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Abstract

Due to the increasing popularity of Artificial Intelligence (AI), more and more
backdoor attacks are designed to mislead Deep Neural Network (DNN) predic-
tions by manipulating training samples or processes. Although backdoor attacks
have been investigated in various scenarios, they still suffer from the problems of
both low fidelity of poisoned samples and non-negligible transfer in latent space,
which make them easily identified by existing backdoor detection algorithms. To
overcome this weakness, this paper proposes a novel frequency-based backdoor
attack method named WaveAttack, which obtains high-frequency image features
through Discrete Wavelet Transform (DWT) to generate highly stealthy backdoor
triggers. By introducing an asymmetric frequency obfuscation method, our ap-
proach adds an adaptive residual to the training and inference stages to improve
the impact of triggers, thus further enhancing the effectiveness of WaveAttack.
Comprehensive experimental results show that, WaveAttack can not only achieve
higher effectiveness than state-of-the-art backdoor attack methods, but also out-
perform them in the fidelity of images (i.e., by up to 28.27% improvement in
PSNR, 1.61% improvement in SSIM, and 70.59% reduction in IS). Our code is
available at https://github.com/BililiCode/WaveAttack.

1 Introduction

Along with the prosperity of Artificial Intelligence (AI), Deep Neural Networks (DNNs) have be-
come increasingly prevalent in numerous safety-critical domains for precise perception and real-time
control, such as autonomous vehicles [1], medical diagnosis, and industrial automation [2]. How-
ever, the trustworthiness of DNNs faces significant threats due to various notorious adversarial and
backdoor attacks. Typically, adversarial attacks [3, 4] manipulate input data during the inference
stage to induce incorrect predictions by a trained DNN, while backdoor attacks [5] tamper with
training samples or processes to embed concealed triggers during training, which can be exploited
to generate malicious outputs. Although adversarial attacks on DNNs frequently appear in various
scenarios, backdoor attacks have attracted more attention because of their stealthiness and effec-
tiveness. Generally, the performance of backdoor attacks can be evaluated by the following three
objectives of an adversary: i) efficacy that refers to the effectiveness of an attack in causing the
target model to produce incorrect outputs or exhibit unintended behavior; ii) specificity that denotes
the precision of the attack in targeting a specific class; and iii) fidelity that represents the degree
to which adversarial examples or poisoned training samples are indistinguishable from their benign
counterparts [6]. Note that efficacy and specificity represent the effectiveness of backdoor attacks,
while fidelity denotes the stealthiness of backdoor attacks.
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In order to achieve higher stealthiness and effectiveness, existing backdoor attack methods (e.g. IAD
[7], WaNet [8], BppAttack [9], and FTrojan [10]) are built based on various optimizations, which
can be mainly classified into two categories. The former is the sample minimal impact method that
can optimize the size of the trigger and minimize its pixel value, making the backdoor trigger dif-
ficult to detect in training samples for the purpose of achieving the high stealthiness of a backdoor
attacker. Although these methods are promising in backdoor attacks, due to the explicit trigger in-
fluence on training samples, they cannot fully evade existing backdoor detection methods based on
training samples. The latter is the latent space obfuscation-based methods, which can be integrated
into any existing backdoor attack methods. Using asymmetric samples, these methods can obfuscate
the latent space between benign samples and poisoned samples [11]. Although these methods can
bypass latent space detection techniques, they suffer greatly from low image quality, making them
extremely difficult to apply in practice. Therefore, how to improve both the effectiveness and stealth-
iness of backdoor attacks while minimally impacting the quality of training samples is becoming a
significant challenge in the development of backdoor attacks.

According to the work in [12], wavelet transform techniques have been widely investigated in var-
ious image-processing tasks [13, 14, 15], where high-frequency features can be utilized to enhance
the generalization ability of DNNs and remain imperceptible to humans. Inspired by this finding,
this paper introduces a novel backdoor attack method named WaveAttack, which adopts Discrete
Wavelet Transform (DWT) to extract high-frequency components for highly stealthy backdoor trig-
ger generation. To improve the impact of triggers and further enhance the effectiveness of our
approach, we employ asymmetric frequency obfuscation that utilizes an asymmetric coefficient of
the trigger in the high-frequency domain during the training and inference stages. This paper makes
the following three contributions:

• We introduce a promising frequency-based backdoor trigger generation method, which can
effectively generate the backdoor residuals for the high-frequency component based on
DWT, thus ensuring the high fidelity of poisoned samples.

• We propose a novel asymmetric frequency-based obfuscation backdoor attack method to
enhance the stealthiness and effectiveness of WaveAttack, which can increase stealthiness
in latent spaces and improve the Attack Success Rate in training samples.

• We conduct comprehensive experiments on four public benchmarks to demonstrate that
WaveAttack outperforms state-of-the-art (SOTA) backdoor attack methods from the per-
spectives of both stealthiness and effectiveness.

2 Related Work

Backdoor Attack. Typically, backdoor attacks try to embed backdoors into DNNs by manipulat-
ing their input samples and training processes. In this way, adversaries can control DNN output
through concealed triggers, which results in manipulated predictions [16]. Depending on whether
the training process is manipulated, existing backdoor attacks can be categorized into two types, i.e.,
training-unmanipulated and training-manipulated attacks. Specifically, training-unmanipulated at-
tacks only inject a visible or invisible trigger into the training samples of some DNN, leading to its
recognition errors [5]. For example, Chen et al. [17] introduced a Blend attack that generates poi-
soned data by merging benign training samples with specific key visible triggers. Moreover, there
exists a large number of invisible trigger-based backdoor attack methods, such as natural reflec-
tion [18], human imperceptible noise [19], and image perturbation [10], which exploit the changes
induced by real-world physical environments. Although these training-unmanipulated attacks are
promising, due to their substantial impacts on training sample quality, most of them still can be
easily identified somehow. As an alternative, training-manipulated attacks [8, 9] assume that ad-
versaries from some malicious third party can control the key steps of the training process, thus
achieving a stealthier attack. Although the above two categories of backdoor attacks are promising,
most of them struggle with coarse-grained optimization of effectiveness and stealthiness, compli-
cating the acquisition of superior backdoor triggers. Due to the significant difference in latent space
and low poisoned sample fidelity, they cannot evade the latest backdoor detection methods.

Backdoor Defense. There are two major types of backdoor defense methods, i.e., the detection-
based defense and erasure-based defense. The detection-based defenses can be further classified into
two categories, i.e., sample-based and latent space-based detection methods. Specifically, sample-
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based detection methods can identify the differences in the distribution between poisoned samples
and benign samples [20], while latent space-based detection methods aim to find the disparity be-
tween the latent spaces of poisoned samples and benign samples [21]. Unlike the detection strategies
described above that aim to prevent the injection of backdoors into DNNs by identifying poisoned
samples during the training stages, erasure-based defenses can eradicate the backdoors from DNNs.
So far, the erasure-based defenses can be classified into three categories, i.e., poison suppression-
based, model reconstruction-based, and trigger generation-based defenses. The poison suppression-
based methods [22] utilize the differential learning speed between poisoned and benign samples
during training to mitigate the influence of backdoor triggers on DNNs. The model reconstruction-
based methods [23, 24] use a selected set of benign data to rebuild DNN models, aiming to mitigate
the impact of backdoor triggers. The trigger generation-based methods [25, 26] reverse engineer
backdoor triggers by capitalizing on the effects of backdoor attacks on training samples.

To the best of our knowledge, WaveAttack is the first attempt to generate backdoor triggers for
the high-frequency component obtained through DWT. Unlike existing backdoor attack methods,
WaveAttack first considers both the fidelity of poisoned samples and latent space obfuscation simul-
taneously. By using asymmetric frequency obfuscation, WaveAttack can not only acquire backdoor
attack effectiveness but also achieve high stealthiness regarding both image quality and latent space.

3 Our Method

In this section, we first present the preliminaries for the problem notations, threat model, and ad-
versarial goal. Then, we visualize our motivations for adding triggers to the high-frequency compo-
nents. Finally, we celebrate the attack process of our method, WaveAttack.

3.1 Preliminaries

Notations. We follow the training scheme of Adapt-Blend [11]. Let D = {(xi, yi)}Ni=1 be a clean
training dataset, where xi ∈ X = {0, 1, ..., 255}C×W×H is an image, and yi ∈ Y = {1, 2, ...,K}
is its corresponding label. Note that K represents the number of labels. For a given training dataset,
we select a subset of D with a poisoning rate pa as the payload samples Da = {(x′

i, yt)|x′
i =

T (xi),xi ∈ X}, where T (·) is a backdoor transformation function, and yt is an adversary-specified
target label. We use a subset of D with poisoning rate pr as the regularization samples Dr =
{(x′

i, yi)|x′
i = T (xi),xi ∈ X}. For a given dataset, a backdoor attack adversary tries to train a

backdoored model f that predicts x as its corresponding label, where x ∈ D ∪ Da ∪ Dr.

Threat Model. Similar to existing backdoor attack methods [7, 8, 9], we assume that adversaries
have complete control over the training datasets, and model implementation. They can embed back-
doors into the DNNs by poisoning the given training dataset. Moreover, in the inference stage, we
assume that adversaries can only query backdoored models using any samples.

Adversarial Goal. Throughout the attack process, adversaries strive to achieve two core goals,
i.e., effectiveness and stealthiness. Effectiveness indicates that adversaries try to train backdoored
models with a high ASR while ensuring that the decrease in Benign Accuracy (BA) remains im-
perceptible. Stealthiness indicates that samples with triggers have high fidelity and that there is no
latent separation between poisoned and clean samples in the latent space.

3.2 Motivation

Unlike humans who are not sensitive to high-frequency features, DNNs can effectively learn high-
frequency features of images [12], which can be used for the generation of backdoor triggers. In
other words, the poisoned samples generated by high-frequency features can easily escape various
examination methods by humans. Based on this observation, if we can design backdoor triggers
on top of high-frequency features, the stealthiness of corresponding backdoored attacks can be
ensured. To obtain high-frequency components from the training samples, we resort to Discrete
Wavelet Transform (DWT) to capture characteristics from both the time and frequency domains
[27], allowing the extraction of multiple frequency components from the training samples. The
reason why we adopt DWT rather than Discrete Cosine Transform (DCT) is that DWT can better
capture high-frequency features from training samples (i.e., edges and textures) and allows superior
reverse operations during both encoding and decoding phases, thus minimizing the impact on the
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(a) Original (b) LL with noises (c) LH with noises (d) HL with noises (e) HH with noises

Figure 1: A motivating example for the backdoor trigger design on high-frequency components.

fidelity of poisoned samples. In our approach, we adopt a classic and effective biorthogonal wavelet
transform method (i.e., Haar wavelet [28]), which mainly contains four kernel operations, i.e., LLT ,
LHT , HLT , and HHT . Here L and H denote the low and high pass filters, respectively, where
LT = 1√

2
[1 1] , HT = 1√

2
[−1 1]. Note that, based on the four operations, the Haar wavelet can

decompose an image into four frequency components (i.e., LL, LH , HL, HH) using DWT, where
HH only contains the high-frequency information of a sample. Meanwhile, the Haar wavelet can
reconstruct the image from the four frequency components via the Inverse Discrete Wavelet Trans-
form (IDWT). To verify the motivation of our approach, Figure 1 illustrates the impact of adding
the same noises to different frequency components on an image, i.e., Figure 1(a). We can find that,
compared to the other three poisoned images, i.e., Figure 1(b) to 1(d), it is much more difficult to
determine the difference between the original image and the poisoned counterpart in HH, i.e., Figure
1(e). Therefore, it is more suitable to inject triggers into the high-frequency component (i.e., HH)
for backdoor attack purposes.

3.3 Implementation of WaveAttack

In this subsection, we detail the design of our WaveAttack approach. As shown in Figure 2, we give
an overview of our attack method WaveAttack. To be concrete, we first make samples poisoned into
payload and regularization samples using our trigger design, which is implemented with frequency
transformation. Then, we use benign samples, payload samples, and regularization samples to train
a classifier to achieve the core goals of WaveAttack.
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Figure 2: Overview of our attack method WaveAttack.

Trigger Design. As mentioned
above, our WaveAttack approach
aims to achieve a stealthier backdoor
attack, introducing triggers into the
HH frequency component. Figure
2 contains the process of generating
triggers using WaveAttack. First, we
obtain the four components of the
samples through DWT. Then, to gen-
erate imperceptible sample-specific
triggers, we employ an encoder-
decoder network as a generator g.
These generated triggers are imper-
ceptible additive residuals. Next, to achieve asymmetric frequency obfuscation, we multiply the
residuals by a coefficient α, and generate the poisoned HH ′ component with the triggers as follows:

HH ′ = HH + α · g(HH;ωg), (1)

where ωg is the generator parameters. Finally, we can utilize IDWT to reconstruct four frequency
components of poisoned samples. Specifically, we use a U-Net-like [29] generator to obtain residu-
als, although other methods (e.g., VAE [30]) can also be used by the adversary. This is because the
skip connections of U-Net can effectively preserve the features of inputs with minimal impacts [29].

Optimization Objective. Our WaveAttack method has two networks to optimize. We aim to opti-
mize a generator g to generate small residuals with minimal impact on the samples. Furthermore,
our objective is to optimize a backdoored classifier c, enabling the effectiveness and stealthiness of
WaveAttack. For the first optimization objective, we use the L∞ norm to optimize small residuals.
The optimization objective is defined as follows:

Lr = ||g(HH;ωg)||∞. (2)
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For the second optimization objective, we train the classifier using the cross-entropy loss function
in D, Da, and Dr dataset. The optimization objective is defined as follows:

Lc = L(xp, yt;ωf ) + L(xr,y;ωc) + L(xb,y;ωc), (3)
where L(·) is the cross-entropy loss function, ωf is the classifier parameters, xb ∈ D,xp ∈ Da, and
xr ∈ Dr. The total loss function is as follows:

Ltotal = Lc + Lr. (4)

Algorithm 1 Training of WaveAttack
Require: i) D, benign training dataset. ii) ωg , ran-

domly initialized generator parameters. iii) ωc,
randomly initialized classifier parameters. iv) pa,
payload sample rate. v) pr , rate of regularization
samples. vii) yt, target label. vi) E, # of epochs in
training process.

Ensure: i) ωg , well-trained generator model. ii) ωĉ,
well-trained classifier model.

1: for e = 1, . . . , E do
2: for (x,y) in D do
3: b← x.shape[0]
4: nm← (pa + pr)× b
5: na← pa × b
6: nr ← pr × b
7: xm← x[:nm]
8: (LL,LH,HL,HH)←DWT (xm)
9: resdiual← α · g(HH;ωg)

10: HH ′←HH + resdiual
11: xm← IDWT (LL,LH,HL,HH ′)
12: L1←L(xm[na:],yt;ωc)
13: L2←L(xm[:nr],y[na:nr];ωc)
14: L3←L(x[nm:],y[nm:];ωc)
15: L← L1 + L2 + L3 + ||resdiual||∞
16: L.backward()
17: update(ωg,ωc)
18: end for
19: end for
20: Return ωg,ωĉ

Algorithm Description. Algorithm 1 details
the training process of our WaveAttack ap-
proach. At the beginning of WaveAttack train-
ing (Line 2), the adversary randomly selects
a minibatch data (x,y) from D, which has b
training samples. Lines 4-6 calculate the num-
ber of poisoned samples, payload samples, and
regulation samples, respectively. Lines 7-11
denote the process of modifying samples by in-
jecting triggers into the high-frequency compo-
nent. After acquiring the modified samples in
Line 7, Line 8 decomposes the samples into
four frequency components (i.e., LL, LH , HL
and HH) by DWT. Then, in Lines 9-10, we add
the residual to the frequency component HH
by Equation (1) and obtain the frequency com-
ponent HH ′. Line 11 reconstructs the samples
from the four frequency components via IDWT.
Lines 12-15 compute the optimization object
using Equations (2) to (4). In Lines 16-17, we
can use an optimizer (e.g., SGD optimizer) to
update the parameters of the generator model
and classifier model. Line 20 returns the well-
trained generator model parameters ωg and the
classifier model parameters ωĉ.

Asymmetric Frequency Obfuscation. Ac-
cording to [11], regularization samples Dr can
make DNNs learn the semantic feature of each
class and the trigger feature, which can make
the backdoor attack stealthy in the latent space. However, using the same trigger in samples during
the inference process may diminish the fidelity of poisoned samples. Hence, it is crucial to devise an
asymmetric frequency obfuscation method to enhance the effectiveness of backdoor attack methods.
In our approach, we employ a coefficient α with a small value (i.e., α=1.0) to improve the stealth-
iness of triggers during the training process, while a larger value (i.e., α=100.0) is used to enhance
the impact of triggers and further improve the effectiveness of WaveAttack. This method ensures
that, during the inference process, the backdoored samples have sufficient “power” to activate the
DNN backdoor, thus achieving a high ASR.

4 Experiments

To demonstrate the effectiveness and stealthiness of our approach, we implemented WaveAttack
using Pytorch and compared its performance with seven existing backdoor attack methods. We
conducted all experiments on a workstation with a 3.6GHz Intel i9 CPU, 32GB of memory, an
NVIDIA GeForce RTX3090 GPU, and a Ubuntu operating system. We designed comprehensive
experiments to address the following three research questions:

RQ1 (Effectiveness of WaveAttack): Can WaveAttack successfully inject backdoors into DNNs?

RQ2 (Stealthiness of WaveAttack): How stealthy are the poisoned samples generated by WaveAt-
tack compared to those generated by SOTA backdoor attack methods?

RQ3 (Resistance to Existing Defenses): Can WaveAttack resist existing defense methods?
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4.1 Experimental Settings

Datasets and DNNs. We evaluated all the attack methods on four well-known benchmark datasets,
i.e., CIFAR-10 [31], CIFAR-100 [31], GTSRB [32] and a subset of ImageNet (with the first 20
categories) [33]. The statistics of the datasets adopted in the experiments are presented in Table 6
(see Appendix 7.1). We used ResNet18 [34] as the base DNN for the effectiveness and stealthiness
evaluation. In addition, we used VGG16 [35], SENet18 [36], ResNeXt29 [37], and DenseNet121
[38] to evaluate the generalizability of WaveAttack.

Attack Configurations. To compare the performance of WaveAttack with SOTA attack methods,
we considered nine SOTA backdoor attacks, i.e., BadNets [5], Blend [17], IAD [7], WaNet [8],
BppAttack [9], Adapt-Blend [11], FTrojan [10], LIRA [39], and Fiba [40]. Note that, similar to our
work, Adapt-Blend has asymmetric triggers, and FTrojan and Fiba are also frequency domain-based
attack methods. We performed the attack methods using the default hyperparameters described in
their original papers. Specifically, the poisoning rate is set to 10% with a target label of 0 to ensure
a fair comparison. See the Appendix for more details on both data and attack settings.

Evaluation Metrics. Similar to the existing work in [10], we evaluated the effectiveness of all
attack methods using two metrics, i.e., Attack Success Rate (ASR) and Benign Accuracy (BA). To
evaluate the stealthiness of all attack methods, we used three metrics, i.e., Peak Signal-to-Noise
Ratio (PSNR) [41], Structure Similarity Index Measure (SSIM) [42], and Inception Score (IS) [43].

4.2 Effectiveness Evaluation (RQ1)

Effectiveness Comparison with SOTA Attack Methods. To evaluate the effectiveness of WaveAt-
tack, we compared the ASR and BA of WaveAttack with nine SOTA attack methods. Since IAD [7]
cannot attack the ImageNet dataset based on its open-source code, we do not provide its comparison
result. Table 1 shows the attack performance of different attack methods. From this table, we can
find that WaveAttack can acquire a high ASR without obviously degrading the BA. Especially for
the datasets CIFAR-10 and GTSRB, our WaveAttack achieves the best ASR and BA compared to
other SOTA attack methods. Compared to frequency domain-based attack methods (i.e., FTrojan and
Fiba), WaveAttack outperforms FTrojan and Fiba in BA for CIFAR-10, CIFAR-100, GTSRB, and
ImageNet datasets. Moreover, compared to the asymmetric-based method Adapt-Blend, WaveAt-
tack can also obtain superior performance in terms of ASR and BA for all datasets.

Table 1: Attack performance comparison between WaveAttack and seven SOTA attack methods. The best and
the second-best results are highlighted and underlined, respectively.

Method CIFAR-10 CIFAR-100 GTSRB ImageNet

BA ↑ ASR ↑ BA ↑ ASR ↑ BA ↑ ASR ↑ BA ↑ ASR ↑
No attack 94.59 - 75.55 - 99.00 - 87.00 -

BadNets [5] 94.36 100 74.90 100 98.97 100 85.80 100
Blend [17] 94.51 99.91 75.10 99.84 98.26 100 86.40 100

IAD [7] 94.32 99.12 75.14 99.28 99.26 98.37 - -
WaNet [8] 94.23 99.57 73.18 98.52 99.21 99.58 86.60 89.20

BppAttack [9] 94.10 100 74.68 100 98.93 99.91 85.90 99.50
Adapt-Blend [11] 94.31 71.57 74.53 81.66 98.76 60.25 86.40 90.10

FTrojan [10] 94.29 100 75.37 100 98.83 100 85.10 100
LIRA [39] 93.57 99.96 73.09 99.98 10.74 99.03 - -
Fiba [40] 93.80 75.40 74.87 80.36 99.12 85.18 - -

WaveAttack (Ours) 94.55 100 75.41 100 99.30 100 86.60 100

Table 2: Attack performance on different DNNs.

Network
No Attack WaveAttack

BA ↑ BA ↑ ASR ↑
VGG16 [35] 93.62 93.70 99.76
SENet18 [36] 94.51 94.63 100

ResNeXt29 [37] 94.79 95.08 100
DenseNet121 [38] 95.29 95.10 99.78

Effectiveness on Different Networks. To
evaluate the effectiveness of WaveAttack on
various networks, we conducted experiments
on CIFAR-10 using different networks (i.e.,
VGG16 [35], SENet18 [36], ResNeXt29 [37],
and DenseNet121 [38]). Table 2 shows the at-
tack performance of WaveAttack on these net-
works. From this table, we can find that our
WaveAttack approach can successfully embed
the backdoor into different networks. WaveAttack can not only cause malicious impacts of backdoor
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attacks, but also maintain a classification performance with high BA, demonstrating the generaliz-
ability of WaveAttack on different network architectures.

Table 3: Attack performance with different DWTs.

Wavelet Dataset IS ↓ PSNR ↑ SSIM ↑ BA ↑ ASR ↑

Haar
CIFAR-10 0.011 47.49 0.9979 94.55 100
CIFAR-100 0.005 50.12 0.9992 75.41 100

GTSRB 0.058 40.67 0.9877 99.30 100

DB
CIFAR-10 0.007 47.53 0.9989 94.77 95.60
CIFAR-100 0.005 50.32 0.9994 76.64 80.43

GTSRB 0.022 41.95 0.9881 98.21 99.50

Effectiveness of WaveAttack with
Different Discrete Wavelet Trans-
forms. Due to simplicity and com-
putational efficiency, we adopted
the most common Haar wavelet in
our wavelet transformation proce-
dure. Since different wavelets are ap-
plicable to Discrete Wavelet Trans-
form (DWT) in our method, we con-
ducted experiments to incorporate the
Daubechies (DB) wavelet, which has stronger orthogonality. Table 3 summarizes the experimental
results of WaveAttack with different wavelets. From the table, we can find that the influence of dif-
ferent wavelets on the performance of our method is limited, indicating that WaveAttack maintains
its effectiveness and stealthiness among different wavelet transformations.

4.3 Stealthiness Evaluation (RQ2)

To evaluate the stealthiness of WaveAttack, we compared the images with the triggers generated by
WaveAttack with the ones of SOTA attack methods. In addition, we used t-SNE [44] to visualize
latent spaces for poisoned samples and benign samples from the target label.

Stealthiness Results from The Perspective of Images. To show the stealthiness of triggers gen-
erated by WaveAttack, Figure 3 compares WaveAttack and SOTA attack methods using poisoned
samples and their magnified residuals (×5) counterparts. From this figure, we can see that the resid-
ual generated by WaveAttack is the smallest and only leaves a few subtle artifacts. The trigger
injected by WaveAttack is almost invisible to humans.

In
pu
t

R
es
id
ua
l

BadNets Blend IAD WaNet BppAttack FTrojan WaveAttackAdapt-Blend

Figure 3: Comparison of examples generated by seven backdoor attacks. For each attack, we show the poisoned
sample (top) and the magnified (×5) residual (bottom).

We used three metrics (i.e., PSNR, SSIM, and IS) to evaluate the stealthiness of triggers generated by
our WaveAttack. Table 4 shows the results of the stealthiness comparison between WaveAttack and
nine SOTA attack methods. From this table, we can see that WaveAttack achieves the best stealth-
iness in the CIFAR-10 and ImageNet datasets. Note that although our WaveAttack only achieves
the third-best SSIM score on the GTSRB dataset, it outperforms BadNets by up to 60.56% in PSNR
and 67.5% in IS. Similarly, although our WaveAttack achieves the second-best SSIM score on the
CIFAR-100 dataset, it is much better than LIRA in PSNR and IS.

(a) BadNets (b) Blend (c) WaNet (d) Adapt-Blend (e) FTrojan (f) WaveAttack

Figure 4: The t-SNE of feature vectors in the latent space under different attacks on CIFAR-10. We use red and
blue points to denote poisoned and benign samples, respectively, where each point in the plots corresponds to
a training sample from the target label.
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Stealthiness Results from The Perspective of Latent Space. There are so many backdoor defense
methods [45, 21] based on the assumption that there is a latent separation between poisoned and
benign samples in latent space. Therefore, ensuring the stealthiness of the attack method from the
perspective of latent space becomes necessary. We obtained feature vectors of the test result from
the feature extractor (the DNN without the last classifier layer) and used t-SNE [44] for visualiza-
tion. Figure 4 visualizes the distributions of feature representations of the poisoned samples and the
benign samples from the target label under the six attacks. From Figure 4(a) to 4(c) and 4(e), we can
observe that there are two distinct clusters, which can be used to detect poisoned samples or back-
door models [11]. However, as shown in 4(d) and 4(f), we can find that the feature representations of
poisoned samples are intermingled with those of benign samples for Adapt-Blend and WaveAttack,
i.e., there is only one cluster. Adapt-Blend and WaveAttack can achieve the best stealthiness from the
perspective of latent space and break the latent separation assumption to evade backdoor defenses.
Although Adapt-Blend exhibits a degree of stealthiness, Table 4 reveals that WaveAttack surpasses
Adapt-Blend in image quality, suggesting that WaveAttack can achieve superior stealthiness.

Table 4: Stealthiness comparison with existing attacks. Larger PSNR, SSIM, and smaller IS indicate better
performance. The best and the second-best results are highlighted and underlined, respectively.

Attack Method CIFAR-10 CIFAR-100 GTSRB ImageNet

PSNR ↑ SSIM ↑ IS ↓ PSNR ↑ SSIM ↑ IS ↓ PSNR ↑ SSIM ↑ IS ↓ PSNR ↑ SSIM ↑ IS ↓
No Attack INF 1.0000 0.000 INF 1.0000 0.000 INF 1.0000 0.000 INF 1.0000 0.000

BadNets [5] 25.77 0.9942 0.136 25.48 0.9943 0.137 25.33 0.9935 0.180 21.88 0.9678 0.025
Blend [17] 20.40 0.8181 1.823 20.37 0.8031 1.600 18.58 0.6840 2.118 13.72 0.1871 2.252

IAD [7] 24.35 0.9180 0.472 23.98 0.9138 0.490 23.84 0.9404 0.309 - - -
WaNet [8] 30.91 0.9724 0.326 31.62 0.9762 0.237 33.26 0.9659 0.170 35.18 0.9756 0.029

BppAttack [9] 27.79 0.9285 0.895 27.93 0.9207 0.779 27.79 0.8462 0.714 27.34 0.8009 0.273
Adapt-Blend [11] 25.97 0.9231 0.519 26.00 0.9133 0.495 24.14 0.8103 1.136 18.96 0.6065 1.150

FTrojan [10] 44.07 0.9976 0.019 44.09 0.9972 0.017 40.23 0.9813 0.065 35.55 0.9440 0.013
LIRA [39] 46.77 0.9979 0.019 47.77 0.9995 0.018 40.44 0.9879 0.089 - - -
Fiba [40] 26.08 0.9734 0.061 26.24 0.9688 0.055 23.41 0.9130 0.079 - - -

WaveAttack (Ours) 47.49 0.9979 0.011 50.12 0.9992 0.005 40.67 0.9877 0.058 45.60 0.9913 0.007

4.4 Resistance to Existing Defenses (RQ3)

To evaluate the robustness of WaveAttack against existing backdoor defenses, we implemented rep-
resentative backdoor defenses (i.e., GradCAM [46], STRIP [47], Fine-Pruning [23], ANP [48] and
Neural Cleanse [25]) and evaluated the resistance to them. We also show the robustness of WaveAt-
tack against Spectral Signature [45] and other frequency detection methods [49] in the appendix.
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Figure 5: STRIP normalized entropy of WaveAttack.

Resistance to STRIP. STRIP [47] is a representative sample-based defense method. When entering
a potentially poisoned sample into a model, STRIP will perturb it through a random set of clean
samples and monitor the entropy of the prediction output. If the entropy of an input sample is low,
STRIP will consider it poisoned. Figure 5 shows the entropies of benign and poisoned samples.
From this figure, we can see that the entropies of the poisoned samples are larger than those of the
benign samples, and STRIP fails to detect the poisoned samples generated by WaveAttack.

Resistance to GradCAM. As an effective visualization mechanism, GradCAM [46] has been
used to visualize intermediate feature maps of DNN, interpreting the predictions of DNN.
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Figure 6: GradCAM visualization results for both clean
and backdoored models.

Existing defense methods [50, 51] exploit
GradCAM to analyze the heatmap of input
samples. Specifically, a clean model correctly
predicts the class label, whereas a backdoored
model predicts the target label. Based on this
phenomenon, the backdoored model can induce
an abnormal GradCAM heatmap compared to
the clean model. If the heatmaps of poisoned
samples are similar to those of benign sam-
ple counterparts, the attack method is robust
and can withstand defense methods based on
GradCAM. Figure 6 shows the visualization
heatmaps of a clean model and a backdoored
model attacked by WaveAttack. Please note
that here “clean” denotes a clean model trained
using benign training datasets. From this figure,
we can find that the heatmaps of these models
are similar and that WaveAttack can resist defense methods based on GradCAM.

Resistance to Fine-Pruning. As a representative model reconstruction defense method, Fine-
Pruning (FP) [23] is based on the assumption that the backdoor can activate a few dormant neurons
in DNNs. Therefore, pruning these dormant neurons can eliminate the backdoors in DNNs. To
evaluate the resistance to FP, we gradually pruned the neurons of the last convolutional and fully
connected layers. Figure 7 shows the performance comparison between WaveAttack and seven
SOTA attack methods on CIFAR-10 by resisting FP. We find that along with more neurons being
pruned, WaveAttack can acquire superior performance than other SOTA attack methods in terms
of both ASR and BA. In other words, Fine-Pruning cannot eliminate the backdoor generated by
WaveAttack. Note that, though the ASR and BA of WaveAttack are similar to those of Adapt-Blend
at the final stage of pruning, the initial ASR (i.e., 71.57%) of Adapt-Blend is much lower than that
(i.e., 100%) of WaveAttack.
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Figure 7: ASR comparison against Fine-Pruning.
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Figure 8: Attack performance comparison against ANP.

Resistance to ANP. Figure 8 compares the attack performance between WaveAttack and SOTA
attack methods on the dataset CIFAR-10 against the defense method, i.e., ANP [48], where we
use the threshold to denote the pruning rate of neurons. We find that as more neurons are pruned,
WaveAttack consistently outperforms the other SOTA attack methods in ASR and BA.

Figure 9: Defense performance against NC.

Resistance to Neural Cleanse. As a repre-
sentative defense method for trigger generation,
Neural Cleanse (NC) [25] assumes that the trig-
ger designed by the adversary is small. Initially,
NC optimizes a trigger pattern for each class
label via an optimization process. Then, NC
uses the Anomaly Index (i.e., Median Abso-
lute Deviation [52]) to detect whether a DNN is
backdoored. Similar to the work [25], we think
the DNN is backdoored if the anomaly index
is larger than 2. To evaluate the resistance to
NC, we conducted experiments to evaluate our
WaveAttack approach by resisting NC. Figure 9 shows the defense results against NC. Please note
that here, “clean” denotes clean models trained by using benign training datasets, and “backdoored”
denotes backdoored models by WaveAttack that are from the Subsection 4.2. From this figure, we
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can see that the abnormal index of WaveAttack is smaller than 2 for all datasets, and WaveAttack
can bypass NC detection.

Resistance to Different Frequency Filtering Methods. From Table 10, we find that WaveAttack
outperforms FTrojan in both BA and ASR under two frequency filtering methods. This is mainly be-
cause FTrojan only swaps the values of two random pixels of the samples after DCT transformation,
while the quality (i.e., PSNR, SSIM, and IS) of training samples after attacks is neglected.

Figure 10: Performance comparison considering different frequency filtering methods.

Dataset CIFAR-10 CIFAR-100

Methods FTtrojan WaveAttack FTtrojan WaveAttack

Metrics BA ↑ ASR ↑ BA ↑ ASR ↑ BA ↑ ASR ↑ BA ↑ ASR ↑
Gaussian 69.41 10.07 72.94 16.72 44.65 3.28 47.61 7.92

Wiener 66.59 12.13 69.58 77.08 41.90 6.42 42.19 76.00

Resistance to Frequency Detection Methods. Table 5 compares performance between different
attack methods against the same defense method, i.e., the frequency detection method [49]. From
this table, we can find that our method achieves a lower BDR than FTrojan, BppAttack, IAD, Bad-
Nets, and Blend. Note that, as studied in the experiment section, WaNet, and Adapt-Blend can be
more easily detected by the latent space-based and sample-based detection methods, respectively.

Table 5: Backdoor Detection Rate (BDR) comparison against the frequency detection method.

Method BadNets Blend IAD WaNet BppAttack Adapt-Blend FTrojan WaveAttack

BDR (%) 100 97.91 96.18 0.12 96.32 1.25 78.11 5.71

Resistance to Spectral Signature Spectral Signature [45] is a representative latent space-based
detection defense method. Given a set of benign and poisoned samples, Spectral Signature first
collects their latent features and computes the top singular value of the covariance matrix. Then,
for each sample, the correlation score is calculated between its features and the top singular value
used as the outlier score. If the samples have high outlier scores, they will be evaluated as poisoned.
We randomly selected 9000 benign samples and 1000 poisoned samples. Figure 11 shows the his-
tograms of the correlations between latent features of the samples and the top right singular vector
of the covariance matrix. From this figure, we can find that the histograms of the poisoned data are
similar to those of the benign data. Therefore, Spectral Signature fails to detect the poisoned data
generated by WaveAttack.
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Figure 11: The correlation with top right singular vector on different datasets.

5 Conclusion

Although backdoor attacks on DNNs have attracted increasing attention from adversaries, few of
them simultaneously consider both the fidelity of poisoned samples and latent space to enhance
the stealthiness of their attack methods. To establish an effective and stealthy backdoor attack
against various backdoor detection techniques, this paper proposed a novel frequency-based method
called WaveAttack, which employs DWT to extract high-frequency features from samples to gener-
ate stealthier backdoor triggers. Furthermore, we introduced an asymmetric frequency obfuscation
method to improve the impact of triggers and further enhance the effectiveness of WaveAttack. Com-
prehensive experimental results show that, compared with various SOTA backdoor attack methods,
WaveAttack not only can achieve higher stealthiness and effectiveness but also can minimize the
impact of image quality on well-known datasets.
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7 Appendix

7.1 Implementation Details for Experiments

Settings of Datasets. Table 6 presents the setting of datasets used in our experiments.

Table 6: Datasets Settings.

Dataset Input Size Classes Training Images Test Images

CIFAR-10 3×32×32 10 50000 10000
CIFAR-100 3×32×32 100 50000 10000

GTSRB 3×32×32 43 26640 12569
ImageNet subset 3×224× 224 20 26000 1000

Settings of Attacks. For a fair comparison, the settings of WaveAttack are consistent with those
of the other seven SOTA attack methods. We used the SGD optimizer for training a classifier with a
learning rate of 0.01, and the Adam optimizer for training a generator with a learning rate of 0.001.
We decreased this learning rate by a factor of 10 after every 100 epochs. We considered various
data augmentations, i.e., random crop and random horizontal flipping. For BadNets, we used a grid
trigger placed in the bottom right corner of the image. For Blend, we applied a “Hello Kitty” trigger
on CIFAR-10, CIFAR-100, and GTSRB datasets and used random noises on the ImageNet dataset.
For other attack methods, we used the default settings in their respective papers.

7.2 Broader Impacts and Limitations

Broader Impacts. In this work, we introduce a new effective and stealthy backdoor attack method
named WaveAttack, which can stealthily compromise security-critical systems. If used improperly,
the proposed attack method may pose a security risk to the existing DNN applications. Nevertheless,
we hope that by emphasizing the potential harm of this malicious threat model, our work will stim-
ulate the development of stronger defenses and promote greater attention from experts in the field.
As a result, this knowledge promotes the creation of more secure and dependable DNN models and
robust defensive measures.

We would like to emphasize that our paper mainly focuses on introducing and evaluating the attack
method. This paper aims to develop more powerful detection and defence mechanisms against such
advanced backdoor attacks by proposing more advanced backdoor attack methods and addressing
the weaknesses of state-of-the-art defence methods in future works.

Limitations. Although our work shows exciting results for backdoor attacks, it requires more com-
puting resources and runtime overhead than most existing backdoor attack methods due to the ne-
cessity of training a generator g to generate residuals of the various high-frequency components.
Moreover, we do not consider a threat model, in which the adversary can only control the training
dataset. In this threat model, we used our pre-trained generator to modify some benign samples in
the training dataset. However, this limitation also appears in [11]. In the future, we plan to explore
more effective and stealthy backdoor attack methods under this threat model.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]
” provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The answer to this question can be found in the abstract and the experiments
in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitation can be found in the appendix of this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This answer can be found in the experimental results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We upload all the code to GitHub and put it in an appendix file so that the
reader can reproduce the results of this paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload all the code to GitHub and put it in an appendix file so that the
reader can reproduce the results of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This answer can be found in the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The answer can be found in the appendix of this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The answer can be found in the appendix of this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The answer can be found in the appendix of this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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