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Multimodal Inplace Prompt Tuning for Open-set Object Detection
Anonymous Authors

ABSTRACT
The integration of large language models into open-world detection
frameworks significantly improves versatility in new environments.
Prompt representations derived from these models help establish
classification boundaries for both base and novel categories within
open-world detectors. However, we are the first to discover that
directly fine-tuning language models in detection systems results
in redundant attention patterns and leads to suboptimal prompt
representations. In order to fully leverage the capabilities of large
language models and augment prompt encoding for detection, this
study introduces a redundancy assessment metric to identify uni-
form attention patterns. Furthermore, in areas with high redun-
dancy, we incorporate multimodal inplace prompt tuning (MIPT)
to enrich the text prompt with visual clues. Experimental results
validate the efficacy of our MIPT framework, achieving a notable
increase across benchmarks, e.g. elevating GLIP-L from 22.6% to
25.0% on ODinW-35, and 9.0% improvement on LVIS.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
Open world detection, parameter efficient, multimodal learning

1 INTRODUCTION
Detection systems with large language models mark pivotal ad-
vancements in the open world [55]. As text prompts and visual
regions are aligned through contrastive learning [17], new visual
regions can be distinguished between classification edges shaped by
linguistic world knowledge. This multimodal perception approach
decouples the understanding of world knowledge from the only per-
spective of vision (e.g., traditional single-modal detection [10, 45]),
facilitating the development of detection systems towards greater
scale and enhanced capabilities.

Recent studies use two different methods to overcome the closed-
vocabulary limitations. First, using fixed semantic representations
from the frozen languagemodel canmake full use of the smoothness
of the text space for categorizing objects [1, 44, 64]. The classifica-
tion edge brought by the plain-text-pretrained large languagemodel
[4, 37], shows advances in the visual field. While innovative, such
methods still have limitations in alignment for detection problems
of long-tail and fine-grained categories. This is because alignment
can only be unilaterally conducted from the visual backbone, but
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the classification boundaries of the text still lack visual discrimi-
nativeness. Transitioning from frozen to tunable language models
can offer higher flexibility. Finetuning allows the language model
to adapt its pretrained representations to the specific visual domain
[8, 61, 69]. Through closer alignment between text prompts and
visual regions, language world knowledge recalibrated by visual
contrast can lead to better prompt representation, thus providing
more precise classification boundaries. Despite the pivotal role of
language models, the nuances of how these models learn and adapt
within such multimodal frameworks have been largely overlooked.

Initially, language models were designed to understand and gen-
erate contextualized texts. When integrated into detection systems
[25, 34], text embeddings provide a novel view to define visual
classification boundaries. Recent fully-finetuned detection mod-
els [25, 34, 67] concatenate categories into a template and finetune
the language model to obtain the prompt representation of the
textual template. However, our research reveals a degradation in
the efficiency of the attention mechanisms for language models
when directly fully-finetuned, as shown in the Section 4.2.3. This
redundancy can result in model’s inability to effectively encode
the categories for rich semantics. Thus in turn, falls to detect such
fine-grained or long-tail categories, as shown in the left column
of Figure 1. Meanwhile, continuing full-scale fine-tuning on such
categories would require substantial training costs. As depicted in
the Figure 1, comparing to the full-finetuning (e.g GLIP-T [25] with
more than 200 million parameters trainable), we aim to propose
an efficient method that utilizes a small number of trainable pa-
rameters to improve the detection effectiveness for long-tail and
fine-grained categories.

To this end, given the language model adaptation for detection
that have been previously overlooked, we introduce a novel Multi-
modal Inplace Prompt Tuning Framework (MIPT) for open-set ob-
ject detection. As shown in the right column of Figure 1, our MIPT is
for the first time designed to identify redundancy within the weight
distribution of the language model, and enrich the textual represen-
tation through a light-weight integration of visual exemplars. Con-
sequently, text priors imbued with world knowledge are effectively
augmented with visual cues, resulting in an enhanced classification
boundary. Specifically, we introduce a Jensen-Shannon Redundancy
evaluation to detect redundancy by assessing the variance of at-
tention patterns intra- and inter-heads within transformer layers.
Upon identifying redundant patterns, we apply multimodal inplace
prompt tuning in these layers to refine textual prompts using visual
cues, thereby augmenting the semantic depth of text encodings
and improving model learning efficacy. Inplace tuning is achieved
by performing parameter-efficient fine-tuning [15] for language
models, thereby allowing it to reparameterizing internal encoding
patterns without changing the original model structure. Further-
more, we develop cross-modal self-distillation to refine multimodal
alignment between visual features and the augmented textual fea-
tures in the fusion layers. Our experimental outcomes on GLIP-T,
GLIP-L, and G-DINO-T showcase the remarkable efficacy of the
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Figure 1: A comparison of the baseline detector and our refined MIPT Framework. (a) Fully pretrained large detection models,
such as GLIP, experience degradation in the language model, which makes encoding rich semantics for downstream categories
challenging (especially failing to detect the fine-grained categories, such as various breeds of cats.). Resolving this issue through
full parameter fine-tuning would entail substantial costs. (b) By diagnosing the redundant parts of the pretrained language
model within the detector, we introduce visual clues into these redundant layers and employ inplace tuning with minimal
parameters. This enhances text encoding and achieves precise fine-tuning with few samples for downstream tasks.

MIPT framework, yielding substantial performance enhancements.
Notably, GLIP-L (MIPT) demonstrates an impressive average preci-
sion improvement of 9.0% on the LVIS Val v1.0, reaching 25.0% on
the ODinW-35, thus affirming our approach’s capability to signifi-
cantly elevate detection accuracy across diverse datasets.

Our contributions can be summarized as:
(1) We are the first to identify redundancy in attention distribu-

tion when integrating large language models into detection
frameworks, which emphasizing the need for novel meth-
ods to improve fine-tuning and maximize their detection
capabilities.

(2) We introduce the Jensen-Shannon Redundancy metric to
efficiently evaluate and pinpoint attention pattern redun-
dancies in language models during fine-tuning for detection
tasks, enhancing optimization across transformer heads in
multimodal settings.

(3) We propose Multimodal Inplace Prompt Tuning, a novel ap-
proach that recalibrates prompt representations using visual
cues for language models. This adjustment is achieved with-
out altering the original model structure, thus maintaining
the integrity and generalizability of the model while signifi-
cantly improving its performance in detection tasks.

2 RELATEDWORK
2.1 Open-set Object Detection
The domain of open-set object detection has rapidly evolved with
the integration of large language models and multimodal learn-
ing frameworks [19, 30, 54, 57, 58, 60, 66, 71, 73–76]. MDETR [17]
introduces a model that aligns text phrases with visual regions

using a DETR-like architecture. This method improves object de-
tection by using textual queries to guide the detection, resulting
in a more versatile understanding of visual content. GenerateU
[31], which aims to identify and name objects within images with-
out relying on predefined categories, thus extending beyond the
limitations of traditional object detection methods. Works such
as GLIP [25] and Grounding DINO [34] have demonstrated the
potential of grounding object detection in language, formulating
detection as a problem of language grounding to learn instance-
level visual representations with deep language-aware fusion. APE
[48] combines detection and grounding into a unified model that
can handle diverse tasks simultaneously. While previous work has
significantly advanced open-set object detection, training large-
scale multimodal detection frameworks still requires substantial
computational power and data. Therefore, efficiently fine-tuning
existing detection frameworks to better adapt to new downstream
data presents a cost-effective solution. In this paper, we introduce
multimodal inplace prompt tuning. This approach involves freez-
ing the original model and fine-tuning a small number of added
parameters to enhance detection performance for better adaptation.

2.2 Parameter-efficient Fine-tuning
By freezing most of the pretrained parameters and only updating a
subset, models can achieve improved performance on downstream
tasks [2, 3, 9, 18, 20, 29, 40, 49, 70, 72]. Adapter Tuning [14] have
paved the way for more nuanced and efficient adaptation strategies
with customized adapters. Since large language models are sensi-
tive to prompt, Prefix-Tuning [27] and P-Tuning [35, 36] enable
fine-tuning of models in a more efficient manner, focusing on the
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 2: An illustration of our proposed methods. To analyze the redundancy in the language model within the detector and
precisely identify which parameters need fine-tuning, we consider both the variance within the attention distribution of the
attention heads and between heads, based on the JSR. This approach helps to assess the level of redundancy in an attention layer.
Then, by ranking the degrees of redundancy, we can accurately pinpoint the locations that require fine-tuning. After adding a
small number of trainable parameters through LoRA in the language model, we concatenate pre-selected visual exemplars with
the original category prompt as input. This allows the original language model to learn to refine the classification boundaries
through visual exemplars via the MIPT approach.

adaptation of prompt rather than the parameters within the model.
The existing methods for adapting large language models, such as
adapters, often result in unwanted side effects like inference latency,
and the optimization of prompt tuning can be particularly chal-
lenging. LoRA [15] employs a low-rank decomposition approach
to simulate parameter changes, where the updated weights of the
trained low-rank matrices are simply added together to complete
the update process. However, the wide variety of above methods
and tasks makes choosing the appropriate one a challenge. UniPELT
[41] further incorporates various methods into the transformer ar-
chitecture. However, the fine-tuning methods mentioned above
primarily involve adjustments from unimodality and do not con-
cern the learning for multimodal data. To this end, our work aim to
aggregate the multimodal information by tuning the text prompt
with visual clues through low-rank adaptation.

2.3 Multimodal FrameworkWith Visual Prompt
As model sizes increase, especially with large language models, a
single set of weights is sufficient to tackle tasks across multiple
modalities [5, 6, 12, 28, 33, 43, 51–53, 62, 63, 65, 68]. Inspired by
this, MQ-Det [59] proposes modulated pre-training, enabling the
detection models to utilize both textual and visual queries without
extensive re-training. DINOv [22] delves deeper into visual in-
context prompting for open-set segmentation, enabling the model
to utilize provided bounding boxes and points as visual prompts. T-
Rex2 [16] further addresses the challenge of long-tail categories in
open-set detection through the use of visual in-context instructions.

Constructing detection boundaries for open-set detection often
requires the assistance of large language models, but few work has
been done to examine whether changes in these language model are
adequately adapted to visual tasks. Our approach investigates the
redundancy issue of language models in a multimodal framework.
It utilizes visual clues to address the suboptimal encoding of text
prompts caused by this redundancy.

3 METHOD
Training large-scale detection models from scratch incurs consider-
able computational and data costs [17, 33, 60]. Although previous
studies have sought efficient strategies to enhance performance
within existing detection frameworks [59, 67], there has been scant
research on the suitability of language model modifications for
detection tasks. As illustrated in the half bottom of Figure 2, our
methods start by evaluating the positions of redundancy within
the language model using Jensen-Shannon Redundancy (Sec. 3.2).
Then, at the redundant positions, we introduce information from
the visual counterpart by multimodal inplace prompt tuning(Sec.
3.3). Furthermore, we can use the features of visual regions and text
embeddings after fusion module for further cross-modal distillation
and alignment.(Sec. 3.4).

3.1 Preliminary
Our methods mainly based on the grounding paradigm detection
framework [25, 34]. As illustrated on the top of Figure 2, images are
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first encoded into visual tokens by a visual encoder (e.g. Swin Trans-
former [38], ViT [7]). Meanwhile, the text of the categories (e.g.
cat-Abyssinian. cat-Bengal. cat-Persian...), linked together by peri-
ods ".", forms the prompt for detection (e.g. prompt: [cat-Abyssinian.
cat-Bengal. cat-Persian]). Similar to image encoding, this prompt
is fed into the language model (e.g. BERT [4], RoBERTa [37]) and
encoded into text tokens. After implementing separate encodings
for different modalities, deep fusion of visual and text features is
essential for learning a high-performance phrase grounding model
[23, 24, 26, 39, 50]. Through the modal fusion module, a deep in-
tegration between the image and language embeddings occurs,
merging multimodal information in the final layers of encoding.
By utilizing region-word alignment with contrastive learning, posi-
tive sample pairs of the same category are brought closer together,
while negative ones are pushed further apart. Finally, the model
learns how to perform classification and bounding box regression
in detection head from a large amount of region-text pairs.

Examining the entire pipeline of open-set multimodal detection,
large language models play vital role within it. World knowledge
pre-trained in large language models aids in constructing effective
classification boundaries. Via full-scale training, although it enables
large language models with world knowledge to better align with
detection tasks, it can lead to degradation of attention patterns. If
used directly in downstream task inference, it might not perform
well, especially for long-tail and fine-grained categories. Continu-
ing to resolve this issue through full-model training would further
consume substantial training resources. MQ-Det [59] is the first to
integrate visual queries into an established language-only query
detector. However, MQ-Det introduces visual information into text
encoding through a cascaded attention module, then empirically
determines the optimal placement of this new module within the
language model. This hinders the effective utilization of added
parameters and the cost of model inference. Our study addresses
redundancy in language model detectors by using metrics to effi-
ciently introduce learnable parameters and improve performance
through inplace prompt tuning without raising costs.

3.2 Jensen-Shannon Redundancy (JSR)
We first introduce the Jensen-Shannon Redundancy (JSR). This
novel approach aims to identify redundancy within the attention
mechanisms of large language models. JSR applies the Jensen-
Shannon divergence to evaluate and minimize redundancy within
the attention mechanisms of large language models. This method
quantifies divergence in attention distribution both within individ-
ual transformer heads (intra-head redundancy) and across different
heads (inter-head redundancy). By pinpointing where attention
patterns are overly uniform or duplicated, it identifies the most
redundant parts of the model.

3.2.1 Intra-head Redundancy. Intra-head Redundancy is calculated
to measure the redundancy of attention distributions within each
individual head of a transformer layer. Given a head ℎ with token
length 𝐿, let 𝐷𝑖,ℎ represent the attention distribution for the 𝑖-
th token, corresponding to the sequence positions. The average
attention distribution �̄�ℎ for head ℎ is computed as the mean of

the attention distributions across all token positions:

�̄�ℎ =
1
𝐿

𝐿∑︁
𝑖=1

𝐷𝑖,ℎ . (1)

Subsequently, the Jensen-Shannon divergence 𝐽𝑆 (𝐷𝑖,ℎ | |�̄�ℎ) is cal-
culated for each token distribution 𝐷𝑖,ℎ relative to the average
distribution �̄�ℎ . The intra-head redundancy 𝑈intra,ℎ for head ℎ is
then defined as the mean Jensen-Shannon divergence across all
tokens, which is:

𝑈intra,ℎ =
1
𝐿

𝐿∑︁
𝑖=1

𝐽𝑆 (𝐷𝑖,ℎ | |�̄�ℎ) . (2)

3.2.2 Inter-head Redundancy. Inter-head Redundancy evaluates
the consistency of attention distributions across the different heads
within the same layer. For each token position 𝑖 , the average atten-
tion distribution �̄�𝑖 across all heads 𝐻 , is calculated as:

�̄�𝑖 =
1
𝐻

𝐻∑︁
ℎ=1

𝐷𝑖,ℎ . (3)

The Jensen-Shannon divergence 𝐽𝑆 (𝐷𝑖,ℎ | |�̄�𝑖 ) is then computed for
the distribution of each head ℎ compared with the average distribu-
tion �̄�𝑖 . The inter-head uniformity𝑈inter for the layer is determined
by averaging these divergences across all token positions, yielding:

𝑈inter =
1
𝐿

𝐿∑︁
𝑖=1

1
𝐻

𝐻∑︁
ℎ=1

𝐽𝑆 (𝐷𝑖,ℎ | |�̄�𝑖 ). (4)

The final metric for assessing the importance of a layer, 𝐼layer, is
computed as a sum of the weighted intra-head uniformity for all
heads and the inter-head uniformity, adjusted by a hyperparameter
𝜆 to ensure both components contribute on a comparable scale:

𝑅layer = 𝜆 ·
𝐻∑︁
ℎ=1

𝑈intra,ℎ +𝑈inter, (5)

where 𝜆 is selected to balance the contributions of intra-head and
inter-head redundancy, facilitating a comprehensive assessment of
the significance of each layer within the language model.

By employing the JSR, we effectively pinpoint superfluous at-
tention patterns and determine the optimal subset of parameters
for fine-tuning. This strategy not only reduces the computational
overhead but also ensures that performance enhancements are sub-
stantial by strategically targeting areas of the model that contribute
the least to information diversity. Further details will be elaborated
in the experimental section.

3.3 Multimodal Inplace Prompt Tuning (MIPT)
Building upon our proposed Jensen-Shannon Redundancy metric,
the next stage of model refinement is implemented through Mul-
timodal Inplace Prompt Tuning. This process aims to enrich the
model’s text prompts with visual context, thereby addressing the
challenge of redundant attention patterns and enhancing prompt
representations inplace for improved object detection in open-world
scenarios.
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Algorithm 1: PyTorch-style Pseudocode for MIPT
(1) # Initialization of MIPTSelfAttention

(2) class MIPTSelfAttention(BertSelfAttention):

(3) def __init__(self, config):

(4) super().__init__(config)

(5) self.register_parameter("vision_gate", nn.Parameter(torch.zeros(1)))

(6) self.Q.add_lora()

(7) self.V.add_lora()

(8) # Forward pass with text and vision inputs

(9) def forward(self, text, vision, text_attention_mask, vision_attention_mask):

(10) # The total number of visual exemplars in the vision clues bank

(11) vision = self.project_and_norm(vision)

(12) num_vision = vision_attention_mask.shape[-1]

(13) hidden_states = torch.cat((vision, text), dim=1)

(14) # QKV operations

(15) query_layer, key_layer, value_layer = self.QKV(hidden_states)

(16) attention_scores = calc_attention_score(query_layer, key_layer)

(17) # Separate visual and textual information

(18) vision_value_layer = value_layer[:, :, :num_vision, :]

(19) text_value_layer = value_layer[:, :, num_vision:, :]

(20) vision_attention_scores = attention_scores[:, :, num_vision:, :num_vision]

(21) text_attention_scores = attention_scores[:, :, num_vision:, num_vision:]

(22) # Calculate context layer by weighting value layer

(23) text_context_layer = calc_context(text_attention_scores, text_attention_mask, text_value_layer)

(24) vision_context_layer = calc_context(vision_attention_scores, vision_attention_mask,
vision_value_layer)

(25) # Modal merge using vision gate

(26) context_layer = torch.tanh(self.vision_gate) * vision_context_layer + text_context_layer

(27) # Reshape and return output

(28) outputs = (context_layer, text_attention_scores) if output_attentions else (context_layer,)

(29) return outputs

3.3.1 Vision Clues Preparation. FollowingMQ-Det [59], we expand
the coordinates of all bounding boxes by a factor of 1.5, allowing
us to capture the contextual backdrop of each target object. Subse-
quently, the raw images are processed through a visual encoder and
a FPN [32] to extract multi-scale feature representations. ROI Align
[46] is then employed to project the expanded bounding boxes
onto the corresponding feature scale, extracting the target features
from the feature map. These extracted object features are cataloged,
forming a comprehensive visual clue bank that serves as a reservoir
of candidates for subsequent utilization in our MIPT framework.

3.3.2 Inplace Prompt Tuning via Visual Clues. Leveraging JSR, next
step begins with a thorough evaluation of redundancy across var-
ious layers of the language model. This assessment facilitates an
ordered layer selection based on the degree of redundancy, identi-
fying those that are most amendable to enhancement, as shown in
Figure 4. Subsequently, we freeze the attention parameters of the
original redundant layers. As shown in the line 6 and 7 of the Algo-
rithm 1, a LoRA[15] bypass is then integrated into the query and
value linear layers of the attention mechanism. The mathematical

expression is as follows:

𝑊 =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (6)

In equation 6,W0 represents the frozen pretrained weight matrix of
the model. B and A are the trainable rank decomposition matrices,
specifically introduced during the adaptation process. x denotes
the input to the weight matrix. By refining the model in this fash-
ion, we facilitate the language model’s ability to construct nuanced
classification boundaries enriched with visual context. This not
only streamlines the integration process but also preserves compu-
tational efficiency, as the core structural elements of the language
model are left unaltered, thereby avoiding the need for additional
inference modules.

The core of Multimodal Inplace Prompt Tuning lies in the fusion
of self-attention results (context layers) derived from both visual
and textual streams. This fusion is guided by the learnable vision
gate 𝛾 , initialized in the line 5 of the Algorithm 1, which modulates
the influence of visual information on the merged attention result
(context layer).

During the forward pass, the process starts by projecting and nor-
malizing visual inputs. Visual counterparts are first passed through
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Figure 3: An illustration of Cross modal Self-distillation. Af-
ter the transformation through the fusion block, the image
features and text features are further enhanced in terms
of relevant information within each modality, while irrele-
vant information is diminished. Through Cross modal Self-
distillation, the LoRA module is adjusted to allow the fusion
block to learn to finely discern areas of high relevance in the
target images based on the detached text features.

a linear transformation and normalization process. Specifically,
given a set of visual embeddings, we apply a linear transformation
to match the dimensionality of the text embeddings. This trans-
formed visual information is then normalized to ensure stability
and consistency in the scale of features, as shown in the line 11.
The process is followed by concatenating these visual features with
textual inputs to create a unified feature set, as shown in line 13.
The purpose of this is to keep the computational process of the
original text encoding unchanged. This combined feature set is
then processed through a modified attention mechanism, first by
performing Query, Key, Value (QKV) operations, as shown in line
15, and then by calculating attention scores to establish relevan-
cies across the concatenated multimodal data, as shown in line
16. Distinctly, this method separates visual and textual features, as
illustrated from the line 18 to line 21 in the Algorithm 1, computes
attention results for each modality by applying their respective
attention scores. The textual self-attention results (𝐶𝑇 ), as shown
in the line 23, is obtained directly from the textual stream’s atten-
tion mechanism, without further modification. This preserves the
integrity and richness of textual information, serving as a robust
foundation for subsequent fusion. Meanwhile, to obtain the visual
self-attention results (𝐶𝑉 ), the attention of the text token will be
calculated to assign the weight of several visual examples of the
same class, thus weighting these visual examples to obtain a visual
counterpart 𝐶𝑉 optimized for this text token, as shown in line 24.

A pivotal aspect of this method is inplace tuning for the visual
self-attention results using the shared attention from the text, which
is achieved through the application of Low-Rank Adaptation [15]
to fine-tune the existing attention weights. The modal merge oper-
ation, as shown in line 26, computes the final modal-merged results
𝐶 by combining both modalities:

𝐶 = tanh(𝛾) ·𝐶𝑉 +𝐶𝑇 (7)

This equation illustrates how the model dynamically adjusts the
contribution of visual information, ensuring that the final attention
result leverages complementary cues from both modalities. The

addition of 𝐶𝑇 directly, without scaling, ensures that textual infor-
mation retains its foundational role, while tanh(𝛾) ·𝐶𝑉 introduces
a modulated visual perspective.

3.4 Cross modal Self-distillation (CMSD)
Continuing with MIPT, we further delve into the Cross modal Self-
distillation method. Take the fusion module of GLIP for example,
which contains three submodules:

𝐼 𝑖𝑖2𝑡 ,𝑇
𝑖
𝑖2𝑡 = CrossAttn(𝐼 𝑖 ,𝑇 𝑖 ), 𝑖 ∈ {0, 1, . . . , 𝐿 − 1} (8)

𝐼 𝑖+1 = ImageEncoderLayer(𝐼 𝑖 + 𝐼 𝑖𝑖2𝑡 ), (9)

𝑇 𝑖+1 = TextEncoderLayer(𝑇 𝑖 +𝑇 𝑖
𝑖2𝑡 ), (10)

where 𝐿 is the number of fusion block, 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛 denotes the fu-
sion operation for text and image. 𝐼𝑚𝑎𝑔𝑒𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐿𝑎𝑦𝑒𝑟 takes the
image features 𝐼 𝑖 and image features reconstructed from text 𝐼 𝑖

𝑡2𝑖 as
inputs. In a similar way, 𝑇𝑒𝑥𝑡𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐿𝑎𝑦𝑒𝑟 takes the text features
𝑇 𝑖 and text features reconstructed from image𝑇 𝑖

𝑖2𝑡 as inputs. CMSD
uses the output from 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛 as input for the cosine similarity
loss, with the goal of further aligning the semantic gap between
image regions and category prompts. Concretely, as depicted in
Figure 3, firstly, text tokens and corresponding target image un-
dergo 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛 fusion, where their features are combined. After
fusion, the text features are detached from the computation graph
to serve as targets, and then, based on the cosine distance, the gap
between the image features and the text features is narrowed. We
freeze the original parameters of𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛 in the fusion block and
then introduce a trainable LoRA module to encourage 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛
to better distill cross-modal knowledge. This optimizes the con-
gruence between the text token and corresponding ground truth
region. This is mathematically expressed as:

Align =
1

𝑁num_gt

𝑁num_gt∑︁
𝑖=1

(
1 − CosSim(𝐼 𝑖+1,𝑇 𝑖+1)

)
(11)

In this formula, 𝑁num_gt denotes the number of ground truth re-
gions in the image, 𝐼 𝑖+1 symbolizes the pooled visual features, and
𝑇 𝑖+1 represents the targeted text embeddings. The Cross modal
Self-distillation seeks to minimize this alignment loss, ensuring
that the visual features are finely tuned to reflect the textual data,
thus fostering a deep, semantic synergy between the visual and
textual information. This process improves the model’s ability to
recognize and categorize objects based on both visual and textual
cues, bridging the gap between the abstract semantic knowledge in
language models and the concrete visual information captured by
the detection system.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Benchmarks. In our research, we have assessed the effective-
ness of our proposed methods across two distinctive benchmarks
to demonstrate their robustness and versatility in object detection
tasks.

The first benchmark utilized is the LVIS dataset [11], which
contains a wide array of detection targets spanning more than
1200 categories. This dataset is notably leveraged for evaluating
detection outcomes on long-tail distributed data. Consistent with
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Model Backbone LVIS MiniVal (%) LVIS Val v1.0 (%) ODinW-13 (%) ODinW-35 (%)
AP AP𝑟 AP𝑐 AP𝑓 AP AP𝑟 AP𝑐 AP𝑓 AP𝑎𝑣𝑔 AP𝑎𝑣𝑔

MDETR [17] R101 24.2 20.9 24.9 24.3 22.5 7.4 22.7 25.0 25.1 10.7
GLIP-T [25] Swin-T 26.0 20.8 21.4 31.0 17.2 10.1 12.5 25.5 41.9 18.7
GLIP-L [25] Swin-L 37.3 28.2 34.3 41.5 26.9 17.1 23.3 35.4 51.0 22.6
GLIPv2-T [67] Swin-T 29.0 - - - - - - - 50.7 22.3
G-DINO-T [34] Swin-T 25.7 15.2 21.9 30.9 - - - - 49.8 21.7
BARON [56] R50 - - - - 29.5 23.2 29.3 32.5 - -
OWL-ViT [42] ViT-L - - - - 34.6 - - - - 18.8
MQ-GLIP-T [59] Swin-T 30.4 21.0 27.5 34.6 22.6 15.4 18.4 30.4 45.6 20.8
MQ-GLIP-L [59] Swin-L 43.4 34.5 41.2 46.9 34.7 26.9 32.0 41.3 54.1 23.9
G-DINO-T (MIPT) Swin-T 29.5 17.4 25.5 35.2 21.9 11.2 17.3 31.7 49.7 21.9
GLIP-T (MIPT) Swin-T 30.4 20.7 26.9 35.1 23.1 17.8 18.4 30.5 47.3 21.8
GLIP-L (MIPT) Swin-L 45.0 36.9 42.8 48.5 35.9 28.7 32.9 42.3 54.1 25.0

Table 1: Directly transferred evaluation on multiple benchmarks. "–" indicates that the work does not have a reported number.

Figure 4: An illustration of redundancy evaluation via JSR.

GLIP, for directly transferred evaluation, owing to its extensive
category range where not all classes can be included in a single text
prompt, we segmented the categories into multiple prompts. Each
prompt encapsulated 40 classes, and the model was queried multiple
times using varying prompts. The performance was reported on
both the LVIS Minival subset, comprising 5000 images, and the
comprehensive LVIS V1.0 validation set.

The second benchmark is the ODinW dataset [21], which aggre-
gates 35 public object detection datasets to evaluate the compre-
hensive performance of pretrained large-scale detection models.
To further evaluate core model performance, we utilized its less
noisy subset, ODinW-13, which provides a concentrated measure
of a model’s fundamental detection capabilities.

4.1.2 Implementation details. In the implementation details of our
experiments, we employed GLIP [25] and G-DINO [34] as our base-
line detectors. Firstly, through the Jensen-Shannon Redundancy
analysis, we pinpointed the layers with the highest redundancy
within the large language models, selecting the top six for further
optimization. For instance, as illustrated in the Figure 4, we uti-
lized Jensen-Shannon Redundancy to assess the redundancy of the
12 attention layers in the BERT[4] within GLIP-T. Based on these

results, we selected the 7-12 layers of the BERT model for subse-
quent fine-tuning. We then incorporated the LoRA module (via
MIPT) serving as tunable parameters to adjust original attention
weights for different modalities. Pre-extracted visual exemplars
were utilized. For each category, five random images were cho-
sen and processed through the vision encoder and ROIPool [46]
to extract specific regional features [59]. For pre-training on Ob-
ject365 [47], we conducted a single epoch with all original model
parameters frozen, adjusting only the newly introduced parameters.
During this stage, the learning rate for LoRA was set to 0.00001,
and the learning rate for the gates was 0.0005. The pre-training
utilized 8 V100 GPUs for GLIP-T and G-DINO-T, and 16 V100 GPUs
were employed for GLIP-L.

4.2 Main Results
4.2.1 Comparison with The Baselines. In the comparison of our
methods, we benchmarked against several leading approaches in
open-vocabulary detection as shown in the Table 1, including
MDETR [17], GLIP [25], G-DINO [34], BARON [56], and OWL-
ViT [42], which utilize various backbones like ResNet101 [13], Swin
Transformers [38], and Vision Transformers [7]. Our experiments
revealed that the MIPT-enhanced versions of G-DINO-T, GLIP-T,
and GLIP-L significantly outperformed their original counterparts.
For example, G-DINO-T (MIPT) improved its Average Precision (AP)
on the ODinW-13 benchmark by 3.8%, and GLIP-T (MIPT) showed
an increase of 4.4% on the LVIS MiniVal dataset. Most notably,
GLIP-L (MIPT) demonstrated exceptional performance, not only in
comparison with its baseline model—achieving an AP increase of
7.7% on LVIS MiniVal—but also outshining all other models across
every benchmark dataset, including the highest AP on ODinW-35
at 25.0%. This comprehensive performance uplift underscores the
advantage of the MIPT framework in enhancing detection systems.
MIPT’s fine-tuning of under 1% of the model’s parameters under-
scores the framework’s efficiency, achieving state-of-the-art results
with minimal parameter increase, a testament to the efficacy of
incorporating visual clues and targeted parameter updates.
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4.2.2 Few-shot Tuning. Furthermore, we conducted a comparative
study on the effectiveness of few-shot tuning. As shown in the
Table 2, GLIP-T model fine-tunes across all its parameters, total-
ing 233.4 million, which is resource-intensive and less adaptable
to rapid deployment scenarios. In contrast, our MIPT-enhanced
GLIP-T involves fine-tuning less than 1% of the total parameters,
a stark reduction that still results in superior performance. In the
3-shot and 5-shot settings on the ODinW-13 benchmark, GLIP-T
(MIPT) not only demonstrates a notable increase in accuracy (57.2%
and 58.2%, respectively) but does so with an incredibly marginal
trainable parameters (only 0.8% compared with original GLIP-T).
This illustrates the efficiency of MIPT in achieving high precision
in object detection with minimal computational overhead, making
it particularly suitable for applications requiring quick adaptation
to new environments with limited examples.

Model Trainable params ODinW-13 (%)
3-shot 5-shot

GLIP-T [25] 233.4M 54.9 56.4
GLIP-T (MITP) 1.94M 57.2 58.2

Table 2: Comparison of GLIP-T (fully-finetuned) and GLIP-
T with Multimodal Inplace Prompt Tuning (MITP) on the
ODinW-13 benchmark in 3-shot and 5-shot settings, show-
ing performance improvements with minimal parameter
increase.

4.2.3 Visualization of Redundant Attention Mechanisms. The visu-
alizations shown in the Figure 5 represent the attentionmechanisms
within certain heads of a transformer model, specifically focusing
on the redundancy of these mechanisms. Each vertical panel depicts
the attention distribution from one particular head (e.g., Head 0-6
denotes head 6 in layer 0, Head 3-11 denotes head 11 in layer 3, etc.)
to prompt concatenated by various category tokens such as ’ball’,
’ballet skirt’, and ’banana’. The strength and pattern of attention, in-
dicated by the thickness and the number of lines connecting tokens,
highlight the model’s focus. For instance, denser clusters suggest
concentrated attention, which could signal redundancy if such pat-
terns do not contribute to diverse semantic understanding. These
visualizations are critical for identifying and rectifying redundant
attention, thereby improving the model’s efficiency and accuracy.
This process forms an integral part of optimizing language models
for detection tasks, as explored in our experiments.

4.2.4 Ablation Study. Our ablation study investigates the individ-
ual and combined effects of Jensen-Shannon Redundancy (JSR),
Cross-modal Self-distillation, and Multimodal Inplace Prompt Tun-
ing (MIPT) on the performance of our object detection model. The
study’s findings, illustrated in the Table 3, clearly demonstrate
the incremental improvements achieved by integrating these com-
ponents into our framework. Initially, without any of these tech-
niques, the model (original GLIP-T) achieves baseline performances
of 41.9% on ODinW-13 and 26.0% on LVIS MiniVal. Implementing
MIPT to the first 6 layers of BERT improves these scores to 43.2%

Figure 5: illustrates the difference between a pretrained BERT
model(the first row) and the BERT model within GLIP that
has been fine-tuned for a detection task(the second row). It
indicates that in GLIP, the diversity of the heads in BERT
gradually diminishes as a result of subsequent fine-tuning.

and 29.4%, respectively. The addition of JSR further enhances per-
formance, indicating its effectiveness in reducing redundancy and
focusing model training on impactful features. Combining all three
techniques yields the best results, pushing the scores to 47.3% on
ODinW-13 and 30.4% on LVIS MiniVal, validating our approach in
enhancing detection accuracy through strategic component inte-
gration.

JSR Distillation MIPT ODinW-13 (%) LVIS MiniVal (%)
✗ ✗ ✗ 41.9 26.0
✗ ✗ ✓ 43.2 29.4
✓ ✗ ✓ 46.8 30.1
✓ ✓ ✓ 47.3 30.4

Table 3: Ablation on Jensen-Shannon Redundancy, Cross
modal Self-distillation and Multimodal Inplace Prompt Tun-
ing

5 CONCLUSION
In this paper, we present a novel strategy for enhancing open-set
object detection by integrating large language models with multi-
modal inplace prompt tuning Framework. Our approach starts with
the utilization of Jensen-Shannon Redundancy (JSR) to pinpoint and
mitigate redundant attention patterns in language models adapted
for detection tasks. This targeted fine-tuning improves computa-
tional efficiency and detection effectiveness. Further incorporation
ofMIPT, which enriches text prompts with visual clues, significantly
boosts performance on the LVIS and ODinW datasets, demonstrat-
ing notable accuracy and adaptability improvements, especially
in few-shot scenarios. Our findings highlight the transformative
potential of combining metric-based redundancy evaluations with
multimodal fine-tuning to optimize large language models for com-
plex detection frameworks. Future work could expand this approach
to include more modalities and applications, propelling further ad-
vancements in multimodal learning and object detection.
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