 oracle calls are not counted in the 1,000 oracle budget, as computing241

SA score is cheap (this process took 56 seconds). Next, to illustrate distribution learning, we sample242

1,000 unique molecules from the "Normal ZINC" (trained on the full dataset), "Purged ZINC",243

and "Purged ZINC SA" models and run AiZynthFinder. Fig. 4b shows the fraction of molecules244

that are AiZynthFinder solvable. In 56 seconds, the "Purged ZINC" model can be fine-tuned to245

immediately generate molecules that are almost all solvable (see Appendix G for additional results246

and discussion). We note that "Purged ZINC" still generates molecules that are AiZynthFinder247

solvable due to stochastic generation and likely due to the use of SMILES randomization during248

7



Figure 4: Correlation of SA score and AiZynthFinder solve rate and learning to generate AiZyn-
thFinder solvable molecules. a. "Purged ZINC" is tasked to minimize SA score. The average SA
score of the sampled batches are shown. b. AiZynthFinder solve rates for 1,000 molecules sampled
from different models. c. All MPO task: fraction of generated molecules (without the GA activated)
across all batches that are AiZynthFinder-solvable. Values are the mean and the shaded regions are
the minimum-maximum across 10 seeds (0-9 inclusive). d. Example molecules generated from the
"Purged ZINC" and "Purged ZINC SA" models with the best docking scores (DS).

training which enhances chemical space generalizability73. Next, we show how the "Purged ZINC"249

model can learn to generate molecules that are AiZynthFinder solvable during the course of RL250

(Fig. 4c). We contrast this with the "Purged ZINC SA" model which has almost 100% solve rate251

throughout the entire run. During the course of the run, some seeds occasionally generate batches252

that are not AiZynthFinder solvable (lower bound of shaded region), but this is not detrimental (see253

Appendix J for more details). Fig. 4d shows the molecules with the best docking score generated254

across all seeds. The property profiles are essentially the same as the runs with the normal ZINC255

model (Fig. 3).256

Quantitative Results. Table 2 contrasts the results of the ClpP docking case study run across 10 seeds257

(0-9 inclusive) using the "Normal ZINC", "Purged ZINC", and "Purged ZINC SA" models. Despite258

an unsuitable training distribution, "Purged ZINC" can still generate Modes that are AiZynthFinder259

solvable, although the solve rate is slightly lower than "Normal ZINC". "Purged ZINC SA" was first260

fine-tuned to minimize SA score and already generated mostly AiZynthFinder solvable molecules261

(Fig. 4b). This process benefits both RAll MPO (less so) and RDouble MPO as the Yield and Modes262

found are higher. Next, we highlight that "Purged ZINC" and "Purged ZINC SA" wall times are263

longer. This is due to two reasons: firstly, we ran four experiments simultaneously on a single264

workstation, which shares resources but makes the total wall time to finish all the experiments faster.265

Secondly, "Purged ZINC SA" experiments took longer because the initial CL fine-tuning biases266

the model to generate more repeat molecules due to Saturn’s40 mechanism of local chemical space267

exploration. The effect is that it takes longer to exhaust the 1,000 unique oracle calls budget.268

Overall, the property profiles of generated Modes are better than GraphGA68, SyntheMol27, FGFN69,269

and RGFN29. Regardless of the starting model, both RAll MPO and RDouble MPO can be optimized270

within 1,000 oracle calls. Whether or not the output of AiZynthFinder represents "true" synthesiz-271

ability (and the quality of the routes) is beyond the scope of this work. The message we convey272

in this section is that generating molecules that are solvable by a retrosynthesis model does not273
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Table 2: Synthesizability metrics for "Normal ZINC" (results from Table 1), "Purged ZINC", and
"Purged ZINC SA". All experiments were run across 10 seeds (0-9 inclusive). The mean and standard
deviation are reported. Both Yield and Modes are reported. The number after the configuration
denotes the number of successful replicates out of 10 (Modes ≥ 1). The metrics are reported for
however many Modes were found.

Method Modes (Yield) Mol. weight (↓) QED (↑) SA score (↓) AiZynth (↑) Oracle calls
(Wall time)

RAll MPO 4 objectives (Docking, QED, SA, AiZynth)

Normal ZINC
Saturn (9) 6 ± 3 (8 ± 10) 368.7 ± 27.6 0.79 ± 0.08 2.15 ± 0.22 0.87 ± 0.19 1,000 (2.1h ± 29m)

Saturn-GA (10) 7 ± 4 (10 ± 7) 382.8 ± 27.9 0.71 ± 0.08 2.10 ± 0.15 0.85 ± 0.17 1,000 (2.0h ± 26m)

Purged ZINC
Saturn (8) 5 ± 5 (9 ± 15) 354.4 ± 26.2 0.72 ± 0.15 1.99 ± 0.27 0.97 ± 0.05 1,000 (2.8h ± 72m)

Saturn-GA(10) 10 ± 3 (14 ± 5) 381.4 ± 15.6 0.68 ± 0.09 2.22 ± 0.24 0.77 ± 0.12 1,000 (2.4h ± 50m)

Purged ZINC SA
Saturn (10) 9 ± 5 (16 ± 11) 365.9 ± 12.5 0.68 ± 0.09 1.97 ± 0.19 0.96 ± 0.10 1,000 (4.9h ± 54m)

Saturn-GA (10) 12 ± 6 (21 ± 14) 369.7 ± 15.0 0.69 ± 0.08 2.06 ± 0.15 0.89 ± 0.08 1,000 (3.2h ± 26m)

RDouble MPO 2 objectives (Docking, AiZynth)

Normal ZINC
Saturn (10) 24 ± 17 (71 ± 64) 414.0 ± 20.2 0.52 ± 0.11 2.30 ± 0.25 0.90 ± 0.07 1,000 (1.9h ± 22m)

Saturn-GA (10) 30 ± 11 (64 ± 28) 408.1 ± 12.4 0.46 ± 0.05 2.19 ± 0.10 0.86 ± 0.07 1,000 (1.6h ± 16m)

Purged ZINC
Saturn (10) 27 ± 19 (114 ± 107) 425.7 ± 58.5 0.50 ± 0.15 2.66 ± 0.56 0.83 ± 0.13 1,000 (2.4h ± 35m)

Saturn-GA (10) 34 ± 17 (78 ± 57) 410.8 ± 16.3 0.44 ± 0.08 2.29 ± 0.16 0.78 ± 0.08 1,000 (2.2h ± 34m)

Purged ZINC SA
Saturn (10) 46 ± 14 (268 ± 88) 443.5 ± 31.4 0.39 ± 0.10 2.13 ± 0.12 0.87 ± 0.08 1,000 (3.9h ± 56m)

Saturn-GA (10) 49 ± 10 (187 ± 55) 419.5 ± 10.6 0.42 ± 0.04 2.11 ± 0.05 0.77 ± 0.06 1,000 (2.9h ± 29m)

require synthesizability-constrained design principles. Lastly, we explore the effect of increasing274

the oracle budget and implications of heuristics-driven synthesizability and post-hoc retrosynthesis275

model filtering in Appendix G.276

5 Conclusion277

In this work, we adapt Saturn40 which is a sample-efficient autoregressive molecular generative278

model using the Mamba41 architecture to directly optimize for synthesizability using retrosynthesis279

models42. Our approach contrasts existing works in the field that tackle synthesizability in one280

of three ways: goal-directed generation with synthesizability heuristic scores such as SA score4,281

post-hoc filtering generated molecules with a retrosynthesis model63, or by enforcing synthesizability282

design principles in the generative process itself (synthesizability-constrained generation)26,28,29. We283

show that with a sufficiently sample-efficient model, treating retrosynthesis models as an oracle is284

feasible, and generated molecules can satisfy multi-parameter optimization objectives while being285

synthesizable (as deemed by a retrosynthesis model). The main comparison results we show are286

on a molecular docking case study proposed by the recent Reaction-GFlowNet (RGFN)29 work287

which is a synthesizability-constrained generative model. With 1/400th the oracle budget, Saturn288

can generate molecules with better property profiles than GraphGA68, SyntheMol27, Fragment289

GFlowNet (FGFN)69, and RGFN. Moreover, we conduct an artificial experiment to intentionally290

purge a training dataset of all molecules that are solvable by the AiZynthFinder11–13 retrosynthesis291

model and pre-train a new model with this dataset. Generated molecules from this model are mostly292

not AiZynthFinder solvable, as expected (Fig. 4b). Despite this, we show that within 1/400th the293

oracle budget, this model can still generate molecules with property profiles better than all comparing294

models and are synthesizable (as deemed by AiZynthFinder). The take-home message is that with a295

sufficiently sample-efficient model, it is straightforward to treat retrosynthesis models as an oracle296

in goal-directed generation. Generating molecules deemed synthesizable by such models does not297

require synthesizability-constrained generation, which is currently, often sample-inefficient.298
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Bengio, Cheng-Hao Liu, Mike Tyers, and Robert A Batey. Rgfn: Synthesizable molecular382

generation using gflownets. arXiv preprint arXiv:2406.08506, 2024.383

30. Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a384

benchmark for practical molecular optimization. Advances in neural information processing385

systems, 35:21342–21357, 2022.386

31. Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead387

discovery with explorative rl and fragment-based molecule generation. Advances in Neural388

Information Processing Systems, 34:7924–7936, 2021.389

32. Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for390

structure-based drug design. Advances in Neural Information Processing Systems, 35:12325–391

12338, 2022.392

11



33. Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-393

distribution generation. In International Conference on Machine Learning, pages 18872–18892.394

PMLR, 2023.395

34. Seul Lee, Seanie Lee, and Sung Ju Hwang. Drug discovery with dynamic goal-aware fragments.396

arXiv preprint arXiv:2310.00841, 2023.397

35. Tony Shen, Mohit Pandey, and Martin Ester. Tacogfn: Target conditioned gflownet for drug398

design. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.399

36. Jeff Guo, Franziska Knuth, Christian Margreitter, Jon Paul Janet, Kostas Papadopoulos, Ola400

Engkvist, and Atanas Patronov. Link-invent: generative linker design with reinforcement learning.401

Digital Discovery, 2(2):392–408, 2023.402

37. Michael Dodds, Jeff Guo, Thomas Löhr, Alessandro Tibo, Ola Engkvist, and Jon Paul Janet.403

Sample efficient reinforcement learning with active learning for molecular design. Chemical404

Science, 15(11):4146–4160, 2024.405

38. Jeff Guo and Philippe Schwaller. Augmented memory: Sample-efficient generative molecular406

design with reinforcement learning. JACS Au, 2024.407

39. Jeff Guo and Philippe Schwaller. Beam enumeration: Probabilistic explainability for sample408

efficient self-conditioned molecular design. In Proc. 12th International Conference on Learning409

Representations, 2024.410

40. Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using411

memory manipulation. arXiv preprint arXiv:2405.17066, 2024.412

41. Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.413

arXiv preprint arXiv:2312.00752, 2023.414

42. Albin Ekborg. De novo molecular generation of molecules with consistent synthetic strategy.415

Master’s thesis, Chalmers University of Technology, 2024.416
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46. Sara Szymkuć, Ewa P Gajewska, Tomasz Klucznik, Karol Molga, Piotr Dittwald, Michał Startek,425

Michał Bajczyk, and Bartosz A Grzybowski. Computer-assisted synthetic planning: the end of426

the beginning. Angewandte Chemie International Edition, 55(20):5904–5937, 2016.427
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Klucznik, Sara Szymkuć, Ewa P Gajewska, Piotr Dittwald, Olga Staszewska-Krajewska, Wiktor456

Beker, et al. Computational planning of the synthesis of complex natural products. Nature, 588457

(7836):83–88, 2020.458

58. Oleksandr O Grygorenko, Dmytro S Radchenko, Igor Dziuba, Alexander Chuprina, Kateryna E459

Gubina, and Yurii S Moroz. Generating multibillion chemical space of readily accessible460

screening compounds. Iscience, 23(11), 2020.461

59. Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking462

with a new scoring function, efficient optimization, and multithreading. Journal of computational463

chemistry, 31(2):455–461, 2010.464

60. Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,465

and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015.466

61. Shidi Tang, Ji Ding, Xiangyu Zhu, Zheng Wang, Haitao Zhao, and Jiansheng Wu. Vina-gpu467

2.1: towards further optimizing docking speed and precision of autodock vina and its derivatives.468

bioRxiv, pages 2023–11, 2023.469

62. G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.470

Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.471

63. Jason D Shields, Rachel Howells, Gillian Lamont, Yin Leilei, Andrew Madin, Christopher E472

Reimann, Hadi Rezaei, Tristan Reuillon, Bryony Smith, Clare Thomson, et al. Aizynth impact473

on medicinal chemistry practice at astrazeneca. RSC Medicinal Chemistry, 15(4):1085–1095,474

2024.475

64. Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey,476

Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl:477

a large-scale bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–478

D1107, 2012.479

65. Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical480

information and modeling, 55(11):2324–2337, 2015.481

66. Martin Buttenschoen, Garrett M Morris, and Charlotte M Deane. Posebusters: Ai-based docking482

methods fail to generate physically valid poses or generalise to novel sequences. Chemical483

Science, 15(9):3130–3139, 2024.484

13



67. John J Irwin, Da Duan, Hayarpi Torosyan, Allison K Doak, Kristin T Ziebart, Teague Sterling,485

Gurgen Tumanian, and Brian K Shoichet. An aggregation advisor for ligand discovery. Journal486

of medicinal chemistry, 58(17):7076–7087, 2015.487

68. Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for488

the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.489

69. Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow490

network based generative models for non-iterative diverse candidate generation. Advances in491

Neural Information Processing Systems, 34:27381–27394, 2021.492

70. John A Arnott and Sonia Lobo Planey. The influence of lipophilicity in drug discovery and493

design. Expert opinion on drug discovery, 7(10):863–875, 2012.494

71. Jeff Guo, Jon Paul Janet, Matthias R Bauer, Eva Nittinger, Kathryn A Giblin, Kostas Papadopou-495

los, Alexey Voronov, Atanas Patronov, Ola Engkvist, and Christian Margreitter. Dockstream: a496

docking wrapper to enhance de novo molecular design. Journal of cheminformatics, 13:1–21,497

2021.498

72. Jeff Guo, Vendy Fialková, Juan Diego Arango, Christian Margreitter, Jon Paul Janet, Kostas499

Papadopoulos, Ola Engkvist, and Atanas Patronov. Improving de novo molecular design with500

curriculum learning. Nature Machine Intelligence, 4(6):555–563, 2022.501

73. Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian502

Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings503

improve the quality of molecular generative models. Journal of cheminformatics, 11:1–13, 2019.504

74. Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network modeling505

of molecules. arXiv preprint arXiv:1703.07076, 2017.506

75. Peter Eastman, Mark S Friedrichs, John D Chodera, Randall J Radmer, Christopher M Bruns,507

Joy P Ku, Kyle A Beauchamp, Thomas J Lane, Lee-Ping Wang, Diwakar Shukla, et al. Openmm508

4: a reusable, extensible, hardware independent library for high performance molecular simula-509

tion. Journal of chemical theory and computation, 9(1):461–469, 2013.510

76. Sereina Riniker and Gregory A Landrum. Better informed distance geometry: using what we511

know to improve conformation generation. Journal of chemical information and modeling, 55512

(12):2562–2574, 2015.513

77. Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff.514

Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations.515

Journal of the American chemical society, 114(25):10024–10035, 1992.516

78. Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and517

Geoffrey R Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3:518

1–14, 2011.519

79. Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning520

with neural guided a* search. In International conference on machine learning, pages 1608–1616.521

PMLR, 2020.522

80. Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński,523
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Appendix533

The Appendix contains details on the procedure we took to reproduce RGFN’s29 oracle as the code is534

not released. In addition, we report the computational resources used, how Saturn was pre-trained,535

and AiZynthFinder execution details.536

A Compute Resources537

All experiments were run on a single workstation with an NVIDIA RTX A6000 GPU 48GB memory538

and AMD Ryzen 9 5900X 24-Core CPU. 48GB GPU memory is not required. QuickVina2-GPU-539

2.159–61 with ‘thread‘ = 8,000 (following the RGFN29 work) takes up to 12GB GPU memory. We540

further note that Saturn’s wall times reported in Table 1 are longer than actually required as we always541

run 2-4 experiments in parallel, which share the workstation’s resources, but makes the total wall542

time less.543

B Saturn Pre-training Details544

This section contains the exact protocol used for Saturn pre-training on ChEMBL 3364 and ZINC545

250k65. The details and pre-trained models are taken from the original Saturn40 paper and included546

here.547

B.1 ChEMBL 33548

Each step is followed by the SMILES remaining after the filtering step.549

1. Download raw ChEMBL 33 - 2,372,674550

2. Standardization (charge and isotope handling) based on https://github.com/551

MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.552

ipynb. All SMILES that could not be parsed by RDKit were removed - 2,312,459553

3. Kept only the unique SMILES - 2,203,884554

4. Tokenize all SMILES based on REINVENT’s tokenizer: https://github.com/555

MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/556

models/vocabulary.py557

5. Keep SMILES ≤ 80 tokens - 2,065,099558

6. 150 ≤ molecular weight ≤ 600 - 2,016,970559

7. Number of heavy atoms ≤ 40 - 1,975,282560

8. Number of rings ≤ 8 - 1,974,522561

9. Size of largest ring ≤ 8 - 1,961,690562

10. Longest aliphatic carbon chain ≤ 5 - 1,950,213563

11. Removed SMILES containing the following tokens (due to undesired chemistry and low564

token frequency): [S+], [C-], [s+], [O], [S@+], [S@@+], [S-], [o+], [NH+], [n-], [N@],565

[N@@], [N@+], [N@@+], [S@@], [C+], [S@], [c+], [NH2+], [SH], [NH-], [cH-], [O+],566

[c-], [CH], [SH+], [CH2-], [OH+], [nH+], [SH2] - 1,942,081567

The final vocabulary contained 37 tokens (2 extra tokens were added, indicating <START> and568

<END>).569

The Mamba model has 5,265,920 parameters. The hyperparameters are the default parameters in the570

code base.571

The pre-training parameters were:572

1. Max training steps = 20 (each training step entails a full pass through the dataset)573

2. Seed = 0574

3. Batch size = 512575
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4. Learning rate = 0.0001576

5. Randomize74 every batch of SMILES577

The following checkpoint was used: Epoch 18, NLL = 32.21, Validity (10k) = 95.60%.578

B.2 ZINC 250k579

ZINC 250k65 was downloaded and used as is.580

The pre-training parameters were:581

1. Training steps = 50 (each training step entails a full pass through the dataset)582

2. Seed = 0583

3. Batch size = 512584

4. Learning rate = 0.0001585

5. Train with SMILES randomization74 (all SMILES in each batch was randomized)586

The final vocabulary contained 66 tokens (2 extra tokens were added, indicating <START> and587

<END>).588

The Mamba model has 5,272,832 parameters (slightly larger than ChEMBL 33 model because the589

vocabulary size here is larger). The following checkpoint was used: Epoch 50, NLL = 28.10, Validity590

(10k) = 95.20%.591

C Reproducing RGFN’s Oracle592

This section contains the steps we took to reproduce RGFN’s29 ATP-dependent Clp protease prote-593

olytic subunit (ClpP) docking case study as faithfully as we could.594

Target Preparation. Following Appendix C.1 of the RGFN paper, we downloaded the 7UVU ClpP595

crystal structure here: https://www.rcsb.org/structure/7UVU. All molecules (complexed596

inhibitors, solvents, etc.) were removed, keeping only two monomeric units. Two structures were597

saved: The apo protein (no other molecules present) and the reference ligand. The following step598

differs from RGFN: the apo protein was processed with PDBFixer75 to fix missing atoms and599

residues. We performed this step because errors were thrown during docking when using the raw apo600

protein structure.601

Docking Details. We implement QuickVina2-GPU-2.159–61 following the instructions in the GitHub602

repository here: https://github.com/DeltaGroupNJUPT/Vina-GPU-2.1. The reference ligand603

structure that was saved out in the previous step is used here to define the docking box. Specifically,604

the average coordinates of the ligand denote the docking centroid. The following may differ from605

RGFN: We define the docking box as 20 Å x 20 Å x 20 Å as it was unclear how it should be defined606

based on RGFN’s protocol. This box size has worked on many other protein targets71 when docking607

with AutoDock Vina59 which is the predecessor of QuickVina2-GPU-2.1.608

Docking Workflow. Following RGFN’s protocol, QuickVina2-GPU-2.1 used the following parame-609

ters: ‘thread‘ = 8,000 with ‘search depth‘ = "heuristic" which is the default. Next, all ligands were610

docked following RGFN’s workflow:611

1. Start with batch of generated SMILES from Saturn612

2. Canonicalize the SMILES613

3. Convert to RDKit Mol objects614

4. Protonate the Mols615

5. Generate 1 (lowest energy) conformer using ‘ETKDG‘76616

6. Minimize energy with the Universal Force Field (UFF)77617

7. Write out the conformers as ‘PDB‘ files618

8. Using Open Babel78, convert the ‘PDB‘ to ‘PDBQT‘ format619
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9. Execute QuickVina2-GPU-2.1 docking620

Protocol Validation. We make further efforts to ensure the oracle is as faithful as possible to RGFN’s621

implementation. When executing QuickVina2-GPU-2.1, if a seed is not specified, a random seed is622

used. It is unclear if a seed was set in the RGFN29 work. In our experiments, the seed is 0. We re-dock623

the reference ligand and find that the pose is similar to Figure 15 in the RGFN work. However, the624

docking score we obtain is -9.2 whereas the RGFN work reports -10.31. Subsequently, we execute625

docking 100 times (letting QuickVina2-GPU 2.1 select the random seed) and observed that seed =626

448029751 gives a similar pose to RGFN’s pose and yields a docking score of -10.1. We additionally627

found that seed = 1920393356 yields a docking score of -10.3 but the pose is reflected. Finally seed628

= 673697018 yields a docking score of -8.2 and is a completely different pose. It is intractable to try629

every seed.630

Therefore, we end this section by stating that it is hard to say if we exactly re-implement RGFN’s29631

docking oracle. However, we believe it still enables us to convey the primary message of our work:632

retrosynthesis models can be directly treated as an oracle and be explicitly optimized for during633

generation.634

D AiZynthFinder635

AiZynthFinder11–13 was used as is, without modification. The source code was cloned from the636

GitHub repository here: https://github.com/MolecularAI/aizynthfinder. The environ-637

ment and package were installed following the README. Following the documentation here:638

https://molecularai.github.io/aizynthfinder/, we downloaded the public data and used639

AiZynthFinder as is. Every batch of molecules generated by Saturn (16 at max) is chunked into 4640

sub-sets for multi-thread execution. Finally, we consider a molecule AiZynthFinder "solvable" if641

the "is_solved" flag is True. This flag denotes whether the top scored (accounting for tree depth and642

fraction of building blocks in stock)12,13 is solved.643

E AiZynthFinder purged ZINC 250k Pre-training Details.644

In Experiment 3, we pre-train Saturn on a sub-set of ZINC 250k65 that is not AiZynthFinder11–13645

solvable. The goal is to show that Saturn can still optimize for generating molecules that are646

AiZynthFinder solvable despite being trained on no molecules that can be.647

Purged Dataset. We first run AiZynthFinder on the entirety of ZINC 250k on a single workstation648

with an NVIDIA RTX A6000 GPU 48GB memory and AMD Ryzen 9 5900X 24-Core CPU. The649

process was run using multi-threading across 12 workers and took 62 hours. We save the unique650

SMILES (98,110) of all the molecules that are not AiZynthFinder solvable. This is the dataset used651

for pre-training.652

Pre-training. Following the same pre-training parameters used in the original Saturn40 work:653

1. Training steps = 100 (each training step entails a full pass through the dataset)654

2. Seed = 0655

3. Batch size = 512656

4. Learning rate = 0.0001657

5. Train with SMILES randomization74 (all SMILES in each batch was randomized)658

The final vocabulary contained 57 tokens (2 extra tokens were added, indicating <START> and659

<END>). This is less than the normal ZINC 250k model (66 tokens) because some tokens are not660

present in the purged dataset.661

The Mamba model has 5,271,040 parameters (less than the normal 250k model because the vocabulary662

size is smaller). The following checkpoint was used: Epoch 100, NLL = 27.78, Validity (10k) =663

92.27% and the training time was 4.7 hours.664
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Figure F5: AiZynthFinder solved routes (top-scoring) for All MPO example molecules.

Figure F6: AiZynthFinder solved routes (top-scoring) for Double MPO example molecules.
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F AiZynthFinder Routes665

The AiZynthFinder solved routes for the 8 example molecules shown in Fig. 3 are shown here. The666

All MPO routes (Fig. F5) are generally shorter than the Double MPO routes (Fig. F6). This suggests667

that enforcing QED and SA score also implicitly makes the predicted forward syntheses shorter.668

We note that it is possible to design an objective function that also aims to generate short paths by669

rewarding short paths. We do not explore this here and leave it for future work.670

G Supplementary Results671

In this section, supplementary results are reported which aim to address/provide evidence for three672

points:673

1. Effect of increasing the oracle budget when optimizing AiZynthFinder674

2. Jointly optimizing QED with docking score is considerably more difficult than just optimiz-675

ing docking score676

3. Optimizing SA score can be a better allocation of computational resources677

Table 3: Synthesizability metrics across various Saturn experiments. Metrics are reported for however
many Modes are found. For these supplemental results, only one replicate is performed with seed = 0.

Method Modes (Yield) Mol. weight (↓) QED (↑) SA score (↓) AiZynth (↑) Oracle calls
(Wall time)

RAll MPO 4 objectives (Docking, QED, SA, AiZynth)

Saturn-GA-ChEMBL 108 (222) 370.9 0.84 2.44 0.70 5,000 (23.6h)

Saturn-GA-ZINC 74 (230) 371.1 0.81 2.45 0.69 5,000 (21.2h)

RDouble MPO 2 objectives (Docking, AiZynth)

Saturn-ChEMBL 302 (3804) 486.2 0.28 2.40 0.82 5,000 (21.4h)

Saturn-GA-ChEMBL 323 (3053) 464.1 0.34 2.51 0.68 5,000 (11.3h)

Saturn-ZINC 266 (2783) 521.2 0.25 2.40 0.76 5,000 (13.5h)

Saturn-GA-ZINC 327 (2741) 455.6 0.34 2.48 0.72 5,000 (11.3h)

RAll MPO (but without AiZynth) 3 objectives (Docking, QED, SA)

Saturn-ChEMBL 332 (1219) 376.7 0.80 2.66 0.39 10,000 (2.4h)

Saturn-ZINC 332 (1108) 382.1 0.76 2.43 0.55 10,000 (2.3h)

RRGFN - Results from Fig. 2 1 objective (Docking)

Saturn-ChEMBL 469 (8389) 511.9 0.26 3.09 0.14 10,000 (2.2h)

Increasing the oracle budget leads to notably increased wall times. In the main text results,678

RAll MPO does not find that many Modes. We investigate the effect of increasing the oracle budget679

(Table 3) with the GA activated (which recover diversity so as to satisfy the Modes criterion that680

Modes must have < 0.5 Tanimoto similarity with other Modes). More Modes are found but the wall681

time is drastically higher. With 5x the oracle budget (5,000 compared to 1,000 in the main text),682

one may expect 5x the wall time (12-15 hours) but the wall time is almost 24 hours. The reason683

is due to Saturn’s sampling behaviour which locally explores chemical space40. The parameters684

of Saturn could be changed to loosen this local exploration behaviour but we do not explore this.685

We demonstrate the application of Saturn out-of-the-box. As a consequence of this, many repeat686

molecules are generated, which do not impose an oracle call as the reward is retrieved from an687

oracle cache, but makes the sampled batch (new molecules) smaller. Multi-threading was used to688

run AiZynthFinder faster (see Appendix D for more details). Consider batches of 1 molecule and689

4 molecules. This can take a similar wall time as molecules can be chunked, thus benefiting from690

multi-threading. This could be mitigated, for example, by using a faster retrosynthesis model which691

can come with advantages and disadvantages79,80 and/or CPU parallelization. Finally, we highlight692

that deactivating the GA will likely lead to higher Yield and AiZynthFinder solve rate, as shown in693

Tables 1 and 2. We reiterate that activating the GA was to satisfy the Mode metric.694

Jointly optimizing QED with docking score is considerably more difficult than just optimizing695

docking score. RGFN29 reports their mean and standard deviation of QED values as 0.23 ± 0.04696
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Figure H7: Saturn reward shaping functions for QuickVina2-GPU-2.1 and SA score.

(unclear how many replicates this was over). This is low and suggests the model is exploiting697

the docking algorithm as shown in Fig. 2. To show that jointly optimizing QED and docking is698

a considerably more difficult task, we first cross-reference the results for RDouble MPO (Table 3)699

where the Modes and Yield are notably higher than RAll MPO. Next, we cross-reference the results700

when QED is not being optimized (Table 3 last row). The Yield is much higher (molecules with701

docking score < 10,000) but the QED values are similar to RGFN, which again, suggests the docking702

algorithm is being exploited.703

Optimizing SA score can be a better allocation of computational resources. SA score4 is704

correlated with AiZynthFinder solve rate43. In the main text Fig 4, we empirically demonstrate705

this, as 56 seconds of fine-tuning a pre-trained model that has never seen an AiZynthFinder solved706

molecule, results in a model that generates molecules almost all solvable. The natural next question707

is, would simply optimizing SA score be a better allocation of computational resources (as is708

commonly done)? Under the same wall time, many more queries to SA score can be made because709

it is computationally cheap. Correspondingly, we use the RAll MPO objective function but omit710

AiZynthFinder (only docking, QED, and SA score) and run the ChEMBL and ZINC pre-trained711

models for 10,000 oracle calls (Table 3). Firstly, the wall time is similar to running 1,000 oracle712

calls of AiZynthFinder (cross-reference Table 1). Next, while a smaller fraction of the Modes are713

AiZynthFinder solvable, the raw number is higher than directly optimizing AiZynthFinder. This714

reinforces that post-hoc retrosynthesis model filtering is valid and is often what is done in practice63.715

Crucially, the actual percentage of AiZynthFinder solve rate may not actually matter. What matters is716

that a user can reasonably expect a generative model to generate molecules satisfying the objective717

function within the allotted oracle budget and/or wall time. In this specific example, it does not matter718

that Saturn-ZINC "only" has 55% solve rate when optimizing docking, QED, and SA score (Table 3).719

Running the 332 Modes through AiZynthFinder only took about 20 minutes (about 183/332 can be720

solved). A user would only care that in under 3 hours, 183 Modes were found that have low docking721

score, high QED, low SA score, and are AiZynthFinder solvable.722

Finally, we wish to be prudent with making definitive statements about whether just optimizing SA723

score is strictly better than including a retrosynthesis model in the objective function. In this section724

alone, we have highlighted that different retrosynthesis models can have a large impact on wall725

time79,80, where faster wall times would narrow the gap between SA score’s wall time. Moreover,726

molecules deemed difficult to synthesize by SA score may actually be straightforward to synthesize.727

Retrosynthesis models have much more flexibility as the building block stock and reactions can be728

changed, whereas SA score was designed based on the fixed PubChem corpus4. One could even729

constrain the retrosynthesis model to only include building blocks and reactions that are available730

in-house, similar to what was done in a collaborative work involving Pfizer81. Thus, we leave a more731

thorough investigation regarding SA score optimization compared to various retrosynthesis models732

and search algorithms for future work. In this work, only the AiZynthFinder11–13 retrosynthesis733

model was used, which leverages Monte Carlo Tree Search and ZINC building blocks.734
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H Saturn Reward Shaping735

This section contains details on the reward shaping functions used such that the objective functions:736

RRGFN , RAll MPO, RDouble MPO ∈ [0, 1]. Fig. H7 shows the functions for QuickVina2-GPU-737

2.159–61 and SA score4. QED62 values were taken as is, and not subjected to reward shaping.738

AiZynthFinder11–13 returns 0 for not solved and 1 for solved. Given a molecule, all oracle evaluations739

are aggregated via a weighted product and a single scalar value is returned as the reward:740

R(x) =

[∏
i

pi(x)
wi

] 1∑
i wi

(4)

x is a SMILES82, i is the index of an oracle given many oracles (MPO objective), pi is an oracle, and741

wi is the weight assigned to the oracle (1 for all oracles in this work).742

I GraphGA-augmented Experience Replay743

Saturn40 uses experience replay to enhance sample efficiency. GraphGA68 can be applied on the744

replay buffer (stores the highest rewarding molecules generated so far) by treating the replay buffer745

as the parent population. Crossover and mutation operations then generate new molecules. For all the746

results in this work, activating the GA decreases the AiZynthFinder solve rate relative to no GA. This747

is because the generated molecules are not being sampled from the model itself (which is learning748

to generate AiZynthFinder solvable molecules). What is gained in return is diversity recovering (as749

found in the original Saturn40 work). This can be advantageous since the RGFN29 work defines750

Discovered Modes as the number of Modes (<-10 docking score) which also have < 0.5 Tanimoto751

similarity to every other mode. By activating the GA, more Modes are generally found, relative to no752

GA.753

J Saturn Batch Generation754

Saturn40 generates SMILES82 in batches of, at maximum, 16. Internally, there is an oracle caching755

mechanism such that repeat generated SMILES are not sent for oracle evaluation, and instead, the756

reward is retrieved from the cache. Saturn’s sample efficiency comes from the local exploration of757

chemical space, such that, at adjacent epochs, identical SMILES can be generated. The effect is that758

at each generation epoch, sometimes only a few new (not generated before) SMILES are generated.759

In Fig. 4c, some batches have 0% solve rate by AiZynthFinder. These are batches that only have a few760

new SMILES that happen not to be solvable. If one new SMILES is generated, it being unsolvable761

equates to 0% solve rate.762
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