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Abstract

Modern deep neural networks exhibit heterogene-
ity across numerous layers of various types such
as residuals, multi-head attention, etc., due to
varying structures (dimensions, activation func-
tions, etc.), distinct representation characteristics,
which impact predictions. We develop a general
layer-wise quantization framework with tight vari-
ance and code-length bounds, adapting to the het-
erogeneities over the course of training. We then
apply a new layer-wise quantization technique
within distributed variational inequalities (VIs),
proposing a novel Quantized Optimistic Dual Av-
eraging (QODA) algorithm with adaptive learning
rates, which achieves competitive convergence
rates for monotone VIs. We empirically show that
QODA achieves up to a 150% speedup over the
baselines in end-to-end training time for training
Wasserstein GAN on 12+ GPUs.

1. Introduction

In modern large-scale machine learning (ML) settings, com-
munication costs for broadcasting huge stochastic gradi-
ents and dual vectors are the main performance bottle-
neck (Strom, 2015; Alistarh et al., 2017; Kairouz et al.,
2021). Several methods have been proposed to accelerate
large-scale training such as quantization, sparsification, and
reducing the frequency of communication through local
updates (Kairouz et al., 2021). In particular, unbiased quan-
tization is unique due to offering both strong theoretical
guarantees and communication efficiency on the fly, i.e., it
converges under the same hyperparameters tuned for un-
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compressed variants while providing substantial savings in
communication costs (Alistarh et al., 2017; Wen et al., 2017,
Zhang et al., 2017; Faghri et al., 2020).

Popular DNNs including convolutional architectures, trans-
formers, and vision transformers have various types of layers
such as feed-forward, residual, multi-head attention includ-
ing self-attention and cross-attention, bias, and normaliza-
tion layers (He et al., 2016; Vaswani et al., 2017; Doso-
vitskiy et al., 2021). Different types of layers learn dis-
tinct hierarchical features ranging from low-level patterns
to high-level semantic features (Zeiler & Fergus, 2014; He
et al., 2016). They are also diverse in terms of number of
parameters and their impact on the final accuracy (Dutta
et al., 2020). Similar heterogeneity has been observed for
attention layers in large-scale transformers (Markov et al.,
2022). The current communication-efficient literature does
not rigorously take into account heterogeneity in terms of
representation power, impact on the final learning outcome,
and statistical heterogeneity across various layers of neural
networks and across training for each layer. Recently, layer-
wise and adaptive compression schemes have shown tremen-
dous empirical success in accelerating training deep neural
networks and transformers in large-scale settings (Markov
etal., 2022; 2024), but they have yet to have theoretical guar-
antees and to handle statistical heterogeneity over the course
of training. Hence, these layer-wise compression schemes
suffer from a dearth of generalization and statistically rigor-
ous argument to optimize the sequence of quantization and
the number of sparsification levels for each layer.

In distributed learning, empirical risk minimization (ERM)
and finite-sum optimization problems are commonly tackled
using first-order solvers, which scale by distributing com-
putations across multiple nodes synchronously (McMahan
et al., 2017; Kairouz et al., 2021; Li et al., 2020; Ramezani-
Kebrya et al., 2022; Xie et al., 2024). These nodes, for
instance hospitals and mobile devices, collaborate by parti-
tioning data and aggregating local updates.! However, many
real-world problems extend beyond ERM and require more
complex mathematical formulations. In particular, training
generative adversarial networks (GANs) (Goodfellow et al.,

"For simplicity, we use the term node to refer to clients, FPGA,
APU, CPU, GPU, or workers throughout this work.
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2014) is more complex than ERM because it involves a
minimax problem rather than a single-objective loss mini-
mization. This adversarial interaction between the genera-
tor and discriminator requires equilibrium modeling, often
formulated as a variational inequality (VI) to address chal-
lenges like cyclic behaviors and instability (Daskalakis et al.,
2017; Gidel et al., 2018; Mertikopoulos et al., 2018). As a
well-studied mathematical framework (Facchinei & Pang,
2003; Bauschke & Combettes, 2017), VIs also have other
ML applications in reinforcement learning (Jin & Sidford,
2020; Omidshafiei et al., 2017), auction theory (Syrgkanis
et al., 2015), and robust learning (Schmidt et al., 2018).

In this work, we aim to tackle the problems of providing a
general layer-wise quantization framework that takes into
account the statistical heterogeneity across layers and then
applying that layer-wise quantization framework to propose
efficient novel solver for distributed VIs.

1.1. Summary of Contributions

* Theoretical Framework and Tight Guarantees for
Layer-wise Quantization: We propose a general frame-
work for layer-wise (and adaptive) unbiased quantization
schemes with novel fine-grained coding protocol analysis.
We also establish tight variance and code-length bounds,
which encompass the empirical layer-wise quantization
methods (Markov et al., 2022; 2024) and generalize the
bounds for global quantization frameworks (Alistarh et al.,
2017; Faghri et al., 2020; Ramezani-Kebrya et al., 2021)
with general LY normalization and multiple sequences
of quantization levels. In fact, under the special case of
L? normalization and global quantization, our variance
bound matches the lower bound from (Ramezani-Kebrya
et al., 2021) while our code-length bound is optimal in the
problem dimension with respect to the lower bounds from
(Tsitsiklis & Luo, 1987; Korhonen & Alistarh, 2021).

* Optimistic Quantized Adaptive VI Solver Under
Fewer Assumptions: Leveraging the novel layer-wise
compression framework, we propose Quantized Opti-
mistic Dual Averaging (QODA) and establish its joint
convergence and communication guarantees with com-
petitive rates O(1/+v/T) and O(1/T) under absolute and
relative noise models, respectively. To our knowledge,
QODA is the first to incorporate optimism for solving
distributed VI to reduce one “extra” gradient step that
extra gradient type methods such as the global quanti-
zation distributed VI-solver Q-GenX (Ramezani-Kebrya
et al., 2023) take. Importantly, we obtain the above guar-
antees without the restrictive almost sure boundedness
assumption of stochastic dual vectors that is essential in
related VI works (Bach & Levy, 2019; Hsieh et al., 2021;
Antonakopoulos et al., 2021) including Q-GenX.

* Empirical Speedup for GAN Training: We show that

QODA with layer-wise compression achieves up to a
150% speedup in both the convergence and training
time compared to the global quantization baseline Q-
GenX (Ramezani-Kebrya et al., 2023) and the uncom-
pressed baseline for training Wasserstein Generative Ad-
versarial Network (Arjovsky et al., 2017) on 124 GPUs.

1.2. Related Works

The layer-wise structure of DNNs has been explored for
optimizing training loss. Zheng et al. (2019) propose SGD
with layer-specific stepsizes, while Yu et al. (2017) ex-
plore layer-wise normalization for normalized SGD. Be-
yond training loss optimization, this structure also enables
sketch-based and bandwidth-aware compression methods
(Xin et al., 2023; Li et al., 2024). In addition, block quanti-
zation, partitioning vectors into blocks before quantization,
is studied in (Horvath et al., 2023; Mishchenko et al., 2024).
In Appendix A.2, we show that our layer-wise quantization
is fundamentally different from block quantization.

Several papers study distributed methods for VI and saddle
points problems. Kovalev et al. (2022) considers strongly
monotone VI; Beznosikov et al. (2023b) concerns with VI
problems under co-coercivity assumptions. Strong mono-
tonicity and co-coercivity assumptions can be quite restric-
tive for ML applications. Beznosikov et al. (2022; 2023a)
consider VI problems with finite sum structure with an extra
d-similarity assumption in (Beznosikov et al., 2023a). Prior
studies (Duchi et al., 2011; Yuan et al., 2012; Tsianos & Rab-
bat, 2012) explore dual averaging for distributed finite-sum
minimization in networks.

We include further literature reviews and discussions on un-
biased, adaptive quantization and optimistic gradient meth-
ods in Appendix A.

Paper organization: In Section 2, preliminaries on quanti-
zation, VIs and noise profiles are covered. In Section 3, we
propose the general framework for layer-wise quantization
with a novel coding protocol. We then leverage the layer-
wise quantization scheme to design QODA (Algorithm 1)
for distributed VIs in Section 4. In Section 5.1, we provide
the variance and code-length bounds for layer-wise quanti-
zation and show the improvements over previous bounds. In
Section 5.2, we discuss the joint convergence and communi-
cation bounds of QODA. We then extend QODA to almost
sure boundedness noise model in Section 6, and prove its
convergence without co-coercivity. In Section 7, we provide
empirical studies on GANs and Transformer-XL.

2. Preliminaries

2.1. Common Notations

We use lower-case bold letters to denote vectors. E[-] de-
notes the expectation operator. || - ||o and || - ||« are number
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of nonzero elements of a vector and dual norm, respectively.
| - | denotes the length of a binary string, the length of a vec-
tor, and cardinality of a set. Sets are typeset in a calligraphic
font. The base-2 logarithm is denoted by log, and the set of
binary strings is denoted by {0, 1}*. For any integer n, [n]
denotes the set {1,...,n}. 1 denotes the indicator function.

2.2. Vector Representations

Let v € R% be a vector to be quantized. For some ¢ € Z,
v can be uniquely represented by a tuple (||v||,, s, w) where

|lv||4 is the L7 norm of v, s := [sign(v1),...,sign(va)]"
comprises of signs of each coordinate v;, and u :=
[u,...,uq) ", where u; = |v;]/||v]|, is the i-th normalized

coordinate. Note that 0 < u; < 1 forall ¢ € [d].

2.3. Variational Inequalities

Formally, for an operator A : R? — R¢, a variational
inequality (VI) finds some «* € R? such that

(A(z*),z — x*) >0 forall x € R% (VI

We now present the standard VI assumptions:

Assumption 2.1 (Monotonicity). We have that for all
z,2 € RY, (A(x) — A(2),z — &) > 0.

Assumption 2.2 (Solution Existence).
X* = {x* € R%: x*solves (VI)} # ().

Assumption 2.3 (L-Lipschitz). Let L € R*. Then an
operator A is L-Lipschitz if

The solution set

|A(z) — A@)|. < Lz — 2| Ve z R

This fairly broad VI class covers all bilinear min-max,
co-coercive and monotone games with applications such
as GANs (Chavdarova et al., 2019) and robust RL (Ka-
malaruban et al., 2020; Hsieh et al., 2020; Lin et al., 2020).

The main measure to evaluate the quality of a candidate
VI solution is the restricted gap function (Nesterov, 2009)
(more details in Appendix B.1):

GAPy(z) = sup(A(x), & — x),
TEX

(GAP)

where X C R is a non-empty and compact test domain.

2.4. Noise Models

We study VI methods that rely on a stochastic first-order
oracle (Nesterov, 2004). This oracle, when called at x,
draws an i.i.d. sample w from a complete probability space
(Q, F,P) and returns a stochastic dual vector g(x;w) as

g(@;w) = A(x) + U(w; w), (1)

where U (x; w) denotes the (possibly random) error in the
measurement or noise. Next, we formally define two im-
portant noise profiles, i.e. absolute noise and relative noise.

Assumption 2.4 (Absolute Noise). Let x € R%, w ~ P.
The oracle g(x;w) is unbiased E[g(x;w)] = A(x), and
there exists o € R such that E [||U (z, w)||?] < o2

As the noise variance is independent of the value of the
operator at the queried point, this type of randomness is
absolute. Absolute noise is common in the (distributed)
VI literature (Woodworth et al., 2021; Ene & Le Nguyen,
2022). It is also known as the bounded variance assumption
in stochastic optimization literature (Nemirovski et al., 2009;
Juditsky et al., 2011). Alternatively, a more favorable noise
profile is observed when the stochastic error vanishes near
a solution of VI. This is formally captured by the notion of
relative noise (Polyak, 1987):

Assumption 2.5 (Relative Noise). Let © € R% and w ~
P. The oracle g(x;w) is unbiased E[g(x;w)] = A(x),
and there exists 0g € R such that E [||U(z,w)[|?] <
orllA@)]2.

Relative noise model has been studied in several ML appli-
cation like over-parameterization (Oymak & Soltanolkotabi,
2020), representation learning (Zhang et al., 2021), and
multi-agent learning (Lin et al., 2020). In Appendix B.3,
we provide more specific relative noise examples. Relative
noise model may result in the well-known order-optimal
rate of O(1/T) in deterministic settings.

Remark 2.6. Various adaptive methods for (distributed)
VI (Bach & Levy, 2019; Hsieh et al., 2021; Antonakopoulos
et al., 2021) including the baseline Q-GenX (Ramezani-
Kebrya et al., 2023) assume almost sure boundedness of
stochastic dual vectors under both absolute and relative
noise profiles. In addition, previous theoretical results on
global quantization (Alistarh et al., 2017; Ramezani-Kebrya
et al., 2021; Faghri et al., 2020) are also established un-
der a similar assumption with bounded second moments
of stochastic gradients (stochastic dual vector in our set-
ting). In Section 5, we establish the joint convergence and
communication guarantees of our VI-solver with layer-wise
quantization without this assumption.

3. Adaptive Layer-wise Quantization

Adaptive layer-wise quantization is only studied empirically
in (Markov et al., 2022; 2024) with promising results in
training Transformer-XL on WikiText-103 and ResNet50
on CIFAR-100. Our goal is hence to provide a general
formulation incorporating the statistical heterogeneity
across layers and establish tight theoretical guarantees for
layer-wise quantization with tailored coding schemes.

In Figure 1, we provide an intuitive visualization for layer-
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Figure 1. A Visualization for Layer-wise vs Global Quantization

wise and global quantization. In the global scheme (middle
row), every layer has the same compression regardless of
their impact on the accuracy. In the layer-wise approach
(bottom row), each layer is assigned the suitable compres-
sion scheme based on its impact on the accuracy, which
preserves overall accuracy while still reducing model size.

3.1. General Framework

Distributed and synchronous setting with & nodes: This
setup is along the lines of the standard setting for data-
parallel SGD (Dean et al., 2012; Alistarh et al., 2017). Here,
the nodes partition the entire dataset among themselves such
that each node retains only a local copy of the current pa-
rameter vector while having access to independent private
stochastic dual vectors. In each iteration, each node re-
ceives stochastic dual vectors, aggregates them, computes
an update, and broadcasts the compressed update to acceler-
ate training. These compressed updates are decompressed
before the next aggregation step at each node. We study
unbiased compression, where, in expectation, the output of
the decompression of a compressed vector is equal to the
original uncompressed vector.

Layer-wise vs global quantization: At each time ¢, in-
stead of a global sequence of quantization levels for
all coordinates - like QSGD and its variant (Alistarh
et al., 2017; Faghri et al., 2020; Ramezani-Kebrya et al.,
2021) - we consider a set " of M types of sequences
{ebt .. MY to be optimized with flexible and ad-
justable numbers of levels ag, ..., ayy, respectively. We
denote £™ € LM the sequence of type m at time ¢, given
by [lo, (7™, .. 0™ L, 1] T, where 0 = £y < (7™ <
oo < AUE™ < Ay, 41 = 1. That is, at time ¢, each layer
of the DNN follows one of the M types of quantization se-
quences. The intuition is that layers with similar or different
functionalities and features have correspondingly similar
or different quantization sequences, while less important
layers adopt fewer quantization levels.

Remark 3.1. Unlike previous adaptive global quantization
works (Wang et al., 2018; Faghri et al., 2020; Agarwal et al.,
2021), our layer-wise quantization adaptively adjust the se-

quence of quantization levels for each layer based on statis-
tical heterogeneity throughout training. This key novelty is
also absent in prior block quantization variants (Wang et al.,
2022; Horvath et al., 2023; Mishchenko et al., 2024) which
apply the (similar) predefined quantization procedures to
each block or layer. Details are provided in Appendix A.2.

From here on to the end of Section 3, we fix a time ¢ and
a type m for simplicity in notations. We hence drop the
superscript time index ¢ and subscript type index m. The
formulation holds for each iteration ¢ € [T'] and each type
m € [M].?

Quantization variance: Let 7(u) denote the index of a

level with respect to an entry u € [0, 1] such that £,y <

u < ET(u)-&-l' Let f(u) = ('LL - er(u))/(&'(u)—i—l - gT(u))
be the relative distance of u to the level 7(u) + 1. For a
sequence £, we define the following random variable

qe(u) = {gr(u)

gr(u)—‘—l

with probability 1 — &(u)
with probability &(u)

We then define the random quantization of vector
v oas Quu(v) = [Quum(vi),...,Quum(vg)]T, where
Qv (v;) = [|v||q - sign(v;) - gem (u;) for m € [M], and
any u; € S™, i.e. the set of all normalized coordinates that
use type m sequence £™.

Let g m ~ IPq represent d variables {qem (u;)}ic[a) Sam-

pled independently for random quantization. As this scheme

is unbiased, we can measure the quantization error by mea-
. . _ 2 .

suring the variance Eq ,, [[|Qrrm (v) — v||3] given by

M
lolle > > od(uise™),

m=1u; ES™

(Var)

where o) (u;; ™) = E[(ger (ui) — wi)?] = ()11 —
u;)(u; — €75 ,,)) is the variance of quantization of a single
coordinate u; € S™. We can optimize M quantization
sequences by minimizing the overall quantization variance
min EEq, [|Quu(9(@iw) - A@)I3).

where LM = {{Kl,‘..,ﬂM} Ym € [M], Vj €
[am],ﬁgn <l = 0,406,441 = 1}, denoting the col-
lection of all feasible sets of type m levels. Since random
quantization and random samples are statistically indepen-
dent, the above minimization is equivalent to

in, BBq ,, [[|1Qu (g(@iw)) — glasw)llz] . (MQV)
In Figure 1, we give a simple visualization to show the
difference between layer-wise and global quantization.

The time index ¢ will return in Section 4 since the algorithm
iterates over all T’ iterations.
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Remark 3.2. We now elaborate on how layer-wise quan-
tization is always better than global quantization in
(Alistarh et al., 2017; Faghri et al., 2020; Ramezani-
Kebrya et al., 2021; 2023). We optimize M quantiza-
tion sequences by minimizing quantization variance (MQV).
Global quantization models will find an overall optimum
sequence /¢, for all the M types. Hence, the collection
of M sequences in this global case is simply ]L%b =
{ly, .., .}, where £, repeats M times. By the minimality
of (MQV), we obtain the quantization variance for layer-
wise quantization is always upper bounded by that of global
quantization: mingx E [[|Qpa (g(;w)) — g(w;w)[|3] <

E[IlQwy, (93 )) — gl )] -

3.2. Main Coding Protocol

We now apply practical coding schemes on top of our layer-
wise quantization to further reduce communication costs.
We process the coordinates of all M types simultaneously
in parallel, i.e. coordinates of different types are quantized,
encoded and transmitted at the same time. Although each
quantization type has its own codebook, different types may
share similar codewords to reduce the overall code length.
The receiver is always aware of the type of each coordinate
upon reception, allowing it to apply the correct codebook for
decoding. The overall composition of coding and quantiza-
tion, ENC(||v||4, s, g» ) consists of M parallel encoding
maps ENC(]|v||q, s, gem), uses a standard floating point
encoding with C}; bits to represent the positive scalar ||v||,,
encodes the sign of each type m coordinate with one bit,
and then utilizes correspondingly type m integer encoding
scheme U™ : A4™ — {0,1}* to efficiently encode every
type m coordinate with the minimum expected code-length.

To solve the quantization variance (MQV), we first sample 2
stochastic dual vectors {g(x;w1),...,g9(z;wz)}. Let FI™
denote the marginal CDF of normalized coordinates of type
m conditioned on observing || g(x;w,)||;. By the law of
total expectation, (MQV) can be approximated by solving
M minimization problems in parallel for each £™:

Z Qm o7
min Y lg(aws)llz Y /m 03 (u; €7) dFI" (u),
z=1 =0 " %4

Gm £k

Ué(u; ) dFm(u), 2)

where F"(u) = 22221 A FI™(u) is the weighted sum of
the conditional CDFs of normalized coordinates of type m
with weights A, as follows

g (s w:) |13
~ :
2o g (s w213

In our practical implementation (Section 7), we utilize L-
GreCo (Markov et al., 2024) which executes a dynamic

3)

2z =

Algorithm 1: Quantized Optimistic Dual Averaging (QODA)

Require: Local training data; local copies of X¢, Y;; update
steps set U/; learning rates {~;}, {n:}

1: fort=1,...,7 do

2:  ift € U then

3: fori=1,..., K do

4 Efficiently estimate distributions of normalized

dual vectors and update L (Remark 4.1)
5 Update M sequences of levels in parallel
6 end for
7. endif
8 fort=1,..., K do
9 Retrieve previously stored Vk,tq /2

10: Xiyr2 ¢+ Xe —n S Vie12/ K

11: Vitriy2 & Ai(Xip1/2) + Ui(Xiq1)2)

12: di,t < ENCODE (Q]Lt,M (‘/;7154_1/2); ]Lt’]\/j)
13: Broadcast d; ;

14: Receive d; ; from each node ¢

15: Vi t41/2 < DECODE(d; ;; L")

16: Store Vkﬂf_,_l/g

17: Yij1 < Y — Zszl Vigr1/2/ K

18: X1+ 1Yo + X0

19:  end for

20: end for

programming algorithm optimizing the total compression
ratio while minimizing compression error (MQV) from
(2). The decoding DEC : {0,1}* — R first reads C,
bits to reconstruct ||v||,, then applies decoding schemes
(pm™)=1 . {0,1}* — A™ to obtain normalized type m
coordinates without confusion since the number of coordi-
nates |S™|, their order, and the corresponding codebook are
known at the decoder. A further discussion for the choice
of a specific lossless prefix code and more details on cod-
ing schemes are included in Appendix D.3. Alternating
Coding Protocol: In the cases that the receiver is not aware
the quantization type of the coordinates, we use separate
codebooks for M quantization types. We elaborate on the
details and guarantees of Alternating Coding Protocol in
Appendix D.2 and provide a comparison between the two
protocols in Remark D.3.

Remark 3.3. Our layer-wise quantization and coding pro-
tocol are general and hence applicable for all distributed
optimization settings that follow the stochastic first order
oracle models 1. Empirically, (Markov et al., 2024) have
applied layer-wise quantization for loss function minimiza-
tion (with SGD-type methods) in the context of training
language and vision tasks such as ResNet50 on CIFAR-100.
We showcase similar applications with training Transformer-
XL on WikiText-103 in Section 7.2.
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4. Quantized Optimistic Dual Averaging

We now study an application in solving distributed VI with
our novel Quantized Optimistic Dual Averaging (QODA),
Algorithm 1. Importantly, this optimistic approach reduces
one ‘“‘extra” gradient step that extra gradient methods and
variants such as Q-GenX (Ramezani-Kebrya et al., 2023)
take (by storing the gradient from the previous iteration,
refer to lines 9 and 16). Therefore, QODA reduces the
communication burden by half decoupled from acceler-
ation due to quantization compared to Q-GenX. At certain
steps, every node calculates the sufficient statistics of a para-
metric distribution to estimate distribution of dual vectors
in lines 3 to 5. Let V}, ; and Vk,t denote the uncompressed
and compressed stochastic dual vectors in node k at time ¢,
respectively. Let Vi, ; = Q(Vir) = Q(Ar(Xy) + Uk(Xy))
denote the unbiased and quantized stochastic dual vectors
for node k € [K] and iteration ¢ € [T']. The optimistic dual
averaging updates in (ODA) appear in lines 10, 17 and 18.
Our layer-wise quantization with @y +,» and coding proto-
col are applied in lines 12 and 15. The loops are executed
in parallel on the nodes.

K

Vk.,—l 2
Xit12=Xe — 7 Z fT/
k=1
o
o
Vi =Y, -y 0 (ODA)
k=1

Xiy1 = X1+ 1 Yeq

In general, learning rates v, and 7, can be chosen such that
they are non-increasing and v > 7, > 0. We propose
the following adaptive learning rate schedules for updates
in Algorithm 1.

. . 2\ —3
-1 K HVk,erl/Q - Vk,sfl/QH
*

m=p= |1 ) %2

s=1 k=1

“

The two learning rates here are equal, but they can be differ-
ent in an alternative setting in Section 6. This learning rate
separation for optimistic dual averaging is also explored for
online multiplayer games in (Hsieh et al., 2022).

Remark 4.1. One way to efficiently estimate the distribu-
tions of dual vectors (line 4 in Algorithm 1) is to use a
parametric model of density estimation such as modeling
via truncated normal with efficiently computing sufficient
statistics (Faghri et al., 2020). The set of update steps U
in Algorithm 1 is determined by the dynamics of distribu-
tion of normalized dual vectors over the course of train-
ing. In Section 7, we dynamically update levels using L-
GreCo (Markov et al., 2024).

5. Theoretical Guarantees
5.1. Layer-wise Quantization Bounds

Since the bounds hold for each iteration ¢, we can fix ¢ and
drop the index ¢ in this subsection for notation simplicity.
Let ¢ € Z and £™ = maxo<j<a,, on /e, and M =
maxi<m< M £™. Denote the largest level 1 across M types
g{w = maxi<m<M ET Let dy, = (2/[7{\/1)111“1{2’(1}. We
now present a variance bound for layer-wise quantization
with the proof in Appendix C:

Theorem 5.1 (Variance Bound). With unbiased layer-wise
quantization with L9 normalization of a vector v € R?, i.e.
Eq, o [Qum (v)] = v, we have that

EQLM [”QILM (1)) - UH%] < EQ”’UH; (5)

where eq = CD% (M gmtaz — 1)1{d > din} +

@dmﬂ{d < dwp}

Remark 5.2. For the special case of M = 1, our bound (5)
recovers (Ramezani-Kebrya et al., 2023, Theorem 1). Under
M = 1, this bound holds for general L? normalization and
arbitrary sequence of quantization levels as opposed to (Alis-
tarh et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al.,
2021, Theorem 4), which only hold for L? normalization
with uniform or exponentially spaced levels, respectively.
In the specific case of M = 1, large d (i.e. d > dp, in
most practical situations), and L2 normalization, our bound
matches the lower bound (+/d) (Ramezani-Kebrya et al.,
2021)[Theorem 7].

We now establish code-length bounds for the coding proto-
col with the proof in Appendix D.1:

Theorem 5.3 (Code-length Bound). Let p* denote the prob-
ability of occurrence of " for m € [M] and j € [ay].
Under the setting specified in Theorem 5.1, the expecta-
tion ByEq ,, [ENC (Quu (g(z;w)); LM)] of the number
of bits is bounded by

EuEq, ,, [ENC (Quu (g(a;w)); LM)]

M M am
—o (=2 a =2 > B togpy )umd | ©
m=1 m=1j5=1

where p'™ is the proportion of type m coordinates.

Remark 5.4. For the special case of M = 1, our bound
recovers (Ramezani-Kebrya et al., 2023, Theorem 2). Under
the special case of M =1, L? normalization, and s = Vd
as in (Alistarh et al., 2017, Theorem 3.4), our bound can be
arbitrarily smaller than (Alistarh et al., 2017, Theorem 3.4)
and (Ramezani-Kebrya et al., 2021, Theorem 5) depending
on the probabilities {po, . . ., Ps+1}. Under similar settings,
this upper bound is optimal in the problem dimension d,
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matching the lower bound for distributed convex optimiza-
tion problems with finite-sum structures (Tsitsiklis & Luo,
1987; Korhonen & Alistarh, 2021).

5.2. Joint Communication and Convergence Bounds

We now outline the guarantees for QODA in Algorithm 1.
Here, QODA is executed for T iterations on K nodes
with learning rates (4). Quantization sequence £ is up-
dated J™ times, and é;” is used for T}, ; iterations where

M Zj:l Ty, = T Note that £ has variance bound
€Q,m,; (5) and code-length bound N ,, ; in (6). Denote

ZL Xip1)2/T = Xiy1)2.

Algorithm 1 requires each node to send in expectation at
most N communication bits per iteration, where Ng =
Zm:l ijl Tm,jNgm,;/T (ie., the average expected
code-length bound). Under the absolute noise model, we
can bound GAP of Algorithm 1 as follows with the proof in
Appendix E.2:

Theorem 5.5 (Algorithm 1 under Absolute Noise). Suppose
the iterates X, of Algorithm I are updated with learning
rate schedule given in (4) for all t = 1/2,1,...,T. Let
X C R be a compact neighborhood of a VI solution and
D? := sup,cx || X1 — pll3. Under Assumptions 2.1, 2.2,
2.3, and 2.4, we have

E [Gapy (Xi11/2)]
o <((LD +AX

2 +0)éqg +0) D2L2>
VTK ’

where £ = 27]:/11:1 Zj:l Tm,j\/EQ,m,; /T is average

square root variance bound.

Only for the relative noise profile, we introduce a regularity
condition of co-coercivity, similar to QGen-X (Ramezani-
Kebrya et al., 2023) to obtain the fast rate O(1/T)>:

Assumption 5.6 (Co-coercivity). For 5 > 0, we say opera-
tor A is -cocoercive when for all z,y € R?,

(A(z) - A(y), z — y) > Bl Alx) — Ay)|I2.

Further details about this assumption is in Appendix B.2.
With this assumption, we obtain the following faster con-
vergence guarantee for Algorithm 1 under relative noise:

Theorem 5.7 (Algorithm 1 under Relative Noise). Suppose
the iterates X, of Algorithm 1 are updated with learning
rate schedule in (4) forallt = 1/2,1,...,T. Let X C R?
be a compact neighborhood of a VI solution. Let D? :=

3Our guarantees for quantization, coding procedures and con-
vergence under absolute noise do not require co-coercivity. It is
only used to establish the fast rate O(1/7T") under relative noise.

suppe v | X1 — pll3. Under Assumptions 2.1, 2.2, 2.3, 2.5,
and 5.6, we have

B gQ + &g +or)D?
E [Gapy (Xt+1/2)]:(9((0RQ i = )

— M Jm .
where 2 = > .1 > =1 Tm,j€Qm,j/T is the average
variance bound.

The proof details are included in Appendix E.3.

Remark 5.8. Both theorems show that increasing the num-
ber of processors K lead to faster convergence for mono-
tone VIs, matching the asymptotic rates for 7" and K of
Q-GenX (Ramezani-Kebrya et al., 2023) without an extra
almost sure boundedness assumption. Under the absolute
noise model and by setting the number of gradients per
round to one, our results match the known lower bound for
convex and smooth optimization Q(1/v/TK) (Woodworth
et al., 2021, Theorem 1).* Previously, (Ramezani-Kebrya
et al., 2023, Theorem 3) can only match this lower bound
with an extra almost sure boundedness assumption.

6. Almost Sure Boundedness Model

To further highlight the advantages of QODA, we now an-
alyze its performance under a setting similar to the global
quantization VI-solver Q-GenX, while relaxing another key
assumption of co-coercivity. We first present the almost sure
boundedness assumption of the operator

Assumption 6.1 (Almost Sure Boundedness). There exists
J > 0s.t. ||g(x;w)||« < J almost surely.

Under this Q-GenX’s setting5 , for the relative noise case,
we can actually obtain the similar rate O(1/T) to Q-
GenX (Ramezani-Kebrya et al., 2023, Theorem 4) with-
out the co-coercivity Assumption 5.6. We consider the
alternative adaptive learning rates with ¢ € (0, 1/4]:

1

(1+ZZH ks+1/2H X, — Xs+1||> 2

s=1 k=1

(lJrZZ ||Vk s+1/2H )

s=1 k=1

(Alt)

The derivation details for this alternative (Alt) learning rates
are included in Appendix F.2. Two learning rates allow a
larger extrapolation step in the first line of (ODA), so the
noise is an order of magnitude smaller than the expected
variation of utilities (Hsieh et al., 2022). We now provide the
convergence of Algorithm 1 under relative noise with learn-
ing rates (Alt) and without the co-coercivity assumption.

*In (Woodworth et al., 2021) their function F is L-smooth
implies that the VI, or the operator in our case, is L-Lipschitz.

3In this model, the proposed learning rate (4) and its conver-
gence guarantees in Section 5.2 still hold.
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Figure 4. FID evolution during training. We compare basic Adam optimization against QODA-based extension of Adam with global
(Q-GenX (Ramezani-Kebrya et al., 2023)) and layer-wise (L-GreCo) quantizations.

Theorem 6.2 (Algorithm 1 under Relative Noise without
co-coercivity assumption). Suppose the iterates X, of Al-
gorithm 1 are updated with learning rate schedule in (Alt)
forallt =1/2,1,...,T. Let X C R? be a compact neigh-
borhood of a solution for (VI), €g as in Section 5.2 and
D? := sup,cy || X1 — pll3. Under Assumptions 2.1, 2.2,
2.3, 2.5, and 6.1, for Algorithm 1 with learning rates (Alt):

¥ gq +&q +or)D*
E [Gapy (Xi41/2)] = O ((UReQ Ej? or) > .

The proof is in Appendix G. To underscore the significance
of eliminating the co-coercivity assumption, we note that
several important class of games such as bilinear games
are not co-coercive. Furthermore, we also include the
guarantees for absolute noise for this model in Theorem
F.15, where we also obtain the rate O(1/+/T) similar to
Q-GenX (Ramezani-Kebrya et al., 2023, Theorem 3).

7. Numerical Experiments
7.1. GAN Training

To further validate our theoretical findings, we have imple-
mented QODA in Algorithm 1 based on the codebase of
(Gidel et al., 2018) and train WGAN (Arjovsky et al., 2017)
on CIFAR10 and CIFAR100 (Krizhevsky, 2009). To support
efficient compression, we use the torch_ cgx Pytorch ex-
tension (Markov et al., 2022). Moreover, we adapt compres-
sion choices layer-wise, following the L-GreCo (Markov
et al., 2024) algorithm. Specifically, L-GreCo periodically
collects gradients statistics, then executes a dynamic pro-
gramming algorithm optimizing the total compression ratio
while minimizing compression error.

In our experiments, we use 4 to 16 nodes, each with a single

NVIDIA RTX 3090 GPU, in a multi-node Genesis Cloud
environment with 5 Gbps inter-node bandwidth. For the
communication backend, we pick the best option for quan-
tized and full-precision regimes: OpenMPI (ope, 2023) and
NCCL (ncc, 2023), respectively. The maximum bandwidth
between nodes is estimated to be around 5 Gbit/second.

We follow the training recipe of Q-GenX (Ramezani-Kebrya
et al., 2023), where authors set large batch size (1024) and
keep all other hyperparameters as in the original codebase
of (Gidel et al., 2018). For global and layer-wise com-
pression, we use 5 bits (with bucket size 128), and run the
L-GreCo adaptive compression algorithm every 10K op-
timization steps for both the generator and discriminator
models®. The convergence results over three random seeds
are presented in Figure 4. The figure demonstrates that the
adaptive QODA approach not only recovers the baseline ac-
curacy but also improves convergence relative to Q-GenX.

In order to illustrate the impact of QODA on the wall-clock
training time, we have benchmarked the training in three dif-
ferent communication setups. The first is the original 5 Gbps
bandwidth, whereas the second and the third reduce this to
half and 1/5 of this maximum bandwidth. We measured the
time per training step for uncompressed and QODA 5-bit
training. Here, the optimization step includes forward and
backward times. More precisely, the backward step consists
of backpropagation, compression, communication and de-
compression. Note that time per step is similar for both data
sets. Table 1 shows that layer-wise quantization achieves
up to a 47% improvement in terms of end-to-end training
time. Table 2 demonstrates the scalability of QODA up to
16 GPUs under weak scaling, i.e. with a constant global

SFor a fair comparison to QGen-X, we did not include any
additional encoding on top of quantization just as QGen-X did not.
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batch size. We observe a significant up to a 150% speedup
in comparison to the uncompressed baseline. Moreover,
baseline step time degradation makes the scaling useless,
whereas QODA allows to avoid such degradation.

Mode 1 Gbps | 2.5 Gbps | 5 Gbps
Baseline 291 265 251
QODA5S 197 195 195
Speedup | 1.47x 1.36x 1.28%

Table 1. Time per optimization step (in ms) for baseline and
QODAS with different inter-node bandwidths.

Mode | 4GPUs | 8 GPUs | 12 GPUs | 16 GPUs
baseline 251 303 318 285
QODAS 195 165 127 115
Speedup | 1.28x 1.83x 2.50% 2.47x

Table 2. Time per optimization step (in ms) for baseline and
QODAS with different node counts.

7.2. Transformer-XL Training

We now showcase the superiority of layerwise methods (L-
GreCo) to global ones by applying quantization on top of
powerSGD for training Transformer-XL on WikiText-103.
We used the implementation of (Markov et al., 2024) and
provide our code in the supplementary material. We used 8
NVIDIA GH200 120GB GPUs for the experiments here.

The results are shown in Table 3, in which we observe the
compression rates achieved by the layerwise quantization
(with L-GreCo) is consistently higher than that by the global
(uniform) quantization given the same parameter for the un-
derlying powerSGD (rank in Table 3). To ensure a fair
comparison, we trained all the methods for the same iter-
ations as the baseline, which is a vanilla training process
without any parameter compression, and reached the same
perplexity level as the latter.

To further demonstrate the advantage of performing quanti-
zation on a layer-wise basis, we also conduct an ablation ex-
periment on Transformer-XL. In this test, we compared the
test perplexity resulting from quantizing only the position-
wise feed-forward layer (FF), the embedding layer, and the
attention layer (i.e. the matrices containing all the param-
eters of k, g, and v at each layer), respectively. We used
PowerSGD with varying quantization levels (ranks). Each
setup was repeated four times with different seeds, and the
results are shown in Figure 5. Given the same compres-
sion level, quantizing the embedding layer results in a much
larger drop in performance. This supports our intuition
that layer-wise quantization is more beneficial, as different
layers exhibit varying sensitivity to quantization.

quanti- test compression
rank . .
-zation perplexity rate
baseline - - 23.20 to.20 1.0
16 global 23.73 £o.16 27.44
layerwise | 23.70 £o0.13 | 40.38 [1.47x]
power 3 global 23.54 £o0.13 14.07
SGD layerwise | 24.08 £1.18 | 20.90 [1.49x]
64 global 23.42 £o0.13 7.12
layerwise | 23.49 f£o0.13 | 10.84 [1.52x]

Table 3. Layer-wise vs Global Quantization for Transformer-XL
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-+ FF
embedding
& gkv

N
&
)
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Figure 5. Ablation Study for Transformer-XL

8. Conclusion and Future Directions

In brief, we propose the theoretical framework and tight
guarantees for layer-wise quantization. We then leverage
this quantization scheme to design QODA (Algorithm 1) for
distributed VIs with competitive joint communication and
convergence rates. Finally, we apply QODA empirically to
obtain up to 150% speed up for training GANs.

While monotone VIs can cover a wide range of ML ap-
plications, there are situations that general non-monotone
or (weak) minty VIs are required (Iusem et al., 2017;
Beznosikov et al., 2022). Hence, for future directions, one
may look into communication-efficient schemes to solve
non-monotone VIs with an adaptive layer-wise compres-
sion. Moreover, given our theoretical guarantees for layer-
wise quantization and the communication-efficient QODA
method, subsequent studies might extend these techniques
beyond GAN training, for example, to accelerate adversarial
training via layer-wise quantization.

Impact Statement

We provide substantial theoretical results on layer-wise com-
pression and VI solvers that contribute to a number of sub-
fields such as large-scale training, optimization, and general
machine learning. Our paper focuses on theoretical advance-
ments and does not introduce likely risks relevant to bias,
privacy violations, or misuse of sensitive data.
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A. Addition Information
A.1. Further Literature Review

For empirical risk minimization, adaptive quantization adapt quantization levels (Faghri et al., 2020; Wang et al., 2018)
and the number of quantization levels (Guo et al., 2020; Agarwal et al., 2021) over the trajectory of optimization. Previous
studies show that these adaptive methods offer tighter variance bounds than non-adaptive ones (Mishchenko et al., 2021).
These quantization schemes are global w.r.t. layers and do not take into account heterogeneities in terms of representation
power and impact on the learning outcome across various layers of neural networks. Markov et al. (2022; 2024) have
proposed unbiased and layer-wise quantization where quantization parameters are updated across layers in a heuristic
manner and have shown tremendous empirical success in training popular DNNs in large-scale settings.

Recently, Quantization-Aware Training (QAT) methods seek to produce models with quantized weights and activations
during training, and as such, compress these elements during the training process (Frantar et al., 2023; Ashkboos et al.,
2024). Furthermore, Post-Training Quantization (PTQ) techniques aim to do so in a single compression step, e.g. by using
layer-wise solvers to find a good quantized weight assignment (Frantar et al., 2023; Ashkboos et al., 2024). By comparison,
our focus is on gradient compression: we aim to reduce communication overhead during distributed training by applying a
layer-wise quantization scheme to gradient updates. This objective is orthogonal to that of QAT and PTQ, so our method
can be combined with either approach to further improve end-to-end efficiency.

Unbiased quantization provides communication efficiency on the fly for empirical risk minimization, i.e., quantized
variants of SGD converge under the same hyperparameters tuned for uncompressed variants while providing substantial
savings in terms of communication costs (Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017; Faghri et al., 2020;
Ramezani-Kebrya et al., 2021; Markov et al., 2024; 2022).

Beyond distributed VI settings, extra gradient methods and their optimistic variants have a long history in the field of
optimization. Extra-gradient, first introduced by (Korpelevich, 1976), is known to achieve an optimal rate of order O(1/T)
in monotone VIs. This method has been further extended in (Nemirovski, 2004; Nesterov, 2007) by introducing Mirror-prox
and its primal-dual counterpart Dual-extrapolation. However, all these methods require two oracle calls per iteration (one
for the extrapolation and one for the update step) which makes them more expensive than the standard Forward/Backward
methods. The first issue to address this issue was Popov’s modified Arrow—Hurwicz algorithm (Popov, 1980). To that end,
several extensions have been proposed such as Past Extra-gradient (PEG) from (Chiang et al., 2012; Gidel et al., 2019),
Reflected Gradient (RG) from (Chambolle & Pock, 2011; Malitsky, 2015), and Optimistic Gradient (OG) from (Daskalakis
et al., 2018; Mokhtari et al., 2019a;b).

A.2. Comparisons to Related Methods

Improvements over Q-GenX (Ramezani-Kebrya et al., 2023): Our proposed algorithm QODA (Algorithm 1) essentially
consists of a distributed VI solver - Optimistic Dual Averaging (ODA) - and a layer-wise compression general framework
(Section 3). We will now state our improvements with respect to both the optimistic VI solver and layer-wise compression
framework:

* Optimism: Our optimistic dual averaging distributed update step (ODA) reduces one extra gradient step compared to the
extra-gradient approach of Q-GenX, hence reducing the overall communication burden by half.

* Relaxed Assumptions: Our algorithm QODA also requires fewer assumptions than Q-GenX (Remark 2.6). In particular,
we obtain joint communication and convergence guarantees without the almost sure boundedness of the dual vectors.

» Layer-wise Compression: Our layer-wise compression framework is much more general and is always better than the
global compression framework in Q-GenX (Remark D.3). Our compression framework also comes with two fine-grained
coding protocols, among which the Alternative Coding Protocol is a generalization of Q-GenX coding protocol while the
Main Coding Protocol is novel.

* Experimental Results: We improve the convergence relative to Q-GenX in training WGAN (Figure 4).

Rigours Formulations and Tight Guarantees for Layer-wise Compression such as L-Greco (Markov et al., 2024):
We provide a novel and general theoretical formulation and establish guarantees for adaptive layer-wise quantization with
tailored coding schemes, which is not studied in L-Greco. Layer-wise quantization schemes such as L-Greco have only
been studied empirically without strong theoretical guarantees to handle the statistical heterogeneity across layers and over
the course of training. Our tight variance and code-length bounds actually hold for any general layer-wise and unbiased
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quantization scheme. Under the special case of L? normalization and global quantization, our variance bound matches the
lower bound from (Ramezani-Kebrya et al., 2021, Theorem 7) (more details in Remark 5.2) while our code-length bound is
optimal in the problem dimension with respect to the lower bounds from (Korhonen & Alistarh, 2021; Tsitsiklis & Luo,
1987) (more details in Remark 5.4).

Remark A.1. In brief, a combination of QGen-X and L-Greco does not represent our novel and general layer-wise framework
with the corresponding theoretical guarantees and an associated fine-grained coding analysis while performing twice the
number of gradient computations as we do.

Comparison to Block Quantization (Mishchenko et al., 2024; Horvath et al., 2023; Wang et al., 2022): We highlight
that block (p-)quantization is fundamentally different from layer-wise quantization in our paper. As Mishchenko et al. (2024,
Definition B.1) suggests, the various blocks here follow the same scheme that is p-quantization (Quant,,) which is explained
in (Mishchenko et al., 2024, Definition 3.2). Here are three fundamental distinctions between block quantization and our
layer-wise quantization:

» Each of our layer or block in this context has different adaptive sequences of levels (Section 3). This is why our method
is named “layer-wise.” (Mishchenko et al., 2024) on the other hand applies the same p-quantization scheme Quant,,
to blocks with different sizes, implying that the nature and analysis of two methods are very different. Hence block
quantization is not “layer-wise,” and its analysis does not apply to the convergence of our methods.

¢ The way the quantization is calculated for each block or layer are different. Mishchenko et al. (2024) study and provide
guarantees for the following type of p-quantization (for all blocks): A = ||A||, sign(A) o &, where the £ are stacks of
random Bernoulli variables. In our work, the sequence of levels for each layer is adaptively chosen according to the
statistical heterogeneity over the course of training (refer to (MQV)).

* The guarantee in (Mishchenko et al., 2024, Theorem 3.3) only cover p-quantization rather block p-quantization. In our
Theorem 5.1, we provide the quantization variance bound for any arbitrary sequence of levels for each layer in contrast
to that for only levels based on p-quantization (Mishchenko et al., 2024).

In brief, the block quantization is similar to bucketing in unbiased global quantization — QSGD (Alistarh et al., 2017),
NUQSGD (Ramezani-Kebrya et al., 2021) — which takes into account only the size of different blocks (sub-vectors), while
for layer-wise quantization we take into account the statistical heterogeneity and impact of different layers on the final
accuracy. Due to fundamental differences, our variance and code-length bounds require substantially more involved and
different analyses that are not possible by simple extensions of block quantization in those works.

Comparison with (Dutta et al., 2020): They study a similar method to block quantization but using the same name
"layer-wise quantization" to our framework. In short, the authors propose to use the same quantization operator for each
layer, i.e. breaking the stochastic gradients into different blocks corresponding to different layers before quantization.
Furthermore, their analysis only concerns with the relative noise case, obtaining a slower rate (’)(\/T)

B. Variational Inequality Background
B.1. GAP

Several properties of (GAP) have been explored in the literature (Nesterov, 2009). In particular, the following classical
result characterizes the solutions of (VI) via zeros of (GAP).

Proposition B.1. (Nesterov, 2009) Let X C R be a non-empty and convex set. Then, we have
* GAPx (&) > Oforall & € X;
* IfGAPx (&) = 0 and X contains a neighbourhood of &, then & is a solution of (VI).

B.2. Co-coercivity Assumption
We recall the co-coercivity assumption (Bauschke & Combettes, 2017) is as follows

Assumption B.2 (Co-coercivity). For 5 > 0, we say operator A is 3-cocoercive when
(A(@) — Ay), z —y) = B Al) — A(y)|l} Ve,yeR”
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Note that by Cauchy-Schwarz, we further deduce for a co-coercive operator
[A(z) = A(y)l2llz — yll2 > BllA(z) — Ay)|3,
implying
lz = yll3 = B2l A(x) — A(y)]3-

We refer the readers to (Bauschke & Combettes, 2017, Section 4.2) for further properties of co-coercive operators.

B.3. Relative Noise Examples
Here we provide two examples in practice where the noise profile can be characterized as relative noise:

+ Random coordinate descent (RCD): At iteration ¢, the RCD algorithm for a smooth convex function f over R? draws
one coordinate ¢, € [d] uniformly random and computes the partial derivative v; ; = 0f/dz;,. The i-th derivative is
updated as X; ;1 = X;; — d - o - v;; for step-size a > 0. This update rule can also be written as xT =x - ag(x; i)
where g;(x; i) = d - 0f /Ox; - p and y is drawn uniformly at random from the set of R¢ basis vectors {ey, ..., e, }. Since
Of /0x; = 0 at the minima of f, we also have g (x*; u) = 0 if x* is a minimizer of f, i.e., the variance of the random
vector g(x; i) vanishes at the minima of f.

* Random player updating: Given an N-player convex game with loss functions f;, i € [N]. Suppose, at each stage, player
i is selected with probability p; to play an action following its individual gradient descent rule X; ;11 = X; + + 7/ DiVit
where V; ; = V, f; (X;) denotes player 7 ’s individual gradient at the state X; = (X1 ¢,..., Xy ) and p; is included for
scaling reasons. One can show that all individual components of A vanish at the game’s Nash equilibria.

C. Proof of Quantization Variance Bound

Theorem 5.1 (Variance Bound). With unbiased layer-wise quantization with L normalization of a vector v € R, i.e
Eq a [Qrrm (V)] = v, we have that

Eq,u [Quo (v) —wl3] < eqllvll3, )

where eq = CD2 4 (M gmmnteer —1)14d > dyn} + B0 dmw e 1{d < di).

Proof. First let us remind ourselves of the notations in the main paper Fix a time ¢t. Let the normalized coordinates

be u. Let ™ = maxo<j<a,, ¢ T /07, and (M = mMaxi<m<M /M Denote the largest level 1 among the M sequences
M = maxy < £M. Also let dyy, = (2/0)7)™in{2:} Let Bt = [0, 07 ] form € [M], ] € [auy].

Now, we can rewrite the equation (Var) for a fixed time ¢ as follows

M
Egu [1Qur(0) —[3] = [l0ll; Y D od(uie™)

m=1u;ES™

M
= 0ll3 D" D (Chqunn — wa) (i = Eaga,)

m=1wu; ES™

M
S>3 DIRCEITES o) DR CIERHIEN:)
m=1 \u;eBy j=1u;€B

We now find the minimum 7", satisfying (€%, — u;)(u; — €7') < kJ*uf for u; € BJ* for m € [M], j € [oun]. Let
;= zme forl <@g < m /é;” Then, we have

Jj+1
e G G061 (/g1
1<o<em, /o ) 1<o<em /o 0 4, /o)
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where the last equality follows from a simple differentiation with respect to 6. Since the function (z — 1)%/(4x) is
monotonically increasing function for z > 1, we obtain

(/b — 1% _ (@1 -1y

alepg o) — a7
which leads to
Qo Qm, 2 Qm Enﬁ_l/em ) )
D DICEEISUEVIED DD DRFEED D Bt ot
J=1u; €BP J=1u;€BM j=1u;eBm J+1
eM—l o (1) )
I I D M)
Jj=lu;eB™ u; €S™ /BY
yielding
2 N~ R 2\~ (P -1)? 2 2‘ 1)? 2
vl (1 —ug)(wi = 67") < |lollg D —=r— ui = |vllg u
4/¢
m=1j=1u; BT m=1 u; €S™/BY m=1u;eS™ /By
< || H2(E]w_1)2 H’U”% (EA{_]')?H H
v — = = Vl|o.
= Wl |2 ATV 2

Next, we attempt to bound 2%21 Doue B (47" — u;)u; with these two known lemmas

Lemma C.1. Let v € RY Then, for all 0 < p < q, we have ||v||, < ||v||, < d*/P~/4||v||,. This holds even when q < 1
and || - || is merely a seminorm.

Lemma C.2. (Ramezani-Kebrya et al., 2021, Lemma 15) Let p € (0,1) and u € By. Then we have u({y —u) < K07 PuP,

where
1 1/p—1\'"
K, - /p_(1/p
2/p—1\2/p-1

Now, from these two lemma, for any 0 < p < 1 and ¢ < 2, we obtain that

M
PSS S (@ uu < oES Y Kl < oK@ S S
m=1u;EBT m=1u; By m=1u; By
elEE@Er S S '“’|'|p < K (B2 P ]2 ol

m=1u; EBJ"
< Kp(B)* 7P|l 5! P2 [lol37F = Kp(11)*Pd 2ol f3,

where the penultimate inequality holds due to the first given lemma and ||v||; < ||v]|2 for ¢ > 2. Now combining the
bounds, we obtain

M _1)2 o
B 100 (0) — ol < (S5 4 B @2 ) o

Moreover, if ¢ > 1, note that [[v]|277 < Hng_pdmii{iﬁq} 72%1), yielding

2 (M —1)? TMN\2—p jmarl— 2
Eo [1Quat (v) —wll3] < | 77— + Bp(67)77dmmCa | o3,

Now we can minimize ¢ with finding the optimal p* by minimizing

— 1/p 1/]7*1 o 1-p 1 1—p o 1-p _ p—2 1-p, 1—p
3= (FE21) =g (52h) et
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where v = /Md mwizaT . This is equivalent to minimizing the log
log A(p) = (p — 2)1og(2 — p) + (1 — p)log(1 — p) + (1 — p) log(v)
Setting the derivative of log A(p) to zero, we have
—1+4log(2—p*)+1—log(l—p*)+log(v) =0,
yielding the optimal p* to be

v—2
pF=Qv—1
0, v<2 or d<dyy,.

v>2 or d>dy

In brief, we have

(@ 1y

N S N 1 .- 2
Q="+ (M dwntazr — 1)1{d > dy} + Z(E{M)ermn{qﬂ} 1{d < ds1}.

D. Coding Framework
D.1. Proof of Code Length Bound for Coding Protocol

Theorem 5.3 (Code-length Bound). Let p}* denote the probability of occurrence of €* for m € [M] and j € [ovp]. Under

the setting specified in Theorem 5.1, the expectation Ey [Eq_ ,, [ENC (Q]LIVI (9(x;w)); ]LM)] of the number of bits is bounded
by

EuEq,,, [ENC (Quu (g(;w));LM)]

M M om
—o( (== ptogpy Jumd | ©)
m=1 m=1j=1

where p™ is the proportion of type m coordinates.

Proof. We first use a constant C, bits to represent the positive scalar ||v||, with a standard 32-bit floating point encoding.
We now carry out the encoding and decoding procedure in parallel for each of the M types of coordinates. We use 1 bit
to encode the sign of each nonzero type-m entry. Next, the probabilities associated with the symbols to be encoded, i.e.,
the type-m levels, can be computed using the weighted sum of the conditional CDFs of normalized type-m coordinates as
follows.

Proposition D.1. Let j € [avy,], we have the probability p'* of occurrence of £ is

m

N ) G u— er £ 0 —u
p}” == Pr([;”) = / 767” — ém drFm (’LL) + / 7731 m
an v j—1

i o g+l

dﬁ!m(u)7

where F ™ () is the weighted sum of the type-m conditional CDFs in (2). Hence we get

om om
1Togmo_ _ 1 gm o _ B
oy =) = [ = [ aE),
m 1 0 0 1

~m m feim 1 u— gglm [m ! u— gflnm [m
B =P, ) = [ k) = [ e ab ),
Lm am+1 o Qm

«
am m am

Then, we can get the expected number of non-zeros after quantization.
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Lemma D.2. For arbitrary v € RY, the expected number of non-zeros in QM (v) is
M
E [lQt (v Z (1-p5")
m=1

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy of the source (Cover
& Thomas, 2006). Hence, we can transmit entries of normalized w in at most ZM (H(™)+ 1) u™d, where u™ is the
proportion of type-m coordinates w.r.t all coordinates and H (£™) = — Y PRy log( ") is the entropy in bits.

In brief, we obtain

M Qo
EuwEq  [ENC (Quar(g(z;w));LM)] = Co+ > (1—pp) p™d + Z => (P log(®) + 1 | pmd
m=1 m=1 j=1
M oy,
= By =D D by logpy | wrd |
m= 1 m=1 j=1
as desired. [ ]

D.2. Alternative Coding Protocol

Let Ab™ = {Zé’m, fﬁ’m, RN K’;ZZH} be the collection of all the levels of the sequence £5™. Let QtM = U%Zl Abm
be the collection of all the levels of M sequences at time ¢. The overall encoding, i.e., composition of coding and quantization,
ENC(||v|l4, 8, quem) : Ry x {£1}9 x (QBM)4 — {0, 1}* uses a standard floating point encoding with C,, bits to represent
the non-negative scalar ||v||4, encodes the sign of each coordinate with one bit, and then utilizes an integer encoding scheme
U (M4 5 {0, 1} to efficiently encode every quantized coordinate with the minimum expected code-length. To
solve (MQV), we sample Z stochastic dual vectors {g(x;;w1), ..., g(xt;wz)}. Let F, denote the marginal cumulative
distribution function (CDF) of normalized coordinates conditioned on observing ||g(z¢; w;)||4. By law of total expectation,

for L™ ¢ £5M (MQV) can be approximated by:

M « M «o t,m
m m €l+1

i?,izgz llg(xs; w, Hq Z Z/t N (u; £5™) dF, (u) or mln Z /et (u; £5™) dF (u), ™

m
m=1 =0 m=1 =0

where F(u) = Y7 1 A2 F.(u) is the weighted sum of the conditional CDFs with

z=

A
A= llg(@sw )2/ lg(@e ws)|2. ®)
z=1

Remark D.3. We note that the Main Protocol offers higher compression ratios through code-word sharing across different
types. The improved compression ratio comes at the expense of increased encoding and decoding complexity along with
possibility of increased re-transmission overhead in case of unstable networking environment. When the end-to-end delay
for message passing in the underlying network is highly random such as jitters (Verma et al., 1991), Alternative Protocol
will be optimal since every quantization level for every type has a unique code-word. However, Main Protocol will possibly
require several transmissions in case of unstable networks. When the network is stable and delays are deterministic, we
propose to adopt the Main Protocol. Our coding alternatives provide a trade-off between compression ratio, re-transmission
probability, and encoding/decoding complexity.

D.3. Further Details on Coding Framework

The choice of a specific lossless prefix code for encoding gy ¢, relies on the extent to which the distribution of the discrete
alphabet of levels is known. If we can estimate or know the distribution of the frequency of the discrete alphabet Q" we
can apply the classical Huffman coding with an efficient encoding/decoding scheme and achieve the minimum expected
code-length among methods encoding symbols separately (Cover & Thomas, 2006; Huffman, 1952). On the other hand, if
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we only know smaller values are more frequent than larger values without knowing the distribution of the discrete alphabet,
we can consider Elias recursive coding (ERC) (Elias, 1975).

The decoding DEC : {0, 1}* — R first reads C, bits to reconstruct ||v||,, then applies decoding scheme W~! : {0, 1}* —
(Q8M)4 to obtain normalized coordinates.

Given quantization levels £ and the marginal PDF of normalized coordinates, K nodes can construct the Huffman tree in
parallel. A Huffman tree of a source with s 4+ 2 symbols can be constructed in time O(s) through sorting the symbols by the
associated probabilities. It is well-known that Huffman codes minimize the expected code-length:

Theorem D.4. (Cover & Thomas, 2006, Theorems 5.4.1 and 5.8.1) Let Z denote a random source with a discrete alphabet
Z. The expected code-length of an optimal prefix code to compress Z is bounded by H(Z) < E[L] < H(Z) + 1 where
H(Z) <logy(|Z]) is the entropy of Z in bits.

D.4. Proof of Code Length Bound for Alternative Protocol

Theorem D.5 (Code-length Bound for Alternative Protocol). Let p}* denote the probability of occurrence of U7 form € [M]

and j € |auy]. Under the setting specified in Theorem 5.1, the expectation E,Eq, ,, [ENC (Qpm (g(e; )) M) of the
number of bits under Alternative Protocol is bounded by

M M am
EuEq, ,, [ENC (Quu (9(m;w)); LM)] = O ( Zpo > o logpy )
m=1j5=1

Proof. We first use a constant C, bits to represent the positive scalar ||v||, with a standard 32-bit floating point encoding.
Then we use 1 bit to encode the sign of each nonzero entry of w. Next, the probabilities associated with the symbols to be
encoded, i.e., the levels in QM can be computed using the weighted sum of the conditional CDFs of normalized coordinates
as follows.

Proposition D.6. Let j € [a,y,], we have the probability Py of occurrence of U]" is

G ou—my Gy — _
ey = [ ek + [ L k),
J4 P4

m o __ pm m 7
it G =4 i =4

where F (u) is the weighted sum of the conditional CDFs as defined in (7). Consequently we deduce

Oy Om
vy =iy = [ ppear = [Tt am),
o 0 1

Kam“ u— Em B 1 u— fm
Py = PR >/ A————szf Y= o g f(u).
m+1l = m+1 ZZLm gaerl —_ym o 1— Egm

Then, we can get the expected number of non-zeros after quantization.

Lemma D.7. For arbitrary v € RY, the expected number of non-zeros in QM (v) is

E [||f (v) (1 = Z P )

The optimal expected code-length for transmitting one random symbol is within one bit of the entropy of the source
(Cover & Thomas, 2006). Hence, we can transmit entries of normalized « in at most (anle Hm™) + 1) d, where
H(em) = =375 p*log(p}") is the entropy in bits.

In brief, we obtain

M M
EwEq , [ENC (Quu (g(a;w)); LM)] = Cy + (1 — Z p5”> d+ (Z H(™) + 1) d.

m=1
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D.5. Unbiased Compression under Both Noises Profiles

The following two lemmas show how additional noise due to compression affects the upper bounds under absolute noise
Assumption 2.4 and relative noise models Assumption 2.5, respectively. Let’s keep in mind that g » ~ Pg represent d
variables sampled independently for random quantization, and gy » is independent of random sample w ~ P.

Lemma D.8 (Unbiased Compression under Absolute Noise). Let x € X and w ~ P. Suppose the oracle g(x;w) satisfies
Assumption 2.4. Suppose Qum satisfies Theorem 5.1 and Theorem D.5, then the compressed Qpm (g(x;w)) satisfies
Assumption 2.4 with

E [[|Qu (g(msw)) — A()[13] < e@(2L*D* + 2| A(X1)[3 + 0*) + 07

Proof. The unbiasedness property immediately follows from the construction of the unbiased quantization (1 »r. Next, we
note that that the maximum norm increase when compressing Qv (g(; w)) occurs when each normalized coordinate of
g9(w;w), {ui}ie(q), is mapped to the upper level £7, ., ., for some m € [M]. We can show bounded absolute variance as
follows

EuEq s [1Quu (g(a;w)) — A(@)|3] = EuEq,, [|Quu (9(m;w)) — g(;w) + g(a;0) — A)]3]
= EuEq, [1Quy (9(z;w)) — g(m;w)I[3] + Eu [IIU(z;w)II3]
< By [llg(a;w)[3] +0®
=By [[A(@) + U(z;w)[3] +0”
= cQllA@)[I3 + eQEw [IU (a5 w) 3] + o
< eqllA@)|3 +eqa’ + o,
where the second equality occurs due to unbiasedness of gy s, the third steps follos from Theorem 5.1, and the last inequality

holds according to Assumption 2.4 for g(x;w).

Now we note that in Theorem 5.5, D? := sup,c y | X1 — z||3, where X C R? is a compact neighborhood of a VI solution.
Since A is L-Lipschitz (Assumption 2.3), we note that

|A(X,) — A(x)||3 < L?| X, — z||3 < L?D? VxzecAX.

Since X is our initialization, A(X) has a finite value, so A(x) is bounded for all & € X. Hence for the quantization in
Algorithm 1, we can obtain

[A@) 13 < 2| A(X1) — A(@)|3 + 2l AKX < 2L2D% + 2| A(X1) |3,
which implies the desired conclusion. n

Lemma D.9 (Unbiased Compression under Relative Noise). Let € X and w ~ P. Suppose the oracle g(x;w) satisfies
Assumption 2.5. Suppose Quwm satisfies Theorem 5.1 and Theorem 5.3, then the compressed Qum (g(x;w)) satisfies
Assumption 2.5 with

E [[lQuy (g(asw)) — A(@)[3] < (eqor +eq + or) | A(@)]I3. ©
Proof. The unbiasedness assumption holds similar to D.8. We can show bounded absolute variance as follows
EuEq, s [[1Quu (g(asw)) — A(@)|[3] = EuEq,,, [[|Quu(g(zsw)) — g(;w) + g(a;w) — A)]3]
=EuEq s [[Quu (9(z;w)) — g(a;w)[13] + Euw [|IU(a;0)]3]
< By [llg(asw)l3] + orlA()II3
= eqEy [[|A(@) + U(z; w)[3] + orlA(2)]3
= eqllA(®@)II3 + £QEw [|U(m;w) 3] + orl Al)]3
< (eqour +eq +or)|A(@)I3,
where the second equality occurs due to the unbiasedness of gy, the fifth equality holds because of the unbiasedness of the

noise model and the last inequality holds according to Assumption 2.5 for g(x;w). [ ]
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E. Analysis in the General Setting
E.1. Template Inequality

Proposition E.1 (Template Inequality). Suppose the iterates X; of (ODA) are updated with non-increasing step-size
schedule y; and n; as in (4) forallt = 1/2,1,. ... Then for any X € R%, we have

/1 &E 0 X x ||XH2 v 7 1 Xt — Xyp1/2]|
Z Ez kit+1/2y At41/2 — +Z2K2ZH kit+1/2 = Vit— 1/2H Z2—77t

t=1 k=1

1 N
Proof. First, decompose the LHS individual term 7 <E,§:1 Vit+1/2: Xpg12 — X > into two terms as follows

K
1 .
e <Z Vit+1/2: Xeg1/2 — X> = A+ B,
k=1
where

K K
1 . 1 .
A= It < E Vi tt1/2: Xega/2 — Xt+1> , B=— <k§_1: Vir1/2, Xev1 — X> ‘

k=1
From the update rule of ODA (with 7;), note that

B =Y, - Y41, Xi11 — X)

= <Yt - n:7+1Y;:+1,Xt+1 - X> + <77:7+1Yt+1 — Y1, Xp1 — X>

t t

1 1 1
= —(mYe = 1 Yer1, Xew1 — X) + ( - ) (=me+1Yer1, X1 — X)
Ug Ne+1 M
1 1 1
— (X = X1, X1 — X))+ [ — — — | (X1 — X1, X — X)
77 Me+1 T
1
= o (I1Xe = X012 = 1Xe = Xeqa |2 = 1 X1 — XI2)
1
s = 5 ) (10 = XI2 = X0 = Xt = [ Ko = X
1 1 1 1
—Xstf—XfX P o—IIX X§+< )X X%,
16 = X = 51X = X2 = 5o X = X2+ (5o = 5 ) 15— X]
1 1
the last inequality holds as the non-positive term — (2 ~ 5 ) || X1 — X¢41]? is dropped. We can rearrange the above
Mt+1 "t
inequality as
1 1 1 1
X XI2< —IX: = X2 = —||1Xe = Xewal? + | — — — ) IIX|? -
277 || t+1— X3 < 27]t” t s 277t|| t 1l + s Tl XI5
1 1 1
= X = X - X = X2 (o - — 2
X = XI2 = 51 = Xenll o+ (5 = 5 ) IXE
1 /& 1 /&
t % <kz_:1 Vietr1/2, Xev1/2 — Xt+1> e <k§_:1 Vitr1/2, Xeg1/2 — X> : (*)

Next, also by the update rule (with 7;), we have for any X € R?

K K
% <Z Vit—1/2, Xer1/2 — X> S % <Z Vit—1/2, Xet1/2 — X>
b1 k=1

= (X¢ — Xiy1/2, Xey1/2 — X)

1 1 1
§||Xt - X2 - §||Xt — Xyy12ll2 — §||Xt+1/2 - X|2.
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Substituting X = X, and dividing both sides of the inequality by 7;, we have

K
1 N
Ve <Z Viet—1/2, Xet1/2 — Xt+1>

k=1

1 1 1
< Tml\Xt — X2 - TmHXt — X122 — Q—WHXHUQ — X2 **

Combining (*) with (**) and after some rearrangements, we obtain

K
1 . 1 1 1 1
—EV X —X )< —IX = X2 - —— || Xpq1 — X —— ) 1X: = X
K < k4172, Xt+1/2 > hS 277t|| t Il M [ X4 Iz + < 27%) X1 Il

2
k=1 Nt+1
K

1 N N
+ T <kz_:1 Vits1/2 = Viei—1/2, Xeg1/2 — Xt+1>

1 1
- TntHXt — Xiq1,202 — ZTHHXtH/Q — X2

Then, by summing the above expression over t = 1,2, ..., T and with some telescoping terms, we obtain
L1 /& 1 1 1 1
- Vi X1 — X ) < =—[1X1 = X2 = —||Xrq1 — X|I? X, - X|?
> % <¥ IRV Y > < ol = XI2 = e = X2+ (5 - ) 10 - X2
T K
+ Z K <Z (Vk,t+1/2 - Vk,t—1/2) s Xiy1/2 — Xt+1>
t=1 k=1
T Ty
- Z 7HXt Xt+1/2H2 Z TmHXtJrl/z - Xt+1||i-
t=1

Next we consider the substitution X; = 0 which is just for notation simplicity and can be relaxed at the expense of obtaining

a slightly more complicated expression. We can further drop the term e | X711 — X||? to obtain
NT+1

T
z<zvmﬂ/2,xt+l/2— >g2n; X2 + z<z(vk,t+l/2—vk,t1/2),xt+1/2—xt+l>

k=1 k=1
T K|
fE—XfX 272—)( — X%
22, [ Xt = X1 y2]l3 22, [ Xt11/2 e+l M

Note that by Cauchy-Schwarz and triangle inequalities, we have

K K

1 - - 1 N -

= <§ (Viasio = Viao12) s Xeaya = Xt+1> = = > (Vhsrsz = Viao12 Xevrj2 = Xern )
k=1 k=1

K
~ A Xiy12 — X+
< Z )Vk,t+1/2 - Vk,t—1/2H* ‘ /T
k=1 *
Combining with the AM-GM inequality of the form
M 2 ®

we deduce from (1) further that

==

MH M=

K
<Z (V,,t+1/2 - Vk,t—1/2> y Xiy1/2 — Xt+1>

k=1

K
< % Z HVk t11/2 — Vi 1/2H + Z ||Xt+1/2 — X2 (1)

t=1 k=

—
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Plugging (77) into (}), we obtain

1T<K IXI2 . §~x- 7 3L

=Y ZVk,t+1/27Xt+1/2_X> < 4"*’22775“‘/““/2—‘/“ 1/2H 7HXt_Xt+1/2Hza
KS\NS e D2 i1 2

as desired. ]

E.2. GAP Analysis under Absolute Noise

We first introduce following two useful lemmas that will help to bound the (GAP):
Lemma E.2. (Levy et al., 2018; McMahan & Streeter, 2010) For all non-negative numbers o, . . . , o, it holds that

Lemma E.3. (Bach & Levy, 2019) Let C € R% be a convex set and h : C — R be a I-strongly convex w.r.t. a norm || - ||.
Assume that h(x) — mingec h(x) < D?/2 for all x € C. Then, for any martingale difference (z;)L_, € R% and any = € C,

(10)

Now we state and prove the complexity of Algorithm 1 under absolute noise and fixed compression scheme.

Theorem 5.5 (Algorithm 1 under Absolute Noise). Suppose the iterates X, of Algorithm 1 are updated with learning
rate schedule given in (4) for all t = 1/2,1,...,T. Let X C R% be a compact neighborhood of a VI solution and
D? := sup,c v | X1 — pl|3. Under Assumptions 2.1, 2.2, 2.3, and 2.4, we have

E [Gap;( (yt+1/2>]
_ (LD + ||A(X1)|l2 + 0)eg + o) D*L?
- ( VTR ) !

—~ M Jm . .
where €q =1 > i1 Tm,j\/EQ,m,;/T is average square root variance bound.

Proof. Suppose first that no compression is applied, i.e., eg = 0. Using the result of the template inequality Proposition E.1,
we can drop the negative term to obtain

T /K

1 " X2

T E <§ Vk,t+1/2aXt+1/2_X> Xl + E E HVk t+1/2_th 1213
t=1 \k=1

s 1 k= 12

Next we can expand the LHS with the absolute noise model Assumption 2.4 as follows

K T
1
< > Ar(Xit1/2), Xigaja — > > < > " Ur(Xi41/2), Xis1/2 —X>

LHS =

[ =

Mﬂ i~

k=1 t:l k=1
1 K 1 &
Z E <2Ak Xt+1/2_X>+KZ< Uk Xt+1/2) Xt+1/2_ >
t=1 1 t=1 =1
1 K T 1 T K
K > A X)’ZXM/? - ZX> + }Z <2Uk Xiv1/2), Xig1/2 —X>
k=1 =1 =1 =1 \h=1
T K _ 1 T K
=X Z <A}c(X)aXT+1/2 - X> + Ve Z <Z U Xt+1/2 s Xotr1/2 — X>
k=1 t=1 k=1
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where the second inequality follows from the monotonicity of A and X1 2 = 23:1 Xi41/2/T. Plugging this back to the
result from template inequality with some rearrangement, we obtain

K

T K
X2
—E A ), X - X <— —i-g E Vi -V
K k( T+1/2 > (277T+1 2. k:1 2” k,t+1/2 k,t— 1/2“

Z <ZUk Xiy1/2), X — Xt+1/2>> .

k=1

By taking the supremum over X, then dividing by T and then taking expectation on both sides, we get

K
1 — 1
;p?]; X), X412 — X) Sf(51+52+53)’
where
D2 r Ko
S =E , S =E v — Vo121,
e IR PO P L WA V]

Here we make an important observation that

K ) . 2 K
E Z HVk,t+1/2 - Vk,t—l/QH* <2E Z || Ak (Xis1/2) — Ak(Xt—l/z)Hi}
=1 k=1
al 2
28|30~ 5]
k=1

<2ZL2E|:|Xt+1/27Xt 1/2” :|+4K0_
< 2KL2D2 +4Ko?, (11)
where the second inequality comes from L-Lipschitzness the operator for the first summand and the absolute noise

assumption for the second summand. Now we proceed to bound these terms one by one. For 51, from the choice of learning
rates 1; < 1, with Equation (11)we obtain

R 2
Vii—1/2 H*

1 XK
=
k=1

T
. 2
Vk,t—1/2H <D? 1+ZE
* t=1

T 1 K
S, = D°E HZEZ

t=1 k=1

22 2
SDQ\/lJrQT(L 1;(+2a )
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Next, we proceed to bound S

T
Sy =E Z

s 1 Veeije - Vk,tmni]

T T K
Tt Nt+1 o S M1 o N
—E (> (2[(2 - 2K2> Visrse = Ve poll2| +E (DD o2 WVitt1/2 = Vii—1/2112
=1 k=1 t=1 k=1
rT
<E|Y (555 — 255) @KL2D? + 4Ko?)
- p 2K?2 2K2
T K Y > 2 2
1 1% — Vo K
+ §IE Z Z 1Y tH1/2 kit 1/2” / (from Equation (11))
t=1 k=1 \/14-25 1Zk v kyst1/2 — Vis 1/2” /K2
T K
1 . 2
<2LD? +40%+ JE ||| 1+ Viet1/ ‘ (from Lemma E.2)
t=1 k=1
1 2T (L2D?2 + 202
§2L2D2+4o—2+2\/l+ ( K+ ).

Lastly, let’s consider S5

S;=E

ZT: <Z Up(Xi11/2): X>] ~E

t:l

K
1
SUP?E <E Uk(Xt+1/2)aXt+1/2>]
k=1

— X t=1

‘We can bound the first term with Lemma E.3 as follows

T

1 K D?
SUP?Z ZUk(Xt+1/2)7X Sﬁ E

K
D2%6\T
U 2| « T~ T
> > Uk 412l ] Wi«

t=1 k=

—

For the second term, we use law of total expectation

T /K
Z <Z Uk(Xtt1/2), Xt+1/2>
t=1

k=1

E

T K
=E | D E[(Uk(Xiq1/2), Xt+1/2>Xt+1/g]] =0,

t=1 k=1

implying S5 < D;\‘;g. Combining the bounds of S, S5 and S3, we finally obtain the complexity without compression as

1 VTD?L? _o (D2L2>

=79 VK VTK)'

Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average square root expected
code-length bound is denoted as

K
_ 1 _
E [Gapy (Xi41/2)] =E lsip e E (Ap(X), X741/ — X)
k=1

m=1j=1

Finally, by applying compression bound Lemma D.9 along the ideas of (Faghri et al., 2020, Theorem 4) and (Ramezani-
Kebrya et al., 2023, Theorem 3), we get the desired result

E [Gapy (Xit1/2)] = O <((LD + [ A(X)|2 + 0)E5 +0) D2L2>

VTK
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E.3. GAP Analysis under Relative Noise

Theorem 5.7 (Algorithm 1 under Relative Noise). Suppose the iterates X, of Algorithm 1 are updated with learning
rate schedule in (4) for all t = 1/2,1,...,T. Let X C R% be a compact neighborhood of a VI solution. Let D? :=
suppey | X1 — pll3. Under Assumptions 2.1, 2.2, 2.3, 2.5, and 5.6, we have

=1 7= 2
E [Gapy (Xi41/2)] = O ((UREQ t2q +on)D > )

TK

_ M Jm . .
where€q =1 > i—1 Tm,j€qQ,m,;/T is the average variance bound.

Proof. Plugging X™ into part of the LHS of template inequality Proposition E.1 and then taking expectation, we obtain

K
1 ¥ *
<K Z Vit+1/2, X172 — X >]

K K

1 N 1

=E lK E E |:<Vk,t+1/27Xt+1/2 - X*>|Xt+1/zﬂ = [ E Ak Xt+1/2 Xt+1/2 - *>]
k=1 k=1

=E [(A(Xy41/2), Xip12 — X*)] 2 E [(A(Xy41/2) — AX* ,Xt+1/2 - X))

K
- Z Vet ]

1 B
= (X
]; t+1/2 ”1—20 e
where the fifth step occurs due to the /3-co-coercivity assumption and the last step follows from this inequality resulted from
Assumption 2.5

BE [ A(Xe41/2)1]

|\Vk,t+1/2||f = Viet1/2 + Upt1/212 < 20Vies1s2ll3 + 20Uk s1/217 < (2 + 208) [Vier1/2]l7-
Plugging this back into the template inequality, we deduce

T K
B 1 . ) I1x*2 1 X — Xig1,2]2
——— > E|= 1% )V 7 H 2:— ’
20R+2; K;H et+1/21[ M i1 - 2K2k ‘ kt41/2 kt—1/2 2,
implying
T K 1 i T K
B 1 ; > [l m - S 2
E|—= \% | <E *—s—E E HV — Vi H . (Inql)
20R+2; K};H k,t+1/2|| ] _277T+1 - K2 < k,t+1/2 k,t—1/2 . q

On the other hand, we consider

- | X0~ Xt+1/2|| kS 2y P )
E (D BIAX4172)|2 Z ——— | 2B D BIAX )2+ ZTHHA(XO — A(Xpy1/2)[I5
t=1 | L t=1 t=1
GRS ) )
> min {5, 2770} ZE AKX 1212 + [A(X:) = A(Xiq12)[I7]
=1
1 82 —
—minq 5, — E [||A(X,)|?
gmin {8 5o} SSE AR
1 . 62 T 1 K ) )
> , — E|—= Vieells
> T don mln{ﬁ 2770}; K;” oot

where the second step comes from the consequence of the co-coerceivity assumption. Plugging this back to template
inequality, we obtain

1 82 —
min{ B, — E E
4+4dop 2mo ) =

Y

T

X1 o
<E +Z oK ;HV’“ t41/2 — Vier— 1/2H (Inq2)

2re1 o

1 K
= > Vel
k=1
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Now summing the two above inequalties Inql and Inq2, we have

1 B d 1 K i 1 K
i — E|— VAN E|=— 7 2
4+4O’R mln{ﬁ’ 2170}2 KZH k,t”* 2; K;H k,t+1/2||»;|
X* 2
<E e H Vit 1/2H
nr+1

Next, from the bounding of S5 from Theorem 5.5, we have

2 1
Vi 1/2 SE{ },
t= 1 * nr+1
yielding
1 ; 52} - L~ p 2 a 1 & 2 [||X*2+1}
mind 8, 2 LSTE [ ST V2 E|—S |V 2| < | ML)
4+4dog {5 210 t; K;” bl 2 2 K};H k12 o

On the other hand, we can consider the lower bound for the LHS of this inequality
1 32 T 1 X 3 T K
: ~ E|l= v 2 E|= v 2
i a2 F | Il + R+22 K;nvk,mu]

K
+ Z]E e kz:: |Vk,t+1/2||3]>

t=1

(o} (2227}
K B o[- 1
: B 0 s
gy min {0, 553 gl = Vualf
K B\ [em o 1 2
g B =V - Vit = Vier
1o mln{»& 27]0} ; (;K Vi t41/2 —&-kZQ Wit = Via—1y2ll?
K /82 7 K 1 ) R ,
wls 2\ 10 e
5t 30y, i {ﬂ 2770} _;];QKQH k172 — Vig—12|l
K 2
> min{ﬁ,B}E 1
2+20'R ) _nTJ,-l

Hence we have

K B? 1 IIX*|§+1} TR
2+20R {ﬂ7 770}( L]%H}) SE[ NT+1 = (Il + DE

1 N 1
| <ux e fE| o]
NT4+1 Nr41
where the last inequality follows from Jensen’s inequality. Therefore, we obtain

1 24 25 {1 QnO}
E < max<4 —, —- o . 12
|:"7T+1] - K B’ B (12)

Similar to the proof of Theorem 5.5 for the absolute noise case, we consider

K
1 _ 1
E |sup — <Ak?<X)7XT+1/2_X> < = (51 + 52+ 53),
X Kk:l T
where
D2 r Ko,
_ tont > 2
S1=E |:277T+1] , So=E ;; ﬁ”vk,t+l/2 - Vk,t—1/2||*‘| ;
R
S3=E SUp 7 ; <; Uk(Xit1/2), X — Xt+1/2>
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Similar to the proof of Theorem 5.5, we have

1
52g2L2D2+402+E[ }
Nr+1

Again, we decompose S5 similarly to the proof of Theorem 5.5

T | K
1
sg{p?E <§ Uk(Xt+1/2)7X>] —-E
=1

k=1

S3=E

K
1
SUPE E <E Uk(Xt+1/2>7Xt+1/2>] .
k=1

X =1

For the first term of the above expression, we note that

T 2

K
S Ukiraye

t=1 k=1

() 2

t=1 k=1

(g

t=1 *

29711

T
D2 X* 2
> onr ||A(Xt+1/2)|’i‘| < Vi ok {” *]

For the second term of S3, we use law of total expectation

T | K
Z <Z Ur(Xt41/2), Xt+1/2>

t=1 \k=1

E =E

K
Z ZE [(Uk(Xi1/2)s Xey1/2) Xt+1/2]] =0.
t=1 k=1

Therefore, from the bounds for S1, S5, S5, we have the complexity for no compression is

o%)

Now, we consider layer-wise compression. Firstly, recall that the average variance upper bound is

K
_ 1 _
E [Gapy (Xit1/2)] = E lsip Ve kgl (AR(X), X141/ — X)

M

Jm
Z mJEQmJ

m=1j=1

Now with the bound from Lemma D.9, we can follow along the line of (Faghri et al., 2020, Theorem 4) and (Ramezani-
Kebrya et al., 2023, Theorem 4) to obtain the final computation complexity with layer-wise compression

v EqQ +&q +or)D?
E [Gapy (Xi11/2)] = O <(0R€Q 61? or) ) :

F. Analysis in Almost Sure Boundedness Model

F.1. Useful Lemmas

For the sake of convenience, we introduce the following new notations: ’

2

t || K t
1 .
) Z > Vissrg| i =D 11X = Xopa %,
=1 |[k=1
yielding
1 1

W= T = :
' (T4 Ai—2)t/274 ' VIt o+ o

We now establish some basic lemmas that will be reused through out this theoretical analysis.

"Fort < 0,\s = iz =0.
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Lemma F.1. Let Assumption 2.4 holds. Then for T € N, we have
Ar < 2T(J2 + 0'2).

Proof. Using Assumption 2.4, we note that

2 2

K K
Z Viit1/2|| = Z Viett1/2 + Uke41/2)
k=1 k=1
K 2 | K 2
Z Vit+1/2 T Z Uk,t+1/2
K k=1
2 al 2 2 K 2
< EZHV 12| +§Z|’Uk,t+1/2||
k=1 k=1
< J?4+ 20
implying Ay < 2T.J2 + 2T02. ]

Lemma F.2. (Hsieh et al., 2022, Lemma 14) Let T € N,e > 0, and q € [0, 1). For any sequence of non-negative real
numbers ay, . .., ar, we have

ti(g@a:las) “al(5e)

Combining the above two lemmas, we deduce the following useful bound

Lemma F.3. Suppose that Assumption 2.4 holds, let s € N, and r € [0,1), then for T € N, we obtain

Z HZk 1Vk t+1/2/K||2 1T

<

2
T v p O +7).

Proof. Note that

1 1
(T+2)" — (T4 M)

. 2
Combining the above inequality with bound of H Zszl Viei1/2/ K H in Lemma F.1, we deduce

1 2 2
H 1+>\t s)" (1+)\t)r>2<J o).

<(1+it_s) (1+/\ )

Combining this inequality with Lemma F.2, we derive

2

”Zk 1‘7kt+1/2/K||2 = [ Zf—l th+1/2/KH2 1
= — ? K
Z (T4 Ms)” ; @+ ) oy a +At ZV" /2
T T
Ik Vi1 2/ K1 ( 1 1 ) 5 o

< - 2(J

D P (FS AP I e van (S v AR
Ao L 202+ 02 AT

< AT _ AT 2 4 ,2).

STt 2 T e G

t=1—s
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We also establish the following lemma to bound the inverse of 7,

Lemma F.4. (Hsieh et al., 2022, Lemma 17) For T € N, and a,b € R, it occurs that

T

a [Xe — Xoa |2 a’
—— —bY ——————— <a/1+Ap_1+ —.
Nr+1 ; ui T

Proof. Note that

" =a\/1+>\T—1 + pr—1 Sa\/l—F)\T—l +a/pr—1.
T41

And we also have
T T
X, — Xpaql?
> ||fnt+1| > b [1Xy — Xpp1 |2 > bpr—i.
t=1 ¢ t=1

Define function b : R — R, h(z) = azx — bx?. We notice a,/fi7—1 — bur—_1 < max,ecg f(x) = a/4b*. This concludes
the proof. [ ]
F.2. Important Inequalities

We start with constructing an energy inequality for (ODA) (without quantization).

Proposition F.5. [Energy Inequality] Let (Xt)ien and (X41/2)ten be generated by (ODA) with non-increasing learning
rates. Foranyp € X and t > 2, it holds

[Xerr —pl* _ I1Xe—pl®  1Xe = Xea|? n

1 1
( - ) (%1 — oI — I1X1 = Xoia]?)

Mt+1 uis Nt Ni+1 un
5 | XK 2y, | & K 5 | K
. ’ . . .
e <1§1 Vit1/2, Xeg1)2 P> - %2 <1§1 Vit41/25 kgl Vk,t—1/2> t% <;§1 Vitr1/2, Xe — Xiega

~——

Proof. Using the fact that Zszl Vk7t+1/2/K = (Xt — X1)/m — (X41 — X1)/Me41, we have

K
Vit+1/2
PR At X _
< K g At+41 P

k=1

<Xt - X1 Xip _Xl,Xt+1 —p>
Tt Me+1

1 1 1
= — (Xt — Xoy1, X1 —p) + ( - ) (X1 — X1, Xe41 —p)

n Me+1 un
1
meXt —plI? = | Xeg1 — plI* — 1X: — Xeal?)

1 1
- X _ 2 X _ 2 X B X 9 .
* (277t+1 277t) (1X1 = pll [ Xe41 = pll X1 +1117)

Multiplying both sides by 2 and rearranging, we obtain

Xy —pl? Xe—pl? X — X |? 1 1
X et = _ " _ +1 + —— ) (IX1 = p)* = X1 = Xea[?)
Mt 1 ur un M+1 Mt
2 /5 v X
K 2 kjt+1/2,At+1 — D ) -
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Lastly, note that

K
<Z kt+1/25 X1 — p>

R K
Vit+1/2) Xeg1/2 — >

Mx

K
Viets1/2, Xt — Xt+1/2> <th+1/2,xt—xt+l>
K K
<ZV t+1/2szkt 1/2> <ka,t+1/2aXt_Xt+1>a

k=1 k=1

w
Il

1

///\\\ //’\\\
Mw
N«Q //”\\

t+1/27Xt+1/2 —P>
=1

yielding the desired expression. n

Corollary F.6 (Energy inequality). Let (X;)ien and (X;11/2)ten be generated by (ODA) with non-increasing learning
rates. Foranyp € X andt € N, it holds that

K
[Xesr —pl* _ [IXe —pl 11 2
< — — X — X —
< " + e m | X1 —plI" — K E kt4+1/2y Xt41/2 — P

Nt+1 -1
oy K K K 2
<zvk,t+1/2,zvk,u/2> S v
k=1 k=1 k=1
K L - X
+ min Z Viet+1/2]| — t27t+1, 0
k=1 Mt

Proof. By Young’s inequality,

9 K
7 <Z Vit1y2, Xt — Xt+1>

k=1
2
K K
- |Xt Xe|® 2m ~ 1 X — Xy 1]
< min Z t+1/2 T7 K2 ZVtH/z +T
1 k=1
K
A X X X, — X 2
T N o ST LA 8
k=1 e Mt

1
Using this inequality and dropping the non-positive term — < — > | X1 — X;y1]|? from the result of Proposition F.5,
Up

Mt+1
we can obtain the required inequality. [ ]

Next, we can evaluate the noise and further expand the energy inequality (Corollary F.6) in the following lemma

Lemma F.7. Fort > 2, it holds that

2
el

2

K K
-2 N R _
l il <E Vit+1/2 E Vk,t1/2>] <E T(’Y;
k=1 =1

K
E Vit+1/2
=1

K K 2
> Vieriz— Y Vii-12
k=1 k=1

"‘L(’YtQ + (e + 77t)2)||Ut—1/2H2} .
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Proof. We use V. ; as a shorthand for Ay (X;) and kat = Vit + Uk, where Uy, ; is the zero mean noise. By the law of

total expectation
_ [ 2 <E

AL K
= [ ! <ZV t+1/27ZVk,t—1/2>
k=1 k=1
9, [ & K
+ K2t <Z Vk,t+1/27ZUk,t—1/2>] :
k=1 k=1

First, note that

l 2 <ZVk t+1/27Zth 1/2>

K K
ZVk,t+1/2] 7ZVk,t1/2>‘|

k=1 k=1

2

K 2 K

-n
> Vsl + e > Viio1y2
k=1 k=1

K 2
> Vii1p
k=1

2% [ . gl
- t )t
OO SR R

)

implying
2
=E

2 K K R
7«2 mmzmHQ

=1 k=1

K
> Vi1
k=1

2

¢3)

K K
ka,t+1/2 - ZVk,tq/z
2% <ka f+1/2,ZUkt 1/2>] .

From the update rules of (ODA), we have

K t—1 K
Yt ~ Uiz 9
Xip10 =Xy — E’;Vk,tfl/%Xt ?;;Vk,sﬂ/%

Combining these two equations, we get

t—1 K

n

Xip12=X1 _Etzz ks+1/2—*Zth 1/2

s=1 k=1 k=1

NN Yt

t ¥ t t ¥

XSS - S

s=1 k=1 k=1
-2 K K

3 Vet
—Xl K;;Vk,s+l/2_ tK i ’;(Vk,tfl/2+Uk,t71/2) .

‘ =

Now, let Zle Uit/ K = Uy as the sum of all the noises from K nodes at time t. It is clear that U, also has zero mean. Let
Xt+1/2 = X172 + (e + "}/t)Ut_l/g to be a surrogate for X, 1,5 when removing the noise of time ¢ — 1. We then obtain

i t—2
Xiy1o = X1 —

K ety &
- L+ m

> Vissrjz — % > Vii-1s2.

s=1 k=1 k=1

=|=
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Applying the notations U;_; / = Zszl Uk,t—1/2/ K and Ay(Xyy1/2) = Vi 1412 into (1), we have

2

K 2
— E Vit+1/2
k=1

2% <Z Vitt1/2, ZVk t— 1/2>

K
> Vii-1y2
k=1

2

K K
Z Vier1z — 3 Vie-1/2
k=1 k=1
27 K

L <Z (Xig1/2), Upe 1/2>] :

k=

We now bound the last term of the RHS of the above expression. First, notice that

K K
E l<z Ak(Xt+1/2)7Ut1/2>] = <Z Ak(Xt+1/2)7E[Ut1/2]> =0

k=1 k=1

With that and the L-Lipschitz of Ay, we deduce

K K
-E KZ Ak(XtH/z),UH/Qﬂ =-E [ > A(Xpry2) — Ak(Xm/QLUu/zﬂ

k=1 k=1

K
—E [<Z Ak(Xt+1/2)7Utl/2>‘|
k=

K
=E <Z Ap(Xig1)2) — Ak(Xt+1/2)»Ut—1/2>‘|

<E[KL|Ri1/2 = X1l [0i-poll

<s|kL (Ifw ~ Xl | nnuu/zwﬂ
2v 2
[ 2|Uq 02 U, |12
) KL((%-F%) U¢—1 /2]l +%|| t—1/2|l )}7
L 2")/t 2
yielding
—2 K
K E <Z Ax(Xet1/2), Ut‘1/2>] <E[L((ve 4+ )21 Usz12ll + 921 Us—120%)] -
k=1

In brief, we get

2

K 2 K
9 _
% <Z Vi t+1/2vZth 1/2> D Vsl + K% > Vii-1s2
k=1 k=1
2
K2 ZVk t41/2 — Zth 2|| +LO7+ (e +10)*) U2
k=1 k=1

as desired.

Now we can establish the quasi-descent inequality for (ODA) as follows
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Theorem F.8 (Quasi-descent Inequality). Fort > 2, it holds that

K
| Xes1 P||2} | X: — pll? < 1 1 > o 2
E|X2H 2 <E + —— )X -l == (D Xij12—p
[ i Ner1 M %1 | K — kit41/2) Ct+1/2

Tt+1

K 2 K 2
e i
e ZVk7t+1/2 - TRz ZV’W*”
1 k=1
2 2
X — X
b min | 2 Z Vuaiye| — 1=Kl
Uz
% 2
77 A
+ gz |2 Vearasz| L (Gt m) +90) [Uiaol?
Proof. This result immediately follows from plugging Lemma F.7 into Corollary F.6. [ ]

With this quasi-descent inequality, we pick the learning rates as follows

A 1 1
49—z 2

. . 2
Vi,s Vi,s
k,s+1/2 k, +1/2 X = Xy |2

o3>

-2 K
y e = ZZ
s=1 k=1

Similar to AdaGrad (Duchi et al., 2011), we include the the sum of the squared norm of the feedback in the denominators,

helping to control the various positive terms appearing in the quasi-descent inequality, li

Vi t+1/2H and
L((yw+m)*+ %) U1 /2||2. Nonetheless, this sum is not taken to the same exponent in the definition of the two

learning rates.

—1 Vii+1/2 H remains negative,

which is crucial for deriving constant regret under multiplicative noise. As a techmcal detail, the term Z -1 ||X — Xt ||
is included in the definition of 7, for controlling the difference

| X — Xopa]?

"
K2 21

K K 2
> Vierrz = Y Via—pe| -
k=1 k=1

Some technical insight is that ; and 7, should at least be in the order of 2 (1 / t%_@) and (2 (1 / t%).

We can restructure the quasi-descent inequality Theorem F.8 as follows.

Lemma F.9 (Alt Template Inequality). Let (X¢)ten and (X;11/2)ten be generated by (ODA) with non-increasing learning
rates 1, and ~y; from the Alt schedule, such that n, < vy forallt € N. Foranyp € X and T € N, it holds

T

T K
X1 = pl?
Z<KZ Vit+1/2: Xey1/2 — > <E | Z 572 kat+1/2 K2 Z% Zth 1/2
= k=1 T+1 t=1 k=1 t=2
3L2
+T Y| Xe — Xe— 1H2+*Z’7t U 1/2||1
t=2

Proof. From Theorem F.8, by dropping non-positive terms and using the fact that

1 X — Xia]?

;0] <0,
27715

X 2
E Vitt1/2|| —
k=1
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Xt — pll2 X, —pl|? 1 1
E[n 1 pn]SE[n ] +< _) 1 — ol
Ne+1 Mt Ne+1 Tt

K K K 2

2 g

_E <Z Vk,t+1/27 Xt+1/2 _p> + — Z Vk,t+1/2 — Z Vk’,t—l/Q
k=1 k=1 k=1

ZVk t+1/2

k=1

we obtain

2

K2 +L((’Yt+77t) +7t)HUt 1/2||

Rearranging the terms, and multiplying both sides by 1/2, we obtain

K
1
E <K2Vk,t+1/27Xt+1/2_p>‘|
1% —pl? Ko —pl® (11 d 2
<E t =PI~ A1 — P Jr( ) —pl? + "t v,
> M M1 Meet 277 | X1 —plI” + K2 ; kit+1/2 *)
K K 2 2 .2 1
Ve L((%+77t) +7t) 2
572 ;Vk,tﬂm—;Vk,t—lm + 5 1U:_1 2]l
Note that this inequality holds for ¢ > 2 as suggested by Theorem E.8. If t = 1, then we know
2 us ’
12— pl> = | X1 —plf> — 22 <ZVk 372 X1 — >+ > Viar
k=1
Setting X3,5 = X3 = 0 and 77; = 72, we can obtain
K KV ’
1 X0 gl X% =gl [ Vior|
= Vi X — =E —
<K; k,3/2, 1 p>] 2172 2772 + 2K2 (**)
Now, we sum the inequality (x) over ¢ from 2 to 7" and then add (xx), yielding
T /K
E|X <K D Viirija Xegyo —p>1
t=1 k=1
>~ 27]T+1 2K2 kt+1/2 s 2K2 — — k:,tfl/Z
T
L ('7t+nt)2+'72
+ ( 5 t) ||Ut71/2H2
t=2
HX1—10||2 Z i d Tt = : d 5L’Yt2 2
<E Viio U,_
< s g +;2K2 a ; k,t—1/2 +; 5 012l
(D

where the last step follows 7; < ~;. We also can bound the difference term as follows

K K 2 K K 2 K K

D Viarz— Y Viio1y2 D> Viasrz— Y Vis > Vi =Y Vi
k=1 k=1 k=1 k=1 k=1 k=1

K

> Vie-1y2
k=1

2

<3 +3

2
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Note that by the L-Lipschitz continuity and the update rule of (ODA), we have

K
D Vit
k=1

2 2

<3

K

3 Z(Ak(Xt+1/2) — Ak(X1))
k=1

K
> LXg1ye — X
=1

K
> Vii-1y2
k=1

2
=3K°L?|| X410 — Xo||? = 3L%

After bounding the second and third terms in a similar manner, we obtain

K K 2 K
ka,t—i-l/Q - ka,t—l/Q ka,t—l/Q
k=1 k=1 k=1

2
+3K2L2||X, — X || + 3L%2,

2
< 3L%y}

K
z Vie,t—3/2
k=1

(D.1.1)

Using the initialization that Vk 12=0Vk¢€ [K ], we have
T

2
Z2K2 Zth+1/2—Zth 1/2 <ZSL o
t=

Combining this with the inequality (11), we finally obtain

312
+Z %||Xt X% (D12

Zth 1/2

d 1% -l | & S & 2
1 — 3 ¥
;<K’;th+l/2’Xt+l/2 > <E Gy ; K2 ;th+1/2 Jrﬁt:ZQ% gvk,t—uz
32 & 5L
5 D llXe = X [P+ QZ%?HUt_l/QH?} .
t=2 t=2

F.3. Bound on Sum of Squared Norms

We start to bound the sum of squared norms by first revamping the quasi-descent inequality Theorem F.8 in a different way.

Lemma F.10. Let (X¢)ien and (X;11/2)ten be generated by (ODA) with non-increasing learning rates 1; and ; from Alt
schedule, such thatny < ~y, forallt € N. For T € Nand x* € X*, we have

2

T ’Y K 2 ’y K
ZE KitQ ZV’C,Hl/Q +K7t2 ka,t—l/Q
=2 k=1 k=1
1X1 — 2|2 6%} C Ty & K ’
1_ A A
<E —1—2 t Zth 1/2 Z? ZV —Z o t+1
RS t=2 = t=1 k=1 k=1
T K 2 T
X X 21 .\
ZH — t“” 3B Ve +5L273Ut_1/2|2],
t=2 k=1 t=2

Proof. 1t is straightforwards that

2
X = X P

ol < [X: = X |?
27775 ’ - K2 '

ZT]t

% 2
E Vitt1/2]| —
k=1

Next, similar to (D.1.1), we have

K 2
> Vi-1y2
k=1

2 2

< 3L%2 +3 +3L%7

X 2
> Vii-1y2
k=1

K K
E Vie,t — E Vie,t—1
k=1 k=1

K A
> Vii-sy2
k=1
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And since 7; < 7y, note that
L((ve+m)*+77) U1 p21? < 5Ly Uy po?

With these inequalities, we can rewrite quasi-descent inequality Theorem F.8 as

g [IXen =1

Nt+1
K 2
1%, — 2| (1 L) " %
=E + e St o NS Vs
Nt Nea1 e H 1 || K2 K2 ; k,t—1/2
2
3L2 312 W g [ K
’Yt Z kt—1/2 4 it t1t—1 Zth 3/2 % Z kqtfzvk,t—l
k=1 k=1
S I
42 X, — X
nt ka t+1/2 —hitH—FE)vaHUt_l/Q”?

2

Summing from ¢t = 2 to T" of the above, we obtain the following after some rearrangements

> E ftz D Vi +K7t2 D Vi1
t=2 k=1 k=1
-t (1 1 6247 [ T X X
SE|T +( _>X z|* + NN Viimape|| =Y 2
M2 Nr+1 72 1 =) Z é we Z 2n;

T
+ 5LZ%2HU::—1/2||2

2 o |1
+) Kfé > Vk,t+1/2
=2 k=1

T o || K
+> % > Vi =Y Vi
=2 k=1 k=1

in which we use the fact that Vk,1 /2 =0V k € [K] and get the bound similar to (D.1.2). Next, note that

where the last step stems from vy > 4. If t = 1, then we know

2

< 1X1 — 22 + 2

K ~
Z Vi3/2
=1

K 2
Z Vie,3/2
k=1

K
* * 2 9 *
1Xz —2*|2 = || X1 — = ||2[7;2<ka73/2’)(1$ >+772

k=1
This implies
r 2
k|2 _ x||2 K
E“& IHSEH& o )
2 M2 P
- . )
X1 —a*[* 2 . X1 — Xo|?
<E|———F Vi - D.2.3
< m t 2 > Visse o ( )
k=1
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Now plugging (D.2.2) into (D.2.1), and adding (D.2.3), we eventually obtain

2

T K 2 y K
SRS D Visye|| + KitQ D Vi1
t—2 k=1 k=1
T K T K K 2
[ X1 —2*|? 6L} ~ 37t o -
<E|*= +D |12 Vfwfl/2 +D % [ 22 Ve = D Vi
T+1 =2 k=1 t=1 k=1 k=1
T T K 2 T
| Xt — Xiqa| 21, 5
—2‘27 ZKi ka,t+1/2 +5LZ%52HU1571/2H2
t=1 "It t=2 k=1 t=2

Next, we establish the following lemma to control the sum of some differences

Lemma F.11. Let (X;)ien and (Xyy1/2)ten be generated by (ODA) with non-increasing learning rates 1y and v, from Alt
schedule, such that ny <~y forallt € N. For all T € N, with almost sure boundedness assumptions from either Assumption
2.4 or 2.5 it holds that

T T
3 Xy — X 2
t=1 K t=1 477t

K K 2
D Vit =) Vewn| -
k=1 k=1

_ 1 1
Proof. Define t := max {s €{0,...,T}:ns > 202 } So as to ensure ¢ is always well-defined, we can set g > 202

By definition of ji; and 7z, we can deduce that pu7_o < 114L%. Now since v; < 1, we have

2

3
+ZT

K K
> Ve =Y Vian
k=1 k=1

te[T]/{t—1,t} k=1 k=1 te{i—1,0}
3 K 6 K 2 2

S SR SRR I I (58 Y >

te[T]/{t—1,t} k=1 te{t—1,t} k=1 =
< > BLAX - Xem|P+ DD 1272

te[T)/{t—1,t} te{t—1,t}
< > BLXe = Xega|P + 247

telT]/{E-1,}

t—2
= 3L%||X: — Xepa | + Z 3L2|| Xy — Xyqa||? + 242

t=1 t=t+41

T
=302+ Y BL7|| Xy — Xypa|* + 247
t=t+1

T
<432L'+ > 3L2|X; — Xypa|? + 2407
t=t+1
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1 _
Asn < 202 fort > t + 1, note that

T T T
X — X |? X —X 2
S Xl 52 =Xl 57 g - el

t=t+1 Mt t=t+1
yielding
K K T
37t 9 9 4 [ Xe — Xesa)? 2
Zﬁ > Vie =Y Vierr| <432L +ZT+24J.
t=1 k=1 k=1 t=1
A simple rearrangment of the term Zthl | X — X¢11]|?/(4n;) will give the desired expression. [ |

Finally, we can establish the bound on sum of squared norms.

Lemma F.12 (Bound on Sum of Square Norms). Let (X;):en and (Xy41/2)ten be generated by (ODA) with non-increasing
learning rates 1, and 7y, from Alt schedule, such that 1, < -y, for all t € N. Denote D* = sup ¢ || X1 — p||*. For all
T € N, we have

2
Jrz | X: 8Xt+1|| < 4E [m} 4b,

=1 Ui

Z Vitt1/2

T7
B2

where a and b are constants with the following values

a=12L? +10L + 4+ D? b= (12L* + 10L + 8)(J? + 0?) + 432L* + 24J% + D* + 2D*.

Proof. From Lemma F.10 and Lemma F.11, we have

2

T T K 9 T
Mt Mt X — Xpga|?
ZK2 Zﬁ ka,t—1/2 +287
=2 t=2 k=1 =1 UL
T 2 X P >
6L%3 A ) [
Jhst=) U D31 IUTED oL ,Zmitm
t=2 k=1 =1 1 i —
T
X =) X, — Xt+1|| 2 [|§~ - o -
e Z Z? Z kit1/2|| T Z’ytH ro1y2))? D41
t=1 —a

2
+432L0% + 2492

K A
> Viw1y2

k=1

x||2 T 2.3
<E | X1 — 2| +Z6L ;Yt
Nr+1 ~ K

2

T T
_Z [ Xt = Xpia|? Zi
t=1 8t = K’

T
+ 5LZ:%2||U7>1/2||2
=2

k=1
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R 2
Now, since y; < 1, [|U;_q2|]? < szKzl Vm_l/QH JK?, and v7_ | < 1/y/1+ A\i41, we have

2

6L}
E 2 Zth 12| + 5LZ% U1
t=2 t=2
[T K 2 K 2
6L~} ~ 5L ~
<E|> Kzt > Vie-1p2|| + % Zv,t71/2
=2 k=1 k=
[T T-1 2
6L%y7 | 5Ly} 2
<E Z( K2 T e =E Z (6L +5L) ZthH/z/K
t=2 t=1 k=1

-1 HZfﬂ Vi t+1/2/KH
< (6L*+5L)E | > A

N < (612 +5L) (2B [y M1 | +2(/2 + %)) .

In a similar manner, we can bound

2

<4E [\/E} +8(J2 + 0?).

K

Z kyt+1/2

k=1

27’]1»

t= 2

With these two inequality, we can rewrite (D.4.1) as

Z% Zth+1/2 +Z% Zth 1/2
=2

< (6L% +5L)(2E {N/AT_J F2(J2 02)) +432L% + 2407 + 4E [«/AT_J +8(J2 + 0?)

X, —X
+Z” oo

) X — a2 ZHXt X
NTr+1 =1 8n¢

- (12L2 +10L + 4)E [\/)\T,l] + (12L2 +10L + 8)(J2 + 02) + 432L% + 242

o Ve o Y1,
| T P 8¢

Note that by the initialization X3, = X1 and 2 = 71, we can further simplify the LHS of the above inequality as follows.

2

T T K 2 7 9
Vi | X — Xy ||
3 S ] 43 e Xl
- 14 t=2 k=1 =1
T K 2 7
Xt - Xt-‘rl 2
>E S Vigorye|| + S Iz Kol
t=1 k=1 t=1 81t

Now, we just have to deal with the last term of the sum. With Lemma F.4, we have

lm—x*n? ant Xep?

NT+1 p 8n¢

<E (X - 2" VT + A + 201X — 27

— D’E [M] +2D*
< DE [\/Ar—1| + D + 2D,

yielding the desired result.
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2
We now establish an useful bound for S°7 | | U(zf_l Viotr1)2 /KH ] .

Lemma F.13. With the Alt learning rate updating schedule and for T' € N, we have

T 2

Y E

t=1

= O(T'79).

K
> Visr/2/K
k=1

Proof. Fort € [T, note that

1 1 1
= s < P < =~
T+ M) /270 = (1 + 2max{0, ¢ — 2} (J2 + 02))1/2=0 = (1 + 2T (J2 + 02))1/2—d

where the second steps follows from Lemma F.1. Now plugging this bound to Lemma F.12, we obtain

£ £ [ Vo]
(1+2T(J? 4 02))1/2-d < alE {\/E} T,

where a and b are constants defined similarly to Lemma F.12. By using Lemma F.1 again to get \/A7 is of order O(v/T),
we obtain

2

T K
STE S Viiyo/El| | < (a]E [\/)\T} + b) (1+ 27 (J? + o2))L/2~4
=1 k=1
0 (\/T) (14 2T(J? + 02))1/24,
which equates to O (T" %) as desired. ]

F.4. GAP Analysis under Absolute Noise

Lemma F.14 (General Bound for GAP). Let X C R? denote a compact neighborhood of a solution for (VI). Let
D? .= SUPpex (| X1 — p||2. Suppose that the oracle and the problem (VI) satisfy Assumptions 2.1, 2.2 and 2.3. Let (X¢)ien
and (Xy11/2)ten be generated by (ODA) with non-increasing learning rates 1y and y; from Alt schedule, such that n; < -y
forallt € N. It holds

_ 1 D? D? /ur—1
E {Sup (A(p), Xis1/2 —p>:| gTIE [<6L2 +50 + 2) VAT_1 +VAr + # + (6L% 4+ 5L)(J* + ¢?)
peX

t=1

D? 302
+7 + 2(J2 +U2) + T Z ”Xt-‘rl - XtH2 .

Proof. First note that

K r, K T
1 1
sup E [Z <K Z Vi t+1/2, Xt41/2 —P>] =supE X Z <Vk,t+1/2a ZXt+1/2 —P>1
pEX |14 k=1 PEX | =1 t=1
[ X T
> EEEE e Z <Ak(p)a ZXtJrl/Z —p>1
L™ k=1 t=1
K
=supE | — Ak(p)7Xt+1 2—D
el kZ:,:< /2= D)

=TE [Sup (A(p), Xit1/2 — P>] :
peEX
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where the second inequality stems from the monotonicity of operators Ay for k € [K]. From the template inequality
(Lemma F.9) and the two facts that 7, < 1 and Zszl Vie—1/2/ K > Uy_1 /5, we deduce

K
1 _
216121[*3 §;<Vk,t+1/2axt+l/2_p>
2
X —pl2 312 LI 3L
<E ”217” e %? ZVk,t—uz +TZ%||XﬁXt—1II2
nr+1 t=2 k=1 t=2
T 0 K ?
t
JFZW 2K2 Z% Z -1/2
t=1 t=2 k=1
2
D2\/1+ Ap_1 thro 6L +5LT v
< v > Verr || D Vit
t=1 k=1
2
3L ¢ o
Z||Xt+1 Xi|? + Zng Z k,t+1/2
t=1 k=1

Now we can analyze three terms of this sum in the following three inequalities.
D2\/T4+ Ar—1 + pr—1 < D?*(1 4 \/Ar—1 + /iir-1)
2 - 2 '
From Lemma F.3 and the fact that 77, ; < 1/4/1 + A;_1, we next have

6L2 + 5L a RPETA R iy ) oren t+1/2H2
; Vi1 kz:: kt+1/2]] = SK2 2 NiE v
6L2 + 5L ZkK—l Vi t+1/2/KH2
Sz Via
< (6L%+5L) (\/K+J2+a )

where the last step stems from Lemma F.3 with s = 1,7 = 1/2. With a similar observation that , < 1/4/1 4+ A;_o, we can

similarly apply Lemma F.3 and obtain
K- 2
sz Vi, t+1/2H szzl Vk,t+1/2/KH

me sz VI M g 214Nz

Combining the above three inequalities, we obtain

T

Z 2K2

t=1

<A +2(J% +6?)

D? D?
<E KmL? +6L% 4+ 5L + 2) Ar_1+VAr+ -

K
1 _
sup E [K <Vk7t+1/2;Xt+1/2 —P>
peX k=1

D2 /ir—
H(6L2 +5L)(J2 + 02) + # +2(J% + %) + 12L2b} ,
implying
HT—1

_ D2
E [sup (A(p), Xis1/2 — p>} T [(6L2 + 5L+ ) Ar_1+ VAT + — Yy
peX

2 2 2 D2 2 2 3L2 -— 2
+(6L* +5L)(J* + o )+—2 +2(J°+o )Jr—2 E | X1 — X% -
t=1
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We will now show the convergence of Algorithm 1 with Alt learning rates under absolute noise
Theorem F.15 (Convergence under Absolute Noise with Alt learning rates). Let X C R denote a compact neighborhood
of a solution for (VI). Let D? := SUpPpex | X1 — pl|®. Let the average square root expected code-length bound £ =

Z%Zl Zj:l Ton.iv/EQ.m.;/T- Suppose that the oracle and the problem (VI) satisfy Assumptions 2.1, 2.2, 2.3, and 2.4. Let
(Xt)ten and (Xi41/2)ten be generated by (ODA) with non-increasing learning rates 1, and ~y; from Alt schedule, such that
ny < v forall t € N. It holds that

(LD + [[A(X1) 2 + 0)eq +0) D4>
s .

Proof. First we consider no compression, i.e. ¢g = 0. Note that from Lemma F.1, we have Ay and Ap_; are O(T'), so
VA7 and \/Ap_q are O(\/T) Next by note that

B [Gaps (Xenyz)] =0

D? o D2 3L2 D? 3L2 X X
R anm X7 < ( )Zmﬂ X2 < ( )Z”*”
t=1

2 8n¢

< (5+%) @[]+ -0 (o)

where the second last step holds due to Lemma F.12 with the constants a and b defined in the same above lemma, and the
last step holds from Lemma F.1. Combining these bounds with Lemma F.14, we obtain

sup E
peX

=0 (DpWT).

K

1 _

i Z (Vist1/2: Xep172 — )
k=1

Then, without compression, we have

T K
- 1 1
Z SUP Ak ), Xey1/2 — p>] < supK [Z <K Z Viett1/2) Xeg1/2 —p>
t=1 k=1

K pex T pex

D4
-o(%)

VT
Now, we consider applying layer-wise compression to this bound. Firstly, recall that the average square root expected
code-length bound is denoted as

M J"
7= 35 T
m=1j=1
With Lemma D.8, we can follow the ideas established by (Faghri et al., 2020, Theorem 4) and (Ramezani-Kebrya et al.,
2023, Theorem 3) and obtain the final computation complexity with layer-wise compression
(LD + |A(X3)[l2 + 0)éq + 0))D4>
JT .

E [Gapy (Xiy1/2)] = O (

G. GAP Analysis under Relative Noise

Next for the relative noise case, we first consider this known general bounds for any /N non-negative real-valued random
variables.

Lemma G.1. (Hsieh et al., 2022, Lemma 21) Let p,r,s € Ry such thatp > r,s € R, and (a*,. .. ,a™V) be a collection of
any N non-negative real-valued random variables. If, we have

then we obtain

ZE[( ] < Nsvr ZIE ] < Nsor.
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To obtain a better complexity, we now provide a set of improved bounds for the key quantities in the analysis.

Lemma G.2. Assume that the assumption Assumption 2.5 is satisfied, and Alt learning rate update schedule is used. Then,

foranyT' € N, we obtain
E [(1 Y )1/2+q}

E[ur] <

where a, b are defined constants in Lemma F.12

Proof. To begin with, we have from Assumption 2.5 that
2

K
Z Vk,t+1/2 =E
k=1 i
<E Z Viet+1/2
| K=
T
<E|lx% > Vk,t+1/2
=
T
<E|l% > Vs
="
T
<E|l& > Viitiy
1 k=1
T
<E X Z Vit+1/2
=
= (1 + O’R)E
k=1

where the last few steps utilize the fact that 4; = A;
we can write

(T+or)(a+b)+1
E[VI+hr] < (L+on)(a+b)+1)%
8a((1+ or)(a+b)+1)2

K K
> Viwrrz+ Y Uk
k=1 k=1

| K
e > Vi1

= Aforall 4, j € [K]. Since the learning rates -y; are non-increasing,

)1+ﬁ

+ 89,

2

2 27

T
7 Z Uk,t41/2
k=1

1 K 2
t+ 22 2 Uk
k 1

K
+ 5 LKl
=1

2

2

+O0R ||A(Xt+1/2)||2

+oRr

1 K
7 2 A(Xep1p2)
k=1

2

)

T K 2 T T 2
Mt 1 1 ’YT+2
;E K2 ;V’“’t“” "1t on ; 21+0th ZVMH/Q
T K
IR Zt:lHZk:le’,t-i-l/QH Sl Ar+1-1
l+og (1+ \p)l/2—d T 1+4og |(1+Ap)/2-d
1 ; 1 1
_ E[ 1+ A 1/2+<I} - E .
1+o0p (1+ A7) 1+or (1+ Ap)t/2-4d
1 ; 1
SRS P
“1+o0g (1+A7) 1+og
implying that

T
E[(L+A0)Y*] < (1+0r) Y E |25
t=1

46

+ 1.




Layer-wise Quantization for Quantized Optimistic Dual Averaging

By Lemma F.12, we deduce

E |(1+Ar)Y24)| <a(1+ op)E |VAr1] +b(1+0R) +1 < (1+0r)(a+b) + DE[VI+ ],

where a,b are constants defined in Lemma F.12. Now we utilize Lemma G.1 for N = 1, p = 1/2+ ¢, r = 1/2,
s=(1+og)(a+b)+1and a' =1+ \p. This implies

E [(1 n AT)l/H} <(1+or)a+b)+1)*2 E [M} < ((1+og)(a+b)+1)%.

Now combining the second inequality above and Lemma F.12, we finally get

= 1% — Xenl? s
Elur] =Y 11X = Xenl* <> tT*“ < 8a((1+or)(a+b)+1)% + 8D,
t=1 t=1 t

where a, b are defined constants in Lemma F.12. [ |

Theorem 6.2 (Algorithm 1 under Relative Noise without co-coercivity assumption). Suppose the iterates X, of Algorithm
1 are updated with learning rate schedule in (Alt) forallt = 1/2,1,...,T. Let X C R be a compact neighborhood of a
solution for (VI), €q as in Section 5.2 and D? .= SUPpe v | X1 — pl|3. Under Assumptions 2.1, 2.2, 2.3, 2.5, and 6.1, for
Algorithm 1 with learning rates (Alt):

_ OREQ + g + or)D*
E [GapX (Xt+1/2)] =0 (( < 7? ) ) .
Proof. By plugging Lemma G.2 into Lemma F.14, we have the complexity with no compression is O (D*/T') . With the
bound from Lemma D.9, we can follow the ideas established by (Faghri et al., 2020, Theorem 4) and (Ramezani-Kebrya
et al., 2023, Theorem 4) and obtain the final computation complexity with layer-wise compression

— = 4
o [GapX (Xt+1/2)} —0 <<UR5Q + 5;3 +or)D ) 7

where £g is the average variance upper bound as

M g™

= 305 Tostams

m=1 j=1
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