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Abstract

This study examines the optimization of day-ahead hybrid electricity markets. The
shift from centralized systems to public-private models introduces many challenges, in-
cluding the introduction of independent market players and renewable energy sources
(RESs). A formal model of market participants’ behavior is developed, and a multi-
agent reinforcement learning (MARL) framework is proposed to optimize system oper-
ator strategies, incorporating dynamic pricing and dispatch scheduling to reduce opera-
tional costs, ensure stability, and align market incentives. A new and adaptable simula-
tion environment, compatible with state-of-the-art methods, is presented. Evaluations in
increasingly complex settings demonstrate the efficacy of our framework in managing
the complexities of modern electricity markets.

1 Introduction

This work addresses the day-ahead optimization of an electricity market1 undergoing significant
structural transformation. Historically centralized and government-controlled, the increasing inte-
gration of renewable energy sources (RESs) and the advancements in data collection technologies
are transitioning the market into a complex public-private hybrid model. This presents substantial
challenges and the need to deal with a highly uncertain operational and regulatory environment (Zhu
et al., 2023).

To demonstrate some of the challenges involved in managing current energy systems, consider a
day-ahead market in which the independent system operator (ISO) aims to optimize electricity
generation based on forecasted demand, generation costs, and grid constraints. The resulting deci-
sions, made 24 hours in advance, specify the amount of electricity to be produced, the prices, and
the allocation of reserve capacity, i.e., the ability to generate additional power at short notice, often
at high environmental costs, in the event of generation failures or unexpected demand surges.

Adapting the day-ahead market to today’s energy systems requires accounting for the variabil-
ity and limited controllability of increasingly heterogeneous grid-edge agents, denoted hereon as
GEAgents, particularly those with local generation and storage capabilities. For example, a house-
hold with a photovoltaic (PV) unit and a battery can autonomously optimize its energy storage pol-
icy, learning when to store energy, when to consume it, and when to trade with the grid to maximize
economic benefits. While such behavior may improve individual utility, it introduces significant

1For anonymity reasons, the specific market under consideration is not disclosed.



Efficient Management of Day-Ahead Energy Markets via Multi-Agent Reinforcement Learning

Figure 1: The day-ahead control cycle that repeats every 30-minutes: (1) ISO receives realized de-
mand for the current time step. (2) ISO posts real-time buy/sell tariffs and issues dispatch directives
to the controlled generators (3) GEAgents buy/sell power (4) If needed, peaker reserves are dis-
patched or curtailment is performed (5) Balanced power flows to consumers.

uncertainty into aggregate demand forecasts and can destabilize the system, especially under sud-
den shifts in consumption or generation patterns. At the same time, these distributed resources can
enhance efficiency and resilience by shaving peaks, supplying energy, and reducing the amount of
centrally dispatched generation required.

To address these challenges, the ISO adjusts electricity production plan, or dispatch, and feed-in
and sell prices to influence independent market participants and align their behavior with grid oper-
ational objectives. Additionally, it retains access to reserves and peaking power plants, which can be
activated to address unmet demand, ensuring both system stability and operational efficiency. The
problem the ISO faces is thus one of cost optimization while satisfying the demand in the presence
of strategic market players that aim to maximize their own profits. The scale and complexity of the
problem make data-driven approaches, such as reinforcement learning (RL), especially suitable

We make three key contributions. First, we build a multi-agent reinforcement learning (MARL)
model that captures the incentives and rational decision-making of independent market participants.
Leveraging these models, we then study the ISO’s optimization problem under various assump-
tions, revealing how each setting shapes optimal dispatch and pricing policies. Finally, we offer a
configurable, open-source grid simulator that supports diverse topologies and uncertainty patterns.
Experiments across increasingly complex settings demonstrate that RL-driven agents can jointly op-
timise participant and ISO strategies, highlighting the promise of MARL for modern energy-market
design.

2 Background and Related Work

Reinforcement Learning (RL) is a learning paradigm where an agent learns optimal behavior by
interacting with an environment and receiving rewards or penalties for its actions (Sutton & Barto,
2018). Multi-agent reinforcement learning (MARL) extends RL to scenarios involving multiple
autonomous agents that concurrently learn and make decisions within a shared or partially shared
environment (Albrecht et al., 2024). Each agent aims to maximize its own utility (typically measured
as accumulated reward), but its actions can influence both its own outcomes and the outcomes of
other agents, leading to complex emergent behaviors and the need for coordination and cooperation
(see Appendix A for more detail).

The most common MARL model is the stochastic game (SG) (also known as emMarkov game
or multi-agent MDP) (Shapley, 1953) defined as a tuple ⟨S,A = {Ai}ni=1, T ,R = {Ri}ni=1, γ⟩,
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where S is the state space, A is the joint action space with Ai as the ith agent action space s.t. a ≜
(a1, a2, . . . , an) for a ∈ A, T : S ×A×S → [0, 1] is the transition probability function T (s′, a, s)
such that for all s ∈ S,∀a ∈ A :

∑
s′∈S T (s, a, s′) = 1, R is the joint reward function with

Ri : S×A×S → R as the ith agent reward function, and γ ∈ [0, 1) is the discount factor. A solution
is a joint policy π ≜ (π1, . . . , πn) associating each agent with policy πi : S × Ai → [0, 1] that
specifies the probability of agent i taking an action at a given state. The joint policy should achieve
certain conditions on the expected returns yielded to agents (e.g., Nash equilibrium) (Albrecht et al.,
2024). The value (utility) function V π

i (s) denotes the expected cumulative discounted reward agent
i receives when starting in state s and the agents follow joint policy π thereafter. The action-value
function or Q-value Qπ

i (s, a) extends this notion by quantifying the expected value when performing
a in s, and then continuing according to π. This general definition captures a variety of interactions
and relationships that can exist between agents in collaborative, competitive, and mixed-incentive
MARL settings.

MARL is particularly suitable for modeling energy systems and networks, since they are inherently
multi-agent environments composed of diverse, distributed, and strategically autonomous entities,
such as grid-edge components, utility companies, system operators, and market participants (Zhu
et al., 2023). These entities have different objectives, interact over shared physical and economic
infrastructures, and must respond dynamically to system conditions, prices, and regulations. MARL
provides a natural framework to model these interactions, enabling agents to learn adaptive poli-
cies, coordinate under uncertainty, and reason about both cooperative and competitive dynamics.
Moreover, its ability to simulate emergent behavior and explore decentralized strategies makes it a
powerful tool for both designing and analyzing modern energy systems.

Applications of RL and MARL in energy markets often assume a single, all-knowing controller op-
timizing the entire system. In such formulations, a central agent (analogous to an ISO) directly con-
trols all generation and storage decisions using global information and perfect foresight, an assump-
tion that is unattainable in practice. These centralized optimization models can yield system-level
insights but cannot capture the strategic, profit-driven behavior of individual market participants
(Harder et al., 2023; Perera & Kamalaruban, 2021). Moreover, as modern grids grow more het-
erogeneous and stochastic with high renewable penetration, a monolithic control scheme becomes
impractical (Wolgast & Nieße, 2023). Recent studies emphasize that managing numerous distributed
resources under uncertainty requires moving beyond one-size-fits-all control toward more decentral-
ized decision-making structures (Michailidis et al., 2025; Ahlqvist et al., 2022).

On the other end of the spectrum, many RL-based models use a fully decentralized approach in
which each market participant (e.g. a storage unit owner or consumer) acts independently. In these
formulations, multiple RL agents learn their own policies (for bidding, charging, discharging, etc.)
based on price signals or local observations, without a central coordinator explicitly optimizing the
whole system (Werner & Kumar, 2023). This bottom-up approach reflects competitive markets by
giving each market player its own profit-maximizing RL agent (Guan et al., 2015; Vázquez-Canteli
& Nagy, 2019; Qiu et al., 2015). However, purely decentralized models typically assume the market
rules or prices are exogenous or fixed (Zhu et al., 2023; Ginzburg-Ganz et al., 2024; Perera &
Kamalaruban, 2021). In our model, the ISO acts as an active participant and directly shapes the
market dynamics. Related efforts on dynamic dispatch and end-to-end RL in energy systems include
Yang et al. (2021); Zhang et al. (2019), and comprehensive overviews of RL for power systems can
be found in Ginzburg-Ganz et al. (2024).

From an algorithmic view the hard part is the two-way game: a learning ISO adjusts dispatch and
the price pair ξt, ϕt each step, while strategic agents respond to maximise profit. Most work either
treats the grid as one central optimiser or fixes ISO actions and lets agents learn in isolation; full
bidirectional learning is rare (Harder et al., 2023; Navon et al., 2024). Our framework closes that gap
by explicitly modelling the feedback loop between an adaptive coordinator and autonomous market
players, exactly the setting modern hybrid power markets require.
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3 Energy Market Dynamics

Historically, the energy market comprised three principal components: power producers (e.g., power
plants), power consumers (industrial and residential), and the ISO, responsible for market manage-
ment and coordination. The producers typically used conventional coal-based generation and were
either units under the full control of the ISO, or independent units that participated in the market but
were regulated and bound by production agreements made for different temporal horizons.

In a typical day-ahead market, as depicted in Figure 1, the ISO predicts the following day’s power
demand (electricity consumption) and issues a dispatch, a production schedule, while considering
operational constraints and generation costs. In addition to the generation of the predicted, or nom-
inal demand, the ISO also manages the reserve, which sets a backup production capability for each
time step. In real-time, the ISO is tasked with continuously maintaining a balance between demand
and supply. If there is a surplus, energy is discharged, or curtailed. If production determined by
the dispatch is not enough to cover the realized demand, reserves, which are more flexible but also
more expensive and polluting, are deployed. Producers are then compensated based on the System
Marginal Price (SMP) mechanism, calculated as the marginal cost of producing the final unit of
energy required to satisfy system demand, based on the least-cost dispatch solution. In this work,
we abstract the dispatch details and consider only the total amount and cost of power produced
at each timestamp (see Appendix B and C for details on market dynamics and SMP computation,
respectively).

Independent grid-edge GEAgents, private utilities and smart homes, now operate a single Produc-
tion–Consumption–Storage unit (PCS-unit) that can generate (e.g. PV), consume, and store en-
ergy. Because they ignore dispatch orders and freely trade to maximise profit, the grid operator
(ISO) can only shape their behaviour through prices. Its levers are the dispatch schedule ∆t and the
sell / feed-in tariffs ξt and ϕt set each interval t, chosen to balance supply and demand at minimum
total cost. The sections that follow analyse this joint dispatch–pricing problem under progressively
richer market assumptions.

In the deterministic setting (see Appendix B), the ISO selects {∆t, ξt(·), ϕt(·)}Tt=1 to minimize its
total cost:

min
{∆,ξ,ϕ}

Ctotal = Cdispatch +

T∑
t=1

Conline(t) (Deterministic ISO Objective)

where Cdispatch =
∑T

t=1 C
(
∆t

)
and Conline(t) = reserveCostt︸ ︷︷ ︸

reserve activation
cost

+ tariffSubsidyt︸ ︷︷ ︸
net payments

to players

.

Since all information is given in advance, the GEAgent can also compute its policy at the beginning
of each episode and decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every

timestamp t to maximize its total revenue under its operational constraints. Formally:

max

T∑
t=1

(
ϕt P

s
t − ξt P

b
t

)
(Deterministic GEAgent Objective)

In a stochastic extension of this setting, we account for the inability to exactly predict demand
and production. In this case, it may be possible to estimate these distributions from historical data
and observations using machine learning methods to improve decision-making under these forms
of uncertainty. In this setting, fully formulated in Appendix B, the min and max objectives of the
ISO and GEAgents are replaced by an expectation-based optimization.

Accounting for Strategic Demand: In modern energy systems, demand is not only stochastic
but also strategic since GEAgents can intelligently manage the operation of devices and energy
resources, in response to system-level signals. This demand (load) flexibility is reshaping energy
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markets by introducing new ways to contribute to their efficient and stable operation (Charbonnier
et al., 2022; Zhu et al., 2023). However, this shift also introduces challenges such as increased
system complexity, uncertainty in demand forecasting, and the need for regulatory mechanisms to
ensure fair and reliable participation.

In this extended setting, the ISO needs to determine the selling price ξt and feed-in prices ϕt for each
t according to the demand Dt at time t while accounting for the GEAgents ability to sell, buy, and
store power. From the perspective of the GEAgent, the price signals ξt(P s

t , P
b
t , . . .) are exogenous

signals set by the ISO , but they depend on the GEAgents’ sales P s
t and purchases P b

t and other
variables. This coupling results in a feedback mechanism where the player’s actions influence the
prices, and the prices, in turn affect the player’s actions. This introduces a game-theoretic dimension
where the GEAgents’ decisions are influenced by the ISO ’s pricing strategy and vice versa.

Formally, the GEAgent’s input includes all the parameters that were relevant for the deterministic
and stochastic settings, including the expected demand lt and production gt at time t. A key differ-
ence is that the selling price ξt and feed-in prices ϕt can be set either in advance or, depending on
regulation, dynamically, in response to the market state. The objective of the GEAgent is now:

max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
(Strategic Player Objective)

From the perspective of the ISO, as in the stochastic settings, it receives at the beginning of each
episode (day) all the information about the GEAgents and the controlled producers and needs to
determine the scheduled amount of production ∆t for each timestamp. However, it is crucial to
distinguish between two components of the demand. The nominal demand refers to the exoge-
nous, inelastic portion of load that remains unaffected by local control strategies, real-time market
incentives, or variations in renewable generation. In contrast flexible demand, refers to the portion
of demand that can be adjusted in time, quantity, or pattern in response to external signals, such as
price changes, grid conditions, or availability of renewable energy.

Since the ISO cannot faithfully model the demand without considering the strategic nature of
the GEAgents, optimization methods that are appropriate for deterministic and stochastic settings
will not work here. Thus, as we specify in the next section, we model the market participants as
RL agents.

4 The Energy-Net Simulator

In spite of a variety of simulators that currently exist Pigott et al. (2022); Moriyama (2018); Vázquez-
Canteli et al. (2019); Marot (2021), there is no current framework that allows modeling the complex
structure we want to account for and that is designed to work with off-the-shelf RL and MARL meth-
ods. We therefore develop a novel simulator, Energy-Net, that we will use to examine our pro-
posed solutions. Energy-Net is a modular, discrete–time simulator of a hybrid electricity market.
The environment we develop is flexible and adaptable, and can be used to accommodate differ-
ent system configurations. At the core of the design of the software is a decoupling between the
physical dynamics of the electrical system and the strategic agents, i.e., it is built around a strict
physics–agent split. A high-fidelity physical core advances loads, renewables, batteries, and re-
serves, while the ISO and GEAgents interact only through a Gym-style step() function. This
design (i) lets us plug in any off-the-shelf RL algorithms without touching the power-system code,
(ii) isolates market rules in a single controller module, and (iii) ensures that learned policies can
affect the grid only via explicit levers, prices and dispatch tweaks, thus preserving physical realism
while streamlining experimentation.

Building on the formal setting introduced in Appendix G, Energy-Net instantiates the 24-hour
day-ahead electricity market. A single simulation episode therefore comprises T uniform intervals
of length ∆t (in our experiments T=48 and ∆t = 30 mins ), together covering one 24-hour oper-
ational horizon. At each step t ∈ {1, . . . , T} the environment reveals the current forecast and grid
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state to the agents, applies their actions, propagates the physical dynamics, and returns next-state
observations and rewards through the standard Gym step interface. See Appendix H for the full
details.

5 Solution Approaches

The MARL formulation described in Appendix G provides an abstraction that captures the strate-
gic, price-driven interactions that typify modern hybrid power systems. In this section, we present
solution approaches that can be adopted by the market participants. Importantly, while our main
challenge is in computing optimal market management approaches for the ISO, we must equip the
GEAgents with the strongest policies to guarantee the ISO can predict their response to different
price signals.

In principle, the deterministic and stochastic formulations described in Section 3 can be solved
using state-space and dynamic programming methods, respectively (see Appendix D for an example
formulation). Even if distributions are not fully known, it may be possible to learn them from data.
Nevertheless, such methods are not appropriate to our problem, which is inherently challenging
due to the agents’ ability to strategically adapt their behavior and due to the dual-action learning
structure, which operates across different time frames.

A specific challenge is that pricing may be dynamic and set at every time step, while the ∆t action
for each time step t is decided at the beginning of each episode. This temporal disparity adds a layer
of complexity, as the reward for a ∆ action is reflected only at the end of the episode. Moreover,
determining ∆ is a demanding task because it involves generating a time series output that must
account for dynamic market conditions, which are influenced by behaviors of market participants.
A further complication arises from the interdependence of these actions. Dispatch decisions are
influenced by the market agents’ responses to price signals, while optimal pricing strategies depend
on real-time Dt and ∆t outcomes.

Because the game is sequential (ISO first, GEAgent second) and highly non-linear, we iteratively
train each of the policies with deep RL for continuous control in an online regime. If the agents’
policies converge, it is toward a practical equilibrium in function-approximation space rather than
a formal Nash point. in Section 6, we empirically examine this using our simulated environment
described in the next section.

There are several abstractions that we can use to facilitate computation. One option is to make
the problem easier by abstracting away the dispatch optimization, which we denote as dispatch
abstraction. In this simplified model the ISO has only control over the prices, and we assume that
the ISO production ∆t is fixed to be equal to the predicted demand D̂t.

Quadratic Pricing: We employ two pricing regimes, online dynamic and day-ahead tariffs. In
settings restricted to day-ahead pricing, quadratic pricing allows the ISO to influence consumption
and injection patterns through price curvature. Following Papadaskalopoulos & Strbac (2015), we
impose a superlinear surcharge on purchases and a sublinear bonus on feed-in:

ξt = α0 + α1 P
b
t + α2 [P

b
t ]

2, ϕt = β0 + β1 P
s
t + β2

√
P s
t ,

where the six coefficients (α0, α1, α2, β0, β1, β2) are fixed at the episode’s outset for the subsequent
T time steps. The superlinear term steepens the marginal purchase price, thereby discouraging
demand spikes and reducing reliance on peaker reserves, while the sublinear feed-in adjustment
tempers incentives for excessive injections, promoting smoother system operation (see Appendix E
for full details and detailed examples).
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6 Empirical Evaluation

The objective of our empirical evaluation is to assess the benefit of using our MARL formulation
to optimize the policy of the ISO. For this, we use our Energy-Net environment to model and
simulate the day-ahead electricity market2.

Setup We evaluate our formulation from Appendix G and pricing schemes from Section 5 under a
variety of scenarios. As discussed in Section 4, Energy-Net cleanly separates physical dynamics
from agent logic. This allows us to stage the empirical study in three escalating phases of coordi-
nation for the ISO and GEAgents. First, in ISO-Dispatch, we trained and evaluated the ISO in
isolation; all GEAgents were disabled, so the operator optimised its dispatch ∆t under a stochastic
yet non-strategic demand profile. Next, we enabled a PCS-unit3 with a fixed, pre-defined charging
trajectory and retrained the ISO, thereby quantifying the benefit of price coordination when stor-
age is present but non-adaptive. We examined this setting with two pricing mechanisms: online
linear, denoted ISO-L, and quadratic, denoted ISO-Q. We then allowed both agents to learn con-
currently: the ISO tunes its real-time dispatch and tariffs, while the PCS-unit adapts its behavior to
these market signals. In settings Joint-Storage-L and Joint-Storage-Q we examined the
online and linear pricing, respectively, for a storage-only GEAgent, while in Joint-PCS-L and
Joint-PCS-Q, we added production and consumption capabilities (see Appendix I for the full de-
tails of the setup). For each episode, we sample the realized demand from a Gaussian noise induced
predicted demand for each time step t, and, when relevant, the realized load and production for the
PCS-units. (see Table 3 in the appendix for a full description). We ran each training phase for 40
iterations with 4800 time steps each (1000 days) and was evaluated for 20 times. All settings were
run using the same demand pattern and performance parameters described in Appendix I with Allo-
cated resources of : 10 cores of Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10 GHz and 1 × NVIDIA
GeForce GPU (12 GB). .

Results Due to space constraints, we present our full results in Appendix J and show here only
our key findings. Our focus is on optimizing the ISO and measuring its ability to avoid failure and
minimize cost, thus preferring to exploit renewable energy generated by the GEAgents and avoiding
usage of reserves as much as possible. We therefore present in Table 4 the average energy usage
achieved for all multi-agent settings compared to baseline ISO-Dispatch. To fully appreciate the
effect of each agent setup, we present a breakdown of the total energy in MWh into three compo-
nents: dispatch, reserve, and exchange (variance values in parentheses).

Results show that for settings ISO-L and ISO-Q, in which the GEAgent is fixed, the ISO manages
to learn to exploit the power generated by the GEAgents instead of the reserves. In contrast, in
Joint-Storage-L and Joint-Storage-Q, with a storage-only GEAgent the PCS-unit en-
ergy does not contribute to the overall efficiency. Instead, it increases the amount the ISO produces
via dispatch to maintain stability. In Appendix J we show how this effect can be mitigated with
different cost coefficients. Finally, for the complete setup of Joint-PCS-L and Joint-PCS-Q,
where the GEAgents have consumption and production capabilities, we see a minimization of the
reserve with quadratic pricing. To further demonstrate GEAgents contribution, Figure 7 depicts an
episode from the Joint-PCS-L and Joint-PCS-Q settings. The difference between the dashed
black line and the blue line (realized demand) represents the gap between the nominal predicted de-
mand and the realized demand. The dispatch is represented by the light blue bars, while the total
demand, including the flexible load of the GEAgents is depicted by the red line (total demand). As
demonstrated in the figure, the reserve activation happens when the red line is above the dispatch
bars, which is to be avoided. Overall, our experiments show that while fixed-generation players
(ISO-Land ISO-Q) enable the ISO to substitute market output for reserves and storage-only play-
ers (Joint-Storage-Land Joint-Storage-Q) can unintentionally boost dispatch, it is only

2To respect the blind review process, our code base and complete results are in the supplementary material. All will be
made public after acceptance.

3Additional units can be added using the same interface; for clarity, we use one aggregated unit.
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Table 1: Episode–total energy in MWh breakdown across scenarios.

Scenario Dispatch Reserve Exchange

ISO-Dispatch 7 229.86 ± 38.29 249.41 ± 5.04 NA

ISO-L 7 282.34 ± 50.89 176.05 ± 19.07 800 ± 0
ISO-Q 7 506.98 ± 35.02 121.07 ± 3.78 800 ± 0

Joint-Storage-L 8 126.13 ± 1.07 148 ± 0.94 0 ± 0
Joint-Storage-Q 8 126.21 ± 1.01 148 ± 1.06 0 ± 0

Joint-PCS-L 7 322.44 ± 36.02 168.47 ± 4.14 442.14 ± 9.61
Joint-PCS-Q 7 450.62 ± 36.43 117 ± 2.04 324 ± 8.40

Figure 2: Episode-level dispatch and realized demand under scenario Joint-PCS-L (online linear
pricing) at the top, and scenario Joint-PCS-Q (quadratic pricing) at the bottom.

the combined consumption–production scenario (Joint-PCS-L) under a quadratic day-ahead tar-
iff that suppresses reserve activation and maximizes system efficiency.

7 Conclusion

We demonstrate the benefit of modeling modern power systems MARL in which physical grid con-
straints, market signals, and heterogeneous agent behaviors interact in tightly coupled feedback
loops. We design our framework to capture both nominal and flexible demand, and enable realis-
tic and robust evaluation of decentralized control strategies and pricing mechanisms using a new
simulation environment we developed. Our results show that strategically coordinated ISO poli-
cies working with price-responsive grid-edge agents can reduce reserve requirements and carbon
intensity.
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Together with these achievements, our experiments reveal the fragility of current deep-RL policies:
modest forecasting errors can lead to supply shortfalls or excessive generation. Addressing this brit-
tleness remains a key research priority. Another challenge lies in scaling the approach operational
grids. This will require hierarchical or federated MARL architectures and hardware-in-the-loop
testing. Finally, while algorithmic coordination can reduce reserve usage and lower tariffs, distribu-
tion benefits are unlikely to be uniform. Ensuring fairness and transparency is a challenge that will
need to be addressed.

Appendix

A RL and MARL

A Reinforcement Learning (RL) problem can be defined as a Markov Decision Process (MDP)
represented by the tuple ⟨S,A,P,R, γ⟩, where:

• S is the set of states,
• A is the set of actions,
• P(s′ | s, a) is the transition probability from state s to s′ under action a,
• R(s, a) is the reward function,
• γ ∈ [0, 1] is the discount factor.

The goal is to find a policy π : S → A that maximizes the expected cumulative reward:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtRt

]
,

where Rt is the reward received at time step t. It is assumed that the MDP is too large to efficiently
compute π∗, so approximation methods are employed to estimate it. These methods often involve
learning value functions or directly optimizing parameterized policies using sampled interactions
with the environment.

The problem can be modeled as a Markov Decision Process (MDP), defined by the tuple:

⟨S,A,P,R, γ⟩

where:

• S: The set of states, defined by S = {(t, σt) | t = 1, . . . , T, 0 ≤ σt ≤ Smax},
• A: The set of actions, where each action is represented by the pair (P b

t , P
s
t ),

• P(s′ | s, a): The state transition function, given by:

P(s′ | s, a) = Pr(σt+1 | σt, P
b
t , P

s
t ),

• R(s, a): The reward function:

R(s, a) = ϕt(P
s
t )− ξt(P

b
t ),

• γ: The discount factor, γ ∈ [0, 1], which determines the relative importance of future rewards.

The goal is to find an optimal policy π∗ that maximizes the expected cumulative reward:

π∗ = argmax
π

Eπ

[
T∑

t=1

γt−1R(st, at)

]
,

where:

• st = (t, σt) is the state at time t,
• at = (P b

t , P
s
t ) is the action at time t,
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• R(st, at) is the immediate reward obtained from taking action at in state st.

rl and marl algorithms can be broadly categorized as model-free, which learn policies directly from
experience without modeling the environment, and model-based, which learn or use environment
models to plan or simulate outcomes. Model-free methods (e.g., value-based or policy gradient) tend
to be more scalable but sample-inefficient, while model-based methods improve sample efficiency
and enable planning but struggle with modeling complex dynamics (Albrecht et al., 2024).

Reinforcement Learning (rl) is a learning paradigm where an agent learns optimal behavior by in-
teracting with an environment and receiving rewards or penalties for its actions (Sutton & Barto,
2018). Multi-agent RL (marl) extends rl to scenarios involving multiple autonomous agents that
concurrently learn and make decisions within a shared or partially shared environment. Each agent
aims to maximize its own utility (typically measured as accumulated reward), but its actions can
influence both its own outcomes and the outcomes of other agents, leading to complex emergent
behaviors and the need for coordination and cooperation.

marl is particularly suitable for modeling energy systems and networks, since they are inherently
multi-agent environments composed of diverse, distributed, and strategically autonomous entities,
such as grid-edge components and prosumers, utility companies, system operators, and market par-
ticipants. These entities have different objectives, interact over shared physical and economic in-
frastructures, and must respond dynamically to system conditions, prices, and regulations. MARL
provides a natural framework to model these interactions, enabling agents to learn adaptive poli-
cies, coordinate under uncertainty, and reason about both cooperative and competitive dynamics.
Moreover, its ability to simulate emergent behavior and explore decentralized strategies makes it a
powerful tool for both designing and analyzing modern energy systems.

The most common marl model is the Stochastic Game (also known as Markov Game or Multi-agent
MDP) (Shapley, 1953) defined as a tuple ⟨S,A = {Ai}ni=1, T ,R = {Ri}ni=1, γ⟩, where S is the
state space, A is the joint action space with Ai as the ith agent action space s.t. a ≜ (a1, a2, . . . , an)
for a ∈ A, T : S × A × S → [0, 1] is the transition probability function T (s′, a, s) such that
∀s ∈ S,∀a ∈ A :

∑
s′∈S T (s, a, s′) = 1, R is the joint reward function with Ri : S ×A×S → R

as the ith agent reward function, and γ ∈ [0, 1) is the discount factor. A solution is a joint policy π ≜
(π1, . . . , πn) associating each agent with policy πi : S × Ai → [0, 1] that specifies the probability
of agent i taking an action at a given state. The joint policy should achieve certain conditions on the
expected returns yielded to agents (e.g., Nash equilibrium) (Albrecht et al., 2024). The value (utility)
function V π

i (s) denotes the expected cumulative discounted reward agent i receives when starting in
state s and the agents follow joint policy π thereafter. The action-value function or Q-value Qπ

i (s, a)
extends this notion by quantifying the expected value when performing a in s, and then continuing
according to π. A Multi-agent Partially Observed MDP (or Partially Observable Stochastic Game)
also includes for each agent observation set Oi and a sensor function Oi : A× S ×Oi → [0, 1].

This general definition captures a variety of interactions and relationships that can exist between
agents in collaborative, competitive, and mixed-incentive MARL settings. Complex agent inter-
actions may give rise to behaviors that are difficult to anticipate by simply examining each agent
in isolation. Thus, despite the potential to solve complex problems across various domains, marl
faces various significant challenges that stem from aspects such as scale, conflicting goals of self-
interested agents, and the concurrent learning of the different agents (Albrecht et al., 2024). All
these are relevant to MARL in general but are particularly relevant to energy networks with the
added need to account for the dynamics of the physical environment and the effect decisions may
have on the functioning of the electricity network.

RL and MARL algorithms can be broadly categorized as model-free, which learn policies directly
from experience without modeling the environment, and model-based, which learn or use environ-
ment models to plan or simulate outcomes. Model-free methods (e.g., value-based or policy gradi-
ent) tend to be more scalable but sample-inefficient, while model-based methods improve sample
efficiency and enable planning but struggle with modeling complex dynamics.
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B Energy Market Dynamics

B.1 Energy Markets and the Dispatch Problem

Historically, the energy market comprised three principal components: power producers (e.g., power
plants), power consumers (industrial and residential), and the ISO, responsible for market manage-
ment and coordination. The producers typically used conventional coal-based generation and were
either units under the full control of the ISO, or independent units that participated in the market but
that were fully regulated, i.e., bound by production agreements made with the .

A typical structure of a market was based on the day-ahead market in which the ISO predicts the
following day’s power demand and issues a dispatch, an offline production schedule to each producer
while considering operational constraints and generation costs. The dispatch traditionally divides the
24-hour planning horizon into 48 discrete half-hour time periods. In addition to the generation of the
predicted, or nominal demand, the ISO also manages the reserve, which sets a backup production
capability for each time step. If in real-time the controlled production determined by the dispatch is
not enough to cover the realized demand, reserves, which are more flexible but also more expensive
and polluting, are activated by an online controller. Producers are then compensated based on the
System Marginal Price (SMP) mechanism, which is calculated as the marginal cost of producing the
final unit of energy required to satisfy system demand, based on the least-cost dispatch solution (See
Appendix C). For the purposes of this work we abstract the dispatch details, and consider only the
total amount of power produced at each timestamp, as well as its total cost to the ISO with no regard
to the inner structure of the dispatch.

Recent reforms in the power market have introduced independent grid-edge market players, which
we denote as GEAgents, including private electric companies and smart homes. These new market
players possess the ability to produce electricity, manage internal consumption, and utilize power
storage capabilities. Unlike traditional controlled producers, they are not legally required to adhere
to dispatch instructions and may buy from or sell to the grid at will to maximizing their profits. We
assume GEAgents are rational, so the natural way for the ISO to induce desired behaviors of the
market players is via price signals. In real-time operations, the ISO manages the grid by buying
electricity from power producers and selling it to consumers. The selling price at time t, denoted as
ξt, and the feed-in price, denoted as ϕt, are the primary tools for market control.

The GEAgent models are essential for the ISO’s planning, as they capture participant strategies
and behaviors that influence the grid’s supply-demand balance. These models enable the ISO to
design pricing mechanisms, such as sell prices and feed-in tariffs, to align player incentives with
grid stability and efficiency. We classify market player behaviors in increasingly realistic environ-
ments, starting with simpler cases to build intuition before progressing to more complex scenar-
ios, as the problems share similar structures. In correspondence with current energy markets, each
GEAgent operates a Production-Consumption-Storage (PCS) unit, which can produce (e.g., via pv),
consume (e.g., via electrical appliances) and store (e.g., via a battery) energy. It aims at maximizing
its profit over the period in question.

To determine dispatch and pricing, the ISO utilizes demand predictions for the subsequent 24 hours,
denoted D̂t, where t represents the time interval. Based on these predictions, the ISO determines
a scheduled production dispatch ∆t for each timestamp. It also determines for each time step how
much reserve to guarantee, specifying the standby capacity to maintain in response to unexpected
demand surges or generation outages. Reserve energy enhances grid reliability but can be highly
polluting when supplied by fossil-fuel generators, which operate inefficiently and emit more green-
house gases.

In real-time operations, the ISO manages the grid by buying electricity from power producers and
selling it to consumers. The selling price at time t, denoted as ξt, and the feed-in price, denoted as
ϕt, are the primary tools for market control.
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The electricity market includes n independent agents representing the GEAgents, indexed by i ∈
{1, . . . , n}, who operate autonomously to maximize their profits. The ISO has no direct control
over these agents, and their interactions are governed by market dynamics, which are influenced by
various regulations. These regulations, coupled with non-economic factors, significantly shape the
cost structure of the system. However, the ISO can compute costs based on relevant inputs and adapt
its computational models dynamically to reflect changes in regulations or legislation.

In this work, we suggest using RL-to model the market participants and ways for the ISO to control
the dispatch ∆ and price signals ξ, ϕ to minimize the total costs for the ISO (thus the taxpayers)
while satisfying the demand. A key challenge is that this needs to be done while taking market
players’ strategic behavior into account.

To support optimizing the ISO’s behavior, we analyze how market players react to prices in increas-
ingly complex settings, from deterministic to stochastic and strategic environments.

B.2 Market Participants

The GEAgent models are essential for the ISO’s planning, as they capture participant strategies
and behaviors that influence the grid’s supply-demand balance. These models enable the ISO to
design pricing mechanisms, such as sell prices and feed-in tariffs, to align player incentives with
grid stability and efficiency. We classify market player behaviors in increasingly realistic environ-
ments, starting with simpler cases to build intuition before progressing to more complex scenar-
ios, as the problems share similar structures. In correspondence with current energy markets, each
GEAgent operates a Production-Consumption-Storage (PCS) unit, which can produce (e.g., via PV),
consume (e.g., via electrical appliances) and store (e.g., via a battery) energy. It aims at maximizing
its profit over the period in question.

Having settled on market players’, we proceed to present the task that the ISO faces. The ISO is
tasked with meeting electricity demand at all times. To achieve this, the ISO controls the dispatch
of electricity generation. While the specifics of which power plant generates how much power
are abstracted, the total scheduled electricity production is determined for each time step, ensuring
sufficient supply to meet anticipated demand.

The ISO aims to maximize its utility, which may include balancing grid supply and demand, mini-
mizing operational costs, or promoting renewable integration.

The total cost incurred by the ISO increases marginally due to the characteristics of the SMP mech-
anism. The SMP prioritizes electricity from the cheapest sources first, resulting in higher costs for
additional megawatts of production as cheaper resources are exhausted. Additionally, sharp changes
in production across time steps introduce significant costs due to ramp-up and cool-down constraints
of power plants. These transitions strain generation units, necessitating increased operational ex-
penses. The ISO incorporates these costs into pricing to discourage abrupt fluctuations, maintaining
grid stability.

To influence the behavior of market players, the ISO offers sell prices and feed-in tariffs. These
prices act as economic signals, encouraging players to adjust their electricity consumption, produc-
tion, and storage behaviors in alignment with grid stability and efficiency goals. By strategically
setting these prices, the ISO aims to optimize the overall operation of the electricity market under a
hybrid public-private model.

This is no longer true: In what follows, we examine three dimensions of complexity: (1) the nature
of demand, encompassing three levels—deterministic and known, stochastic, and strategic, (2) the
decision types, including buy/sell and dispatch, and (3) the decision horizon; are decisions made
offline (for the entire 24-hour horizon), or online (e.g., every 30 minutes). what are the decision
horizons we consider what are the decision horizons we consider

In what follows, we examine three levels of complexity that are associated with the nature and
pattern of the demand (consumption): deterministic and known, stochastic, and strategic.
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B.3 Deterministic Setting

As a first step, we consider a a fully deterministic environment, where the demand is fully known in
advance and the prices are set in advance (at time 0 of every day).

• Storage capacity: Smax.

• Maximum charging rate: Cmax.

• Maximum discharging rate: Dmax.

• Initial storage state of charge: σ0.

• Selling price levels ξt set by the ISOfor each time interval and known in advance to the player.

• Feed-in prices ϕt set by the ISOand known in advance to the player as well.

Since all information is given in advance, the GEAgent can compute optimal policies at time-step
0. A GEAgent must decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every

timestamp t to maximize its total revenue under its operational constraints. Formally:

max

T∑
t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)

(Deterministic GEAgent Objective)

Subject to:

1. Power Balance Constraints:
At each time t, the power bought or sold must meet the demand, including charging:

∀t : P b
t − P s

t = lt + (σt − σt−1) (C1)

Here we assume a lossless battery.
2. Storage Capacity Constraints:

The storage level must remain within capacity limits:

∀t : 0 ≤ σt ≤ Smax (C2)

3. Charging and Discharging Rate Constraints:

∀t : −Dmax ≤ P b
t − (lt + P s

t ) ≤ Cmax (C3)

4. Non-Negativity Constraints:

∀t : P b
t , P

s
t , σt ≥ 0 (C4)

5. No Simultaneous Charging and Discharging:

∀t : P b
t · P s

t = 0 (C5)

distinguish here between the producers and the players distinguish between fixed parameters and
inputs

ISO In the deterministic case, at the start of the planning horizon (timestamp 0), the ISO receives
the following inputs:

• Nominal? Demand Dt for all timestamps in the horizon.

• Reserve activation cost Creserve.

• The number of GEAgents N participating in the market.

• The maximum discharge rates of each market player Di
max.
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Based on this information, the ISO determines the scheduled amount of production ∆t and prices
ξt(·), ϕt(·) for all timestamps t ∈ [T ] ahead. Then, at each timestamp t market players can respond
to the prices by buying or selling power to the grid, contributing a net power demand P net

t . If the net
demand after accounting for P net

t exceeds the scheduled production ∆t, the ISO activates reserves
or peaker plants to cover the shortfall. If the market players are assumed to be rational, and the
ISOmakes the prices public at t = 0, the market players are solving the deterministic problem as
presented in Section B.3, and the ISO can run the simulation of the market players to optimize the
dispatch and the price signal.

The ISO aims to minimize its total costs,

minC total = min

[
Cdispatch +

T∑
t=1

Conline
t

]
(ISO objective)

where:

• Cost of the Dispatch Schedule (Cdispatch):

Cdispatch =

T∑
t=1

C(∆t) +

T∑
t=2

ρ(∆0, . . . ,∆t),

where ρ is a penalty function that can be tailored to various performance criteria, e.g., for penal-
izing sharp changes in dispatch levels between consecutive periods.

• Online Cost per Timeframe (Conline
t ): The sum of the market cost and the reserve activation cost:

Conline
t = Cmarket

t + C reserve
t (max(0, Dt − P net

t −∆t)),

Notably, we assume that all demand must be met, a constraint that can be relaxed if needed.

• Market Cost per Timeframe (Cmarket
t ): Payments to market players for the power they sell to

the grid net of the revenue from selling the power to market players:

Cmarket
t =

∑
i

ϕ
(i)
t (s

(i)
t )−

∑
i

ξ
(i)
t (b

(i)
t )

where ϕ
(i)
t is the feed-in tariff offered to player i at time t, and s

(i)
t is the amount of power sold

by player i to the grid.

Note that this problem is unconstrained, since we assume that when the demand is not met by
the production and the market, the ISO operates the reserves. The incentive to meet the demand
using nominal generation is encapsulated ? in the typically high costs associated with activating the
reserves.

B.4 Accounting for Stochasticity

Real-world systems are inherently stochastic, requiring models to account for uncertainty. Key
sources of randomness include:

• Internal load variability,
• Renewable production fluctuations,
• Price changes driven by external demand uncertainty.

All these may lead to an inability to exactly predict the demand that will be needed.

From the point of view of the GEAgent, the main source of uncertainty can come from its To address
this, the objective function is reformulated as:
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maxElt,ξt

[
T∑

t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)]

. (Stochastic Player Objective)

At each timestamp t, the player observes the realizations of lt, gt, and ξt before deciding on P b
t , and

P s
t .

In a stochastic environment, the distributions of lt, gt, and ξt may be unknown. If this is the case, the
player can estimate these distributions from historical data and observations using machine learning
methods to improve decision-making under these forms of uncertainty.

Figure out how we can deal with stochastic environments from the side of the ISO The main change
becomes the uncertainty about the demand

In this case, we have two options, depending on when decisions need to be made.

B.5 Accounting for Load Flxibility and Strategic Demand

So far, we considered settings in which all participants were aiming to maximize their revenue (and
minimize cost) while considering the deterministic or stochastic information that is received at time
step 0, i.e., at the beginning of the daily episode. This meant that prices and dispatch decisions
are made at the start of each episode, with the real-time decisions limited to reserve activation or
curtailment (energy discharge) actions in response to unpredictable demand and the requirement to
maintain stability.

In modern energy systems, demand is not only stochastic but also strategic. This is because grid-edge
agents can intelligently manage the operation of devices and distributed energy resources (DERs),
in response to system-level signals, such as prices, frequency, or voltage. This load flexibility is
reshaping energy markets by introducing new ways by which grid-edge agents can contribute to the
efficient and stable operation of the network (Charbonnier et al., 2022; Zhu et al., 2023). However,
this shift also introduces challenges such as increased system complexity, uncertainty in demand
forecasting, and the need for regulatory mechanisms to ensure fair and reliable participation.

In this extended setting, the ISO aims to maximize its utility, but needs to determine the selling price
ξt and feed-in prices ϕt for each time step t according to the demand Dt at time t. The key challenge
is that Dt now includes the GEAgents ability to sell, buy, and store power. From the perspective
of the GEAgent, the price signals ξt(P

s
t , P

b
t , . . .) represent the exogenous prices set by the ISO ,

which depend on the player’s sales P s
t and purchases P b

t as well as other variables. This coupling
results in a feedback mechanism where the player’s actions influence the prices, and the prices in
turn affect the player’s actions. This introduces a game-theoretic dimension to the problem that the
market player faces, where the player’s decisions on P b

t , and P s
t are influenced by the ISO’s pricing

strategy and vice versa.

It is important to clarify what the possibilities are that are available to the ISO with regard to the
dispatch and pricing decisions it can make. This is not only a technical question, but a regulatory
and policy-making question that needs to be accounted for. Two common approaches are day-ahead
and dynamic pricing.

Formally, the GEAgent’s input includes timesteps t = 1, 2, . . . , T GEAgent’s load: lt, storage
capacity: Smax, maximum charging rate: Cmax, maximum discharging rate: Dmax, current storage
state of charge: σ0 as defined in sections B.3 and B.4. The key difference is that now the selling
price ξt and feed-in prices ϕt can be set by ISOin advance or in a dynamic way, in response to the
market state.

The objective is now:
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max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
. (Strategic Player Objective)

The ISO at the start of the planning horizon (timestamp 0), the ISOreceives the following inputs:

• The cost function of the production C(∆t) for each t.

• Predicted demand D̂t for all timestamps in the horizon.

• Reserve activation cost per unit Creserve.

• The number of market players N participating in the market.

• The maximum discharge rates of each market player Di
max.

Based on this information, the ISO determines the scheduled amount of production ∆t for each
timestamp in the horizon. Here, it is crucial to distinguish between nominal and flexible demand
components. Nominal demand, denoted D refers to the exogenous, inelastic portion of load at
each grid node that remains unaffected by local control strategies, real-time market incentives, or
variations in renewable generation. In contrast, flexible demand, denoted l, refers to the portion of
demand (electricity consumption) that can be adjusted in time, quantity, or pattern in response to
external signals—such as price changes, grid conditions, or availability of renewable energy.

The objective of the ISO now becomes

minED,l

[
Cdispatch +

T∑
t=1

Conline
t

]
(O2)

Since it is impossible for the ISO to precisely model market players’ demand without considering its
strategic nature, optimization methods that are appropriate for deterministic and stochastic settings
won’t work here. Thus, as we specify in the next section, we model the market using RL.

B.6 Deterministic Setting

As a first step, we consider a a fully deterministic environment, where the demand is fully known in
advance and the prices are set in advance (at time 0 of every day).

• Storage capacity: Smax.

• Maximum charging rate: Cmax.

• Maximum discharging rate: Dmax.

• Initial storage state of charge: σ0.

• Selling price levels ξt set by the ISOfor each time interval and known in advance to the player.

• Feed-in prices ϕt set by the ISOand known in advance to the player as well.

Since all information is given in advance, the GEAgent can compute optimal policies at time-step
0. A GEAgent must decide how much power to buy from (P b

t ), and sell to (P s
t ) the grid at every

timestamp t to maximize its total revenue under its operational constraints. Formally:

max

T∑
t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)

(Deterministic GEAgent Objective)

Subject to:

1. Power Balance Constraints:
At each time t, the power bought or sold must meet the demand, including charging:
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∀t : P b
t − P s

t = lt + (σt − σt−1) (C1)

Here we assume a lossless battery.
2. Storage Capacity Constraints:

The storage level must remain within capacity limits:

∀t : 0 ≤ σt ≤ Smax (C2)

3. Charging and Discharging Rate Constraints:

∀t : −Dmax ≤ P b
t − (lt + P s

t ) ≤ Cmax (C3)

4. Non-Negativity Constraints:

∀t : P b
t , P

s
t , σt ≥ 0 (C4)

5. No Simultaneous Charging and Discharging:

∀t : P b
t · P s

t = 0 (C5)

distinguish here between the producers and the players distinguish between fixed parameters and
inputs

ISO In the deterministic case, at the start of the planning horizon (timestamp 0), the ISOreceives
the following inputs:

• Nominal? Demand Dt for all timestamps in the horizon.

• Reserve activation cost Creserve.

• The number of GEAgents N participating in the market.

• The maximum discharge rates of each market player Di
max.

Based on this information, the ISO determines the scheduled amount of production ∆t and prices
ξt(·), ϕt(·) for all timestamps t ∈ [T ] ahead. Then, at each timestamp t market players can respond
to the prices by buying or selling power to the grid, contributing a net power demand P net

t . If the net
demand after accounting for P net

t exceeds the scheduled production ∆t, the ISO activates reserves
or peaker plants to cover the shortfall. If the market players are assumed to be rational, and the
ISO makes the prices public at t = 0, the market players are solving the deterministic problem as
presented in Section B.3, and the ISO can run the simulation of the market players to optimize the
dispatch and the price signal.

The ISO aims to minimize its total costs,

minC total = min

[
Cdispatch +

T∑
t=1

Conline
t

]
(ISO objective)

where:

• Cost of the Dispatch Schedule (Cdispatch):

Cdispatch =

T∑
t=1

C(∆t) +

T∑
t=2

ρ(∆0, . . . ,∆t),

where ρ is a penalty function that can be tailored to various performance criteria, e.g., for penal-
izing sharp changes in dispatch levels between consecutive periods.
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• Online Cost per Timeframe (Conline
t ): The sum of the market cost and the reserve activation cost:

Conline
t = Cmarket

t + C reserve
t (max(0, Dt − P net

t −∆t)),

Notably, we assume that all demand must be met, a constraint that can be relaxed if needed.

• Market Cost per Timeframe (Cmarket
t ): Payments to market players for the power they sell to

the grid net of the revenue from selling the power to market players:

Cmarket
t =

∑
i

ϕ
(i)
t (s

(i)
t )−

∑
i

ξ
(i)
t (b

(i)
t )

where ϕ
(i)
t is the feed-in tariff offered to player i at time t, and s

(i)
t is the amount of power sold

by player i to the grid.

Note that this problem is unconstrained, since we assume that when the demand is not met by
the production and the market, the ISO operates the reserves. The incentive to meet the demand
using nominal generation is encapsulated ? in the typically high costs associated with activating the
reserves.

B.7 Accounting for Stochasticity

Real-world systems are inherently stochastic, requiring models to account for uncertainty. Key
sources of randomness include:

• Internal load variability,
• Renewable production fluctuations,
• Price changes driven by external demand uncertainty.

All these may lead to an inability to exactly predict the demand that will be needed.

From the point of view of the GEAgent, the main source of uncertainty can come from its To address
this, the objective function is reformulated as:

maxElt,ξt

[
T∑

t=1

(
ϕt(P

s
t )− ξt(P

b
t )
)]

. (Stochastic Player Objective)

At each timestamp t, the player observes the realizations of lt, gt, and ξt before deciding on P b
t , and

P s
t .

In a stochastic environment, the distributions of lt, gt, and ξt may be unknown. If this is the case, the
player can estimate these distributions from historical data and observations using machine learning
methods to improve decision-making under these forms of uncertainty.

Figure out how we can deal with stochastic environments from the side of the ISO The main change
becomes the uncertainty about the demand

In this case, we have two options, depending on when decisions need to be made.

B.8 Accounting for Load Flxibility and Strategic Demand

So far, we considered settings in which all participants were aiming to maximize their revenue (and
minimize cost) while considering the deterministic or stochastic information that is received at time
step 0, i.e., at the beginning of the daily episode. This meant that prices and dispatch decisions
are made at the start of each episode, with the real-time decisions limited to reserve activation or
curtailment (energy discharge) actions in response to unpredictable demand and the requirement to
maintain stability.

In modern energy systems, demand is not only stochastic but also strategic. This is because grid-edge
agents can intelligently manage the operation of devices and distributed energy resources (DERs),
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in response to system-level signals, such as prices, frequency, or voltage. This load flexibility is
reshaping energy markets by introducing new ways by which grid-edge agents can contribute to the
efficient and stable operation of the network (Charbonnier et al., 2022; Zhu et al., 2023). However,
this shift also introduces challenges such as increased system complexity, uncertainty in demand
forecasting, and the need for regulatory mechanisms to ensure fair and reliable participation.

In this extended setting, the ISO aims to maximize its utility, but needs to determine the selling price
ξt and feed-in prices ϕt for each time step t according to the demand Dt at time t. The key challenge
is that Dt now includes the GEAgents ability to sell, buy, and store power. From the perspective
of the GEAgent, the price signals ξt(P

s
t , P

b
t , . . .) represent the exogenous prices set by the ISO ,

which depend on the player’s sales P s
t and purchases P b

t as well as other variables. This coupling
results in a feedback mechanism where the player’s actions influence the prices, and the prices in
turn affect the player’s actions. This introduces a game-theoretic dimension to the problem that the
market player faces, where the player’s decisions on P b

t , and P s
t are influenced by the GSO’s pricing

strategy and vice versa.

It is important to clarify what the possibilities are that are available to the ISO with regard to the
dispatch and pricing decisions it can make. This is not only a technical question, but a regulatory
and policy-making question that needs to be accounted for. Two common approaches are day-ahead
and dynamic pricing.

Formally, the GEAgent’s input includes timesteps t = 1, 2, . . . , T GEAgent’s load: lt, storage
capacity: Smax, maximum charging rate: Cmax, maximum discharging rate: Dmax, current storage
state of charge: σ0 as defined in sections B.3 and B.4. The key difference is that now the selling
price ξt and feed-in prices ϕt can be set by ISOin advance or in a dynamic way, in response to the
market state.

The objective is now:

max
P b

t ,P
s
t

Elt,gt

[
T∑

t=1

(
ϕt(P

s
t , P

b
t , . . .)− ξt(P

s
t , P

b
t , . . .)

)]
. (Strategic Player Objective)

The ISO at the start of the planning horizon (timestamp 0), the ISOreceives the following inputs:

• The cost function of the production C(∆t) for each t.

• Predicted demand D̂t for all timestamps in the horizon.

• Reserve activation cost per unit Creserve.

• The number of market players N participating in the market.

• The maximum discharge rates of each market player Di
max.

Based on this information, the ISO determines the scheduled amount of production ∆t for each
timestamp in the horizon. Here, it is crucial to distinguish between nominal and flexible demand
components. Nominal demand, denoted D refers to the exogenous, inelastic portion of load at
each grid node that remains unaffected by local control strategies, real-time market incentives, or
variations in renewable generation. In contrast, flexible demand, denoted l, refers to the portion of
demand (electricity consumption) that can be adjusted in time, quantity, or pattern in response to
external signals—such as price changes, grid conditions, or availability of renewable energy.

The objective of the ISO now becomes

minED,l

[
Cdispatch +

T∑
t=1

Conline
t

]
(Stochastic ISO Objective)
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Since it is impossible for the ISOto precisely model market players’ demand without considering its
strategic nature, optimization methods that are appropriate for deterministic and stochastic settings
won’t work here. Thus, as we specify in the next section, we model the market using RL.

C SMP

A typical structure of a market was based on the day-ahead market in which the ISO predicts the
following day’s power demand and issues a dispatch, an offline production schedule to each producer
while considering operational constraints and generation costs. The dispatch traditionally divides the
24-hour planning horizon into 48 discrete half-hour time periods. In addition to the generation of
the predicted or nominal demand, the ISO also manages the reserve, which sets a backup production
capability for each time step. If in real-time the controlled production determined by the dispatch is
not enough to cover the realized demand, reserves, which are more flexible but also more expensive
and polluting, are activated by an online controller. Producers are then compensated based on the
System Marginal Price (SMP) mechanism, which is calculated as the marginal cost of producing the
final unit of energy required to satisfy system demand, based on the least-cost dispatch solution.

Formally, let:

• Pt be the total power production at time t,
• Dt be the total system demand at time t,
• C(Pt) be the cost function for production.

The SMP at timestamp t is defined as:

κt =
∂C(Pt)

∂Pt

∣∣∣∣∣
Pt=Dt

,

where κt represents the marginal cost of meeting the demand Dt using the least-cost generation
defined by the merit-order curve.

In electricity markets, the SMP clears the market by equating supply and demand while satisfying
the economic dispatch problem:

min
Pt

C(Pt) subject to Pt = Dt.

The SMP ensures that all dispatched generators receive the same price, incentivizing efficiency and
cost-reflective bidding in competitive electricity markets. Note that SMP is non-decreasing with
respect to the amount of power produced, meaning higher power demand usually results in a higher
price per kWh. Consequently, reducing peak consumption is critical for lowering overall costs in the
electricity market.

D Dynamic Programming Formulation for a Storage Only PCS-unit Agent

The dynamic programming formulation for the optimization problem for storage control is given as:

• State Variables:
– Current time step t,
– Current storage level σt.

• Decision Variables:
– Energy bought P b

t ,
– Energy sold P s

t .
• Transition Function:

σt+1 = σt + (P b
t − lt − P s

t ).



RLC Workshop on RL4RS 2025

• Objective Function: The immediate reward at each time step is:

r(P b
t , P

s
t ) = ϕt(P

s
t )− ξt(P

b
t ).

The cumulative reward is maximized over all time steps.
• Recurrence Relation:

V (t, σt) = max
P b

t ,P
s
t

[
r(P b

t , P
s
t ) + V (t+ 1, σt+1)

]
,

subject to the constraints.

Similar methods adapted for stochastic optimization could be employed for the case where distribu-
tion is either known or can be approximated from existing data. In the case of the stochastic demand,
there may even be an ability to compute a contingent policy that would deal with the stochastic sig-
nals.

E Quadratic Pricing

This example demonstrates the possible impact of price intervention on market dynamics. We as-
sume deterministic setting for the ISOfor clarity, but the same logic can be applied in the non-
deterministic scenario. Drawing from the literature (Papadaskalopoulos & Strbac, 2015), we apply
superlinear and sublinear pricing adjustments to selling and feed-in tariffs, respectively.

The selling price incorporates a superlinear component:

ξt = λbuy ∗ P b
t + β ∗ [P b

t ]
2,

where λbuy is a baseline price. Similarly, the feed-in price adds a sublinear adjustment:

ϕt = λfeedin ∗ P s
t + γ ∗

√
P s
t ,

where λfeedin is the baseline feed-in price.

Once per episode, at t = 0, the ISO commits to six coefficients (α0, α1, α2, β0, β1, β2) that instan-
tiate the quadratic tariff πbuy/sell(x). These coefficients stay fixed for the ensuing T steps; dispatch
tweaks δt may still follow online if enabled.

Baseline Scenario Assume the demand structure as described by Table 2 and ρ = 0.3. Also
assume a single market player, operating a 30 kWh battery with charging/discharging limits of
30 kWh without internal load or generation capabilities. Under static prices (λbuy = λfeedin =
Baseline price, γ = β = 0), the optimal solution for the player is to charge fully at t = 2 and
discharge fully at t = 5, yielding a profit of 4.5$. Given this behavior, the ISO pays a cost of
138.75$.

Timestamp Baseline Price ($) Base Demand (kWh)
1 0.40 40
2 0.35 35
3 0.40 40
4 0.45 45
5 0.50 60
6 0.45 45

Table 2: Baseline demand and prices
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Impact of Price Intervention Now assume the ISO is willing to implement the intervention, and
to set non-linear price signals. The ISO optimizes the price parameters, setting β = 0.002 and
γ = 0.455 by solving for the objective function described in Equation ISO objective. This price
adjustment incentivizes the player to redistribute charging and discharging activities, as the player
solves the problem described in Section B.3. The optimal strategy for the player is as shown in Table
2, resulting in a higher profit of 6.52$, including a subsidy from the ISOto the player (via sublinear
feed-in price component) of 3.27$. For the ISOtotal costs are reduced to 118.21$ with the subsidy
included. The intervention eliminates inefficiencies, benefiting both the ISOand the market player.

This example highlights the potential of price intervention to align market players’ behavior with
system-level efficiency goals. Furthermore, it demonstrates that the price intervention is not a zero-
sum game, and some interventions can be beneficial for all parties involved.

Figure 1: Original demand

Figure 2: Linear Prices

Figure 3: Quadratic Charging, Sublinear Discharging

Figure 3: Non-linear prices implementation

However, What is described here is just one price intervention type possible. In general, the
ISOwould explore the space of all possible price interventions to find the optimal one. We sug-
gest searching in this space using RL methods.

F Day-Ahead Pricing as a Bandit Problem

At time 0, the ISO fixes prices in advance for all t, and receives a reward after the 48-timestep
episode ends. This makes the ISO decide about the prices once per episode, which matches the
dispatch decision. This turns the problem into a (very complex) bandit problem.

The bandit problem for dispatch and pricing in an electricity market is defined by the tuple:

B = ⟨A,R,P, T ⟩

where:

• A = {(d, p) | d ∈ D, p ∈ P} is the set of actions, where each action is a pair (d, p):
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– d ∈ D: Dispatch decision representing the amount of power to produce or allocate at a given
time.

– p ∈ P: Price levels, including selling prices and feed-in tariffs offered to market participants.
• R(d, p) is the reward associated with selecting the action (d, p). Here, the reward is defined as the

negative cost incurred by applying (d, p), such that:

R(d, p) = −C(d, p),

where C(d, p) represents the total operational cost, including dispatch costs, market costs, and
reserve activation costs.

• P(d, p) denotes the probability distribution governing the outcomes (e.g., market responses, de-
mand realization) associated with the action (d, p).

• T is the time horizon, representing the total number of decision rounds.

At each time step t ∈ {1, 2, . . . , T}, the agent selects an action (dt, pt) ∈ A, observes the resulting
market dynamics and incurred cost C(dt, pt), and receives a reward R(dt, pt) = −C(dt, pt).

The objective is to minimize the cumulative cost over the time horizon T , minimizing the cumulative
regret RT , defined as:

RT =

T∑
t=1

C(d∗, p∗)−
T∑

t=1

E[C(dt, pt)],

where (d∗, p∗) is the optimal dispatch and pricing policy that minimizes the expected cost:

(d∗, p∗) = arg min
(d,p)∈A

E[C(d, p)].

This formulation addresses the trade-off between exploration (testing new dispatch and pricing
strategies to learn their outcomes) and exploitation (applying strategies believed to minimize costs
based on current knowledge).

G The Energy Market as MARL

In modeling modern power systems using marl, it is essential to account for multiple interacting
perspectives. These include the physical constraints of the grid (e.g., stability limits), agent-level
decision processes under partial observability, and the heterogeneity of demand profiles encompass-
ing both nominal and flexible demand verify these are defined. Effective models must also incor-
porate market and pricing signals that influence agent behavior, and the temporal-spatial scalability
required for real-world deployment. While these considerations are crucial for realistically and ro-
bustly capturing decentralized control strategies in complex energy environments, they also pose
significant challenges to preserving the underlying Markovian structure that traditional agent-based
decision models rely on.

G.1 Formal Model

Through the lens of RL, the ISO aims to learn an optimal policy that balances overall system effi-
ciency with the mitigation of risk, such as insufficient power supply and grid instability. Simulta-
neously, market participants seek to maximize their individual utility in response to market signals,
subject to their own operational constraints and preferences. We formally model this decentral-
ized setting as a Markov Game (see Section 2), involving two types of agents: the ISO, and the
GEAgents.

An important characteristic of the setting we aim to model is that the state space, action space,
and reward functions are relatively straightforward to define. The complexity of solving this setting
arises from modeling the joint transition function: the next state of the system and its stability depend
on the actions performed by all agents.
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Modeling the ISO

• State Space S: Every time step t, typically representing a half-hour interval, the system state
is associated with a vector st ∈ S that specifies operational factors that may affect decision-
making. For the ISO this includes the system-level demand forecast D̂ for the specified horizon,
the system-level realized demand Dt for the current time step, supply capacities, storage states,
etc. It may also include factors that indicate the stability state of the system, for example, whether
the supply-demand balance is violated.

• Action Space A: The ISO actions include the dispatch directives ∆t that are given for each time
step t and setting the sell prices ξt(·) and buy prices ϕt(·) for each time step. In real-time the
ISO also activates reserves and curtails power if needed, but assume these actions are dictated by
the state and require no decision-making.

Importantly, we support two types of pricing dynamics. In a day-ahead pricing regime, the ISO-
makes the prices public at t = 0. In an online pricing setting, the ISO can dynamically set prices
in response to the market signal. We discuss several pricing mechanisms and their characteristic,
including the benefits of applying quadratic pricing, in Section 5.

• Reward Function R: The ISO’s reward integrates the economic efficiency and a risk measure to
account for potential adverse outcomes arising from strategic GEAgents such that:

R = −( Cdispatch + Conline
t ) (ISO objective)

Modeling the GEAgents

• State Space S: Each GEAgent is associated with a PCS-unit for which the state includes its local
information (e.g., state-of-charge) as well as the price signal advertised by the ISO.

• Action Space A: Modern GEAgents have significant decision-making autonomy, allowing them
to choose how much energy to store, consume, or sell based on their local goals, capabilities, and
constraints. In this work, we assume the GEAgent sees the current prices and its local state at
the start of each iteration before deciding how to act. Also, both generation and consumption are
non-controllable. Specifically, we only support generation via pv and consumption that is part of
the non-flexible load of the PCS-unit. This means that generation and production are exogenous
to the agent and are governed by a stochastic process, and the only decision variable is the charge
and discharge actions, which may have stochastic effects.

• Reward Function R: For each GEAgent i, the step-wise reward is the net cash flow obtained by
trading with the grid:

Ri
t = ϕt

(
P s
t , P

b
t

)
− ξt

(
P s
t , P

b
t

)
.

Maximising the cumulative sum of Ri
t over the horizon is equivalent to the strategic objective

stated in (Strategic Player Objective), but written here without the expectation or the explicit
time–index summation.

Joint Transition Function T : Influence of Multiple Agents: Unlike a single-agent MDP, the
Markov Game framework allows each agent’s choice (including how GEAgents respond to prices or
storage opportunities) to influence the next state. As mentioned above, the difficulty of modeling the
transition function is at the core of the challenge. In general, the transition function can be decoupled
into the state variables that are covered by the physical dynamics of the system. For example, when
a charge or discharge action is performed, the battery dynamics obey:

σt+1 = σt + ηc
[
at
]
+
∆t − η−1

d

[
−at

]
+
∆t,

if an attempted action would violate 0 ≤ SoC ≤ Bmax the short-fall or spillage is automatically
settled with the grid, and a penalty is incurred. Propagated effect of local decisions, e.g., those
solved with power flow.
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Perhaps the most challenging aspect stems from the strategic interactions of the agents. These strate-
gic decisions create a coupled system where each agent’s payoff depends on the actions of others. In
principle, the Markov Function T (st+1 | st, aISO

t , aPCS−unit
t ) must fold together physical power

flows, stochastic demand, renewables, battery chemistry and market clearing. Writing a closed-form
T that captures all these layers is hopeless. Instead, we created the Energy-Net simulator (Sec-
tion 4) maintain the physics and book-keeping, and we learn directly from roll-outs. This side-steps
the need for explicit modeling of the complex dynamics and allows extracting value functions and
policies using deep neural networks, rather than from first principles.

Episode As is typical in the day-ahead market, at the beginning of each episode (timestep t = 0)
the ISO receives the predicated demand D̂ for the next 48 half-hour intervals. It also receives the
production and reserve capacities of its controlled units, the prices of each generated unit, and other
information that might be relevant (i.e., weather forecast, special events, etc.). If day-ahead pricing
is applied, the ISO sets and advertises the ξt(·) and feed-in tariff ϕt(·) for the whole episode.

At each subsequent timestamp ( 1 ≤ t ≤ 48 ), the following sequence of events occurs:

1. The ISO observes the realized demand Dt.

2. If dynamic pricing is applied, the ISO sets the sell price ξt(·) and feed-in tariff ϕt(·) for timestamp
t.

3. The GEAgents strategically respond to the prices by buying or selling power to the grid.

4. If the net demand after accounting for the net power P net
t exceeds the scheduled production ( ∆t),

the ISO activates reserves (e.g., peaker plants) to cover the shortfall or curtails power to cover
overloads.

This iterative process continues until the end of the planning horizon. Both agents seek a stationary
(possibly stochastic) policy that maximizes their own long-term discounted accumulated reward.

H The Energy-Net Simulator

In spite of a variety of simulators that currently exist, there is no current framework that allows mod-
eling the complex structure we want to account for and that is designed to work with off-the-shelf
rl and marl methods. We therefore develop a novel simulator, Energy-Net4, that we will use to
examine our proposed solutions. Energy-Net is a modular, discrete–time simulator of a hybrid
electricity market. The environment we develop is flexible and adaptable, and can be used to accom-
modate different system configurations. At the core of the design of the software is a decoupling
between the physical dynamics of the electrical system and the strategic agents. Energy-Netis
built around a strict physics–agent split. A high-fidelity physical core advances loads, renewables,
batteries, and reserves, while the ISO and GEAgent interact only through a Gym-style step()
interface. This design (i) lets us plug in any off-the-shelf rl/marl algorithm without touching the
power-system code, (ii) isolates market rules in a single controller module, and (iii) ensures that
learned policies can affect the grid only via explicit levers-prices and dispatch tweaks, thus preserv-
ing physical realism while streamlining experimentation.

Building on the formal setting introduced in Section 3, Energy-Net instantiates the 24-hour day-
ahead electricity market. A single simulation episode therefore comprises T uniform intervals of
length ∆t (in our experiments T=48 and ∆t=30min), together covering one 24-hour operational
horizon. At each step t ∈ {1, . . . , T} the environment reveals the current forecast and grid state to
the agents, applies their actions, propagates the physical dynamics, and returns next-state observa-
tions and rewards through the standard Gym step interface.

4link to repo - removed to respect the blind review process
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H.1 Physical Layer

Demand. System demand at each step is modelled as

Dt = fseasonal(t) + εt,

where fseasonal(·) captures the deterministic daily profile and εt ∼ N
(
0, σ2

)
is zero-mean Gaussian

noise with user–configurable standard deviation σ.

GEAgent. Every PCS-unit hosts a single–block battery whose state of charge obeys

σt+1 = σt + ηc
[
at
]
+
∆t − η−1

d

[
−at

]
+
∆t,

subject to 0 ≤ σt ≤ Smax and |at| ≤ Pmax. Here at is the charge (> 0) / discharge (< 0) power,
ηc, ηd are efficiency factors, and Pmax the power limit.

Besides storage, each unit experiences stochastic local load lt and PV generation gt, drawn from
configurable distributions. The net exchange with the grid is therefore

P net
t = at + gt − lt.

Reserve. If ∆t + P net
t < Dt, spinning reserve is activated and the simulator logs the penalty

C reserve
t

(
Dt −∆t − P net

t

)
, whose functional form and coefficients are user-configurable.

H.2 Market Layer

At each step t the ISO broadcasts a buy tariff ϕt(·) (applied to energy flowing into storage) and
a sell tariff ξt(·) (applied to energy flowing out of storage). Energy-Net supports two pricing
regimes:

a) Online linear. The operator chooses two bounded scalars λbuy
t , λsell

t and sets

ϕt(P ) = λbuy
t , ξt(P ) = λsell

t .

b) Quadratic (super-/sub-linear). At the beginning of each episode (t = 0) the operator
fixes four coefficients

{
λbuy, λfeedin, β, γ

}
; they remain unchanged for all subsequent steps.

Power-dependent tariffs are then computed with exactly the same notation used in Section 5:

ξt = λbuy P b
t + β

[
P b
t

]2
, (1)

ϕt = λfeedin P s
t + γ

√
P s
t . (2)

Here β adds a super-linear surcharge to purchases, whereas γ grants a sub-linear bonus on
injections. Optional real-time dispatch perturbations δt can still be issued on top of these
pre-committed price curves.

H.2.1 Agent Interfaces

ISO observations. At each step t the operator receives (t, D̂t, P̂
net
t ), where the hat denotes a

one–step-ahead forecast of the aggregated exchange of all PCS-units.

PCS observations. Every storage unit observes the tuple (t, ξt, ϕt, σt).

ISO actions.

• Online linear. Set the instant tariff pair (ξt, ϕt) ( + optional dispatch tweak δt).

• Quadratic (super-/sub-linear). Commit the coefficient quadruple (λbuy, λfeedin, β, γ) that parame-
terises; these remain fixed for the whole episode.
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PCS action. A single continuous decision at ∈ [−Dmax, Cmax] interpreted as charge [at > 0] or
discharge [at<0].

H.2.2 Reward Structure

Per-step rewards follow the definitions already introduced in Section B.4.

H.2.3 Multi–Agent Execution

Energy–Net wraps both agents in a single multi–agent environment that extends the GYMNA-
SIUM interface (Towers et al., 2024). step(...) consumes a dictionary of actions and re-
turns observation, reward, and termination tuples keyed by agent identity. Internally, a unified
EnergyNetController advances the simulation in the following sequential order:

1. Price setting — the ISOchooses tariffs (and, if enabled, dispatch).

2. Battery control — the PCS-unitresponds with its charge or discharge command.

3. Energy exchange — supply, demand, and storage flows are balanced; any shortfall triggers
spinning reserve.

4. State update and reward — physical states, SoC, and financial ledgers are updated, and rewards
are computed for both agents.

This integrated design eliminates manual data transfer between separate environments and exposes
consistent, step–level metrics for training and evaluation. Notably, additional assets — renewables,
alternative storage chemistries, custom reward definitions — can be introduced by registering new
modules that comply with the interfaces above; no modification of the core simulation loop is re-
quired.

I Evaluation Setup

Table 3: Scenario matrix used throughout Section 6. Columns 2–3 describe the ISO policy elements;
column 4 the PCS. “Learned” means the dispatch network is frozen from the previous scenario while
the remaining degrees of freedom are (re-)trained with TD3.

ID ISO pricing ISO dispatch PCS behaviour

Baseline N/A Equal to predicted demand N/A
ISO-Dispatch N/A Learned N/A

ISO-L Online linear Learned (prior S2) Deterministic / fixed
ISO-Q Quadratic Learned (prior S2) Deterministic / fixed

Joint-Storage-L Online linear Learned (prior S3) Learned
Joint-Storage-Q Quadratic Learned (prior S3) Learned

Joint-PCS-L Online linear Learned (prior S4) Learned + intrinsic load/production
Joint-PCS-Q Quadratic Learned (prior S4) Learned + intrinsic load/production

Global scenario parameters (all baselines).

• Demand pattern: sinusoidal

Dt = L0 + A cos
(

2π
P (kt+ ϕ)

)
with base load L0 = 150MWh, amplitude A = 50MWh, interval multiplier k = 8, phase
shift ϕ = 5, period divisor P = 24.
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Table 4: Episode-total cost and energy breakdown across all evaluated scenarios (see Table 3 for
scenario definitions).

Scenario Dispatch Reserve PCS-unit Exchange

Cost [$] Energy [MWh] Cost [$] Energy [MWh] Energy [MWh]

Baseline 720 000 ± 10 7 200 ± 0.1 62 400 ± 30 208 ± 0.1 0

ISO-L 728 235.04 ± 5 089.24 7 282.34 ± 50.89 52 815 ± 5 721 176.05 ± 19.07 800 ± 0
ISO-Q 750 698.08 ± 3 502.32 7 506.98 ± 35.02 36 321 ± 1 134 121.07 ± 3.78 800 ± 0

Joint-Storage-L 812 603.1 ± 1 071.45 8 126.13 ± 1.07 44 400 ± 282 148 ± 0.94 0
Joint-Storage-Q 812 621.48 ± 1 012.64 8 126.21 ± 1.01 44 400 ± 318 148 ± 1.06 0

Joint-PCS-L 732 244.02 ± 3 602.57 7 322.44 ± 36.02 50 541 ± 1 242 168.47 ± 4.14 442.14 ± 9.61
Joint-PCS-Q 745 062.53 ± 343.37 7 450.62 ± 36.43 35 100 ± 612 117 ± 2.04 324 ± 8.40

• Dispatch energy price: $100 per MWh.

• Reserve energy price: $300 per MWh.

• Forecast-error noise (prediction error): σ = 10MWh.

For each interval t we first sample the realised demand Dt from the sinusoidal profile above. The
ISO observes only a noisy one-step-ahead prediction

D̂t = Dt + εt, εt ∼ N
(
0, σ2

)
.

Hence, each experiment measures both the forecast error and the operator’s reaction to it. Note that
even in the day-ahead pricing scenarios, where the six tariff coefficients chosen at t = 0 remain
fixed throughout the episode, the instantaneous ISO reward rISO

t is still computed at every step. This
preserves time-resolved feedback while respecting the regulatory commitment to day-ahead prices.

J Results

Local context re-activates storage.
Without an intrinsic load/production signal (Joint-Storage-L & Joint-Storage-Q) the
battery never exchange energy and the column PCS-unit Exchange in Table 4 is 0 MWh. Introducing
even a modest prosumer profile (Joint-PCS-L & Joint-PCS-Q) forces the unit to interact with
the grid, shifting about 442 MWh (linear tariff) or 324 MWh (quadratic tariff) over the 48-step
episode.

Reserve energy is largely supplanted.
The extra flexibility supplied by the battery allows the ISOto rely less on spinning reserve: the
quantity drawn falls from 176 MWh (ISO-L) and 121 MWh (ISO-Q) down to 117 MWh in the
quadratic joint scenario. Because reserve blocks are the most carbon and price intensive resource,
substituting them with stored energy directly improves both sustainability and operating margins.

Quadratic pricing yields the best balance.
Relative to the online linear tariff, the quadratic day-ahead curve cuts reserve usage by ≈30 % with
only 324 MWh of battery throughput (cf. 442 MWh under the linear scheme). The slight 128 MWh
increase in scheduled dispatch is more than offset by the smaller reserve call and lower battery wear.

J.1 Empirical Evaluation Process

J.1.1 Baseline – Fixed Day-Ahead Schedule

This baseline freezes the ISO’s day-ahead schedule at the one-step demand forecast and publishes
no real-time prices, so the PCS-unit stays idle. Across the 48 × 30 min horizon the grid delivers
7 200 MWh of scheduled generation and calls 208 MWh of spinning reserve, with zero battery
exchange. These figures serve as the reference for all percentage comparisons that follow.
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Figure 4: Energy, tariff, and cost traces for Joint-PCS-L. Top: dispatch vs. realised demand.
Middle: ISO buy/sell tariff trajectories. Bottom: cumulative cost distribution at episode end.

Figure 5: Energy-flow profile for Baseline. Top: dashed = forecast demand, solid red = realised
demand, blue bars = fixed day-ahead dispatch. Bottom: battery state of charge stays at 0 and buy/sell
prices coincide, confirming the absence of storage actions or dynamic tariffs.
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Figure 6: Energy–flow profile for ISO-Dispatch. Top: dashed = forecast demand, solid red =
realised demand, blue bars = adaptive dispatch. Bottom: battery state of charge remains at 0 and the
buy/sell tariff is flat, confirming that no storage actions or dynamic prices are present.

J.1.2 ISO-Dispatch – Adaptive Dispatch, No Price Signal

In this scenario the ISOcan revise the dispatch level every 30 minutes to track its demand forecast,
but it still publishes no real-time prices, so the PCS-unit remains idle. The configuration isolates the
pure value of feed-forward unit-commitment.

Relative to the fixed day-ahead baseline (Baseline):

• Scheduled generation rises from 7 200 MWh to 7 229 MWh +0.4 %.

• Reserve energy increases from 208 MWh to 249 MWh +19 %.

The extra 29 MWh of dispatch more than offsets the reserve reduction, showing that unit-
commitment alone cannot handle real-time variability efficiently when no flexible resource is avail-
able.

J.1.3 ISO-L – Linear Price Signal with Pre-defined PCS Actions

In this variant the ISO updates its dispatch each half-hour and also posts a real-time linear buy/sell
tariff. The PCS-unit , however, does not react; it follows an offline schedule that charges during the
early-morning valley and discharges at the evening peak. All storage moves are therefore determin-
istic and price-agnostic.

Key energy effects relative to the fixed baseline (Baseline):

• Battery activity - The preset cycle moves 800 MWh from low-demand to high-demand hours
(Table 4, last column).

• Scheduled generation - Dispatch rises from 7 200 MWh to 7 282 MWh (+1.1 %).
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• Reserve usage - Spinning reserve falls from 208 MWh to 176 MWh (–15 %).

The fixed cycle smooths the net load enough to cut reserve energy by 32 MWh, but that benefit is
partly offset by an 82 MWh increase in scheduled generation. In short, a pre-programmed battery
can firm the load profile, yet it is still less effective than a storage agent that responds optimally to
real-time prices.

J.1.4 ISO-Q – Quadratic Price Signal with Pre-defined PCS Actions

The ISO now publishes a quadratic buy/sell tariff (three coefficients per side) while the PCS-
unit still follows the fixed charge–discharge cycle of ISO-L.

Figure 7: Energy–flow profile for ISO-Q (quadratic prices, deterministic PCS).

Energy impact relative to the fixed baseline (Baseline):

• Battery activity - unchanged at 800 MWh (preset cycle).

• Scheduled generation - rises to 7 507 MWh, an increase of 307 MWh (+4.3

• Reserve usage - falls to 121 MWh, a 42% drop versus 208 MWh in Baselineand a further 31
% reduction compared with the linear-price case (ISO-L).

Quadratic pricing therefore achieves the lowest reserve energy of all pre-defined scenarios, even
though the battery does not react to prices, by letting the ISO shape its real-time tariff more aggres-
sively around the deterministic storage profile.

J.2 Joint-Storage-L and Joint-Storage-Q – TD3 ISO, Learned PCS

In these scenarios both agents are trained with TD3. The controls real-time prices and dispatch; the
PCS-unit is now free to learn its own policy. Regardless of whether the tariff is linear or quadratic,
the quickly discovers that posting the maximum allowed buy/sell price removes any profitable
arbitrage. The learned PCS-unit therefore chooses to stay idle, and the battery never moves energy.
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Figure 8: Energy–flow profile for Joint-Storage-L. The ISO posts buy/sell tariffs at their upper
limit, leaving the battery inactive (0 MWh exchange).

Key energy outcome (identical for L and Q):

• Battery exchange - 0 MWh.

• Scheduled generation - 8 126 MWh (+13% versus the 7 200 MWh baseline).

• Reserve usage - 148 MWh (–29% relative to 208 MWh in Baseline).

Key observation. By exploiting its price-setting power the captures all potential surplus, pushing
the system into a “monopolistic” equilibrium that eliminates storage activity. Reserve demand does
fall, but only at the cost of a large increase in base-load dispatch; the grid loses the flexibility benefit
that an active battery would provide.

J.3 Joint-PCS-L – Learned ISO and PCS under Endogenous Load & Production

The fully learned setting of Section Joint-Storage-L and Joint-Storage-Q collapsed into
a “monopolistic” equilibrium because the storage unit had no reason to transact. To restore economic
pressure we embed the PCS-unit in a simple prosumer model:

• Background HVAC load – square-wave, 8 kW peak.

• Rooftop PV – bell-shaped profile, 5 kW peak at solar noon.

Whenever the net local balance is negative the battery must buy from the grid; when positive it
can inject. Both and PCS-unit continue to train with TD3, and the ’s tariff are online linear or
quadratic.

Energy outcomes (from Table 4):

• Battery exchange - 442 MWh shuffled across the day ( 30% of steps involve a charge or discharge).
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• Scheduled generation – 7 322 MWh (very close to the deterministic baseline).

• Reserve usage – 168 MWh, midway between the linear pre-defined case (176 MWh) and the best
quadratic case (117 MWh).

Endogenous prosumer dynamics “wake up” the battery: facing real cost when HVAC load peaks
and real revenue when PV over-produces, the agent learns to arbitrage once again. The adapts by
moderating its price ceiling: tariffs remain high enough to steer the battery but no longer saturate at
the upper bound, breaking the deadlock observed in Joint-Storage-L.

Figure 9: Energy, tariff and battery SoC traces for Joint-PCS-L. The learned PCS cycles 442
MWh in response to its own load/PV profile and ISO prices, cutting reserve demand to 168 MWh.
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