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Abstract
Modern deep neural networks exhibit heterogene-
ity across numerous layers of various types such
as residuals, multi-head attention, etc., due to
varying structures (dimensions, activation func-
tions, etc.), distinct representation characteristics,
which impact predictions. We develop a general
layer-wise quantization framework with tight vari-
ance and code-length bounds, adapting to the het-
erogeneities over the course of training. We then
apply a new layer-wise quantization technique
within distributed variational inequalities (VIs),
proposing a novel Quantized Optimistic Dual Av-
eraging (QODA) algorithm with adaptive learning
rates, which achieves competitive convergence
rates for monotone VIs. We empirically show that
QODA achieves up to a 150% speedup over the
baselines in end-to-end training time for training
Wasserstein GAN on 12+ GPUs.

1. Introduction
In modern large-scale machine learning (ML) settings, com-
munication costs for broadcasting huge stochastic gradients
and dual vectors is the main performance bottleneck (Strom,
2015; Alistarh et al., 2017; Kairouz et al., 2021). Several
methods have been proposed to accelerate large-scale train-
ing such as quantization, sparsification, and reducing the
frequency of communication through local updates (Kairouz
et al., 2021). In particular, unbiased quantization is unique
due to offering both strong theoretical guarantees and com-
munication efficiency on the fly, i.e., it converges under
the same hyperparameters tuned for uncompressed vari-
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ants while providing substantial savings in communication
costs (Alistarh et al., 2017; Wen et al., 2017; Zhang et al.,
2017; Faghri et al., 2020).

Popular DNNs including convolutional architectures, trans-
formers, and vision transformers have various types of layers
such as feed-forward, residual, multi-head attention includ-
ing self-attention and cross-attention, bias, and normaliza-
tion layers (He et al., 2016; Vaswani et al., 2017; Dosovit-
skiy et al., 2021). Different types of layers learn distinct
hierarchical features ranging from low-level patterns to high-
level semantic features (Zeiler & Fergus, 2014; He et al.,
2016). They are also diverse in terms of number of parame-
ters and their impact on the final accuracy (Dutta et al., 2020;
Li et al., 2024). Similar heterogeneity has been observed for
attention layers in large-scale transformers (Markov et al.,
2022). The current communication-efficient literature does
not rigorously take into account heterogeneity in terms of
representation power, impact on the final learning outcome,
and statistical heterogeneity across various layers of neural
networks and across training for each layer. Recently, layer-
wise and adaptive compression schemes have shown tremen-
dous empirical success in accelerating training deep neural
networks and transformers in large-scale settings (Markov
et al., 2022; 2024), but they have yet to have theoretical guar-
antees and to handle statistical heterogeneity over the course
of training. Hence, these layer-wise compression schemes
suffer from a dearth of generalization and statistically rigor-
ous argument to optimize the sequence of quantization and
the number of sparsification levels for each layer.

In distributed learning, empirical risk minimization (ERM)
and finite-sum optimization problems are commonly tackled
using first-order solvers, which scale by distributing com-
putations across multiple nodes synchronously (McMahan
et al., 2017; Kairouz et al., 2021; Li et al., 2020; Ramezani-
Kebrya et al., 2022; Xie et al., 2024). These nodes, for
instance hospitals and mobile devices, collaborate by par-
titioning data and aggregating local updates.1 However,
many real-world problems extend beyond ERM and require
more complex mathematical formulations. In particular,
training generative adversarial networks (GANs) (Goodfel-

1For simplicity, we use the term node to refer to clients, FPGA,
APU, CPU, GPU, or workers throughout this work.
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low et al., 2014) is more complex than ERM because it
involves a minimax problem rather than a single-objective
loss minimization. This adversarial interaction between the
generator and discriminator requires equilibrium modeling,
often formulated as a variational inequality (VI) to address
challenges like cyclic behaviors and instability (Daskalakis
et al., 2017; Gidel et al., 2018; Mertikopoulos et al., 2018).
As a well-studied mathematical framework (Facchinei &
Pang, 2003; Bauschke & Combettes, 2017), VIs also have
numerous other ML applications in reinforcement learning
(Jin & Sidford, 2020; Omidshafiei et al., 2017), auction
theory (Syrgkanis et al., 2015), and adversarially robust
learning (Schmidt et al., 2018).

In this work, we aim to tackle the problems of providing a
general layer-wise quantization framework that takes into
account the statistical heterogeneity across layers and then
applying that layer-wise quantization framework to propose
efficient novel solver for distributed VIs.

1.1. Summary of Contributions

• Theoretical Framework and Tight Guarantees for
Layer-wise Quantization: We propose a general frame-
work for layer-wise (and adaptive) unbiased quantization
schemes with novel fine-grained coding protocol analysis.
We also establish tight variance and code-length bounds,
which encompass the empirical layer-wise quantization
methods (Markov et al., 2022; 2024) and generalize the
bounds for global quantization frameworks (Alistarh et al.,
2017; Faghri et al., 2020; Ramezani-Kebrya et al., 2021)
with general Lq normalization and multiple sequences
of quantization levels. In fact, under the special case of
L2 normalization and global quantization, our variance
bound matches the lower bound from (Ramezani-Kebrya
et al., 2021) while our code-length bound is optimal in the
problem dimension with respect to the lower bounds from
(Tsitsiklis & Luo, 1987; Korhonen & Alistarh, 2021).

• Optimistic Quantized Adaptive VI Solver Under
Fewer Assumptions: Leveraging the novel layer-wise
compression framework, we propose Quantized Opti-
mistic Dual Averaging (QODA) and establish its joint
convergence and communication guarantees with com-
petitive rates O(1/

√
T ) and O(1/T ) under absolute and

relative noise models, respectively. To our knowledge,
QODA is the first to incorporate optimism for solving
distributed VI to reduce one “extra” gradient step that
extra gradient type methods such as the global quanti-
zation distributed VI-solver Q-GenX (Ramezani-Kebrya
et al., 2023) take. Importantly, we obtain the above guar-
antees without the restrictive almost sure boundedness
assumption of stochastic dual vectors that is essential in
related VI works (Bach & Levy, 2019; Hsieh et al., 2021;
Antonakopoulos et al., 2021) including Q-GenX.

• Empirical Speedup for GAN Training: We show that
QODA with layer-wise compression achieves up to a
150% speedup in both the convergence and training
time compared to the global quantization baseline Q-
GenX (Ramezani-Kebrya et al., 2023) and the uncom-
pressed baseline for training Wasserstein Generative Ad-
versarial Network (Arjovsky et al., 2017) on 12+ GPUs.

1.2. Related Works

The layer-wise structure of DNNs has been explored for
optimizing training loss. Zheng et al. (2019) propose SGD
with layer-specific stepsizes, while Yu et al. (2017) ex-
plore layer-wise normalization for normalized SGD. Be-
yond training loss optimization, this structure also enables
sketch-based and bandwidth-aware compression methods
(Xin et al., 2023; Li et al., 2024). Additionally, block quanti-
zation - partitioning operators or vectors into blocks before
quantization - is studied in (Wang et al., 2022; Horváth et al.,
2023; Mishchenko et al., 2024). In Appendix A.2, we show
that our layer-wise quantization approach is fundamentally
different from block quantization.

Several papers study distributed methods for VI and saddle
points problems. Kovalev et al. (2022) considers strongly
monotone VI; Beznosikov et al. (2023b) concerns with VI
problems under co-coercivity assumptions. Strong mono-
tonicity and co-coercivity assumptions can be quite restric-
tive for ML applications. Beznosikov et al. (2022; 2023a)
consider VI problems with finite sum structure with an extra
δ-similarity assumption in (Beznosikov et al., 2023a). Sev-
eral studies (Duchi et al., 2011; Yuan et al., 2012; Tsianos
& Rabbat, 2012) explore dual averaging for distributed
finite-sum minimization in networks.

We include further literature reviews on unbiased, adap-
tive quantization and optimistic gradient methods in Ap-
pendix A.1. A detailed comparison with related methods
is in Appendix A.2.

Paper organization: In Section 2, the preliminaries on
quantization, VIs and noise profiles are covered. In Sec-
tion 3, we propose the general framework for layer-wise
quantization with a novel coding protocol. We then leverage
the layer-wise quantization scheme to design QODA (Al-
gorithm 1) with adaptive learning rates for distributed VIs
in Section 4. In Section 5.1, we provide the variance and
code-length bounds for layer-wise quantization and show
their improvement over previous results. In Section 5.2, we
discuss the joint convergence and communication bounds
of QODA. We then extend QODA to almost sure bounded-
ness noise model in Section 6, and prove its convergence
without co-coercivity. Lastly, we provide empirical studies
on GANs and Transformer-XL in Section 7.
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2. Preliminaries
2.1. Common Notations

We use lower-case bold letters to denote vectors. E[·] de-
notes the expectation operator. ∥ · ∥0 and ∥ · ∥∗ are number
of nonzero elements of a vector and dual norm, respectively.
| · | denotes the length of a binary string, the length of a vec-
tor, and cardinality of a set. Sets are typeset in a calligraphic
font. The base-2 logarithm is denoted by log, and the set of
binary strings is denoted by {0, 1}∗. For any integer n, we
use [n] to denote the set {1, . . . , n}. 1 denotes the indicator
function.

2.2. Vector Representations

Let v ∈ Rd be a vector to be quantized. For some q ∈ Z+,
v can be uniquely represented by a tuple (∥v∥q, s,u) where
∥v∥q is the Lq norm of v, s := [sign(v1), . . . , sign(vd)]

⊤

comprises of signs of each coordinate vi, and u :=
[u1, . . . , ud]

⊤, where ui = |vi|/∥v∥q is the i-th normalized
coordinate. Note that 0 ≤ ui ≤ 1 for all i ∈ [d].

2.3. Variational Inequalities

Formally, for an operator A : Rd → Rd, a variational
inequality (VI) finds some x⋆ ∈ Rd such that

⟨A(x⋆),x− x⋆⟩ ≥ 0 for all x ∈ Rd. (VI)

We now present the standard VI assumptions:
Assumption 2.1 (Monotonicity). We have that for all
x, x̂ ∈ Rd, ⟨A(x)−A(x̂),x− x̂⟩ ≥ 0.
Assumption 2.2 (Solution Existence). The solution set
X ⋆ := {x⋆ ∈ Rd : x⋆solves (VI)} ≠ ∅.
Assumption 2.3 (L-Lipschitz). Let L ∈ R+. Then an
operator A is L-Lipschitz if

∥A(x)−A(x′)∥∗ ≤ L∥x− x′∥ ∀ x,x′ ∈ Rd.

This fairly broad VI class covers all bilinear min-max,
co-coercive and monotone games with applications such
as GANs (Chavdarova et al., 2019) and robust RL (Ka-
malaruban et al., 2020; Hsieh et al., 2020; Lin et al., 2020).

The main measure to evaluate the quality of a candidate
VI solution is the restricted gap function (Nesterov, 2009)
(more details in Appendix B.1):

GAPX (x̂) = sup
x∈X
⟨A(x), x̂− x⟩, (GAP)

where X ⊂ Rd is a non-empty and compact test domain.

2.4. Noise Models

We study VI methods that rely on a stochastic first-order
oracle (Nesterov, 2004). This oracle, when called at x,

draws an i.i.d. sample ω from a complete probability space
(Ω,F ,P) and returns a stochastic dual vector g(x;ω) as

g(x;ω) = A(x) + U(x;ω), (1)

where U(x;ω) denotes the (possibly random) error in the
measurement or noise. Next, we formally define two im-
portant noise profiles, i.e. absolute noise and relative noise.

Assumption 2.4 (Absolute Noise). Let x ∈ Rd, ω ∼ P.
The oracle g(x;ω) is unbiased E[g(x;ω)] = A(x), and
there exists σ ∈ R such that E

[
∥U(x, ω)∥2∗

]
≤ σ2.

As the noise variance is independent of the value of the oper-
ator at the queried point, this type of randomness is absolute.
Absolute noise is common in the (distributed) VI literature
(Woodworth et al., 2021; Ene & Le Nguyen, 2022; Tupitsa
et al., 2024). It is also known as the bounded variance as-
sumption in stochastic optimization literature (Nemirovski
et al., 2009; Juditsky et al., 2011). Alternatively, a more
favorable noise profile is observed when the stochastic error
vanishes near a solution of VI. This is formally captured by
the notion of relative noise (Polyak, 1987):

Assumption 2.5 (Relative Noise). Let x ∈ Rd and ω ∼
P. The oracle g(x;ω) is unbiased E[g(x;ω)] = A(x),
and there exists σR ∈ R such that E

[
∥U(x, ω)∥2∗

]
≤

σR∥A(x)∥2∗.

Relative noise model has been studied in several ML appli-
cation like over-parameterization (Oymak & Soltanolkotabi,
2020), representation learning (Zhang et al., 2021), and
multi-agent learning (Lin et al., 2020). In Appendix B.3,
we provide more specific relative noise examples. Relative
noise model may result in the well-known order-optimal
rate of O(1/T ) in deterministic settings.
Remark 2.6. Various adaptive methods for (distributed)
VI (Bach & Levy, 2019; Hsieh et al., 2021; Antonakopoulos
et al., 2021) including the baseline Q-GenX (Ramezani-
Kebrya et al., 2023) assume almost sure boundedness of
stochastic dual vectors under both absolute and relative
noise profiles. In addition, previous theoretical results on
global quantization (Alistarh et al., 2017; Ramezani-Kebrya
et al., 2021; Faghri et al., 2020) are also established un-
der a similar assumption with bounded second moments
of stochastic gradients (stochastic dual vector in our set-
ting). In Section 5, we establish the joint convergence and
communication guarantees of our VI-solver with layer-wise
quantization without this assumption.

3. Adaptive Layer-wise Quantization
Adaptive layer-wise quantization is only studied empirically
in (Markov et al., 2022; 2024) with promising results in
training Transformer-XL on WikiText-103 and ResNet50
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Figure 1. A Visualization for Layer-wise vs Global Quantization

on CIFAR-100. Our goal is hence to provide a general
formulation incorporating the statistical heterogeneity
across layers and establish tight theoretical guarantees for
layer-wise quantization with tailored coding schemes.

In Figure 1, we provide an intuitive visualization for layer-
wise and global quantization. In the global scheme (middle
row), every layer has the same compression regardless of
their impact on the accuracy. In the layer-wise approach
(bottom row), each layer is assigned the suitable compres-
sion scheme based on its impact on the accuracy, which
preserves overall accuracy while still reducing model size.

3.1. General Framework

Distributed and synchronous setting with K nodes: This
setup is along the lines of the standard setting for data-
parallel SGD (Dean et al., 2012; Alistarh et al., 2017). Here,
the nodes partition the entire dataset among themselves such
that each node retains only a local copy of the current pa-
rameter vector while having access to independent private
stochastic dual vectors. In each iteration, each node re-
ceives stochastic dual vectors, aggregates them, computes
an update, and broadcasts the compressed update to acceler-
ate training. These compressed updates are decompressed
before the next aggregation step at each node. We study
unbiased compression, where, in expectation, the output of
the decompression of a compressed vector is equal to the
original uncompressed vector.

Layer-wise vs global quantization: At each time t, in-
stead of a global sequence of quantization levels for
all coordinates - like QSGD and its variant (Alistarh
et al., 2017; Faghri et al., 2020; Ramezani-Kebrya et al.,
2021) - we consider a set Lt,M of M types of sequences
{ℓt,1, . . . , ℓt,M} to be optimized with flexible and ad-
justable numbers of levels α1, . . . , αM , respectively. We
denote ℓt,m ∈ Lt,M the sequence of type m at time t, given
by [ℓ0, ℓ

t,m
1 , . . . , ℓt,mαm

, ℓαm+1]
⊤, where 0 = ℓ0 < ℓt,m1 <

· · · < ℓt,mαm
< ℓαm+1 = 1. That is, at time t, each layer

of the DNN follows one of the M types of quantization se-
quences. The intuition is that layers with similar or different

functionalities and features have correspondingly similar
or different quantization sequences, while less important
layers adopt fewer quantization levels.
Remark 3.1. Unlike previous adaptive global quantization
works (Wang et al., 2018; Faghri et al., 2020; Guo et al.,
2020; Agarwal et al., 2021; Makarenko et al., 2022), our
layer-wise quantization adaptively adjust the sequence of
quantization levels for each layer based on statistical het-
erogeneity throughout training. This key novelty is also
absent in prior block quantization variants (Wang et al.,
2022; Horváth et al., 2023; Mishchenko et al., 2024) which
apply the (similar) predefined quantization procedures to
each block or layer. Details are provided in Appendix A.2.

From here on to the end of Section 3, we fix a time t and
a type m for simplicity in notations. We hence drop the
superscript time index t and subscript type index m. The
formulation holds for each iteration t ∈ [T ] and each type
m ∈ [M ].2

Quantization variance: Let τ(u) denote the index of a
level with respect to an entry u ∈ [0, 1] such that ℓτ(u) ≤
u < ℓτ(u)+1. Let ξ(u) = (u − ℓτ(u))/(ℓτ(u)+1 − ℓτ(u))
be the relative distance of u to the level τ(u) + 1. For a
sequence ℓ, we define the following random variable

qℓ(u) =

{
ℓτ(u) with probability 1− ξ(u)

ℓτ(u)+1 with probability ξ(u)
.

We then define the random quantization of vector
v as QLM (v) = [QLM (v1), . . . , QLM (vd)]

⊤, where
QLM (vi) = ∥v∥q · sign(vi) · qℓm(ui) for m ∈ [M ], and
any ui ∈ Sm, i.e. the set of all normalized coordinates that
use type m sequence ℓm.

Let qLM ∼ PQ represent d variables {qℓm(ui)}i∈[d] sam-
pled independently for random quantization. As this scheme
is unbiased, we can measure the quantization error by mea-
suring the variance EqLM

[∥QLM (v)− v∥22] given by

∥v∥2q
M∑

m=1

∑
ui∈Sm

σ2
Q(ui; ℓ

m), (Var)

where σ2
Q(ui; ℓ

m) = E[(qℓm(ui) − ui)
2] = (ℓmτm(ui)+1 −

ui)(ui − ℓmτm(ui)
) is the variance of quantization of a single

coordinate ui ∈ Sm. We can optimize M quantization
sequences by minimizing the overall quantization variance

min
LM∈LM

EωEqLM

[
∥QLM (g(x;ω))−A(x)∥22

]
,

where LM =
{
{ℓ1, . . . , ℓM} : ∀m ∈ [M ], ∀j ∈

[αm], ℓmj ≤ ℓmj+1, ℓ0 = 0, ℓαm+1 = 1
}
, denoting the col-

lection of all feasible sets of type m levels. Since random

2The time index t will return in Section 4 since the algorithm
iterates over all T iterations.
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quantization and random samples are statistically indepen-
dent, the above minimization is equivalent to

min
LM∈LM

EωEqLM

[
∥QLM (g(x;ω))− g(x;ω)∥22

]
. (MQV)

In Figure 1, we give a simple visualization to show the
difference between layer-wise and global quantization.
Remark 3.2. We now elaborate on how layer-wise quan-
tization is always better than global quantization in
(Alistarh et al., 2017; Faghri et al., 2020; Ramezani-
Kebrya et al., 2021; 2023). We optimize M quantiza-
tion sequences by minimizing quantization variance (MQV).
Global quantization models will find an overall optimum
sequence ℓ∗ for all the M types. Hence, the collection
of M sequences in this global case is simply LM

glb =
{ℓ∗, .., ℓ∗}, where ℓ∗ repeats M times. By the minimality
of (MQV), we obtain the quantization variance for layer-
wise quantization is always upper bounded by that of global
quantization: minLM E

[
∥QLM (g(x;ω))− g(x;ω)∥22

]
≤

E
[
∥QLM

glb
(g(x;ω))− g(x;ω)∥22

]
.

3.2. Main Coding Protocol

We now apply practical coding schemes on top of our layer-
wise quantization to further reduce communication costs.
We process the coordinates of all M types simultaneously
in parallel, i.e. coordinates of different types are quantized,
encoded and transmitted at the same time. Although each
quantization type has its own codebook, different types may
share similar codewords to reduce the overall code length.
The receiver is always aware of the type of each coordinate
upon reception, allowing it to apply the correct codebook for
decoding. The overall composition of coding and quantiza-
tion, ENC(∥v∥q, s, qLM ) consists of M parallel encoding
maps ENC(∥v∥q, s, qℓm), uses a standard floating point
encoding with Cq bits to represent the positive scalar ∥v∥q ,
encodes the sign of each type m coordinate with one bit,
and then utilizes correspondingly type m integer encoding
scheme Ψm : At,m → {0, 1}∗ to efficiently encode every
type m coordinate with the minimum expected code-length.

To solve the quantization variance (MQV), we first sample Z
stochastic dual vectors {g(x;ω1), . . . , g(x;ωZ)}. Let Fm

z

denote the marginal CDF of normalized coordinates of type
m conditioned on observing ∥g(x;ωz)∥q. By the law of
total expectation, (MQV) can be approximated by solving
M minimization problems in parallel for each ℓm:

min
ℓm

Z∑
z=1

∥g(x;ωz)∥2q
αm∑
i=0

∫ ℓmi+1

ℓmi

σ2
Q(u; ℓ

m) dFm
z (u),

or equivalently min
ℓm

αm∑
i=0

∫ ℓmi+1

ℓmi

σ2
Q(u; ℓ

m) dF̃m(u), (2)

where F̃m(u) =
∑Z

z=1 λzF
m
z (u) is the weighted sum of

the conditional CDFs of normalized coordinates of type m

with weights λz as follows

λz =
∥g(x;ωz)∥2q∑Z
z=1 ∥g(x;ωz)∥2q

. (3)

In our practical implementation (Section 7), we utilize L-
GreCo (Markov et al., 2024) which executes a dynamic
programming algorithm optimizing the total compression
ratio while minimizing compression error (MQV) from
(2). The decoding DEC : {0, 1}∗ → Rd first reads Cq

bits to reconstruct ∥v∥q, then applies decoding schemes
(Ψm)−1 : {0, 1}∗ → Am to obtain normalized type m
coordinates without confusion since the number of coordi-
nates |Sm|, their order, and the corresponding codebook are
known at the decoder. A further discussion for the choice
of a specific lossless prefix code and more details on cod-
ing schemes are included in Appendix D.3. Alternating
Coding Protocol: In the cases that the receiver is not aware
the quantization type of the coordinates, we use separate
codebooks for M quantization types. We elaborate on the
details and guarantees of Alternating Coding Protocol in
Appendix D.2 and provide a comparison between the two
protocols in Remark D.3.
Remark 3.3. Our layer-wise quantization and coding pro-
tocol are general and hence applicable for all distributed
optimization settings that follow the stochastic first order
oracle models 1. Empirically, (Markov et al., 2024) have
applied layer-wise quantization for loss function minimiza-
tion (with SGD-type methods) in the context of training
language and vision tasks such as ResNet50 on CIFAR-100.
We showcase similar applications with training Transformer-
XL on WikiText-103 in Section 7.2.

4. Quantized Optimistic Dual Averaging
We now study an application in solving distributed VI with
our novel Quantized Optimistic Dual Averaging (QODA),
Algorithm 1. Importantly, this optimistic approach reduces
one “extra” gradient step that extra gradient methods and
variants such as Q-GenX (Ramezani-Kebrya et al., 2023)
take (by storing the gradient from the previous iteration,
refer to lines 9 and 16). Therefore, QODA reduces the
communication burden by half decoupled from acceler-
ation due to quantization compared to Q-GenX. At certain
steps, every node calculates the sufficient statistics of a para-
metric distribution to estimate distribution of dual vectors
in lines 3 to 5. Let Vk,t and V̂k,t denote the uncompressed
and compressed stochastic dual vectors in node k at time t,
respectively. Let V̂k,t = Q(Vk,t) = Q(Ak(Xt) + Uk(Xt))
denote the unbiased and quantized stochastic dual vectors
for node k ∈ [K] and iteration t ∈ [T ]. The optimistic dual
averaging updates in (ODA) appear in lines 10, 17 and 18.
Our layer-wise quantization with QLt,M and coding proto-
col are applied in lines 12 and 15. The loops are executed
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Algorithm 1: Quantized Optimistic Dual Averaging (QODA)

Require: Local training data; local copies of Xt, Yt; update
steps set U ; learning rates {γt}, {ηt}

1: for t = 1, . . . , T do
2: if t ∈ U then
3: for i = 1, . . . ,K do
4: Efficiently estimate distributions of normalized

dual vectors and update Lt,M (Remark 4.1)
5: Update M sequences of levels in parallel
6: end for
7: end if
8: for i = 1, . . . ,K do
9: Retrieve previously stored V̂k,t−1/2

10: Xt+1/2 ← Xt − γt
∑K

k=1 V̂k,t−1/2/K
11: Vi,t+1/2 ← Ai(Xt+1/2) + Ui(Xt+1/2)

12: di,t ← ENCODE
(
QLt,M (Vi,t+1/2);Lt,M

)
13: Broadcast di,t
14: Receive di,t from each node i

15: V̂i,t+1/2 ← DECODE(di,t;Lt,M )

16: Store V̂k,t+1/2

17: Yt+1 ← Yt −
∑K

k=1 V̂k,t+1/2/K
18: Xt+1 ← ηt+1Yt+1 +X1

19: end for
20: end for

in parallel on the nodes.

Xt+1/2 = Xt − γt

K∑
k=1

V̂k,t−1/2

K

Yt+1 = Yt −
K∑

k=1

V̂k,t+1/2

K
(ODA)

Xt+1 = X1 + ηt+1Yt+1.

In general, learning rates γt and ηt can be chosen such that
they are non-increasing and γt ≥ ηt > 0. We propose
the following adaptive learning rate schedules for updates
in Algorithm 1.

ηt = γt =

1 +

t−1∑
s=1

K∑
k=1

∥∥∥V̂k,s+1/2 − V̂k,s−1/2

∥∥∥2
∗

K2


− 1

2

.

(4)

The two learning rates here are equal, but they can be differ-
ent in an alternative setting in Section 6. This learning rate
separation for optimistic dual averaging is also explored for
online multiplayer games in (Hsieh et al., 2022).
Remark 4.1. One way to efficiently estimate the distribu-
tions of dual vectors (line 4 in Algorithm 1) is to use a
parametric model of density estimation such as modeling

via truncated normal with efficiently computing sufficient
statistics (Faghri et al., 2020). The set of update steps U
in Algorithm 1 is determined by the dynamics of distribu-
tion of normalized dual vectors over the course of train-
ing. In Section 7, we dynamically update levels using L-
GreCo (Markov et al., 2024).

5. Theoretical Guarantees
5.1. Layer-wise Quantization Bounds

Since the bounds hold for each iteration t, we can fix t and
drop the index t in this subsection for notation simplicity.
Let q ∈ Z+ and ℓ̄m = max0≤j≤αm

ℓmj+1/ℓ
m
j , and ℓ̄M =

max1≤m≤M ℓ̄m. Denote the largest level 1 across M types
ℓ̄M1 = max1≤m≤M ℓm1 . Let dth = (2/ℓ̄M1 )min{2,q}. We
now present a variance bound for layer-wise quantization
with the proof in Appendix C:

Theorem 5.1 (Variance Bound). With unbiased layer-wise
quantization with Lq normalization of a vector v ∈ Rd, i.e.
EqLM

[QLM (v)] = v, we have that

EqLM

[
∥QLM (v)− v∥22

]
≤ εQ∥v∥22, (5)

where εQ = (ℓ̄M−1)2

4ℓ̄M
+ (ℓ̄M1 d

1
min{q,2} − 1)1{d ≥ dth} +

(ℓ̄M1 )2

4 d
2

min{q,2}1{d < dth}.
Remark 5.2. For the special case of M = 1, our bound (5)
recovers (Ramezani-Kebrya et al., 2023, Theorem 1). Under
M = 1, this bound holds for general Lq normalization and
arbitrary sequence of quantization levels as opposed to (Alis-
tarh et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al.,
2021, Theorem 4), which only hold for L2 normalization
with uniform or exponentially spaced levels, respectively.
In the specific case of M = 1, large d (i.e. d ≥ dth, in
most practical situations), and L2 normalization, our bound
matches the lower bound Ω(

√
d) (Ramezani-Kebrya et al.,

2021)[Theorem 7].

We now establish code-length bounds for the coding proto-
col with the proof in Appendix D.1:

Theorem 5.3 (Code-length Bound). Let p̂mj denote the prob-
ability of occurrence of ℓmj for m ∈ [M ] and j ∈ [αm].
Under the setting specified in Theorem 5.1, the expecta-
tion EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
of the number

of bits is bounded by

EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= O

(− M∑
m=1

p̂m0 −
M∑

m=1

αm∑
j=1

p̂mj log p̂mj

)
µmd

 , (6)

where µm is the proportion of type m coordinates.

Remark 5.4. For the special case of M = 1, our bound
recovers (Ramezani-Kebrya et al., 2023, Theorem 2). Under
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the special case of M = 1, L2 normalization, and s =
√
d

as in (Alistarh et al., 2017, Theorem 3.4), our bound can be
arbitrarily smaller than (Alistarh et al., 2017, Theorem 3.4)
and (Ramezani-Kebrya et al., 2021, Theorem 5) depending
on the probabilities {p̂0, . . . , p̂s+1}. Under similar settings,
this upper bound is optimal in the problem dimension d,
matching the lower bound for distributed convex optimiza-
tion problems with finite-sum structures (Tsitsiklis & Luo,
1987; Korhonen & Alistarh, 2021).

5.2. Joint Communication and Convergence Bounds

We now outline the guarantees for QODA in Algorithm 1.
Here, QODA is executed for T iterations on K nodes
with learning rates (4). Quantization sequence ℓm is up-
dated Jm times, and ℓmj is used for Tm,j iterations where∑M

m=1

∑Jm

j=1 Tm,j = T . Note that ℓmj has variance bound
εQ,m,j (5) and code-length bound NQ,m,j in (6). Denote∑T

t=1 Xt+1/2/T = Xt+1/2.

Algorithm 1 requires each node to send in expectation at
most NQ communication bits per iteration, where NQ =∑M

m=1

∑Jm

j=1 Tm,jNQ,m,j/T (i.e., the average expected
code-length bound). Under the absolute noise model, we
can bound GAP of Algorithm 1 as follows with the proof in
Appendix E.2:
Theorem 5.5 (Algorithm 1 under Absolute Noise). Suppose
the iterates Xt of Algorithm 1 are updated with learning
rate schedule given in (4) for all t = 1/2, 1, . . . , T . Let
X ⊂ Rd be a compact neighborhood of a VI solution and
D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2,
2.3, and 2.4, we have

E
[
GapX

(
Xt+1/2

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2

√
TK

)
,

where ε̂Q =
∑M

m=1

∑Jm

j=1 Tm,j
√
εQ,m,j/T is average

square root variance bound.

Only for the relative noise profile, we introduce a regularity
condition of co-coercivity, similar to QGen-X (Ramezani-
Kebrya et al., 2023) to obtain the fast rate O(1/T )3:
Assumption 5.6 (Co-coercivity). For β > 0, we say opera-
tor A is β-cocoercive when for all x,y ∈ Rd,

⟨A(x)−A(y),x− y⟩ ≥ β∥A(x)−A(y)∥2∗.

Further details about this assumption is in Appendix B.2.
With this assumption, we obtain the following faster con-
vergence guarantee for Algorithm 1 under relative noise:

3Our guarantees for quantization, coding procedures and con-
vergence under absolute noise do not require co-coercivity. It is
only used to establish the fast rate O(1/T ) under relative noise.

Theorem 5.7 (Algorithm 1 under Relative Noise). Suppose
the iterates Xt of Algorithm 1 are updated with learning
rate schedule in (4) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd

be a compact neighborhood of a VI solution. Let D2 :=
supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, 2.5,
and 5.6, we have

E
[
GapX

(
Xt+1/2

)]
= O

(
(σRεQ + εQ + σR)D

2

TK

)
,

where εQ =
∑M

m=1

∑Jm

j=1 Tm,jεQ,m,j/T is the average
variance bound.

The proof details are included in Appendix E.3.
Remark 5.8. Both theorems show that increasing the num-
ber of processors K lead to faster convergence for mono-
tone VIs, matching the asymptotic rates for T and K of
Q-GenX (Ramezani-Kebrya et al., 2023) without an extra
almost sure boundedness assumption. Under the absolute
noise model and by setting the number of gradients per
round to one, our results match the known lower bound for
convex and smooth optimization Ω(1/

√
TK) (Woodworth

et al., 2021, Theorem 1).4 Previously, (Ramezani-Kebrya
et al., 2023, Theorem 3) can only match this lower bound
with an extra almost sure boundedness assumption.

6. Almost Sure Boundedness Model
To further highlight the advantages of QODA, we now an-
alyze its performance under a setting similar to the global
quantization VI-solver Q-GenX, while relaxing another key
assumption of co-coercivity. We first present the almost sure
boundedness assumption of the operator

Assumption 6.1 (Almost Sure Boundedness). There exists
J > 0 s.t. ∥g(x;ω)∥∗ ≤ J almost surely.

Under this Q-GenX’s setting5, for the relative noise case,
we can actually obtain the similar rate O(1/T ) to Q-
GenX (Ramezani-Kebrya et al., 2023, Theorem 4) with-
out the co-coercivity Assumption 5.6. We consider the
alternative adaptive learning rates with q̂ ∈ (0, 1/4]:

ηt =
(
1 +

t−2∑
s=1

K∑
k=1

∥V̂k,s+1/2∥2∗
K2

+ ∥Xs −Xs+1∥22
)− 1

2

,

γt =
(
1 +

t−2∑
s=1

K∑
k=1

∥V̂k,s+1/2∥2∗
K2

)q̂− 1
2

. (Alt)

The derivation details for this alternative (Alt) learning rates
are included in Appendix F.2. Two learning rates allow a

4In (Woodworth et al., 2021) their function F is L-smooth
implies that the ∇F , or the operator in our case, is L-Lipschitz.

5In this model, the proposed learning rate (4) and its conver-
gence guarantees in Section 5.2 still hold.
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Figure 4. FID evolution during training. We compare basic Adam optimization against QODA-based extension of Adam with global
(Q-GenX (Ramezani-Kebrya et al., 2023)) and layer-wise (L-GreCo) quantizations.

larger extrapolation step in the first line of (ODA), so the
noise is an order of magnitude smaller than the expected
variation of utilities (Hsieh et al., 2022). We now provide the
convergence of Algorithm 1 under relative noise with learn-
ing rates (Alt) and without the co-coercivity assumption.

Theorem 6.2 (Algorithm 1 under Relative Noise without
co-coercivity assumption). Suppose the iterates Xt of Al-
gorithm 1 are updated with learning rate schedule in (Alt)
for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neigh-
borhood of a solution for (VI), εQ as in Section 5.2 and
D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2,
2.3, 2.5, and 6.1, for Algorithm 1 with learning rates (Alt):

E
[
GapX

(
Xt+1/2

)]
= O

(
(σRεQ + εQ + σR)D

4

T

)
.

The proof is in Appendix G. To underscore the significance
of eliminating the co-coercivity assumption, we note that
several important class of games such as bilinear games
are not co-coercive. Furthermore, we also include the
guarantees for absolute noise for this model in Theorem
F.15, where we also obtain the rate O(1/

√
T ) similar to

Q-GenX (Ramezani-Kebrya et al., 2023, Theorem 3).

7. Numerical Experiments
7.1. GAN Training

To further validate our theoretical findings, we have imple-
mented QODA in Algorithm 1 based on the codebase of
(Gidel et al., 2018) and train WGAN (Arjovsky et al., 2017)
on CIFAR10 and CIFAR100 (Krizhevsky, 2009). To support
efficient compression, we use the torch_cgx Pytorch ex-
tension (Markov et al., 2022). Moreover, we adapt compres-

sion choices layer-wise, following the L-GreCo (Markov
et al., 2024) algorithm. Specifically, L-GreCo periodically
collects gradients statistics, then executes a dynamic pro-
gramming algorithm optimizing the total compression ratio
while minimizing compression error.

In our experiments, we use 4 to 16 nodes, each with a single
NVIDIA RTX 3090 GPU, in a multi-node Genesis Cloud
environment with 5 Gbps inter-node bandwidth. For the
communication backend, we pick the best option for quan-
tized and full-precision regimes: OpenMPI (ope, 2023) and
NCCL (ncc, 2023), respectively. The maximum bandwidth
between nodes is estimated to be around 5 Gbit/second.

We follow the training recipe of Q-GenX (Ramezani-Kebrya
et al., 2023), where authors set large batch size (1024) and
keep all other hyperparameters as in the original codebase
of (Gidel et al., 2018). For global and layer-wise com-
pression, we use 5 bits (with bucket size 128), and run the
L-GreCo adaptive compression algorithm every 10K op-
timization steps for both the generator and discriminator
models6. The convergence results over three random seeds
are presented in Figure 4. The figure demonstrates that the
adaptive QODA approach not only recovers the baseline ac-
curacy but also improves convergence relative to Q-GenX.

In order to illustrate the impact of QODA on the wall-clock
training time, we have benchmarked the training in three dif-
ferent communication setups. The first is the original 5 Gbps
bandwidth, whereas the second and the third reduce this to
half and 1/5 of this maximum bandwidth. We measured the
time per training step for uncompressed and QODA 5-bit
training. Here, the optimization step includes forward and

6For a fair comparison to QGen-X, we did not include any
additional encoding on top of quantization just as QGen-X did not.
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backward times. More precisely, the backward step consists
of backpropagation, compression, communication and de-
compression. Note that time per step is similar for both data
sets. Table 1 shows that layer-wise quantization achieves
up to a 47% improvement in terms of end-to-end training
time. Table 2 demonstrates the scalability of QODA up to
16 GPUs under weak scaling, i.e. with a constant global
batch size. We observe a significant up to a 150% speedup
in comparison to the uncompressed baseline. Moreover,
baseline step time degradation makes the scaling useless,
whereas QODA allows to avoid such degradation.

Mode 1 Gbps 2.5 Gbps 5 Gbps
Baseline 291 265 251
QODA5 197 195 195
Speedup 1.47× 1.36× 1.28×

Table 1. Time per optimization step (in ms) for baseline and
QODA5 with different inter-node bandwidths.

Mode 4 GPUs 8 GPUs 12 GPUs 16 GPUs
baseline 251 303 318 285
QODA5 195 165 127 115
Speedup 1.28× 1.83× 2.50× 2.47×

Table 2. Time per optimization step (in ms) for baseline and
QODA5 with different node counts.

7.2. Transformer-XL Training

We now showcase the superiority of layerwise methods (L-
GreCo) to global ones by applying quantization on top of
powerSGD for training Transformer-XL on WikiText-103.
We used the implementation of (Markov et al., 2024) and
provide our code in the supplementary material. We used 8
NVIDIA GH200 120GB GPUs for the experiments here.

The results are shown in Table 3, in which we observe the
compression rates achieved by the layerwise quantization
(with L-GreCo) is consistently higher than that by the global
(uniform) quantization given the same parameter for the un-
derlying powerSGD (rank in Table 3). To ensure a fair
comparison, we trained all the methods for the same iter-
ations as the baseline, which is a vanilla training process
without any parameter compression, and reached the same
perplexity level as the latter.

To further demonstrate the advantage of performing quanti-
zation on a layer-wise basis, we also conduct an ablation ex-
periment on Transformer-XL. In this test, we compared the
test perplexity resulting from quantizing only the position-
wise feed-forward layer (FF), the embedding layer, and the
attention layer (i.e. the matrices containing all the param-
eters of k, q, and v at each layer), respectively. We used

rank quanti-
-zation

test
perplexity

compression
rate

baseline - - 23.20±0.20 1.0

power
SGD

16 global 23.73±0.16 27.44
layerwise 23.70±0.13 40.38 [1.47×]

32 global 23.54±0.13 14.07
layerwise 24.08±1.18 20.90 [1.49×]

64 global 23.42±0.13 7.12
layerwise 23.49±0.13 10.84 [1.52×]

Table 3. Layer-wise vs Global Quantization for Transformer-XL

Figure 5. Ablation Study for Transformer-XL

PowerSGD with varying quantization levels (ranks). Each
setup was repeated four times with different seeds, and the
results are shown in Figure 5. Given the same compres-
sion level, quantizing the embedding layer results in a much
larger drop in performance. This supports our intuition
that layer-wise quantization is more beneficial, as different
layers exhibit varying sensitivity to quantization.

8. Conclusion and Future Directions
In brief, we propose the theoretical framework and tight
guarantees for layer-wise quantization. We then leverage
this quantization scheme to design QODA (Algorithm 1) for
distributed VIs with competitive joint communication and
convergence rates. Finally, we apply QODA empirically to
obtain up to 150% speed up for training GANs.

While monotone VIs can cover a wide range of ML appli-
cations, there are situations that general non-monotone or
(weak) minty VIs are required (Iusem et al., 2017; Kannan
& Shanbhag, 2019; Beznosikov et al., 2022). Hence, for fu-
ture directions, one may look into communication-efficient
schemes to solve non-monotone VIs with an adaptive layer-
wise compression. Moreover, given our theoretical guar-
antees for layer-wise quantization and the communication-
efficient QODA method, subsequent studies might extend
these techniques beyond GAN training, for example, to
accelerate adversarial training via layer-wise quantization.
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A. Addition Information
A.1. Further Literature Review

For empirical risk minimization, adaptive quantization adapt quantization levels (Faghri et al., 2020; Wang et al., 2018;
Makarenko et al., 2022) and the number of quantization levels (Guo et al., 2020; Agarwal et al., 2021) over the trajectory
of optimization. Previous studies show that these adaptive methods offer tighter variance bounds than non-adaptive ones
(Mishchenko et al., 2021). These quantization schemes are global w.r.t. layers and do not take into account heterogeneities
in terms of representation power and impact on the learning outcome across various layers of neural networks. Markov et al.
(2022; 2024) have proposed unbiased and layer-wise quantization where quantization parameters are updated across layers
in a heuristic manner and have shown tremendous empirical success in training popular DNNs in large-scale settings.

Recently, Quantization-Aware Training (QAT) methods seek to produce models with quantized weights and activations
during training, and as such, compress these elements during the training process (Frantar et al., 2023; Ashkboos et al.,
2024). Furthermore, Post-Training Quantization (PTQ) techniques aim to do so in a single compression step, e.g. by using
layer-wise solvers to find a good quantized weight assignment (Frantar et al., 2023; Ashkboos et al., 2024). By comparison,
our focus is on gradient compression: we aim to reduce communication overhead during distributed training by applying a
layer-wise quantization scheme to gradient updates. This objective is orthogonal to that of QAT and PTQ, so our method
can be combined with either approach to further improve end-to-end efficiency.

Unbiased quantization provides communication efficiency on the fly for empirical risk minimization, i.e., quantized variants
of SGD converge under the same hyperparameters tuned for uncompressed variants while providing substantial savings in
terms of communication costs (Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017; Faghri et al., 2020; Ramezani-
Kebrya et al., 2021; Markov et al., 2024; 2022). (Davies et al., 2021) has proposed lattice-based quantization for distributed
mean estimation problem.

Beyond distributed VI settings, extra gradient methods and their optimistic variants have a long history in the field of
optimization. Extra-gradient, first introduced by (Korpelevich, 1976), is known to achieve an optimal rate of order O(1/T )
in monotone VIs. This method has been further extended in (Nemirovski, 2004; Nesterov, 2007) by introducing Mirror-prox
and its primal-dual counterpart Dual-extrapolation. However, all these methods require two oracle calls per iteration (one
for the extrapolation and one for the update step) which makes them more expensive than the standard Forward/Backward
methods. The first issue to address this issue was Popov’s modified Arrow–Hurwicz algorithm (Popov, 1980). To that
end, several extensions have been proposed such as Past Extra-gradient (PEG) of (Chiang et al., 2012; Gidel et al., 2019),
Reflected Gradient (RG) of (Chambolle & Pock, 2011; Malitsky, 2015; Cui & Shanbhag, 2016), Optimistic Gradient (OG)
of (Daskalakis et al., 2018; Mokhtari et al., 2019b;a; Peng et al., 2019) and Golden Ratio method of (Malitsky, 2019).

A.2. Comparisons to Related Methods

Improvements over Q-GenX (Ramezani-Kebrya et al., 2023): Our proposed algorithm QODA (Algorithm 1) essentially
consists of a distributed VI solver - Optimistic Dual Averaging (ODA) - and a layer-wise compression general framework
(Section 3). We will now state our improvements with respect to both the optimistic VI solver and layer-wise compression
framework:

• Optimism: Our optimistic dual averaging distributed update step (ODA) reduces one extra gradient step compared to the
extra-gradient approach of Q-GenX, hence reducing the overall communication burden by half.

• Relaxed Assumptions: Our algorithm QODA also requires fewer assumptions than Q-GenX (Remark 2.6). In particular,
we obtain joint communication and convergence guarantees without the almost sure boundedness of the dual vectors.

• Layer-wise Compression: Our layer-wise compression framework is much more general and is always better than the
global compression framework in Q-GenX (Remark D.3). Our compression framework also comes with two fine-grained
coding protocols, among which the Alternative Coding Protocol is a generalization of Q-GenX coding protocol while the
Main Coding Protocol is novel.

• Experimental Results: We improve the convergence relative to Q-GenX in training WGAN (Figure 4).

Rigours Formulations and Tight Guarantees for Layer-wise Compression such as L-Greco (Markov et al., 2024):
We provide a novel and general theoretical formulation and establish guarantees for adaptive layer-wise quantization with
tailored coding schemes, which is not studied in L-Greco. Layer-wise quantization schemes such as L-Greco have only
been studied empirically without strong theoretical guarantees to handle the statistical heterogeneity across layers and over
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the course of training. Our tight variance and code-length bounds actually hold for any general layer-wise and unbiased
quantization scheme. Under the special case of L2 normalization and global quantization, our variance bound matches the
lower bound from (Ramezani-Kebrya et al., 2021, Theorem 7) (more details in Remark 5.2) while our code-length bound is
optimal in the problem dimension with respect to the lower bounds from (Korhonen & Alistarh, 2021; Tsitsiklis & Luo,
1987) (more details in Remark 5.4).
Remark A.1. In brief, a combination of QGen-X and L-Greco does not represent our novel and general layer-wise framework
with the corresponding theoretical guarantees and an associated fine-grained coding analysis while performing twice the
number of gradient computations as we do.

Comparison to Block Quantization (Mishchenko et al., 2024; Horváth et al., 2023; Wang et al., 2022): We highlight
that block (p-)quantization is fundamentally different from layer-wise quantization in our paper. As Mishchenko et al. (2024,
Definition B.1) suggests, the various blocks here follow the same scheme that is p-quantization (Quantp) which is explained
in (Mishchenko et al., 2024, Definition 3.2). Here are three fundamental distinctions between block quantization and our
layer-wise quantization:

• Each of our layer or block in this context has different adaptive sequences of levels (Section 3). This is why our method
is named “layer-wise.” (Mishchenko et al., 2024) on the other hand applies the same p-quantization scheme Quantp
to blocks with different sizes, implying that the nature and analysis of two methods are very different. Hence block
quantization is not “layer-wise,” and its analysis does not apply to the convergence of our methods.

• The way the quantization is calculated for each block or layer are different. Mishchenko et al. (2024) study and provide
guarantees for the following type of p-quantization (for all blocks): ∆̃ = ∥∆∥p sign(∆) ◦ ξ, where the ξ are stacks of
random Bernoulli variables. In our work, the sequence of levels for each layer is adaptively chosen according to the
statistical heterogeneity over the course of training (refer to (MQV)).

• The guarantee in (Mishchenko et al., 2024, Theorem 3.3) only cover p-quantization rather block p-quantization. In our
Theorem 5.1, we provide the quantization variance bound for any arbitrary sequence of levels for each layer in contrast
to that for only levels based on p-quantization (Mishchenko et al., 2024).

In brief, the block quantization is similar to bucketing in unbiased global quantization – QSGD (Alistarh et al., 2017),
NUQSGD (Ramezani-Kebrya et al., 2021) – which takes into account only the size of different blocks (sub-vectors), while
for layer-wise quantization we take into account the statistical heterogeneity and impact of different layers on the final
accuracy. Due to fundamental differences, our variance and code-length bounds require substantially more involved and
different analyses that are not possible by simple extensions of block quantization in those works.

Comparison with (Dutta et al., 2020): They study a similar method to block quantization but using the same name
"layer-wise quantization" to our framework. In short, the authors propose to use the same quantization operator for each
layer, i.e. breaking the stochastic gradients into different blocks corresponding to different layers before quantization.
Furthermore, their analysis only concerns with the relative noise case, obtaining a slower rate O(

√
T ).

B. Variational Inequality Background
B.1. GAP

Several properties of (GAP) have been explored in the literature (Nesterov, 2009; Antonakopoulos et al., 2019). In particular,
the following classical result characterizes the solutions of (VI) via zeros of (GAP).

Proposition B.1. (Nesterov, 2009) Let X ⊆ Rd be a non-empty and convex set. Then, we have

• GAPX (x̂) ≥ 0 for all x̂ ∈ X ;

• If GAPX (x̂) = 0 and X contains a neighbourhood of x̂, then x̂ is a solution of (VI).

B.2. Co-coercivity Assumption

We recall the co-coercivity assumption is as follows

Assumption B.2 (Co-coercivity (Bauschke & Combettes, 2017)). For β > 0, we say operator A is β-cocoercive when

⟨A(x)−A(y),x− y⟩ ≥ β∥A(x)−A(y)∥2∗ ∀ x,y ∈ Rd.
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Note that by Cauchy-Schwarz, we further deduce for a co-coercive operator

∥A(x)−A(y)∥2∥x− y∥2 ≥ β∥A(x)−A(y)∥22,

implying
∥x− y∥22 ≥ β2∥A(x)−A(y)∥22.

We refer the readers to (Bauschke & Combettes, 2017, Section 4.2) for further properties of co-coercive operators.

B.3. Relative Noise Examples

Here we provide two examples in practice where the noise profile can be characterized as relative noise:

• Random coordinate descent (RCD): At iteration t, the RCD algorithm for a smooth convex function f over Rd draws
one coordinate it ∈ [d] uniformly random and computes the partial derivative vi,t = ∂f/∂xit . The i-th derivative is
updated as Xi,t+1 = Xi,t − d · α · vi,t for step-size α > 0. This update rule can also be written as x+ = x− αg(x;µ)
where gi(x;µ) = d · ∂f/∂xi · µ and µ is drawn uniformly at random from the set of Rd basis vectors {e1, . . . , ed}. Since
∂f/∂xi = 0 at the minima of f , we also have g (x∗;µ) = 0 if x∗ is a minimizer of f , i.e., the variance of the random
vector g(x;µ) vanishes at the minima of f .

• Random player updating: Given an N -player convex game with loss functions fi, i ∈ [N ]. Suppose, at each stage, player
i is selected with probability pi to play an action following its individual gradient descent rule Xi,t+1 = Xi,t + γt/piVi,t

where Vi,t = ∇ifi (Xt) denotes player i ’s individual gradient at the state Xt = (X1,t, . . . , XN,t) and pi is included for
scaling reasons. One can show that all individual components of A vanish at the game’s Nash equilibria.

C. Proof of Quantization Variance Bound
Theorem 5.1 (Variance Bound). With unbiased layer-wise quantization with Lq normalization of a vector v ∈ Rd, i.e.
EqLM

[QLM (v)] = v, we have that

EqLM

[
∥QLM (v)− v∥22

]
≤ εQ∥v∥22, (5)

where εQ = (ℓ̄M−1)2

4ℓ̄M
+ (ℓ̄M1 d

1
min{q,2} − 1)1{d ≥ dth}+ (ℓ̄M1 )2

4 d
2

min{q,2}1{d < dth}.

Proof. First let us remind ourselves of the notations in the main paper. Fix a time t. Let the normalized coordinates
be u. Let ℓ̄m = max0≤j≤αm

ℓmj+1/ℓ
m
j , and ℓ̄M = max1≤m≤M ℓ̄M . Denote the largest level 1 among the M sequences

ℓ̄M1 = max1≤m≤M ℓM1 . Also let dth = (2/ℓ̄M1 )min{2,q}. Let Bmj := [ℓmj , ℓmj+1] for m ∈ [M ], j ∈ [αm].

Now, we can rewrite the equation (Var) for a fixed time t as follows

EqLM

[
∥QLM (v)− v∥22

]
= ∥v∥2q

M∑
m=1

∑
ui∈Sm

σ2
Q(ui; ℓ

m)

= ∥v∥2q
M∑

m=1

∑
ui∈Sm

(ℓmτm(ui)+1 − ui)(ui − ℓmτm(ui)
)

= ∥v∥2q
M∑

m=1

 ∑
ui∈Bm

0

(ℓm1 − ui)ui +

αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj )

 .

We now find the minimum kmj , satisfying (ℓmj+1 − ui)(ui − ℓmj ) ≤ kmj u2
i for ui ∈ Bmj for m ∈ [M ], j ∈ [αm]. Let

ui = ℓmj θ for 1 ≤ θ ≤ ℓmj+1/ℓ
m
j . Then, we have

kmj = max
1≤θ≤ℓmj+1/ℓ

m
j

(ℓmj+1 − ui)(ui − ℓmj )

(ℓmj θ)2
= max

1≤θ≤ℓmj+1/ℓ
m
j

(ℓmj+1/ℓ
m
j − θ)(θ − 1)

θ2
=

(ℓmj+1/ℓ
m
j − 1)2

4(ℓmj+1/ℓ
m
j )

,
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where the last equality follows from a simple differentiation with respect to θ. Since the function (x − 1)2/(4x) is
monotonically increasing function for x > 1, we obtain

(ℓmj+1/ℓ
m
j − 1)2

4(ℓmj+1/ℓ
m
j )

≤ (ℓ̄M − 1)2

4ℓ̄M
,

which leads to
αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj ) ≤
αm∑
j=1

∑
ui∈Bm

j

kmj u2
i =

αm∑
j=1

∑
ui∈Bm

(ℓmj+1/ℓ
m
j − 1)2

4(ℓmj+1/ℓ
m
j )

u2
i

≤
αm∑
j=1

∑
ui∈Bm

(ℓ̄M − 1)2

4ℓ̄M
u2
i =

(ℓ̄M − 1)2

4ℓ̄M

∑
ui∈Sm/Bm

0

u2
i ,

yielding

∥v∥2q
M∑

m=1

αm∑
j=1

∑
ui∈Bm

j

(ℓmj+1 − ui)(ui − ℓmj ) ≤ ∥v∥2q
M∑

m=1

(ℓ̄M − 1)2

4ℓ̄M

∑
ui∈Sm/Bm

0

u2
i = ∥v∥2q

(ℓ̄M − 1)2

4ℓ̄M

M∑
m=1

∑
ui∈Sm/Bm

0

u2
i

≤ ∥v∥2q
(ℓ̄M − 1)2

4ℓ̄M
∥v∥22
∥v∥2q

=
(ℓ̄M − 1)2

4ℓ̄M
∥v∥22.

Next, we attempt to bound
∑M

m=1

∑
ui∈Bm

0
(ℓm1 − ui)ui with these two known lemmas

Lemma C.1. Let v ∈ Rd. Then, for all 0 < p < q, we have ∥v∥q ≤ ∥v∥p ≤ d1/p−1/q∥v∥q. This holds even when q < 1
and ∥ · ∥ is merely a seminorm.

Lemma C.2. (Ramezani-Kebrya et al., 2021, Lemma 15) Let p ∈ (0, 1) and u ∈ B0. Then we have u(ℓ1− u) ≤ Kpℓ
2−p
1 up,

where

Kp =
1/p

2/p− 1

(
1/p− 1

2/p− 1

)1−p

.

Now, from these two lemma, for any 0 < p < 1 and q ≤ 2, we obtain that

∥v∥2q
M∑

m=1

∑
ui∈Bm

0

(ℓm1 − ui)ui ≤ ∥v∥2q
M∑

m=1

∑
ui∈Bm

0

Kp(ℓ
m
1 )2−pup

i ≤ ∥v∥
2
qKp(ℓ̄

M
1 )2−p

M∑
m=1

∑
ui∈Bm

0

up
i

= ∥v∥2qKp(ℓ̄
M
1 )2−p

M∑
m=1

∑
ui∈Bm

0

|vi|p

∥v∥pq
≤ Kp(ℓ̄

M
1 )2−p∥v∥pp∥v∥2−p

q

≤ Kp(ℓ̄
M
1 )2−p∥v∥p2d1−p/2∥v∥2−p

2 = Kp(ℓ̄
M
1 )2−pd1−p/2∥v∥22,

where the penultimate inequality holds due to the first given lemma and ∥v∥q ≤ ∥v∥2 for q ≥ 2. Now combining the
bounds, we obtain

EqLM
[∥QLM (v)− v∥22] ≤

(
(ℓ̄M − 1)2

4ℓ̄M
+Kp(ℓ̄

M
1 )2−pd1−p/2

)
∥v∥22.

Moreover, if q ≥ 1, note that ∥v∥2−p
q ≤ ∥v∥2−p

2 d
2−p

min{2,q}−
2−p
2 , yielding

EqLM
[∥QLM (v)− v∥22] ≤

(
(ℓ̄M − 1)2

4ℓ̄M
+Kp(ℓ̄

M
1 )2−pd

2−p
min{2,q}

)
∥v∥22.

Now we can minimize εQ with finding the optimal p∗ by minimizing

λ(p) =
1/p

2/p− 1

(
1/p− 1

2/p− 1

)1−p

υ1−p =
1

2− p

(
1− p

2− p

)1−p

υ1−p = (2− p)p−2(1− p)1−pυ1−p,
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where υ = ℓ̄M1 d
1

min{2,q} . This is equivalent to minimizing the log

log λ(p) = (p− 2) log(2− p) + (1− p) log(1− p) + (1− p) log(v)

Setting the derivative of log λ(p) to zero, we have

−1 + log(2− p∗) + 1− log(1− p∗) + log(υ) = 0,

yielding the optimal p∗ to be

p∗ =


υ − 2

υ − 1
, υ ≥ 2 or d ≥ dth

0, υ < 2 or d < dth.

In brief, we have

εQ =
(ℓ̄M − 1)2

4ℓ̄M
+ (ℓ̄M1 d

1
min{q,2} − 1)1{d ≥ dth}+

1

4
(ℓ̄M1 )2d

2
min{q,2}1{d < dth}.

■

D. Coding Framework
D.1. Proof of Code Length Bound for Coding Protocol

Theorem 5.3 (Code-length Bound). Let p̂mj denote the probability of occurrence of ℓmj for m ∈ [M ] and j ∈ [αm]. Under
the setting specified in Theorem 5.1, the expectation EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
of the number of bits is bounded

by

EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= O

(− M∑
m=1

p̂m0 −
M∑

m=1

αm∑
j=1

p̂mj log p̂mj

)
µmd

 , (6)

where µm is the proportion of type m coordinates.

Proof. We first use a constant Cq bits to represent the positive scalar ∥v∥q with a standard 32-bit floating point encoding.
We now carry out the encoding and decoding procedure in parallel for each of the M types of coordinates. We use 1 bit
to encode the sign of each nonzero type-m entry. Next, the probabilities associated with the symbols to be encoded, i.e.,
the type-m levels, can be computed using the weighted sum of the conditional CDFs of normalized type-m coordinates as
follows.

Proposition D.1. Let j ∈ [αm], we have the probability p̂mj of occurrence of ℓmj is

p̂mj = Pr(ℓmj ) =

∫ ℓmj

ℓmj−1

u− ℓmj−1

ℓmj − ℓmj−1

dF̃m(u) +

∫ ℓmj+1

ℓmj

ℓmj+1 − u

ℓmj+1 − ℓmj
dF̃m(u),

where F̃m(u) is the weighted sum of the type-m conditional CDFs in (2). Hence we get

p̂m0 = Pr(ℓm0 ) =

∫ ℓm1

ℓm0

ℓm1 − u

ℓm1 − ℓm0
dF̃m(u) =

∫ ℓm1

0

ℓm1 − u

ℓm1
dF̃m(u),

p̂mαm+1 = Pr(ℓmαm+1) =

∫ ℓmαm+1

ℓmαm

u− ℓmαm

ℓmαm+1 − ℓmαm

dF̃m(u) =

∫ 1

ℓmαm

u− ℓmαm

1− ℓmαm

dF̃m(u).

Then, we can get the expected number of non-zeros after quantization.
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Lemma D.2. For arbitrary v ∈ Rd, the expected number of non-zeros in QM
L (v) is

E
[
∥QM

L (v)∥0
]
=

M∑
m=1

(1− p̂m0 )µmd.

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy of the source (Cover
& Thomas, 2006). Hence, we can transmit entries of normalized u in at most

∑M
m=1 (H(ℓm) + 1)µmd, where µm is the

proportion of type-m coordinates w.r.t all coordinates and H(ℓm) = −
∑αm

j=1 p̂
m
j log(p̂mj ) is the entropy in bits.

In brief, we obtain

EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= Cq +

M∑
m=1

(1− p̂m0 )µmd+

M∑
m=1

− αm∑
j=1

(
p̂mj log(p̂mj )

)
+ 1

µmd

= O

− M∑
m=1

p̂m0 −
M∑

m=1

αm∑
j=1

p̂mj log p̂mj

µmd

 ,

as desired. ■

D.2. Alternative Coding Protocol

Let At,m = {ℓt,m0 , ℓt,m1 , . . . , ℓt,mαm
, ℓt,mαm+1} be the collection of all the levels of the sequence ℓt,m. Let Ωt,M =

⋃M
m=1At,m

be the collection of all the levels of M sequences at time t. The overall encoding, i.e., composition of coding and quantization,
ENC(∥v∥q, s, qLt,M ) : R+×{±1}d× (Ωt,M )d → {0, 1}∗ uses a standard floating point encoding with Cq bits to represent
the non-negative scalar ∥v∥q , encodes the sign of each coordinate with one bit, and then utilizes an integer encoding scheme
Ψ : (Ωt,M )d → {0, 1}∗ to efficiently encode every quantized coordinate with the minimum expected code-length. To
solve (MQV), we sample Z stochastic dual vectors {g(xt;ω1), . . . , g(xt;ωZ)}. Let Fz denote the marginal cumulative
distribution function (CDF) of normalized coordinates conditioned on observing ∥g(xt;ωz)∥q . By law of total expectation,
for Lt,M ∈ Lt,M , (MQV) can be approximated by:

min
Lt,M

Z∑
z=1

∥g(xt;ωz)∥2q
M∑

m=1

αm∑
i=0

∫ ℓt,mi+1

ℓt,mi

σ2
Q(u; ℓ

t,m) dFz(u) or min
Lt,M

M∑
m=1

αm∑
i=0

∫ ℓt,mi+1

ℓt,mi

σ2
Q(u; ℓ

t,m) dF̃ (u), (7)

where F̃ (u) =
∑Z

z=1 λzFz(u) is the weighted sum of the conditional CDFs with

λz = ∥g(xt;ωz)∥2q/
Z∑

z=1

∥g(xt;ωz)∥2q. (8)

Remark D.3. We note that the Main Protocol offers higher compression ratios through code-word sharing across different
types. The improved compression ratio comes at the expense of increased encoding and decoding complexity along with
possibility of increased re-transmission overhead in case of unstable networking environment. When the end-to-end delay
for message passing in the underlying network is highly random such as jitters (Verma et al., 1991), Alternative Protocol
will be optimal since every quantization level for every type has a unique code-word. However, Main Protocol will possibly
require several transmissions in case of unstable networks. When the network is stable and delays are deterministic, we
propose to adopt the Main Protocol. Our coding alternatives provide a trade-off between compression ratio, re-transmission
probability, and encoding/decoding complexity.

D.3. Further Details on Coding Framework

The choice of a specific lossless prefix code for encoding qLt,M relies on the extent to which the distribution of the discrete
alphabet of levels is known. If we can estimate or know the distribution of the frequency of the discrete alphabet Ωt,M , we
can apply the classical Huffman coding with an efficient encoding/decoding scheme and achieve the minimum expected
code-length among methods encoding symbols separately (Cover & Thomas, 2006; Huffman, 1952). On the other hand, if
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we only know smaller values are more frequent than larger values without knowing the distribution of the discrete alphabet,
we can consider Elias recursive coding (ERC) (Elias, 1975).

The decoding DEC : {0, 1}∗ → Rd first reads Cq bits to reconstruct ∥v∥q , then applies decoding scheme Ψ−1 : {0, 1}∗ →
(Ωt,M )d to obtain normalized coordinates.

Given quantization levels ℓt,m and the marginal PDF of normalized coordinates, K nodes can construct the Huffman tree in
parallel. A Huffman tree of a source with s+ 2 symbols can be constructed in time O(s) through sorting the symbols by the
associated probabilities. It is well-known that Huffman codes minimize the expected code-length:
Theorem D.4. (Cover & Thomas, 2006, Theorems 5.4.1 and 5.8.1) Let Z denote a random source with a discrete alphabet
Z . The expected code-length of an optimal prefix code to compress Z is bounded by H(Z) ≤ E[L] ≤ H(Z) + 1 where
H(Z) ≤ log2(|Z|) is the entropy of Z in bits.

D.4. Proof of Code Length Bound for Alternative Protocol

Theorem D.5 (Code-length Bound for Alternative Protocol). Let pmj denote the probability of occurrence of ℓmj for m ∈ [M ]

and j ∈ [αm]. Under the setting specified in Theorem 5.1, the expectation EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
of the

number of bits under Alternative Protocol is bounded by

EωEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= O

(− M∑
m=1

pm0 −
M∑

m=1

αm∑
j=1

pmj log pmj

)
d

 .

Proof. We first use a constant Cq bits to represent the positive scalar ∥v∥q with a standard 32-bit floating point encoding.
Then we use 1 bit to encode the sign of each nonzero entry of u. Next, the probabilities associated with the symbols to be
encoded, i.e., the levels in ΩM , can be computed using the weighted sum of the conditional CDFs of normalized coordinates
as follows.

Proposition D.6. Let j ∈ [αm], we have the probability pmj of occurrence of ℓmj is

pmj = Pr(ℓmj ) =

∫ ℓmj

ℓmj−1

u− ℓmj−1

ℓmj − ℓmj−1

dF̃ (u) +

∫ ℓmj+1

ℓmj

ℓmj+1 − u

ℓmj+1 − ℓmj
dF̃ (u),

where F̃ (u) is the weighted sum of the conditional CDFs as defined in (7). Consequently we deduce

pm0 = Pr(ℓm0 ) =

∫ ℓm1

ℓm0

ℓm1 − u

ℓm1 − ℓm0
dF̃ (u) =

∫ ℓm1

0

ℓm1 − u

ℓm1
dF̃ (u),

pmαm+1 = Pr(ℓmαm+1) =

∫ ℓmαm+1

ℓmαm

u− ℓmαm

ℓmαm+1 − ℓmαm

dF̃ (u) =

∫ 1

ℓmαm

u− ℓmαm

1− ℓmαm

dF̃ (u).

Then, we can get the expected number of non-zeros after quantization.

Lemma D.7. For arbitrary v ∈ Rd, the expected number of non-zeros in QM
L (v) is

E
[
∥QM

L (v)∥0
]
=

(
1−

M∑
m=1

pm0

)
d.

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy of the source
(Cover & Thomas, 2006). Hence, we can transmit entries of normalized u in at most

(∑M
m=1 H(ℓm) + 1

)
d, where

H(ℓm) = −
∑αm

j=1 p
m
j log(pmj ) is the entropy in bits.

In brief, we obtain

EwEqLM

[
ENC

(
QLM (g(x;ω));LM

)]
= Cq +

(
1−

M∑
m=1

pm0

)
d+

(
M∑

m=1

H(ℓm) + 1

)
d.

■
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D.5. Unbiased Compression under Both Noises Profiles

The following two lemmas show how additional noise due to compression affects the upper bounds under absolute noise
Assumption 2.4 and relative noise models Assumption 2.5, respectively. Let’s keep in mind that qLM ∼ PQ represent d
variables sampled independently for random quantization, and qLM is independent of random sample w ∼ P.

Lemma D.8 (Unbiased Compression under Absolute Noise). Let x ∈ X and w ∼ P. Suppose the oracle g(x;ω) satisfies
Assumption 2.4. Suppose QLM satisfies Theorem 5.1 and Theorem D.5, then the compressed QLM (g(x;ω)) satisfies
Assumption 2.4 with

E
[
∥QLM (g(x;ω))−A(x)∥22

]
≤ εQ(2L

2D2 + 2∥A(X1)∥22 + σ2) + σ2.

Proof. The unbiasedness property immediately follows from the construction of the unbiased quantization QLM . Next, we
note that that the maximum norm increase when compressing QLM (g(x;ω)) occurs when each normalized coordinate of
g(x;ω), {ui}i∈[d], is mapped to the upper level ℓmτm(ui)+1 for some m ∈ [M ]. We can show bounded absolute variance as
follows

EwEqLM

[
∥QLM (g(x;ω))−A(x)∥22

]
= EwEqLM

[
∥QLM (g(x;ω))− g(x;ω) + g(x;ω)−A(x)∥22

]
= EwEqLM

[
∥QLM (g(x;ω))− g(x;ω)∥22

]
+ Ew

[
∥U(x;ω)∥22

]
≤ εQEw

[
∥g(x;ω)∥22

]
+ σ2

= εQEw

[
∥A(x) + U(x;ω)∥22

]
+ σ2

= εQ∥A(x)∥22 + εQEw

[
∥U(x;ω)∥22

]
+ σ2

≤ εQ∥A(x)∥22 + εQσ
2 + σ2,

where the second equality occurs due to unbiasedness of qLM , the third steps follos from Theorem 5.1, and the last inequality
holds according to Assumption 2.4 for g(x;ω).

Now we note that in Theorem 5.5, D2 := supx∈X ∥X1 − x∥22, where X ⊂ Rd is a compact neighborhood of a VI solution.
Since A is L-Lipschitz (Assumption 2.3), we note that

∥A(X1)−A(x)∥22 ≤ L2∥X1 − x∥22 ≤ L2D2 ∀ x ∈ X .

Since X1 is our initialization, A(X1) has a finite value, so A(x) is bounded for all x ∈ X . Hence for the quantization in
Algorithm 1, we can obtain

∥A(x)∥22 ≤ 2∥A(X1)−A(x)∥22 + 2∥A(X1)∥22 ≤ 2L2D2 + 2∥A(X1)∥22,

which implies the desired conclusion. ■

Lemma D.9 (Unbiased Compression under Relative Noise). Let x ∈ X and w ∼ P. Suppose the oracle g(x;ω) satisfies
Assumption 2.5. Suppose QLM satisfies Theorem 5.1 and Theorem 5.3, then the compressed QLM (g(x;ω)) satisfies
Assumption 2.5 with

E
[
∥QLM (g(x;ω))−A(x)∥22

]
≤ (εQσR + εQ + σR)∥A(x)∥22. (9)

Proof. The unbiasedness assumption holds similar to D.8. We can show bounded absolute variance as follows

EwEqLM

[
∥QLM (g(x;ω))−A(x)∥22

]
= EwEqLM

[
∥QLM (g(x;ω))− g(x;ω) + g(x;ω)−A(x)∥22

]
= EwEqLM

[
∥QLM (g(x;ω))− g(x;ω)∥22

]
+ Ew

[
∥U(x;ω)∥22

]
≤ εQEw

[
∥g(x;ω)∥22

]
+ σR∥A(x)∥22

= εQEw

[
∥A(x) + U(x;ω)∥22

]
+ σR∥A(x)∥22

= εQ∥A(x)∥22 + εQEw

[
∥U(x;ω)∥22

]
+ σR∥A(x)∥22

≤ (εQσR + εQ + σR)∥A(x)∥22,

where the second equality occurs due to the unbiasedness of qLM , the fifth equality holds because of the unbiasedness of the
noise model and the last inequality holds according to Assumption 2.5 for g(x;ω). ■
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E. Analysis in the General Setting
E.1. Template Inequality

Proposition E.1 (Template Inequality). Suppose the iterates Xt of (ODA) are updated with non-increasing step-size
schedule γt and ηt as in (4) for all t = 1/2, 1, . . .. Then for any X ∈ Rd, we have

T∑
t=1

〈
1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ ∥X∥

2
∗

2ηT+1
+

T∑
t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
−

T∑
t=1

∥Xt −Xt+1/2∥2∗
2ηt

.

Proof. First, decompose the LHS individual term
1

K

〈∑K
k=1 V̂k,t+1/2, Xt+1/2 −X

〉
into two terms as follows

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
= A+B,

where

A =
1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
, B =

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1 −X

〉
.

From the update rule of ODA (with ηt), note that

B = ⟨Yt − Yt+1, Xt+1 −X⟩

=

〈
Yt −

ηt+1

ηt
Yt+1, Xt+1 −X

〉
+

〈
ηt+1

ηt
Yt+1 − Yt+1, Xt+1 −X

〉
=

1

ηt
⟨ηtYt − ηt+1Yt+1, Xt+1 −X⟩+

(
1

ηt+1
− 1

ηt

)
⟨−ηt+1Yt+1, Xt+1 −X⟩

=
1

ηt
⟨Xt −Xt+1, Xt+1 −X⟩+

(
1

ηt+1
− 1

ηt

)
⟨X1 −Xt+1, Xt+1 −X⟩

=
1

2ηt

(
∥Xt −X∥2∗ − ∥Xt −Xt+1∥2∗ − ∥Xt+1 −X∥2∗

)
+

(
1

2ηt+1
− 1

2ηt

)(
∥X1 −X∥2∗ − ∥X1 −Xt+1∥2∗ − ∥Xt+1 −X∥2∗

)
≤ 1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗ −

1

2ηt+1
∥Xt+1 −X∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X1 −X∥2∗,

the last inequality holds as the non-positive term−
(

1

2ηt+1
− 1

2ηt

)
∥X1−Xt+1∥2∗ is dropped. We can rearrange the above

inequality as

1

2ηt+1
∥Xt+1 −X∥2∗ ≤

1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X∥2∗ −B

=
1

2ηt
∥Xt −X∥2∗ −

1

2ηt
∥Xt −Xt+1∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X∥2∗

+
1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
− 1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
. (*)

Next, also by the update rule (with γt), we have for any X ∈ Rd

ηt
K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −X

〉
≤ γt

K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −X

〉
= ⟨Xt −Xt+1/2, Xt+1/2 −X⟩

=
1

2
∥Xt −X∥2∗ −

1

2
∥Xt −Xt+1/2∥2∗ −

1

2
∥Xt+1/2 −X∥2∗.
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Substituting X = Xt+1 and dividing both sides of the inequality by ηt, we have

1

K

〈
K∑

k=1

V̂k,t−1/2, Xt+1/2 −Xt+1

〉

≤ 1

2ηt
∥Xt −Xt+1∥2∗ −

1

2ηt
∥Xt −Xt+1/2∥2∗ −

1

2ηt
∥Xt+1/2 −Xt+1∥2∗. (**)

Combining (*) with (**) and after some rearrangements, we obtain

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2ηt
∥Xt −X∥2∗ −

1

2ηt+1
∥Xt+1 −X∥2∗ +

(
1

2ηt+1
− 1

2ηt

)
∥X1 −X∥2∗

+
1

K

〈
K∑

k=1

V̂k,t+1/2 − V̂k,t−1/2, Xt+1/2 −Xt+1

〉

− 1

2ηt
∥Xt −Xt+1/2∥2∗ −

1

2ηt
∥Xt+1/2 −Xt+1∥2∗.

Then, by summing the above expression over t = 1, 2, . . . , T and with some telescoping terms, we obtain
T∑

t=1

1

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2η1
∥X1 −X∥2∗ −

1

2ηT+1
∥XT+1 −X∥2∗ +

(
1

2ηT+1
− 1

2η1

)
∥X1 −X∥2∗

+

T∑
t=1

1

K

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

−
T∑

t=1

1

2ηt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗.

Next we consider the substitution X1 = 0 which is just for notation simplicity and can be relaxed at the expense of obtaining

a slightly more complicated expression. We can further drop the term
1

2ηT+1
∥XT+1 −X∥2∗ to obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ 1

2ηT+1
∥X∥2∗ +

1

K

T∑
t=1

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

−
T∑

t=1

1

2ηt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗. (†)

Note that by Cauchy-Schwarz and triangle inequalities, we have

1

K

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉
=

1

K

K∑
k=1

〈
V̂k,t+1/2 − V̂k,t−1/2, Xt+1/2 −Xt+1

〉
≤

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥
∗

∥∥∥∥Xt+1/2 −Xt+1

K

∥∥∥∥
∗
.

Combining with the AM-GM inequality of the form

xy ≤ ηt
2K2

x2 +
K2

2ηt
y2,

we deduce from (†) further that

1

K

T∑
t=1

〈
K∑

k=1

(
V̂k,t+1/2 − V̂k,t−1/2

)
, Xt+1/2 −Xt+1

〉

≤
T∑

t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
+

T∑
t=1

1

2ηt
∥Xt+1/2 −Xt+1∥2∗. (††)
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Plugging (††) into (†), we obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ ∥X∥

2
∗

2ηT+1
+

T∑
t=1

K∑
k=1

ηt
2K2

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
−

T∑
t=1

1

2ηt
∥Xt −Xt+1/2∥2∗,

as desired. ■

E.2. GAP Analysis under Absolute Noise

We first introduce following two useful lemmas that will help to bound the (GAP):

Lemma E.2. (Levy et al., 2018; McMahan & Streeter, 2010) For all non-negative numbers α1, . . . , αt, it holds that√√√√ T∑
t=1

αt ≤
T∑

t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt.

Lemma E.3. (Bach & Levy, 2019) Let C ∈ Rd be a convex set and h : C → R be a 1-strongly convex w.r.t. a norm ∥ · ∥.
Assume that h(x)−minx∈C h(x) ≤ D2/2 for all x ∈ C. Then, for any martingale difference (zt)Tt=1 ∈ Rd and any x ∈ C,

E

[〈
T∑

t=1

zt,x

〉]
≤ D2

2

√√√√ T∑
t=1

E[∥zt∥2]. (10)

Now we state and prove the complexity of Algorithm 1 under absolute noise and fixed compression scheme.

Theorem 5.5 (Algorithm 1 under Absolute Noise). Suppose the iterates Xt of Algorithm 1 are updated with learning
rate schedule given in (4) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neighborhood of a VI solution and
D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, and 2.4, we have

E
[
GapX

(
Xt+1/2

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2

√
TK

)
,

where ε̂Q =
∑M

m=1

∑Jm

j=1 Tm,j
√
εQ,m,j/T is average square root variance bound.

Proof. Suppose first that no compression is applied, i.e., εQ = 0. Using the result of the template inequality Proposition E.1,
we can drop the negative term to obtain

1

K

T∑
t=1

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X

〉
≤ ∥X∥

2
∗

2ηT+1
+

T∑
t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗.

Next we can expand the LHS with the absolute noise model Assumption 2.4 as follows

LHS =
1

K

T∑
t=1

〈
K∑

k=1

Ak(Xt+1/2), Xt+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

≥ 1

K

T∑
t=1

〈
K∑

k=1

Ak(X), Xt+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

=
1

K

〈
K∑

k=1

Ak(X),

T∑
t=1

Xt+1/2 −
T∑

t=1

X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉

=
T

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉
+

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2 −X

〉
,
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where the second inequality follows from the monotonicity of A and X̄T+1/2 =
∑T

t=1 Xt+1/2/T . Plugging this back to the
result from template inequality with some rearrangement, we obtain

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉
≤ 1

T

(
∥X∥2∗
2ηT+1

+

T∑
t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

+
1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X −Xt+1/2

〉)
.

By taking the supremum over X , then dividing by T and then taking expectation on both sides, we get

E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ 1

T
(S1 + S2 + S3),

where

S1 = E
[

D2

2ηT+1

]
, S2 = E

[
T∑

t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]
,

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X −Xt+1/2

〉]
.

Here we make an important observation that

E

[
K∑

k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
≤ 2E

[
K∑

k=1

∥∥Ak(Xt+1/2)−Ak(Xt−1/2)
∥∥2
∗

]

+ 2E

[
K∑

k=1

∥∥Uk(Xt+1/2)− Uk(Xt−1/2)

∥∥2
∗

]

≤ 2

K∑
k=1

L2E
[∥∥Xt+1/2 −Xt−1/2

∥∥2
∗

]
+ 4Kσ2

≤ 2KL2D2 + 4Kσ2, (11)

where the second inequality comes from L-Lipschitzness the operator for the first summand and the absolute noise
assumption for the second summand. Now we proceed to bound these terms one by one. For S1, from the choice of learning
rates ηt ≤ 1, with Equation (11)we obtain

S1 = D2E


√√√√1 +

T∑
t=1

1

K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

 ≤ D2

√√√√1 +

T∑
t=1

E

[
1

K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]

≤ D2

√
1 +

2T (L2D2 + 2σ2)

K
.
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Next, we proceed to bound S2

S2 = E

[
T∑

t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

= E

[
T∑

t=1

K∑
k=1

( ηt
2K2

− ηt+1

2K2

)
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]
+ E

[
T∑

t=1

K∑
k=1

ηt+1

2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

≤ E

[
T∑

t=1

( ηt
2K2

− ηt+1

2K2

)
(2KL2D2 + 4Kσ2)

]

+
1

2
E

 T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t−1/2∥2∗/K2√
1 +

∑t
s=1

∑K
k=1

∥∥∥V̂k,s+1/2 − V̂k,s−1/2

∥∥∥2 /K2

 (from Equation (11))

≤ 2L2D2 + 4σ2 +
1

2
E


√√√√1 +

1

K2

T∑
t=1

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
 (from Lemma E.2)

≤ 2L2D2 + 4σ2 +
1

2

√
1 +

2T (L2D2 + 2σ2)

K
.

Lastly, let’s consider S3

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
− E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]

We can bound the first term with Lemma E.3 as follows

E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
≤ D2

2K

√√√√E

[
T∑

t=1

K∑
k=1

∥Uk,t+1/2∥2
]
≤ D2σ

√
T

2
√
K

For the second term, we use law of total expectation

E

[
T∑

t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]
= E

[
T∑

t=1

K∑
k=1

E
[〈
Uk(Xt+1/2), Xt+1/2

〉
|Xt+1/2

]]
= 0,

implying S3 ≤ D2σ
√
T

2
√
K

. Combining the bounds of S1, S2 and S3, we finally obtain the complexity without compression as

E
[
GapX

(
X̄t+1/2

)]
= E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ 1

T
O

(√
TD2L2

√
K

)
= O

(
D2L2

√
TK

)
.

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average square root expected
code-length bound is denoted as

ε̂Q =

M∑
m=1

Jm∑
j=1

Tm,j
√
εQ,m,j

T
.

Finally, by applying compression bound Lemma D.9 along the ideas of (Faghri et al., 2020, Theorem 4) and (Ramezani-
Kebrya et al., 2023, Theorem 3), we get the desired result

E
[
GapX

(
X̄t+1/2

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D2L2

√
TK

)
■
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E.3. GAP Analysis under Relative Noise

Theorem 5.7 (Algorithm 1 under Relative Noise). Suppose the iterates Xt of Algorithm 1 are updated with learning
rate schedule in (4) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neighborhood of a VI solution. Let D2 :=
supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, 2.5, and 5.6, we have

E
[
GapX

(
Xt+1/2

)]
= O

(
(σRεQ + εQ + σR)D

2

TK

)
,

where εQ =
∑M

m=1

∑Jm

j=1 Tm,jεQ,m,j/T is the average variance bound.

Proof. Plugging X⋆ into part of the LHS of template inequality Proposition E.1 and then taking expectation, we obtain

E

[〈
1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X⋆

〉]

= E

[
1

K

K∑
k=1

E
[
⟨V̂k,t+1/2, Xt+1/2 −X⋆⟩|Xt+1/2

]]
= E

[
1

K

K∑
k=1

⟨Ak(Xt+1/2), Xt+1/2 −X⋆⟩

]
= E

[
⟨A(Xt+1/2), Xt+1/2 −X⋆⟩

]
≥ E

[
⟨A(Xt+1/2)−A(X⋆), Xt+1/2 −X⋆⟩

]
≥ βE

[
∥A(Xt+1/2)∥2∗

]
= βE

[
1

K

K∑
k=1

∥A(Xt+1/2)∥2∗

]
≥ β

2σR + 2
E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]
,

where the fifth step occurs due to the β-co-coercivity assumption and the last step follows from this inequality resulted from
Assumption 2.5

∥V̂k,t+1/2∥2∗ = ∥Vk,t+1/2 + Uk,t+1/2∥2∗ ≤ 2∥Vk,t+1/2∥2∗ + 2∥Uk,t+1/2∥2∗ ≤ (2 + 2σR)∥Vk,t+1/2∥2∗.

Plugging this back into the template inequality, we deduce

β

2σR + 2

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]
≤ E

[
∥X⋆∥2∗
2ηT+1

+

T∑
t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗
−

T∑
t=1

∥Xt −Xt+1/2∥2∗
2ηt

]
,

implying

β

2σR + 2

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]
≤ E

[
∥X⋆∥2∗
2ηT+1

+

T∑
t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
. (Inq1)

On the other hand, we consider

E

[
T∑

t=1

β∥A(Xt+1/2)∥2∗ +
T∑

t=1

∥Xt −Xt+1/2∥2∗
2ηt

]
≥ E

[
T∑

t=1

β∥A(Xt+1/2)∥2∗ +
T∑

t=1

β2

2ηt
∥A(Xt)−A(Xt+1/2)∥2∗

]

≥ min

{
β,

β2

2η0

} T∑
t=1

E
[
∥A(Xt+1/2)∥2∗ + ∥A(Xt)−A(Xt+1/2)∥2∗

]
≥ 1

2
min

{
β,

β2

2η0

} T∑
t=1

E
[
∥A(Xt)∥2∗

]
≥ 1

4 + 4σR
min

{
β,

β2

2η0

} T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
,

where the second step comes from the consequence of the co-coerceivity assumption. Plugging this back to template
inequality, we obtain

1

4 + 4σR
min

{
β,

β2

2η0

} T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
≤ E

[
∥X⋆∥2∗
2ηT+1

+

T∑
t=1

ηt
2K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
. (Inq2)
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Now summing the two above inequalties Inq1 and Inq2, we have

1

4 + 4σR
min

{
β,

β2

2η0

} T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
+

β

2σR + 2

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]

≤ E

[
∥X⋆∥2∗
ηT+1

+

T∑
t=1

ηt
K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
.

Next, from the bounding of S2 from Theorem 5.5, we have

E

[
T∑

t=1

ηt
K2

K∑
k=1

∥∥∥V̂k,t+1/2 − V̂k,t−1/2

∥∥∥2
∗

]
≤ E

[
1

ηT+1

]
,

yielding

1

4 + 4σR
min

{
β,

β2

2η0

} T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
+

β

2σR + 2

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]
≤ E

[
∥X⋆∥2∗ + 1

ηT+1

]
.

On the other hand, we can consider the lower bound for the LHS of this inequality

1

4 + 4σR
min

{
β,

β2

2η0

} T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
+

β

2σR + 2

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

]

≥ 1

4 + 4σR
min

{
β,

β2

2η0

}( T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t∥2∗

]
+

T∑
t=1

E

[
1

K

K∑
k=1

∥V̂k,t+1/2∥2∗

])

≥ K

2 + 2σR
min

{
β,

β2

2η0

}
E

[
T∑

t=1

K∑
k=1

1

K2
∥V̂k,t+1/2 − V̂k,t∥2∗

]

≥ K

4 + 4σR
min

{
β,

β2

2η0

}
E

[
T∑

t=1

(
K∑

k=1

1

K2
∥V̂k,t+1/2 − V̂k,t∥2∗ +

K∑
k=2

1

K2
∥V̂k,t − V̂k,t−1/2∥2∗

)]

≥ K

2 + 2σR
min

{
β,

β2

2η0

}
E

[
T∑

t=1

K∑
k=2

1

K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]

≥ K

2 + 2σR
min

{
β,

β2

2η0

}
E
[

1

η2T+1

]
.

Hence we have

K

2 + 2σR
min

{
β,

β2

2η0

}(
E
[

1

η2T+1

])
≤ E

[
∥X⋆∥2∗ + 1

ηT+1

]
= (∥X⋆∥2∗ + 1)E

[√
1

η2T+1

]
≤ (∥X⋆∥2∗ + 1)

√
E
[

1

η2T+1

]
,

where the last inequality follows from Jensen’s inequality. Therefore, we obtain

E
[

1

ηT+1

]
≤ 2 + 2σR

K
max

{
1

β
,
2η0
β2

}
. (12)

Similar to the proof of Theorem 5.5 for the absolute noise case, we consider

E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ 1

T
(S1 + S2 + S3),

where

S1 = E
[

D2

2ηT+1

]
, S2 = E

[
T∑

t=1

K∑
k=1

ηt
2K2
∥V̂k,t+1/2 − V̂k,t−1/2∥2∗

]
,

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X −Xt+1/2

〉]
.
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Similar to the proof of Theorem 5.5, we have

S2 ≤ 2L2D2 + 4σ2 + E
[

1

ηT+1

]
.

Again, we decompose S3 similarly to the proof of Theorem 5.5

S3 = E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
− E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]
.

For the first term of the above expression, we note that

E

[
sup
X

1

K

T∑
t=1

〈
K∑

k=1

Uk(Xt+1/2), X

〉]
=

1

K
E

[〈
T∑

t=1

K∑
k=1

Uk,t+1/2, X
o

〉]
=

D2

2K

√√√√√E

∥∥∥∥∥
T∑

t=1

K∑
k=1

Uk,t+1/2

∥∥∥∥∥
2

∗


≤ D2

2
√
K

√√√√E

[
T∑

t=1

σR

∥∥A(Xt+1/2)
∥∥2
∗

]
≤ D2

2
√
K

√
σRE

[
∥X∗∥2∗
2γT+1

]
For the second term of S3, we use law of total expectation

E

[
T∑

t=1

〈
K∑

k=1

Uk(Xt+1/2), Xt+1/2

〉]
= E

[
T∑

t=1

K∑
k=1

E
[〈
Uk(Xt+1/2), Xt+1/2

〉
|Xt+1/2

]]
= 0.

Therefore, from the bounds for S1, S2, S3, we have the complexity for no compression is

E
[
GapX

(
X̄t+1/2

)]
= E

[
sup
X

1

K

K∑
k=1

〈
Ak(X), X̄T+1/2 −X

〉]
≤ O

(
D2

T

)
.

Now, we consider layer-wise compression. Firstly, recall that the average variance upper bound is

εQ =

M∑
m=1

Jm∑
j=1

Tm,jεQ,m,j

T
.

Now with the bound from Lemma D.9, we can follow along the line of (Faghri et al., 2020, Theorem 4) and (Ramezani-
Kebrya et al., 2023, Theorem 4) to obtain the final computation complexity with layer-wise compression

E
[
GapX

(
X̄t+1/2

)]
= O

(
(σRεQ + εQ + σR)D

2

T

)
.

■

F. Analysis in Almost Sure Boundedness Model
F.1. Useful Lemmas

For the sake of convenience, we introduce the following new notations: 7

λt =
1

K2

t∑
s=1

∥∥∥∥∥
K∑

k=1

V̂k,s+1/2

∥∥∥∥∥
2

, µt =

t∑
s=1

∥Xs −Xs+1∥2,

yielding

γt =
1

(1 + λt−2)1/2−q̂
, ηt =

1√
1 + λt−2 + µt−2

.

We now establish some basic lemmas that will be reused through out this theoretical analysis.

7For t ≤ 0, λt = µt = 0.
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Lemma F.1. Let Assumption 2.4 holds. Then for T ∈ N, we have

λT ≤ 2T (J2 + σ2).

Proof. Using Assumption 2.4, we note that

1

K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

K∑
k=1

(
Vk,t+1/2 + Uk,t+1/2

)∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

K

K∑
k=1

Uk,t+1/2

∥∥∥∥∥
2

≤ 2

K

K∑
k=1

∥∥Vk,t+1/2

∥∥2 + 2

K

K∑
k=1

∥∥Uk,t+1/2

∥∥2
≤ J2 + 2σ2,

implying λT ≤ 2TJ2 + 2Tσ2. ■

Lemma F.2. (Hsieh et al., 2022, Lemma 14), a generalization of (Auer et al., 2002, Lemma 3.5) Let T ∈ N, ε > 0, and
q ∈ [0, 1). For any sequence of non-negative real numbers a1, . . . , aT , we have

T∑
t=1

at(
ε+

∑t
s=1 as

)q ≤ 1

1− q

(
T∑

t=1

at

)1−q

.

Combining the above two lemmas, we deduce the following useful bound

Lemma F.3. Suppose that Assumption 2.4 holds, let s ∈ N, and r ∈ [0, 1), then for T ∈ N, we obtain

T∑
t=1

∥
∑K

k=1 V̂k,t+1/2/K∥2

(1 + λt−s)r
≤

λ1−r
T

1− r
+ 2s(J2 + σ2).

Proof. Note that

1

(1 + λt)r
≤ 1

(1 + λt−s)r
.

Combining the above inequality with bound of
∥∥∥∑K

k=1 V̂k,t+1/2/K
∥∥∥2 in Lemma F.1, we deduce

(
1

(1 + λt−s)r
− 1

(1 + λt)r

)∥∥∥∥∥
K∑

k=1

V̂k,t+1/2/K

∥∥∥∥∥
2

≤
(

1

(1 + λt−s)r
− 1

(1 + λt)r

)
2(J2 + σ2).

Combining this inequality with Lemma F.2, we derive

T∑
t=1

∥
∑K

k=1 V̂k,t+1/2/K∥2

(1 + λt−s)r
=

T∑
t=1

∥∑K
k=1 V̂k,t+1/2/K∥2

(1 + λt)r
+

(
1

(1 + λt−s)r
− 1

(1 + λt)r

)∥∥∥∥∥
K∑

k=1

V̂k,t+1/2/K

∥∥∥∥∥
2


≤
T∑

t=1

∥
∑K

k=1 V̂k,t+1/2/K∥2

(1 + λt)r
+

T∑
t=1

(
1

(1 + λt−s)r
− 1

(1 + λt)r

)
2(J2 + σ2)

≤
λ1−r
T

1− r
+

0∑
t=1−s

2(J2 + σ2)

(1 + λt)r
=

λ1−r
T

1− r
+ 2s(J2 + σ2).

■

31



Layer-wise Quantization for Quantized Optimistic Dual Averaging

We also establish the following lemma to bound the inverse of ηt

Lemma F.4. (Hsieh et al., 2022, Lemma 17) For T ∈ N, and a, b ∈ R+, it occurs that

a

ηT+1
− b

T∑
t=1

∥Xt −Xt+1∥2

ηt
≤ a

√
1 + λT−1 +

a2

4b
.

Proof. Note that

a

ηT+1
= a

√
1 + λT−1 + µT−1 ≤ a

√
1 + λT−1 + a

√
µT−1.

And we also have

b

T∑
t=1

∥Xt −Xt+1∥2

ηt
≥ b

T∑
t=1

∥Xt −Xt+1∥2 ≥ bµT−1.

Define function h : R → R, h(x) = ax − bx2. We notice a
√
µT−1 − bµT−1 ≤ maxx∈R f(x) = a/4b2. This concludes

the proof. ■

F.2. Important Inequalities

We start with constructing an energy inequality for (ODA) (without quantization).

Proposition F.5. [Energy Inequality] Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning
rates. For any p ∈ X and t ≥ 2, it holds

∥Xt+1 − p∥2

ηt+1
=
∥Xt − p∥2

ηt
− ∥Xt −Xt+1∥2

ηt
+

(
1

ηt+1
− 1

ηt

)(
∥X1 − p∥2 − ∥X1 −Xt+1∥2

)
− 2

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 − p

〉
− 2γt

K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉
+

2

K

〈
K∑

k=1

V̂k,t+1/2, Xt −Xt+1

〉
.

Proof. Using the fact that
∑K

k=1 V̂k,t+1/2/K = (Xt −X1)/ηt − (Xt+1 −X1)/ηt+1, we have〈
K∑

k=1

V̂k,t+1/2

K
,Xt+1 − p

〉
=

〈
Xt −X1

ηt
− Xt+1 −X1

ηt+1
, Xt+1 − p

〉
=

1

ηt
⟨Xt −Xt+1, Xt+1 − p⟩+

(
1

ηt+1
− 1

ηt

)
⟨X1 −Xt+1, Xt+1 − p⟩

=
1

2ηt
(∥Xt − p∥2 − ∥Xt+1 − p∥2 − ∥Xt −Xt+1∥2)

+

(
1

2ηt+1
− 1

2ηt

)
(∥X1 − p∥2 − ∥Xt+1 − p∥2 − ∥X1 −Xt+1∥2).

Multiplying both sides by 2 and rearranging, we obtain

∥Xt+1 − p∥2

ηt+1
=
∥Xt − p∥2

ηt
− ∥Xt −Xt+1∥2

ηt
+

(
1

ηt+1
− 1

ηt

)(
∥X1 − p∥2 − ∥X1 −Xt+1∥2

)
− 2

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1 − p

〉
.
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Lastly, note that〈
K∑

k=1

V̂k,t+1/2, Xt+1 − p

〉

=

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 − p

〉
+

〈
K∑

k=1

V̂k,t+1/2, Xt −Xt+1/2

〉
−

〈
K∑

k=1

V̂k,t+1/2, Xt −Xt+1

〉

=

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 − p

〉
+

γk
K

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉
−

〈
K∑

k=1

V̂k,t+1/2, Xt −Xt+1

〉
,

yielding the desired expression. ■

Corollary F.6 (Energy inequality). Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning
rates. For any p ∈ X and t ∈ N, it holds that

∥Xt+1 − p∥2

ηt+1
≤ ∥Xt − p∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2 − 2

K

〈
K∑

k=1

V̂k,t+1/2, Xt+1/2 − p

〉

− 2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉
+

ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+min

 ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
, 0

.

Proof. By Young’s inequality,

2

K

〈
K∑

k=1

V̂t+1/2, Xt −Xt+1

〉

≤ min

 ηt
K2

∥∥∥∥∥
K∑

k=1

V̂t+1/2

∥∥∥∥∥
2

+
∥Xt −Xt+1∥2

ηt
,
2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂t+1/2

∥∥∥∥∥
2

+
∥Xt −Xt+1∥2

2ηt


=

ηt
K2

∥∥∥∥∥
K∑

k=1

V̂t+1/2

∥∥∥∥∥
2

+
∥Xt −Xt+1∥2

ηt
+min

0,
ηt
K2

∥∥∥∥∥
K∑

k=1

V̂t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt


Using this inequality and dropping the non-positive term −

(
1

ηt+1
− 1

ηt

)
∥X1−Xt+1∥2 from the result of Proposition F.5,

we can obtain the required inequality. ■

Next, we can evaluate the noise and further expand the energy inequality (Corollary F.6) in the following lemma

Lemma F.7. For t ≥ 2, it holds that

E

[
−2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉]
≤ E

−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+L(γ2
t + (γt + ηt)

2)∥Ut−1/2∥2
]
.

33



Layer-wise Quantization for Quantized Optimistic Dual Averaging

Proof. We use Vk,t as a shorthand for Ak(Xt) and V̂k,t = Vk,t + Uk,t, where Uk,t is the zero mean noise. By the law of
total expectation

E

[
−2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉]
= E

[
−2γt
K2

〈
E

[
K∑

k=1

V̂k,t+1/2

]
,

K∑
k=1

V̂k,t−1/2

〉]

= E

[
−2γt
K2

〈
K∑

k=1

Vk,t+1/2,

K∑
k=1

Vk,t−1/2

〉

+
−2γt
K2

〈
K∑

k=1

Vk,t+1/2,

K∑
k=1

Uk,t−1/2

〉]
.

First, note that

−2γt
K2

〈
K∑

k=1

Vk,t+1/2,

K∑
k=1

Vk,t−1/2

〉
=
−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

,

implying

E

[
−2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉]
= E

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

− 2γt
K2

〈
K∑

k=1

Vk,t+1/2,

K∑
k=1

Uk,t−1/2

〉]
.

(‡)

From the update rules of (ODA), we have

Xt+1/2 = Xt −
γt
K

K∑
k=1

V̂k,t−1/2, Xt = X1 −
ηt
K

t−1∑
s=1

K∑
k=1

V̂k,s+1/2.

Combining these two equations, we get

Xt+1/2 = X1 −
ηt
K

t−1∑
s=1

K∑
k=1

V̂k,s+1/2 −
γt
K

K∑
k=1

V̂k,t−1/2

= X1 −
ηt
K

t−2∑
s=1

K∑
k=1

V̂k,s+1/2 −
γt + ηt

K

K∑
k=1

V̂k,t−1/2

= X1 −
ηt
K

t−2∑
s=1

K∑
k=1

V̂k,s+1/2 −
γt + ηt

K

K∑
k=1

(
Vk,t−1/2 + Uk,t−1/2

)
.

Now, let
∑K

k=1 Uk,t/K = Ut as the sum of all the noises from K nodes at time t. It is clear that Ut also has zero mean. Let
X̃t+1/2 = Xt+1/2 + (ηt + γt)Ut−1/2 to be a surrogate for Xt+1/2 when removing the noise of time t− 1. We then obtain

X̃t+1/2 = X1 −
ηt
K

t−2∑
s=1

K∑
k=1

V̂k,s+1/2 −
γt + ηt

K

K∑
k=1

Vk,t−1/2.
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Applying the notations Ut−1/2 =
∑K

k=1 Uk,t−1/2/K and Ak(Xt+1/2) = Vk,t+1/2 into (‡), we have

E

[
−2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉]
= E

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

−2γt
K

〈
K∑

k=1

Ak(Xt+1/2),Ut−1/2

〉]
.

We now bound the last term of the RHS of the above expression. First, notice that

E

[〈
K∑

k=1

Ak(X̃t+1/2),Ut−1/2

〉]
=

〈
K∑

k=1

Ak(X̃t+1/2),E[Ut−1/2]

〉
= 0

With that and the L-Lipschitz of Ak, we deduce

−E

[〈
K∑

k=1

Ak(Xt+1/2),Ut−1/2

〉]
= −E

[〈
K∑

k=1

Ak(Xt+1/2)−Ak(X̃t+1/2),Ut−1/2

〉]

− E

[〈
K∑

k=1

Ak(X̃t+1/2),Ut−1/2

〉]

= E

[〈
K∑

k=1

Ak(X̃t+1/2)−Ak(Xt+1/2),Ut−1/2

〉]
≤ E

[
KL∥X̃t+1/2 −Xt+1/2∥∥Ut−1/2∥

]
≤ E

[
KL

(
∥X̃t+1/2 −Xt+1/2∥2

2γt
+

γt∥Ut−1/2∥2

2

)]

= E
[
KL

(
(γt + ηt)

2∥Ut−1/2∥2

2γt
+

γt∥Ut−1/2∥2

2

)]
,

yielding

−2γt
K

E

[〈
K∑

k=1

Ak(Xt+1/2),Ut−1/2

〉]
≤ E

[
L
(
(γt + ηt)

2∥Ut−1/2∥2 + γ2
t ∥Ut−1/2∥2

)]
.

In brief, we get

E

[
−2γt
K2

〈
K∑

k=1

V̂k,t+1/2,

K∑
k=1

V̂k,t−1/2

〉]
≤ E

−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
−γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+ L(γ2
t + (γt + ηt)

2)∥Ut−1/2∥2
 ,

as desired. ■

Now we can establish the quasi-descent inequality for (ODA) as follows
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Theorem F.8 (Quasi-descent Inequality). For t ≥ 2, it holds that

E
[
∥Xt+1 − p∥2

ηt+1

]
≤ E

[
∥Xt − p∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2 − 2

K

〈
K∑

k=1

Vk,t+1/2, Xt+1/2 − p

〉

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+ min

 ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
, 0


+

ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ L
(
(γt + ηt)

2 + γ2
t

)
∥Ut−1/2∥2

 .

Proof. This result immediately follows from plugging Lemma F.7 into Corollary F.6. ■

With this quasi-descent inequality, we pick the learning rates as follows

γt =

1 +

t−2∑
s=1

K∑
k=1

∥∥∥∥∥ V̂k,s+1/2

K

∥∥∥∥∥
2
q̂− 1

2

, ηt =

1 +

t−2∑
s=1

K∑
k=1

∥∥∥∥∥ V̂k,s+1/2

K

∥∥∥∥∥
2

+ ∥Xs −Xs+1∥2
− 1

2

.

Similar to AdaGrad (Duchi et al., 2011), we include the the sum of the squared norm of the feedback in the denominators,

helping to control the various positive terms appearing in the quasi-descent inequality, like
ηt
K2

∥∥∥∑K
k=1 V̂k,t+1/2

∥∥∥2 and

L
(
(γt + ηt)

2 + γ2
t

)
∥Ut−1/2∥2. Nonetheless, this sum is not taken to the same exponent in the definition of the two

learning rates. This scale separation ensures that the contribution of the term − γt
K2

∥∥∥∑K
k=1 Vk,t+1/2

∥∥∥2 remains negative,

which is crucial for deriving constant regret under multiplicative noise. As a technical detail, the term
∑t−2

s=1 ∥Xs −Xs+1∥2
is included in the definition of ηt for controlling the difference

γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
.

Some technical insight is that γt and ηt should at least be in the order of Ω
(
1/t

1
2−q̂
)

and Ω
(
1/t

1
2

)
.

We can restructure the quasi-descent inequality Theorem F.8 as follows.

Lemma F.9 (Alt Template Inequality). Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning
rates ηt and γt from the Alt schedule, such that ηt ≤ γt for all t ∈ N. For any p ∈ X and T ∈ N, it holds

E

[
T∑

t=1

〈
1

K

K∑
k=1

Vk,t+1/2, Xt+1/2 − p

〉]
≤ E

∥X1 − p∥2

2ηT+1
+

T∑
t=1

ηt
2K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+
3L2

K2

T∑
t=2

γ3
t

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+
3L2

2

T∑
t=2

γt∥Xt −Xt−1∥2 +
5L

2

T∑
t=2

γ2
t ∥Ut−1/2∥2

]
.

Proof. From Theorem F.8, by dropping non-positive terms and using the fact that

min

 ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
, 0

 ≤ 0,
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we obtain

E
[
∥Xt+1 − p∥2

ηt+1

]
≤ E

[
∥Xt − p∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − p∥2

− 2

K

〈
K∑

k=1

Vk,t+1/2, Xt+1/2 − p

〉
+

γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ L
(
(γt + ηt)

2 + γ2
t

)
∥Ut−1/2∥2

 .

Rearranging the terms, and multiplying both sides by 1/2, we obtain

E

[〈
1

K

K∑
k=1

Vk,t+1/2, Xt+1/2 − p

〉]

≤ E

∥Xt − p∥2

2ηt
− ∥Xt+1 − p∥2

2ηt+1
+

(
1

2ηt+1
− 1

2ηt

)
∥X1 − p∥2 + ηt

2K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+
γt
2K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
L
(
(γt + ηt)

2 + γ2
t

)
2

∥Ut−1/2∥2
 .

(⋆)

Note that this inequality holds for t ≥ 2 as suggested by Theorem F.8. If t = 1, then we know

∥X2 − p∥2 = ∥X1 − p∥2 − 2η2
K

〈
K∑

k=1

V̂k,3/2, X1 − p

〉
+

η22
K2

∥∥∥∥∥
K∑

k=1

V̂k,3/2

∥∥∥∥∥
2

.

Setting X3/2 = X1 = 0 and η1 = η2, we can obtain

E

[〈
1

K

K∑
k=1

V̂k,3/2, X1 − p

〉]
= E

∥X1 − p∥2

2η2
− ∥X2 − p∥2

2η2
+

η1

∥∥∥∑K
k=1 V̂k,3/2

∥∥∥2
2K2

 (⋆⋆)

Now, we sum the inequality (⋆) over t from 2 to T and then add (⋆⋆), yielding

E

[
T∑

t=1

〈
1

K

K∑
k=1

Vk,t+1/2, Xt+1/2 − p

〉]

≤ E

∥X1 − p∥2

2ηT+1
+

T∑
t=1

ηt
2K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+

T∑
t=2

γt
2K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+

T∑
t=2

L
(
(γt + ηt)

2 + γ2
t

)
2

∥Ut−1/2∥2
]

≤ E

∥X1 − p∥2

2ηT+1
+

T∑
t=1

ηt
2K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+

T∑
t=2

γt
2K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+

T∑
t=2

5Lγ2
t

2
∥Ut−1/2∥2

 ,

(‡‡)

where the last step follows ηt ≤ γt. We also can bound the difference term as follows∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

≤ 3

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t

∥∥∥∥∥
2

+ 3

∥∥∥∥∥
K∑

k=1

Vk,t −
K∑

k=1

Vk,t−1

∥∥∥∥∥
2

+ 3

∥∥∥∥∥
K∑

k=1

Vk,t−1 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

.
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Note that by the L-Lipschitz continuity and the update rule of (ODA), we have

3

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t

∥∥∥∥∥
2

= 3

∥∥∥∥∥
K∑

k=1

(Ak(Xt+1/2)−Ak(Xt))

∥∥∥∥∥
2

≤ 3

∥∥∥∥∥
K∑

k=1

L∥Xt+1/2 −Xt∥

∥∥∥∥∥
2

= 3K2L2∥Xt+1/2 −Xt∥2 = 3L2γ2
t

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

.

After bounding the second and third terms in a similar manner, we obtain∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

≤ 3L2γ2
t

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+ 3K2L2∥Xt −Xt−1∥2 + 3L2γ2
t−1

∥∥∥∥∥
K∑

k=1

V̂k,t−3/2

∥∥∥∥∥
2

.

(D.1.1)

Using the initialization that V̂k,1/2 = 0 ∀ k ∈ [K], we have

T∑
t=2

γt
2K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

≤
T∑

t=2

3L2γ3
t

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+

T∑
t=2

3L2γt
2
∥Xt −Xt−1∥2. (D.1.2)

Combining this with the inequality (‡‡), we finally obtain

E

[
T∑

t=1

〈
1

K

K∑
k=1

Vk,t+1/2, Xt+1/2 − p

〉]
≤ E

∥X1 − p∥2

2ηT+1
+

T∑
t=1

ηt
2K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+
3L2

K2

T∑
t=2

γ3
t

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+
3L2

2

T∑
t=2

γt∥Xt −Xt−1∥2 +
5L

2

T∑
t=2

γ2
t ∥Ut−1/2∥2

]
.

■

F.3. Bound on Sum of Squared Norms

We start to bound the sum of squared norms by first revamping the quasi-descent inequality Theorem F.8 in a different way.
Lemma F.10. Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning rates ηt and γt from Alt
schedule, such that ηt ≤ γt for all t ∈ N. For T ∈ N and x⋆ ∈ X ⋆, we have

T∑
t=2

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2


≤ E

∥X1 − x⋆∥2

ηT+1
+

T∑
t=2

6L2γ3
t

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+
T∑

t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

−
T∑

t=1

∥Xt −Xt+1∥2

2ηt
+

T∑
t=2

2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ 5L

T∑
t=2

γ2
t ∥Ut−1/2∥2

 ,

Proof. It is straightforwards that

min

 ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
, 0

 ≤ ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
.

Next, similar to (D.1.1), we have∥∥∥∥∥
K∑

k=1

Vk,t+1/2 −
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

≤ 3L2γ2
t

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+ 3

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t−1

∥∥∥∥∥
2

+ 3L2γ2
t−1

∥∥∥∥∥
K∑

k=1

V̂k,t−3/2

∥∥∥∥∥
2

.
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And since ηt ≤ γt, note that

L
(
(γt + ηt)

2 + γ2
t

)
∥Ut−1/2∥2 ≤ 5Lγ2∥Ut−1/2∥2

With these inequalities, we can rewrite quasi-descent inequality Theorem F.8 as

E
[
∥Xt+1 − x⋆∥2

ηt+1

]

≤ E

∥Xt − x⋆∥2

ηt
+

(
1

ηt+1
− 1

ηt

)
∥X1 − x⋆∥2 − γt

K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

− γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+
3L2γ3

t

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+
3L2γtγ

2
t−1

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−3/2

∥∥∥∥∥
2

+
3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t−1

∥∥∥∥∥
2

+
2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

− ∥Xt −Xt+1∥2

2ηt
+ 5Lγ2

t ∥Ut−1/2∥2
 .

Summing from t = 2 to T of the above, we obtain the following after some rearrangements

T∑
t=2

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2


≤ E

∥X2 − x⋆∥2

η2
+

(
1

ηT+1
− 1

η2

)
∥X1 − x⋆∥2 +

T∑
t=2

6L2γ3
t

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

−
T∑

t=2

∥Xt −Xt+1∥2

2ηt

+

T∑
t=2

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t−1

∥∥∥∥∥
2

+

T∑
t=2

2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ 5L

T∑
t=2

γ2
t ∥Ut−1/2∥2

 ,

(D.2.1)

in which we use the fact that V̂k,1/2 = 0 ∀ k ∈ [K] and get the bound similar to (D.1.2). Next, note that

T∑
t=2

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t−1

∥∥∥∥∥
2

=

T∑
t=1

3γt+1

K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

≤
T∑

t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

,

(D.2.2)

where the last step stems from γt ≥ γt+1. If t = 1, then we know

∥X2 − x⋆∥2 = ∥X1 − x⋆∥2 − 2η2
K

〈
K∑

k=1

V̂k,3/2, X1 − x⋆

〉
+

η22
K2

∥∥∥∥∥
K∑

k=1

V̂k,3/2

∥∥∥∥∥
2

≤ ∥X1 − x⋆∥2 + η22
K2

∥∥∥∥∥
K∑

k=1

V̂k,3/2

∥∥∥∥∥
2

.

This implies

E
[
∥X2 − x⋆∥2

η2

]
≤ E

∥X1 − x⋆∥2

η2
+

η2
K2

∥∥∥∥∥
K∑

k=1

V̂k,3/2

∥∥∥∥∥
2


≤ E

∥X1 − x⋆∥2

η2
+

2η2
K2

∥∥∥∥∥
K∑

k=1

V̂k,3/2

∥∥∥∥∥
2

− ∥X1 −X2∥2

2η1

 . (D.2.3)
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Now plugging (D.2.2) into (D.2.1), and adding (D.2.3), we eventually obtain

T∑
t=2

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2


≤ E

∥X1 − x⋆∥2

ηT+1
+

T∑
t=2

6L2γ3
t

K2

∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+

T∑
t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

−
T∑

t=1

∥Xt −Xt+1∥2

2ηt
+

T∑
t=2

2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ 5L

T∑
t=2

γ2
t ∥Ut−1/2∥2

 .

■

Next, we establish the following lemma to control the sum of some differences

Lemma F.11. Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning rates ηt and γt from Alt
schedule, such that ηt ≤ γt for all t ∈ N. For all T ∈ N, with almost sure boundedness assumptions from either Assumption
2.4 or 2.5 it holds that

T∑
t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

−
T∑

t=1

∥Xt −Xt+1∥2

4ηt
≤ 432L4 + 24J2.

Proof. Define t̄ := max

{
s ∈ {0, . . . , T} : ηs ≥

1

12L2

}
. So as to ensure t̄ is always well-defined, we can set η0 ≥

1

12L2
.

By definition of µt and ηt̄, we can deduce that µt̄−2 ≤ 114L2. Now since γt ≤ 1, we have

T∑
t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

≤
T∑

t=1

3

K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

≤
∑

t∈[T ]/{t̄−1,t̄}

3

K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1
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∥∥∥∥∥
2

+
∑

t∈{t̄−1,t̄}

3

K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

≤
∑

t∈[T ]/{t̄−1,t̄}

3

K2

(
K∑

k=1

L∥Xt −Xt+1∥

)2

+
∑

t∈{t̄−1,t̄}

6

K2

∥∥∥∥∥
K∑

k=1

V̂k,t

∥∥∥∥∥
2

+

∥∥∥∥∥
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2


≤
∑

t∈[T ]/{t̄−1,t̄}

3L2∥Xt −Xt+1∥2 +
∑

t∈{t̄−1,t̄}

12J2

≤
∑

t∈[T ]/{t̄−1,t̄}

3L2∥Xt −Xt+1∥2 + 24J2

=

t̄−2∑
t=1

3L2∥Xt −Xt+1∥2 +
T∑

t=t̄+1

3L2∥Xt −Xt+1∥2 + 24J2

= 3L2µt̄−2 +

T∑
t=t̄+1

3L2∥Xt −Xt+1∥2 + 24J2

≤ 432L4 +

T∑
t=t̄+1

3L2∥Xt −Xt+1∥2 + 24J2.
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As ηt ≤
1

12L2
for t ≥ t̄+ 1, note that

T∑
t=1

∥Xt −Xt+1∥2

4ηt
≥

T∑
t=t̄+1

∥Xt −Xt+1∥2

4ηt
≥

T∑
t=t̄+1

3L2∥Xt −Xt+1∥2,

yielding

T∑
t=1

3γt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

≤ 432L4 +

T∑
t=1

∥Xt −Xt+1∥2

4ηt
+ 24J2.

A simple rearrangment of the term
∑T

t=1 ∥Xt −Xt+1∥2/(4ηt) will give the desired expression. ■

Finally, we can establish the bound on sum of squared norms.

Lemma F.12 (Bound on Sum of Square Norms). Let (Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing
learning rates ηt and γt from Alt schedule, such that ηt ≤ γt for all t ∈ N. Denote D2 = supp∈X ∥X1 − p∥2. For all
T ∈ N, we have

E

 T∑
t=1

γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+

T∑
t=1

∥Xt −Xt+1∥2

8ηt

 ≤ aE
[√

λT−1

]
+ b,

where a and b are constants with the following values

a = 12L2 + 10L+ 4 +D2, b = (12L2 + 10L+ 8)(J2 + σ2) + 432L4 + 24J2 +D2 + 2D4.

Proof. From Lemma F.10 and Lemma F.11, we have

E

 T∑
t=2

γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
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γt
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∥∥∥∥∥
K∑

k=1

Vk,t−1/2

∥∥∥∥∥
2

+

T∑
t=1

∥Xt −Xt+1∥2

8ηt


≤ E
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t=2

6L2γ3
t
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∥∥∥∥∥
K∑

k=1

V̂k,t−1/2

∥∥∥∥∥
2

+
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3γt
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∥∥∥∥∥
K∑

k=1

V̂k,t −
K∑

k=1

V̂k,t+1

∥∥∥∥∥
2

−
T∑
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∥Xt −Xt+1∥2

4ηt

+
∥X1 − x⋆∥2

ηT+1
−

T∑
t=1

∥Xt −Xt+1∥2

8ηt
+

T∑
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2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2

+ 5L

T∑
t=2
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t ∥Ut−1/2∥2


≤ E

∥X1 − x⋆∥2

ηT+1
+

T∑
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6L2γ3
t

K2

∥∥∥∥∥
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∥∥∥∥∥
2

+ 432L4 + 24J2

−
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8ηt
+
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2ηt
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∥∥∥∥∥
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∥∥∥∥∥
2

+ 5L
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γ2
t ∥Ut−1/2∥2

 .

(D.4.1)
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Now, since γt ≤ 1, ∥Ut−1/2∥2 ≤
∥∥∥∑K

k=1 V̂k,t−1/2

∥∥∥2 /K2, and γ2
t−1 ≤ 1/

√
1 + λt+1, we have

E

 T∑
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6L2γ3
t
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∥∥∥∥∥
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k=1

V̂k,t−1/2

∥∥∥∥∥
2

+ 5L
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γ2
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≤ E
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6L2γ3
t

K2
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K∑
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2

+
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t
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∥∥∥∥∥
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k=1

V̂k,t−1/2
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2


≤ E

 T∑
t=2

(
6L2γ2

t

K2
+

5Lγ2
t

K2
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k=1

V̂k,t−1/2
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2
 = E
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t=1

(
6L2 + 5L

)
γ2
t

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2/K

∥∥∥∥∥
2


≤ (6L2 + 5L)E

T−1∑
t=1

∥∥∥∑K
k=1 V̂k,t+1/2/K

∥∥∥2√
1 + λt−1

 ≤ (6L2 + 5L)
(
2E
[√

λT−1

]
+ 2(J2 + σ2)

)
.

In a similar manner, we can bound

T∑
t=2

2ηt
K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2
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2

≤ 4E
[√

λT−1

]
+ 8(J2 + σ2).

With these two inequality, we can rewrite (D.4.1) as

E

 T∑
t=2

γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2

+
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∥∥∥∥∥
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∥∥∥∥∥
2

+
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≤ (6L2 + 5L)(2E

[√
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]
+ 2(J2 + σ2)) + 432L4 + 24J2 + 4E

[√
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]
+ 8(J2 + σ2)

+ E

[
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ηT+1
−

T∑
t=1

∥Xt −Xt+1∥2

8ηt

]
= (12L2 + 10L+ 4)E

[√
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]
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+ E

[
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−

T∑
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∥Xt −Xt+1∥2

8ηt

]
.

Note that by the initialization X3/2 = X1 and γ2 = γ1, we can further simplify the LHS of the above inequality as follows.
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2
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2

+
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2

+
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∥Xt −Xt+1∥2

8ηt


Now, we just have to deal with the last term of the sum. With Lemma F.4, we have

E

[
∥X1 − x⋆∥2

ηT+1
−

T∑
t=1

∥Xt −Xt+1∥2

8ηt

]
≤ E

[
∥X1 − x⋆∥2

√
1 + λT−1 + 2∥X1 − x⋆∥4

]
= D2E

[√
1 + λT−1

]
+ 2D4

≤ D2E
[√

λT−1

]
+D2 + 2D4,

yielding the desired result. ■
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We now establish an useful bound for
∑T

t=1 E
[∥∥∥∑K

k=1 Vk,t+1/2/K
∥∥∥2].

Lemma F.13. With the Alt learning rate updating schedule and for T ∈ N, we have

T∑
t=1

E

∥∥∥∥∥
K∑

k=1

Vk,t+1/2/K

∥∥∥∥∥
2
 = O(T 1−q̂).

Proof. For t ∈ [T ], note that

γt =
1

(1 + λt−2)1/2−q̂
≤ 1

(1 + 2max{0, t− 2}(J2 + σ2))1/2−q̂
≤ 1

(1 + 2T (J2 + σ2))1/2−q̂
,

where the second steps follows from Lemma F.1. Now plugging this bound to Lemma F.12, we obtain

∑T
t=1 E

[∥∥∥∑K
k=1 Vk,t+1/2/K

∥∥∥2]
(1 + 2T (J2 + σ2))1/2−q̂

≤ aE
[√

λT

]
+ b,

where a and b are constants defined similarly to Lemma F.12. By using Lemma F.1 again to get
√
λT is of order O(

√
T ),

we obtain

T∑
t=1

E

∥∥∥∥∥
K∑

k=1

Vk,t+1/2/K
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2
 ≤ (aE [√λT

]
+ b
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= O
(√

T
)
(1 + 2T (J2 + σ2))1/2−q̂,

which equates to O
(
T 1−q̂

)
as desired. ■

F.4. GAP Analysis under Absolute Noise

Lemma F.14 (General Bound for GAP). Let X ⊂ Rd denote a compact neighborhood of a solution for (VI). Let
D2 := supp∈X ∥X1 − p∥2. Suppose that the oracle and the problem (VI) satisfy Assumptions 2.1, 2.2 and 2.3. Let (Xt)t∈N
and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning rates ηt and γt from Alt schedule, such that ηt ≤ γt
for all t ∈ N. It holds

E
[
sup
p∈X

〈
A(p), X̄t+1/2 − p

〉]
≤ 1

T
E
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2
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]
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Proof. First note that
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p∈X

E
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〈
1

K
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K
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T

K
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[
sup
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〈
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.
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where the second inequality stems from the monotonicity of operators Ak for k ∈ [K]. From the template inequality
(Lemma F.9) and the two facts that γt ≤ 1 and

∑K
k=1 V̂k,t−1/2/K ≥ Ut−1/2, we deduce
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p∈X
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K
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K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2
 .

Now we can analyze three terms of this sum in the following three inequalities.

D2
√

1 + λT−1 + µT−1

2
≤

D2(1 +
√

λT−1 +
√
µT−1)

2
.

From Lemma F.3 and the fact that γ2
t+1 ≤ 1/

√
1 + λt−1, we next have
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2K2
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V̂k,t+1/2

∥∥∥∥∥
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2K2
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k=1 V̂k,t+1/2
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≤ (6L2 + 5L)
(√

λT−1 + J2 + σ2
)
.

where the last step stems from Lemma F.3 with s = 1, r = 1/2. With a similar observation that ηt ≤ 1/
√

1 + λt−2, we can
similarly apply Lemma F.3 and obtain

T∑
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∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2
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2
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Combining the above three inequalities, we obtain
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E
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1

K
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2
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]
,

implying
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■
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We will now show the convergence of Algorithm 1 with Alt learning rates under absolute noise
Theorem F.15 (Convergence under Absolute Noise with Alt learning rates). Let X ⊂ Rd denote a compact neighborhood
of a solution for (VI). Let D2 := supp∈X ∥X1 − p∥2. Let the average square root expected code-length bound ε̂Q =∑M

m=1

∑Jm

j=1 Tm,j
√
εQ,m,j/T . Suppose that the oracle and the problem (VI) satisfy Assumptions 2.1, 2.2, 2.3, and 2.4. Let

(Xt)t∈N and (Xt+1/2)t∈N be generated by (ODA) with non-increasing learning rates ηt and γt from Alt schedule, such that
ηt ≤ γt for all t ∈ N. It holds that

E
[
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(
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)]
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(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ)D4

√
T

)
.

Proof. First we consider no compression, i.e. εQ = 0. Note that from Lemma F.1, we have λT and λT−1 are O(T ), so√
λT and

√
λT−1 are O(

√
T ). Next by note that
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]
+ b
)
= O

(
D4
√
T
)

where the second last step holds due to Lemma F.12 with the constants a and b defined in the same above lemma, and the
last step holds from Lemma F.1. Combining these bounds with Lemma F.14, we obtain
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p∈X

E

[
1

K

K∑
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〈
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〉]
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Then, without compression, we have

E

[
1

K

K∑
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k=1

Vk,t+1/2, Xt+1/2 − p

〉]
= O

(
D4

√
T

)
.

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average square root expected
code-length bound is denoted as

ε̂Q =

M∑
m=1

Jm∑
j=1

Tm,j
√
εQ,m,j

T
.

With Lemma D.8, we can follow the ideas established by (Faghri et al., 2020, Theorem 4) and (Ramezani-Kebrya et al.,
2023, Theorem 3) and obtain the final computation complexity with layer-wise compression

E
[
GapX

(
X̄t+1/2

)]
= O

(
((LD + ∥A(X1)∥2 + σ)ε̂Q + σ))D4

√
T

)
.

■

G. GAP Analysis under Relative Noise
Next for the relative noise case, we first consider this known general bounds for any N non-negative real-valued random
variables.
Lemma G.1. (Hsieh et al., 2022, Lemma 21) Let p, r, s ∈ R+ such that p > r, s ∈ R+, and (a1, . . . , aN ) be a collection of
any N non-negative real-valued random variables. If, we have

N∑
i=1

E[(ai)p] ≤ s

N∑
i=1

E[(ai)r],

then we obtain
N∑
i=1

E[(ai)p] ≤ Ns
p

p−r ,

N∑
i=1

E[(ai)r] ≤ Ns
r

p−r .
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To obtain a better complexity, we now provide a set of improved bounds for the key quantities in the analysis.
Lemma G.2. Assume that the assumption Assumption 2.5 is satisfied, and Alt learning rate update schedule is used. Then,
for any T ∈ N, we obtain

E
[
(1 + λT )

1/2+q̂
]
≤ ((1 + σR)(a+ b) + 1)1+

1
2q

E
[√

1 + λT

]
≤ ((1 + σR)(a+ b) + 1)

1
2q

E [µT ] ≤ 8a((1 + σR)(a+ b) + 1)
1
2q + 8b,

where a, b are defined constants in Lemma F.12

Proof. To begin with, we have from Assumption 2.5 that

E

 1

K2

∥∥∥∥∥
K∑

k=1

V̂k,t+1/2

∥∥∥∥∥
2
 = E

 1

K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2 +

K∑
k=1

Uk,t+1/2

∥∥∥∥∥
2


≤ E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

K

K∑
k=1

Uk,t+1/2

∥∥∥∥∥
2


≤ E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+
1

K

K∑
k=1

∥∥Uk,t+1/2

∥∥2
≤ E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+
σR

K

K∑
k=1

∥∥Ak(Xt+1/2)
∥∥2

≤ E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+ σR

∥∥A(Xt+1/2)
∥∥2

≤ E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2

+ σR

∥∥∥∥∥ 1

K

K∑
k=1

Ak(Xt+1/2)

∥∥∥∥∥
2


= (1 + σR)E

∥∥∥∥∥ 1

K

K∑
k=1

Vk,t+1/2

∥∥∥∥∥
2
 ,

where the last few steps utilize the fact that Ai = Aj = A for all i, j ∈ [K]. Since the learning rates γt are non-increasing,
we can write

T∑
t=1

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2
 ≥ 1

1 + σR

T∑
t=1

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2
 ≥ 1

1 + σR

T∑
t=1

E

γT+2

K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2


=
1

1 + σR
E


∑T

t=1

∥∥∥∑K
k=1 Vk,t+1/2

∥∥∥2 /K2

(1 + λT )1/2−q̂

 =
1

1 + σR
E
[

λT + 1− 1

(1 + λT )1/2−q̂

]

=
1

1 + σR
E
[
(1 + λT )

1/2+q̂
]
− 1

1 + σR
E
[

1

(1 + λT )1/2−q̂

]
≥ 1

1 + σR
E
[
(1 + λT )

1/2+q̂
]
− 1

1 + σR
,

implying that

E
[
(1 + λT )

1/2+q̂
]
≤ (1 + σR)

T∑
t=1

E

 γt
K2

∥∥∥∥∥
K∑

k=1

Vk,t+1/2

∥∥∥∥∥
2
+ 1.
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By Lemma F.12, we deduce

E
[
(1 + λT )

1/2+q̂
]
≤ a(1 + σR)E

[√
λT−1

]
+ b(1 + σR) + 1 ≤ ((1 + σR)(a+ b) + 1)E

[√
1 + λT−1

]
,

where a, b are constants defined in Lemma F.12. Now we utilize Lemma G.1 for N = 1, p = 1/2 + q̂, r = 1/2,
s = (1 + σR)(a+ b) + 1 and a1 = 1 + λT . This implies

E
[
(1 + λT )

1/2+q̂
]
≤ ((1 + σR)(a+ b) + 1)1+

1
2q̂ , E

[√
1 + λT

]
≤ ((1 + σR)(a+ b) + 1)

1
2q̂ .

Now combining the second inequality above and Lemma F.12, we finally get

E [µT ] =

T∑
t=1

∥Xt −Xt+1∥2 ≤
T∑

t=1

∥Xt −Xt+1∥2

8ηt
≤ 8a((1 + σR)(a+ b) + 1)

1
2q̂ + 8b,

where a, b are defined constants in Lemma F.12. ■

Theorem 6.2 (Algorithm 1 under Relative Noise without co-coercivity assumption). Suppose the iterates Xt of Algorithm
1 are updated with learning rate schedule in (Alt) for all t = 1/2, 1, . . . , T . Let X ⊂ Rd be a compact neighborhood of a
solution for (VI), εQ as in Section 5.2 and D2 := supp∈X ∥X1 − p∥22. Under Assumptions 2.1, 2.2, 2.3, 2.5, and 6.1, for
Algorithm 1 with learning rates (Alt):

E
[
GapX

(
Xt+1/2

)]
= O

(
(σRεQ + εQ + σR)D

4

T

)
.

Proof. By plugging Lemma G.2 into Lemma F.14, we have the complexity with no compression is O
(
D4/T

)
. With the

bound from Lemma D.9, we can follow the ideas established by (Faghri et al., 2020, Theorem 4) and (Ramezani-Kebrya
et al., 2023, Theorem 4) and obtain the final computation complexity with layer-wise compression

E
[
GapX

(
X̄t+1/2

)]
= O

(
(σRεQ + εQ + σR)D

4

T

)
,

where εQ is the average variance upper bound as

εQ =

M∑
m=1

Jm∑
j=1

Tm,jεQ,m,j

T
.

■
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