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ABSTRACT

Large language models (LLMs) like GPT-4o have shown promise in solving ev-
eryday tasks and addressing basic scientific challenges by utilizing extensive pre-
trained knowledge. In this work, we explore their potential to predict the effi-
ciency of various organic compounds for the inhibition of corrosion of the magne-
sium alloy ZE41, a material crucial for many industrial applications. Traditional
approaches, such as basic neural networks, rely on non-contextual data, often re-
quiring large datasets and significant effort per sample to achieve accurate predic-
tions. They struggle particularly with small datasets, limiting their effectiveness
in discovering new corrosion inhibitors. LLMs can contextualize and interpret
limited data points by drawing on their vast knowledge, including chemical prop-
erties of molecules and their influence on corrosion processes in other materials
like iron. By prompting the model with a small dataset, LLMs can provide mean-
ingful predictions without the need for extensive training. Our study demonstrates
that LLMs can predict corrosion inhibition outcomes, and reduce the amount of
data needed.

1 INTRODUCTION

In recent years, LLMs have gained significant attention in both public discourse and academic re-
search, evolving from their original purpose in natural language processing to demonstrating re-
markable versatility across various domains (Jablonka et al. (2023); Plaat et al. (2024)). Initially
designed to handle tasks such as answering general questions, assisting in programming, and per-
forming simple reasoning tasks, LLMs have since been applied to more complex challenges, includ-
ing regression, prediction, and classification of numerical datasets.

To enhance the quality and accuracy of LLM-generated responses, researchers have developed
strategies like prompt engineering and advanced techniques such as chain-of-thought (CoT, Schul-
hoff et al. (2024)), tree-of-thought (ToT, Yao et al. (2023)), and skeleton of thought (SoT, Ning et al.
(2023)). These methods enable LLMs to produce structured and well-reasoned outputs by allowing
them to engage in more reflective and self-guided problem-solving processes. This growing recog-
nition of LLMs as powerful tools has spurred their exploration in fields beyond traditional language
processing, including chemistry.

The application of LLMs in chemistry, in particular, has emerged as a promising area of research,
with efforts focused on how these models can effectively leverage chemical knowledge. Researchers
have employed various approaches to enhance LLM performance in this domain. For example,
Hatakeyama-Sato et al. (2023) examined GPT-4’s ability to process and apply chemical knowledge
through prompt-based interactions, identifying both its potential and its limitations in reasoning and
knowledge gaps. In addition, Jablonka et al. (2023) reviewed techniques like fine-tuning GPT-2 and
GPT-3.5 and connecting GPT-4 with external tools to improve its utility in chemistry-related tasks.
Advancing this work, Bran et al. (2024) developed ChemCrow, a tool that integrates simulations,
internet access, and chemical APIs to extend LLM capabilities in molecular transformations and
property predictions. Moreover, Jablonka et al. (2024) demonstrated the potential of fine-tuned
GPT-3 models in tasks such as classification, regression, and molecule design, while Zhang et al.
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(2024) trained a domain-specific LLM, ChemLLM, on a large chemical database, showcasing the
value of specialized models in chemical research.

Magnesium (Mg) and its alloys are increasingly used in various novel industrial applications due to
their abundance, affordability, and versatility. However, the high chemical reactivity of magnesium
requires domain-specific adjustments of its degradation behavior. In transportation (Dziubińska et al.
(2016); Joost & Krajewski (2017)), corrosion must be prevented to avoid critical material failure.
In medical applications (e.g. temporary biodegradable stents or bone screws, Santos-Coquillat et al.
(2019); Witte et al. (2008)) the degradation rate must be precisely controlled to match varying treat-
ment or patient healing rates. For energy applications like Mg-air primary batteries (Höche et al.
(2018)) and secondary, a steady rate of Mg dissolution is essential to ensure constant energy output
(Ma et al. (2019)). Several strategies, including alloying and surface coatings, have been developed
to regulate the degradation of Mg-based materials (Gray & Luan (2002)). A promising approach
involves the use of small organic molecules which have shown significant potential in controlling
the dissolution properties of pure Mg and its alloys (Lamaka et al. (2017); Blawert et al. (2006)).
The vast chemical diversity of organic modulators is a major advantage, offering nearly limitless
possibilities for tailored solutions. The number of available organic compounds is rapidly growing,
with 120 million new compounds reported in the last decade alone. Estimates suggest that there
could be as many as 1063 (Kirkpatrick & Ellis (2004)) organic compounds with useful properties,
making the chemical space effectively infinite. Recent advancements in automation, robotics, and
combinatorial chemistry are enabling the synthesis of larger and more diverse chemical libraries and
the integration of computer-assisted synthesis methods further accelerates the growth of available
compounds.

However, even with the most sophisticated high-throughput techniques available today (White et al.
(2012); Muster et al. (2009); Meeusen et al. (2019)), researchers can only explore a tiny frac-
tion of this space. Fortunately, data-driven computational methods can efficiently search larger
regions of chemical space with significantly less time and effort, rendering them invaluable for
short-listing molecules with desirable properties for specific applications (Winkler (2017); Fernan-
dez et al. (2016); Chen et al. (2016); Winkler et al. (2014); Segler et al. (2018); Coelho et al. (2022);
Würger et al. (2022)). Machine learning models that capture complex quantitative structure-property
relationships (QSPR) can predict the properties of yet-to-be-synthesized or tested compounds. How-
ever, these models require extensive, reliable, chemically diverse, and balanced training datasets to
achieve accurate and generalizable predictions. A synergistic approach combining experimental and
computational methods forms a robust foundation for data-driven discovery of dissolution modu-
lators (a pool of chemicals that either accelerates or inhibits the corrosion onset and progression
in metallic materials) by predicting their corrosion inhibition efficiencies (IEs) prior to testing. To
ensure reliable performance, the training datasets must adequately represent the complexity of the
relevant chemical environments, especially when predicting properties for molecules with under-
represented features in the data. However, the available training in the field of corrosion inhibitor
research is quite limited from a machine learning point of view as a large part of chemicals that are
labeled with an IE value are proprietary data and not available to the public domain. Fortunately,
LLMs show great potential to mitigate the lack of available training data by utilizing their extensive
base knowledge to understand contextual data and enhance model predictions. By drawing on a
vast repository of scientific information, LLMs can help bridge gaps in existing datasets, support-
ing more accurate and reliable predictions of inhibition efficiency without the immediate need for
additional experimental data.

In this study, GPT-4o is used to predict the efficiency of various compounds to inhibit corrosion of
magnesium. It is provided with exemplary data points and compared with baseline results of a neural
network from Schiessler et al. (2023). The large language model (LLM) is tasked to predict with two
different approaches. The first approach aims at incorporating additional contextual information in
combination with the pretrained knowledge of the LLM to increase the accuracy of the predictions.
The second approach focuses on evaluating the value of contextual information combined with the
pretrained knowledge alone.
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2 METHODOLOGY

2.1 OVERVIEW

This study aims to predict the corrosion inhibition efficiency of various compounds using an LLM by
integrating contextual information, including details of the experimental setup, molecular identities,
and structural representations. This methodology is intended to enhance predictive performance
beyond the neural network baseline reported in Schiessler et al. (2023), which was considered state-
of-the-art at the time of publication. With the emergence of advanced LLMs, particularly GPT-
4o, novel approaches have become feasible, offering the potential to outperform traditional neural
networks, especially when dealing with limited datasets. Given the small dataset of 75 samples used
in this study, LLMs can leverage their extensive knowledge base to compensate for data scarcity
and improve prediction accuracy. To ensure a fair and direct comparison, the same train-test split as
utilized by the neural network model is employed. A naming convention employed in this paper and
explained further in the following splits the input data given to the LLM in two parts. The first part,
referred to as ”data”, is the numerical information that is also used for training the neural network.
The second part, termed ”context”, contains all non-numerical information in the form of strings,
that can be supplied to an LLM, but not to a basic neural network.

Two distinct prediction approaches are explored:

• LLM with data and context: This approach provides the LLM with both the context
(molecule names, molecular structure, and experimental details) and the numerical data
the baseline neural network had access to during both training and testing. The aim is to
leverage the LLM’s inherent knowledge and reasoning capabilities to integrate these data
sources and outperform the neural network baseline.

• LLM with context only: In this approach, the LLM is provided with only the context
information (molecule names, molecular structure, and experimental details), without the
numerical data. This setup tests the LLM’s ability to generate accurate predictions based
purely on its understanding of chemical properties and the provided experimental context.

By integrating this contextual data into the LLM’s prompting strategy, we hypothesize that the model
can better understand the underlying chemical processes, ultimately leading to more accurate pre-
dictions of inhibition efficiency than the neural network model, which lacks access to this qualitative
information. Furthermore, we hypothesize, that the context information together with the pretrained
knowledge of GPT-4o can replace the numerical descriptor data.

2.2 DATA AND BASELINE

The baseline results and input data are sourced from Schiessler et al. (2023). The dataset com-
prises 75 chemical compounds along with their corresponding inhibition efficiencies, which serve
as labels. Inhibition efficiency measures the extent to which a given compound alters the rate of
corrosion compared to a control experiment with no compounds present. This value is expressed as
a percentage, where 100% indicates a perfect inhibitor that completely halts corrosion. Conversely,
negative values suggest that the compound accelerates the corrosion process. In this study, the unit
of the inhibition efficiency is denoted as IE to clearly distinguish it from other percentage-based
metrics.

The input dataset includes approximately 1,250 molecular descriptors for each compound. The
descriptors were generated using the chemoinformatics software package alvaDesc and the quantum
chemical software package TurboMole to encode the molecular and in part the electronic structure
of the 75 molecules that were used in the benchmark study.

To quantify the corrosion inhibition efficiencies of the used benchmark dataset, hydrogen evolution
measurements have been performed following the experimental procedure described in the bench-
mark study.

The predictive model utilized by Schiessler et al. (2023) is a neural network. The model receives
as input five molecular descriptors out of the available 1,250, selected through a recursive feature
elimination algorithm. Among the various feature sets examined by Schiessler et al. (2023), this
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paper focuses exclusively on the FS60 set. This set is selected using only the training data, ensuring
that it remains unbiased by excluding the test data from the feature selection process. The descriptors
in FS60 include P VSA MR 5, LUMO, E1p, CATS3 02 AP, and Mor04m. Consequently, only the
predictions generated using this feature set will be considered for comparison. Furthermore, to
maintain consistency, the same train-test split as in the original study will be used for prediction.

2.3 PROMPTING STRATEGY

2.3.1 TECHNOLOGY

The large language model (LLM) employed in this study is GPT-4o by OpenAI, accessed via Mi-
crosoft Azure. The specific version used is ”2024-02-15-preview”, configured with a temperature of
0.7 and a top p value of 0.95. Detailed prompting strategies are included in the appendix.

2.3.2 CONTEXT AND DATA

”Context” comprises molecule names, SMILES (Simplified Molecular Input Line Entry System)
strings, and additional information about the experimental setup, while ”Data” refers to the molec-
ular descriptors available to the neural network baseline. SMILES strings offer a concise and stan-
dardized representation of molecular structures. These SMILES strings are sourced from the Pub-
Chem database (Kim et al. (2022)). For the remaining context information, the LLM is provided
with two prompts that define its role as a professional chemist, outline the importance of predicting
inhibition efficiency, describe the experimental settings, and detail the task at hand. These prompts
encourage the LLM to approach the problem systematically, working step-by-step to ensure a thor-
ough and accurate analysis.

Upon providing GPT-4o with the dataset, the model undergoes an analytical process structured into
four distinct prompts. In the first prompt, GPT-4o is instructed to generate a comprehensive list of
functional groups and atomic structures for each molecule. The second prompt directs the model
to autonomously reduce the molecular descriptors from five to a more manageable set of 2-3 per
molecule, as the inclusion of all five descriptors often led to data overload, resulting in decreased
prediction accuracy. The third prompt combines the outputs from the first two steps into a single,
unified dataset. Finally, the fourth prompt guides GPT-4o to examine the consolidated data, iden-
tifying patterns and relationships between the input features and inhibition efficiency labels. This
refined analysis, coupled with the optimized dataset, serves as the foundation for subsequent predic-
tion prompts, enhancing the model’s overall reliability and precision.

2.3.3 PREDICTION

The prediction process involves a guided, step-by-step prompt consisting of multiple steps. Key
steps include:

• Finding similar molecules: The LLM identifies molecules in the training set that are most
similar to the test molecule, using both original data and previously analyzed functional
group data.

• Ranking for similarity: The LLM assigns similarity scores to these molecules, facilitating
a weighted average calculation.

• Analyzing the test molecule: The LLM synthesizes and analyzes functional group and
atomic structure data to make an educated guess on the inhibition efficiency.

• Weighted average calculation: A weighted average of inhibition efficiencies from similar
molecules is computed, with a reevaluation of similar molecules beforehand.

• Reevaluation and correction: If significant variability is found, the LLM employs a more
sophisticated approach trying to analyze the corrosion mechanisms of similar molecules.

2.3.4 REPETITIONS AND STRATEGY

Due to the non-deterministic output of the LLM, the prediction process is repeated 20 times, with
the mean result used as the final output. Lowering the temperature setting to reduce randomness
resulted in poorer predictions.
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In the ”LLM with context only” experiment, molecular descriptors are excluded, requiring the LLM
to conduct a more thorough analysis of functional groups and atomic structures. The data analysis
steps are consolidated, and the focus shifts to leveraging the model’s internal chemical knowledge
to identify patterns and predict inhibition efficiency.

3 RESULTS

3.1 PERFORMANCE METRICS OVERVIEW

Figure 1: Overview of the results using different evaluation metrics. The neural network results
are sourced from Schiessler et al. (2023). The correlation metric indicates the relationship between
the predictions and the experimental values, where higher values signify better results. Conversely,
lower values for the error metrics RMSE (root mean squared error) and MAE (mean absolute error)
denote improved performance.

Figure 1 presents three evaluation metrics: root mean squared error (RMSE), mean absolute er-
ror (MAE), and the correlation between the predictions and the experimental results. It is evident
that GPT-4o outperforms the neural network in both configurations across all metrics. A higher
correlation value indicates superior predictive performance, while smaller RMSE and MAE values
correspond to better accuracy.

Comparisons of RMSE and MAE values reveal that the LLM with both data and context yields the
most accurate predictions, as indicated by significantly lower error measures. This suggests that
the incorporation of contextual information, in conjunction with the LLM’s inherent knowledge,
enhances prediction quality. Additionally, the second experiment, which excludes the descriptor
data, also demonstrates improved precision, albeit to a lesser extent. This implies, that the contextual
information, when combined with GPT-4o, result in more accurate predictions than those produced
by the neural network using the numerical descriptor dataset from Schiessler et al. (2023) alone.

Examining the correlation values provides further insights. Although the order of the values re-
mains consistent, the difference between the two LLM approaches is notably smaller. The neural
network results exhibit a moderate correlation between the predictions and the experimental values
(0.6). Both LLM approaches show similar correlation values of 0.847 and 0.813, respectively. The
comparable correlation values, along with the observed discrepancies in prediction errors, indicate

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that there exists an appropriate linear transformation that could significantly reduce the errors of the
LLM without data. In other words, the predictions exhibit systematic errors that could be removed.

3.2 PREDICTION ACCURACY ANALYSIS

Figure 2: Comparison of LLM predictions and baseline results from Schiessler et al. (2023), shown
pointwise. The straight lines represent linear fits of the data points, with predicted values plotted on
the y-axis against the experimental values on the x-axis. The dashed line indicates the hypothetical
optimal fit. Notably, the LLM data points align more closely with their fit line compared to the
neural network results.

In Figure 2, the prediction results are presented for each test sample and prediction method. For
each method, a linear curve fit is applied to the results. It can be observed that the linear fit lines
do not differ as markedly as the results in Figure 1. The differences in results are attributed to the
variance in the locations of individual points around their respective fit lines. The neural network
results exhibit the largest variance around their fit line, whereas the LLM prediction results show
significantly lower variance. For example, aside from the two leftmost points of the neural network,
the other points appear to be randomly scattered around a constant value. In contrast, the LLM
predictions demonstrate a clear correlation between predicted and experimental values, consistent
with the correlation values shown in Figure 1.

Comparing the distance of the points to the ideal line (black dashed line, x = y), it is evident that
the overall distance of the LLM results is smaller than that of the neural network results. Notably,
the results of the LLM with both data and context are closer to the optimal results. Furthermore, the
curve fit of these results is the closest approximation to the optimal results line.

One notable observation is the tendency to underestimate positive inhibition efficiencies and overes-
timate negative ones. This tendency was also reported by Schiessler et al. (2023). Additionally, the
LLMs exhibit a slight bias towards higher inhibition efficiencies. The observed biases are approxi-
mately 2.8 IE for the neural network, and around 13.3 IE and 11.2 IE for the LLMs with and without
data, respectively. During testing, it was found that the LLM results initially had even higher biases,
which were reduced after providing access to the entire test set before prediction. Additionally,
clarifying that both inhibition efficiencies and acceleration efficiencies (with negative values) were
being sought helped in reducing the bias.

Overall, the LLM approaches, especially when provided with both data and context, demonstrate
superior performance in predicting corrosion inhibition efficiencies compared to the traditional neu-
ral network approach. This underlines the potential of LLMs in leveraging contextual information
and their inherent chemical knowledge to achieve more accurate predictions in the field of materials
science.
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3.3 DISTRIBUTION OF PREDICTION RESULTS

Figure 3: Baseline: Adapted figure from Schiessler et al. (2023). The distribution of the predicted
inhibition efficiencies along with their experimental values. Indices are ranged from 1 to 16, exclud-
ing 2 (15 total). 1000 predictions were made for each sample.

Figure 4: Distribution of the results from the LLM with data and context. Samples are sorted as in
the previous figure. 20 predictions were made for each sample.

Figures 3, 4, and 5 illustrate the distributions of prediction results across different approaches. The
neural network predictions, as depicted in Figure 3 (adapted from Schiessler et al. (2023)), show
relatively constant spreads across all samples. This spread is partially attributed to the varying
validation sets employed during training by Schiessler et al. (2023). In contrast, predictions using
GPT-4o were generated without employing a validation set, and only 20 repetitions were performed
instead of 1000 due to constraints related to computational time and cost.

In contrast, Figure 4 presents the results from the LLM approach, which incorporates both data and
context. Here, the prediction spreads vary significantly across different samples. For example, the
spread for sample 7 is nearly 0 IE, while for sample 3, it reaches approximately 200 IE. Additionally,
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Figure 5: Distribution of the results from the LLM with context only. Samples are sorted as in the
previous figure. 20 predictions were done for each sample.

the distributions of the LLM results exhibit considerable inhomogeneity. Unlike the neural network
results, where the quantiles are nearly symmetric around the median, the LLM results display a more
irregular pattern. Although the LLM predictions are based on only 20 iterations per sample, the trend
towards higher inconsistency is evident in comparison to the neural network (1000 repetitions).

In Figure 5, it is apparent that the spread of prediction results has increased for most samples com-
pared to Figure 4. Notably, samples 15, 14, and 6 demonstrate significantly larger spreads, with
sample 6 exhibiting the widest range of results, approximately 250 IE. In contrast, sample 13 dis-
plays a reduced variance in Figure 5, highlighting a deviation from this general trend.

Furthermore, the variance in LLM predictions is particularly pronounced for accelerators (molecules
predicted as accelerators), while it is generally smaller for inhibitors. Analysis of the LLM’s outputs
suggests that GPT-4o possesses more extensive knowledge about inhibition mechanisms than accel-
eration mechanisms, which may contribute to this outcome. The term ”inhibition efficiency” might
also influence GPT-4o’s analysis, potentially biasing the model’s interpretation toward inhibition.
This bias had been observed in the previous section. Another contributing factor could be the lower
density of accelerator samples in the dataset.

Overall, the fluctuations in GPT-4o’s predictions can be primarily attributed to its reliance on ana-
lyzing similar molecules. The consistency in selecting similar molecules across predictions suggests
that GPT-4o has developed a coherent understanding of molecular similarity. However, when the
inhibition efficiencies of these similar molecules vary widely, the resulting predictions can fluctuate
within the same range. In such cases, GPT-4o may base its approximation on different subsets of
similar molecules, leading to variability in the outcomes.

The relatively small variance in the neural network results is expected, given the limited variabil-
ity in the input data. However, the variance observed in the LLM results, especially the differing
variances across samples, presents a more complex picture. Likely contributing factors include the
number and diversity of similar molecules, as well as how well these molecules were represented
in GPT-4o’s training set. Occasionally, high variance might also stem from hallucinations, though
testing revealed that GPT-4o rarely invented inhibition efficiencies for test molecules, preferring in-
stead to approximate based on known data. The inclusion of descriptor data appears to enhance the
consistency of GPT-4o’s predictions. Interestingly, the predictions for inhibitors tend to be more
stable than those for accelerators, which may be due to the model’s more robust understanding of
inhibition mechanisms and the higher sample density in that regime.
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4 DISCUSSION

The small size of the test set with 75 samples raises concerns about the generalizability of the find-
ings. Nevertheless, the neural network exhibited significant difficulties in making accurate predic-
tions. These inaccuracies were mitigated through the use of GPT-4o for prediction. The substitution
of the input data with molecular names and SMILES strings, supplemented by contextual infor-
mation, underscores the utility of GPT-4o’s embedded knowledge, as evidenced by a substantial
reduction in error. The limited dataset size does not detract from this observation.

For larger datasets, the proposed approach may encounter challenges, particularly in data analysis,
which might need to be conducted in batches. Additionally, it remains unclear how well this ap-
proach scales with larger datasets and more extensive context windows, as maintaining an overview
of the data may become increasingly difficult.

One potential method to reduce underestimation and overestimation errors involves employing a
linear mapping, estimated using predictions on a small portion of the training set. Given the high
correlation of the LLM results but significant discrepancies in the slopes of the linear fits (Figure 2),
this technique could potentially decrease the prediction error.

5 CONCLUSION

This study demonstrates the advantages of utilizing a large language model (LLM) like GPT-4o for
prediction tasks on small datasets. The predictions generated by GPT-4o, when supplemented with
additional contextual information, significantly outperform those from a traditional neural network.

Two experiments were conducted to compare the prediction capabilities of GPT-4o against a neural
network. In the first experiment, the LLM received the same data as the neural network, along with
a description of the problem setting and contextual information about the samples (SMILES strings
of the molecules and their names). The results of this experiment, when compared to the baseline
neural network, indicated a substantial reduction in error. The root mean squared error (RMSE)
decreased from 73 to 51.3, and the mean absolute error (MAE) decreased from 61.3 to 43.2 (Figure
1). These findings suggest that leveraging the knowledge embedded in GPT-4o, along with a detailed
problem description and contextual data, can significantly enhance prediction accuracy.

In the second experiment, the LLM was not provided with the data used by the neural network.
Instead, it was given only the problem setting and contextual information. This approach also led to
a reduction in prediction error. The RMSE decreased from 73 to 61.8, and the MAE decreased from
61.3 to 50.8 (Figure 1). These results imply that the combined knowledge of GPT-4o, along with a
problem description and contextual information, is more valuable for prediction than the molecular
descriptor data alone with a neural network.

The outcomes of these experiments illustrate the potential of LLMs to replace neural networks for
prediction tasks, particularly when dealing with small datasets. The extensive knowledge base of
LLMs makes this approach especially promising for cases where complex dependencies cannot be
captured solely by the data. Furthermore, in situations where parts of the data are challenging to
input into a neural network, such as strings and text, LLMs may enhance the quality of the results.
Another significant advantage is that, for small datasets, there is no need for extensive training. If the
data can be provided through prompts, the setup of the prediction process becomes straightforward
and does not require substantial computational resources, at least not at the users machine.

REPRODUCIBILITY

The exact design of the prompts and the order of them being given to GPT-4o is stated in
the appendix. With these prompts and the data available on zenodo (from Schiessler et al.
(2023)) https://doi.org/10.5281/zenodo.7780743 the experiments from this paper
can be done again. It was tried to generate exactly reproducible results with the seed func-
tionality (https://learn.microsoft.com/en-us/azure/ai-services/openai/
how-to/reproducible-output?tabs=pyton), but as stated, the determinism can break
for longer responses. For the answer generation for the prompts here, this did break consistently.
The best found solution was the repetition of the experiment 20 times and taking the mean over all
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results. Trying to reduce the variance of the results with for example a reduced temperature led to
worse results.
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A PROMPTS

In the following the used prompts are listed. The prompts, after which GPT-4o is tasked to generate
an answer, are stated explicitly. It then gets the whole list of previous prompts if not differently
stated. The prompts, after which an answer will be generated, will not be appended to the list of
previous prompts.

A.1 EXPERIMENT 1

Role description and motivation (system)
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You are a professional chemist with deep knowledge about organic chemistry and corrosion mecha-
nisms. The objective is to predict the corrosion inhibition efficiency of various organic compounds
for magnesium (Mg) in salt water. Corrosion inhibition efficiency is critical for preventing the degra-
dation of materials in industrial applications. This dataset contains molecular structures along with
their respective inhibition efficiencies expressed in percentages (cannot be larger than 100), negative
values express an acceleration of the corrosion process. You are tasked with predicting the inhibi-
tion efficiencies of the compounds in the test dataset. do follow the steps in the prompt step by step.
think systematically and structured.

Problem description (system):

In the field of corrosion science, corrosion inhibitors are chemical compounds that, when added to
the environment in small concentrations, significantly reduce the rate of corrosion. Corrosion accel-
erators are compounds that increase the rate of corrosion. The effectiveness of an inhibitor depends
on its molecular structure and its ability to interact with the metal surface. This problem involves pre-
dicting the inhibition efficiency of magnesium (Mg, ZE41) using a set of organic compounds. You
will be provided with two datasets: A training dataset with labeled inhibition efficiencies (ie ze41)
to identify patterns and relationships between molecular structures and their corrosion inhibition ef-
ficiencies. A test dataset without labels, for which you will predict the inhibition efficiencies based
on the patterns learned from the training dataset.

Training data (user):

This is the training data:
names: [name1, name2, ...]
isomeric smiles: [smiles1, smiles2, ...]
descriptor1: [...]
descriptor2: [...]
...
The inhibition efficiencies of the components are: [IE1, IE2, ...]

Analysis of functional groups (user). After this prompt GPT-4o is tasked to generate, the result is
appended to the prompts list after the next prompt (assistant):

write down all functional groups and atomic structures together with their inhibition efficiency for
each sample of the training data in a list.

Analysis of descriptors (user). After this prompt GPT-4o is tasked to generate, the result is appended
to the prompts list (assistant):

write down the values and names of 2-3 non zero descriptors together with their inhibition efficiency
for each sample of the training data in a list.

Combination of data (user). After this prompt GPT-4o is tasked to generate, the result is appended
to the prompts list (assistant):

create a list where you combine the functional groups and atomic structures with the non zero de-
scriptors and their inhibition efficiency for each sample of the training data.

Analysis of data (user). After this prompt GPT-4o is tasked to generate, the result is appended to the
prompts list (assistant).

search for patterns in the previously created list and analyze the influence of the functional groups,
atomic structures and non zero descriptors on the inhibition efficiency.

Overview on the test data (user):

This is the test data:
names: [name1, name2, ...]
smiles: [...]
descriptor1: [...]
...
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Prediction prompt (user). This prompt is given to GPT-4o for each test molecule once. The result is
not appended to the list of previous prompts.

This is the test data: ”Test molecule name, smiles string and data”
Do this step by step:
step 1: Find all similar molecules in the training data and analyze their relation to this compound
wrt the magnesium corrosion process. Use the training data and the analyzed training data.
step 2: Analyze similar molecules and rank them by similarity (wrt the mechanisms in the corrosion
process). Assign them a similarity value (wrt the mechanisms in the corrosion process).
step 3: Analyze if found patterns apply to the molecule
step 4: Analyze its functional groups and their influnce on the inhibition efficiency
step 5: Analyze its atomic structure and how this might influence the inhibition efficiency
step 6: Make an educated guess for the inhibition/acceleration efficiency of this compound.
step 7: Calculate a weighted average of the inhibition efficiencies of the similar molecules. Exclude
molecules that have a small similarity value.
step 8: If the similar molecules have very different inhibition efficiencies, you must make a predic-
tion based on the atomic structure and functional groups as this indicates that the corrosion process
is not the same. You must take a closer look on the corrosion mechanisms in that case. Analyze,
which molecules might have a similar corrosion mechanism. For that, analyze the corrosion mech-
anisms for each molecule. After that, decide, which corrosion mechanism is the most likely for the
molecule. Use only the molecules which have the same corrosion mechanism.
step 9: Review your analysis shortly and write down your prediction. There were multiple ways
predicting the inhibition efficiency. Decide for one way and use only this way.
step 10: As a result, write down one value and nothing after that.

A.2 EXPERIMENT 2

Role description and motivation (system):

You are a professional chemist with deep knowledge about organic chemistry and corrosion mecha-
nisms. The objective is to predict the corrosion inhibition efficiency of various organic compounds
for magnesium (Mg) in salt water. Corrosion inhibition efficiency is critical for preventing the degra-
dation of materials in industrial applications. This dataset contains molecular structures along with
their respective inhibition efficiencies expressed in percentages (cannot be larger than 100), negative
values express an acceleration of the corrosion process. You are tasked with predicting the inhibi-
tion efficiencies of the compounds in the test dataset. do follow the steps in the prompt step by step.
think systematically and structured.

Problem description (system):

In the field of corrosion science, corrosion inhibitors are chemical compounds that, when added to
the environment in small concentrations, significantly reduce the rate of corrosion. Corrosion accel-
erators are compounds that increase the rate of corrosion. The effectiveness of an inhibitor depends
on its molecular structure and its ability to interact with the metal surface. This problem involves pre-
dicting the inhibition efficiency of magnesium (Mg, ZE41) using a set of organic compounds. You
will be provided with two datasets: A training dataset with labeled inhibition efficiencies (ie ze41)
to identify patterns and relationships between molecular structures and their corrosion inhibition ef-
ficiencies. A test dataset without labels, for which you will predict the inhibition efficiencies based
on the patterns learned from the training dataset.

Training data (user):

This is the training data:
names: [name1, name2, ...]
isomeric smiles: [smiles1, smiles2, ...]
descriptor1: [...]
descriptor2: [...]
...
The inhibition efficiencies of the components are: [IE1, IE2, ...]
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Overview on the test data (user):

This is the test data:
names: [name1, name2, ...]
smiles: [...]

Analysis of functional groups (user). After this prompt GPT-4o is tasked to generate, the result is
appended to the prompts list (assistant).

Step 1: Identify all functional groups and other chemical properties you know for each sample of
the training data. Analyze their influence on the inhibition efficiency.
Step 2: Analyze the atomic structures of the compounds and their influence on the inhibition effi-
ciency.
Step 3: Find compounds in the training data that are similar but have different inhibition efficiencies.
List them. Explain, why these differences lead to different inhibition efficiencies. Use a systematic
approach and think step by step.

Prediction prompt (user). This prompt is given to GPT-4o for each test molecule once. The result is
not appended to the list of previous prompts.

This is the test data: ”Test molecule name and smiles string”
Do this step by step:
step 1: Find all similar molecules in the training data and analyze their relation to this compound
wrt the magnesium corrosion process. Use the training data and the analyzed training data.
step 2: Analyze similar molecules and rank them by similarity (wrt the mechanisms in the corrosion
process). Assign them a similarity value (wrt the mechanisms in the corrosion process).
step 3: Analyze if found patterns apply to the molecule
step 4: Analyze its functional groups and their influnce on the inhibition efficiency
step 5: Analyze its atomic structure and how this might influence the inhibition efficiency
step 6: Make an educated guess for the inhibition/acceleration efficiency of this compound.
step 7: Calculate a weighted average of the inhibition efficiencies of the similar molecules. Exclude
molecules that have a small similarity value.
step 8: If the similar molecules have very different inhibition efficiencies, you must make a predic-
tion based on the atomic structure and functional groups as this indicates that the corrosion process
is not the same. You must take a closer look on the corrosion mechanisms in that case. Analyze,
which molecules might have a similar corrosion mechanism. For that, analyze the corrosion mech-
anisms for each molecule. After that, decide, which corrosion mechanism is the most likely for the
molecule. Use only the molecules which have the same corrosion mechanism.
step 9: Review your analysis shortly and write down your prediction. There were multiple ways
predicting the inhibition efficiency. Decide for one way and use only this way.
step 10: As a result, write down one value and nothing after that.
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