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The Case of Imperfect Negation Cues: A Two-Step Approach for
Automatic Negation Scope Resolution

Anonymous ACL submission

Abstract

Neural network-based methods are the state of
the art in negation scope resolution. However,
they often use the unrealistic assumption that
cue information is completely accurate. Even
if this assumption holds, there remains a de-
pendency on engineered features from state-
of-the-art machine learning methods. The cur-
rent study adopted a two-step negation resolv-
ing approach to assess whether a bidirectional
long short-term memory-based method can be
used for cue detection as well, and how inac-
curate cue predictions would affect the scope
resolution performance. Results suggest that
the scope resolution performance is most ro-
bust against inaccurate information for models
with a recurrent layer only, compared to ex-
tensions with a conditional random field layer
or a post-processing algorithm. We advocate
for more research into the application of au-
tomated deep learning on negation cue detec-
tion and the effect of imperfect information on
scope resolution.

1 Introduction

Negation is a complex grammatical phenomenon
that has received considerable attention in
the biomedical Natural Language Processing
(BioNLP) domain. Negations play an important
role in the semantic representation of biomedical
text, because they reverse the truth value of propo-
sitions (Morante and Blanco, 2012). Therefore,
correct negation handling is a crucial step when-
ever the goal is to derive factual knowledge from
biomedical text.

We can distinguish two ways to approach nega-
tions in medical text: negation detection and nega-
tion resolving. Negation detection is a form of
assertion identification, in this case, determining
whether a certain statement is true or false, or
whether a medical condition is absent or present
(Mutalik et al., 2001; Chapman et al., 2001;

Sanchez-Graillet and Poesio, 2007; Huang and
Lowe, 2007; Peng et al., 2018; Bhatia et al., 2018;
Chen, 2019; Sykes et al., 2021). Negation resolv-
ing shifts the focus towards the token level by ap-
proaching the problem as a sequence labeling task
(Morante et al., 2008). This task is typically di-
vided into two sub tasks: (1) detecting the negation
cue, a word expressing negation and (2) resolving
its scope, the elements of the text affected by it. A
cue can also be a morpheme (“impossible”) or a
group of words (“not at all”). As an example, in
the following sentence the cue is underlined and its
scope is enclosed by square brackets:

“I am sure that [neither
apples nor bananas are blue].”

Recently, researchers adopted neural network-
based approaches to resolve negations (Fancellu
et al., 2016, 2017; Lazib et al., 2020). This ap-
proach is shown to be highly promising, but most
methods solely focus on scope resolution, relying
on gold cue annotations. As Read et al. (Read
et al., 2012) point out: “It is difficult to compare
system performance on sub tasks, as each compo-
nent will be affected by the performance of the
previous.” This comparison will not be easier when
the performance on a sub task is not affected by the
performance of the previous component.

The main advantage of deep learning methods
is their independence of manually created features,
in contrast to other methods. However, by aiming
at scope resolution only, they indirectly still use
these features, or assume 100% accurate cues. For
complete automatic negation resolving, a neural
network model should detect the cue by itself. This
raises two questions:

1. How would a neural network-based model
perform on the cue detection task?

2. How would a neural network-based model
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Table 1: Example of a token sequence and its cue and scope labels.

Tokens it had no effect on IL-10 secretion .
Cue labels NC NC C NC NC NC NC NC
Scope labels O O C A A A A O

perform on the scope resolution task with im-
perfect cue information?

The current study addresses these questions by
applying a Bi-directional Long Short-Term Mem-
ory (BiLSTM) model (Fancellu et al., 2016) to both
stages of the negation resolving task. A BiLSTM
model has proven to be good in various NLP tasks,
yet not a very complex architecture. We develop
the proposed model and their improvements on the
BioScope Abstracts and Full Papers sub corpora
(Vincze et al., 2008). The results suggest that
word embeddings alone can detect cues reasonably
well, but there still exist better alternatives for
this task. As expected, scope resolution perfor-
mance suffers from imperfect cue information,
but remains acceptable on the Abstracts sub corpus.

As a secondary aim, the current study explores
different methods to ensure continuous scope pre-
dictions. Since the BioScope corpus only contains
continuous scopes, the Percentage Correct Scopes
will likely increase after applying such a method.
We compare a post-processing algorithm (Morante
et al., 2008) with a Conditional Random Field
(CRF) layer (Fancellu et al., 2017). The results
suggest that both methods are effective, although
the post-processing negatively affects the token-
based performance.

2 Task Modeling

Let a sentence be represented by a token sequence
t = (t1 t2 · · · tn). Following Khandelwal and
Sawant (Khandelwal and Sawant, 2020), we use
the following labeling scheme for the cue detection
task: For k = 1, . . . , n, token tk token is labeled

• C if it is annotated as a single word cue or a
discontinuous multiword cue,

• MC if it is part of a continuous multiword cue
and

• NC if it is not annotated as a cue.

The scope label of token tk token is

• O if it is outside of the cue’s negation scope,

• B if it is inside the negation scope, before the
first cue token,

• C if it is the first cue token in the scope and

• A if it is inside the negation scope, after the
first cue token.

For each sentence, Task 1 is to predict its cue
sequence c = {NC,C,MC}n given its token
sequence t and Task 2 is to subsequently predict
the scope sequence s = {O,B,C,A}n given t
and c. As an example, the token sequence t with
gold cue and scope labels of “It had [no effect on
IL-10 secretion].” are given in Table 1.

2.1 Performance measures
To measure performance, we evaluate whether the
tokens are correctly predicted as cue or non-cue
(Task 1) and as outside or inside the scope (Task
2). At the token level, both tasks are evaluated by
precision, recall and F1 measures.

At the scope level, we report the percentage of
exact cue matches (PECM) over the number of
negation sentences for Task 1. All cue tokens in the
sentences have to be correctly labeled to count as an
exact match. For Task 2, we adopt the Percentage
of Correct Scopes (PCS) as a measure of perfor-
mance, the percentage of gold negation scopes that
are completely match. To evaluate the effectiveness
of a ‘smoothing’ method, we compute the Percent-
age of Continuous Predictions (PCP) over all scope
predictions.1

3 Model Architecture

In this section, we describe the proposed model
architectures for Task 1 and Task 2. Both tasks are
performed by a neural network consisting of an em-
bedding layer, a BiLSTM layer and a softmax layer
(Figure 1). For Task 1, we define a baseline model
with an embedding layer and a softmax. For both

1Let the left and right boundary of a scope be defined as
kL = min

{
k|sk ∈ {B,C,A}

}
and kR = max

{
k|sk ∈

{B,C,A}
}

, respectively. We define a scope to be continuous
if tk = 1 for all kL ≤ k ≤ kR, and discontinuous otherwise.
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Embedding

BiLSTM

Dense

Sotftmax

Figure 1: Schematic representation of the BiLSTM model for cue detection (left) and scope resolution (right), for
the example sentence “It had no effect on IL-10 secretion.” at k = 3.

tasks, we add a model where the softmax layer is
replaced by a CRF layer to obtain a joint prediction
for the token sequence. Finally, we discuss how
the models were trained.

3.1 Word Embeddings for cue detection

The token sequence t = (t1 · · · tn) is the only
input for the cue detection models. Let Ed×v be
an embedding matrix, where d is the embedding
dimension and v is the vocabulary size. Then, each
token in t = (t1 · · · tn) is represented by a pre-
trained BioWordVec (Chen et al., 2019) embed-
ding e ∈ Rd corresponding to its vocabulary index.
These embeddings were trained by the Fasttext sub-
word embedding model with a context window size
of 20 (Bojanowski et al., 2017) on the MIMIC-III
corpus (Johnson et al., 2016). This model is able
to include domain-specific subword information
into its vector representations. Out-of-vocabulary
(OOV) tokens were represented by a d-dimensional
zero vector.

Word embeddings may represent features that
are already informative enough for the cue detec-
tion task. Therefore, we define a baseline model
where the embeddings are directly passed to a
3-unit dense layer with weights W 3×d

s and bias
bs ∈ R3. The output vector

yk =Wsek + bs = (yNC
k , yCk , y

MC
k )

contains to the ‘confidence’ scores of tagging token
k as a non-cue, cue or multiword cue, respectively.
These scores are used to obtain the final predic-
tion label pk = softmax(yk), where the softmax

function R3 → {NC,C,MC} is given by

y 7→
{
ey

NC

Z
,
ey

C

Z
,
ey

MC

Z

}
, Z =

∑
y∈y

ey.

3.2 BiLSTM for cue detection
In the BiLSTM model, the token embeddings
(e1 · · · en) are passed to a BiLSTM layer (Graves
and Schmidhuber, 2005) with 2U units, U in the
forward direction and U in the backward direction.
We represent an LSTM layer as a sequence of n
identical cells. A cell at token k is described by
the following set of equations corresponding to its
input gate ik, forget gate fk, output gate ok, candi-
date memory state γ̃k, memory state γk and hidden
state hk, respectively:

ik = σ
(
W (i)

e ek +W
(i)
h hk−1 + b(i)

)
,

fk = σ
(
W (f)

e ek +W
(f)
h hk−1 + b(f)

)
,

ok = σ
(
W (o)

e ek +W
(o)
h hk−1 + b(o)

)
,

γ̃k = tanh
(
W (γ̃)

e ek +W
(γ̃)
h hk−1 + b(γ̃)

)
,

γk = fk � γk−1 + ik � γ̃k,

hk = ok � tanh(γk),

where WU×d
e denote the weight matrices for the

token embeddings, WU×U
h denotes the recurrent

weight matrix, b ∈ Ru is a bias vector, � denotes
the Hadamard product, σ denotes the sigmoid func-
tion2 and tanh denotes the hyperbolic tangent func-
tion.3 The hidden state of the forward layer and

2The function R→ (0, 1) given by x 7→ 1/(1 + e−x)
3The function R → (−1, 1) given by x 7→ (ex −

e−x)/(ex + e−x)
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backward layer are concatenated to yield a rep-
resentation

←→
h k = (

−→
h k;
←−
h k) ∈ R2u for token

k. For each token, the output
←→
h k of the BiLSTM

layer is fed into a 3-unit softmax layer with weights
W 3×2U

s and bias bs ∈ R3, as defined in the base-
line model.

3.3 Adding a conditional random field layer

Although the context around token t is captured
by the LSTM cell, the model will still assume in-
dependence between the token predictions when
it maximizes a likelihood function. Alternatively,
we can replace the softmax layer of the cue detec-
tion models by a Conditional Random Field (CRF)
layer (Lafferty et al., 2001) to create a dependency
between the predictions of adjacent tokens. This
allows the model to learn that a single cue token
is surrounded by non-cue tokens, and that a multi-
word cue token is always followed by a next one.

Let Y = (y1 · · ·yn) be the 3 × n matrix of
model predicted scoresyNC

1 yNC
2 · · · yNC

n

yC1 yC2 · · · yCn
yMC
1 yMC

2 · · · yMC
n

 .

Consider all possible label sequences enclosed by
start/end labels P = {start}×{NC,C,MC}n×
{end}. Let p∗ ∈ P and let T ∈ R5×5 be a ma-
trix of transition scores, such that score Ti,j corre-
sponds to moving from the i-th to the j-th label in
the set {NC,C,MC, start, end}. Then, a linear
CRF yields a joint prediction for a token sequence
t by attaching it a global score

S(t, c,p∗) =

n∑
k=1

Yp∗k,k +

n∑
k=0

Tp∗k,p
∗
k+1

.

The model predicts the label sequence with the
maximum score among all possible label se-
quences:

p =p∗∈P S(t, c,p
∗)

3.4 BiLSTM for scope resolution

The scope resolution model accepts as input the
token sequence t and a cue vector (c1 · · · cn) ∈
{0, 1}n, where ck = 0 if the (gold or predicted) cue
label of token k is NC and ck = 1 otherwise. The
embedding layer yields a cue embedding q ∈ {1}d
if ck = 1 and q ∈ {0}d if ck = 0. For the token
input, we use the same embedding matrix Ev×d as
in the previous model.

The token and cue embeddings are passed to a
BiLSTM layer with 2U units. An LSTM layer is
well-suited for the scope resolution, since it can
capture long term dependencies between a cue to-
ken and a scope token. The bidirectionality ac-
counts for the fact that a scope token can be lo-
cated to the left and the right of a cue token. The
hidden state of the forward layer and backward
layer are concatenated to yield a representation←→
h k = (

−→
h k;
←−
h k) ∈ R2u for token k.

For each token, the output
←→
h k of the BiLSTM

layer is fed into a 4-unit dense layer with weights
W 2×2U

s and bias bs ∈ R2. The output vector

yk =Ws
←→
h k + bs = (yOk , y

B
k , y

C
k , y

A
k )

contains to the ‘confidence’ scores of the possible
scope labels. These scores are used to obtain the
final prediction label pk = softmax(yk).

3.5 BiLSTM + CRF for scope resolution
A BiLSTM+CRF model is also used for the scope
resolution task. The model might learn that cer-
tain sequences are impossible, for example, that
a B will never follow a C. Moreover, we expect
that the model will yield more continuous scope
predictions.

3.6 Model training
The objective of the models is to maximize the like-
lihood L(Θ) of the correct predictions p compared
to the gold labels g = (g1 · · · gn), with Θ the set
of trainable model parameters and X the inputs of
the model. For the BiLSTM models, this likelihood
is

L(Θ) =
n∏

k=1

(
pk(Θ,X)

)gt(1− pk(Θ,X)
)1−gt ,

for the BiLSTM-CRF models, this likelihood is

L(Θ) =
eS(X,p)∑

p∗∈P
eS(X,p∗)

.

Hyperparameters The models were compiled
and fitted with the Keras functional API for Ten-
sorFlow 2.3.1 in Python 3.7.6 (Abadi et al., 2016;
Van Rossum et al., 2000). Based on validation
results, we selected the Adam optimizer with an
initial learning rate 0.001 with step decay to find op-
timal values for Θ. Scope resolution models were
trained on 30 epochs with a batch size of 32. The
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Test set for scope resolution

Ngold Agold

Npred Apred

tp fn fp tn

Gold cues

Predicted cues

Figure 2: Visualization of negation sentences (N ) and assertion sentences (A) in the test set, under different
circumstances. Note: tp=true positives, fn=false negatives, fp=false positives, tn=true negatives.

cue detection models were trained with early stop-
ping, since the model showed large overfitting on
30 epochs. For the architecture hyperparameters,
we selected embedding dimension d = 200 and
number of units in the LSTM-layer U = 200. Em-
beddings were not updated during training, except
for the cue detection baseline model.

3.7 Post-processing

In Task 2, we apply a post-processing algorithm
on the predictions of the BiLSTM model to obtain
continuous scope predictions (Morante et al., 2008).
We first ensure that the cue tokens are labeled as a
scope token. In case of a discontinuous negation
cue, the tokens between the cue tokens are also
labeled as a scope token. The algorithm locates the
continuous prediction ‘block’ containing the cue
token and decides whether to connect separated
blocks around it, based on their lengths and the gap
length between them.

4 Experiments

4.1 Corpus

The current study made use of the Abstracts and
Full papers sub corpora from the open access Bio-
Scope corpus (Vincze et al., 2008). Together, these
sub corpora contain 14,462 sentences. For each
sentence, the negation cue and its scope are an-
notated such that the negation cue is as small as
possible, the negation scope is as wide as possible
and the negation cue is always part of the scope.
Resulting from this strategy, every negation cue has
a scope and all scopes are continuous.

One sentence contained two negation instances.
We represented this sentence twice, such each copy
corresponded to a different negation instance. This
resulted in 2,094 (14.48%) negation instances. A
description of the sub corpora is provided in Table
2.

Tokenization Biomedical text data poses addi-
tional challenges to the problem of tokenization
(Dı́az and López, 2015). DNA sequences, chemical
substances and mathematical formula’s appear fre-
quently in this domain, but are not easily captured
by simple tokenizers. Examples are “E2F-1/DP1”
and “CD4(+)”. In the current pipeline, the stan-
dard NLTK-tokenizer was used (Loper and Bird,
2002), in accordance with the tokenizer used by the
BioWordVec model. This resulted in a vocabulary
of 17,800 tokens, with each token present in both
sub corpora. Tokenized sentences were truncated
(23 sentences) or post-padded to match a length of
100 tokens.

4.2 Experimental set-up

For the experiments, we apply a 70-15-15 train-
validation-test split to the sub corpora. First, we
train and test the cue detection models. The set
of sentences with at least one predicted cue label
are passed to Task 2. We use the predicted cue
labels of the best model, based on the validation
F1. This predicted Negation set consists of true
positives and false positives: Npred = tp∪ fp. We
define its complement, the predicted Assertion set,
as Apred = fn ∪ tn and predict an empty negation
scope p ∈ {O}n for this set.

The models in Task 2 could be tested on Npred,
with predicted cue inputs. However, the model
performance will be affected by the presence of
false positives and absence of false negatives from
Task 1 in this set. To compare this with testing on
Ngold = tp ∪ fn with gold cue inputs, we need to
base our results on the same data. Therefore, we
use Ngold ∪ Npred = tp ∪ fn ∪ fp as a general
test set for Task 2, see Figure 2. Note that tn is not
needed, since true negatives are not involved in the
performance measures.
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Table 2: Descriptive statistics of the sub corpora.

Statistic Abstracts Full Papers

Total

Documents 1,273 9
Sentences 11,994 2,469
Negation instances 14.3% 15.2%
Tokens 317,317 69,367
OOV 0.1% 1.4%

Sentence length n

n ≤ 25 53.5% 50.6%
25 < n ≤ 50 43.2% 42.7%
50 < n ≤ 75 3.0% 5.6%
75 < n 0.3% 1.1%

Scope length S

S ≤ 10 69.9% 72.0%
10 < S ≤ 30 24.2% 22.1%
30 < S 58.7% 58.7%
Avg. S/n 0.33 0.30

Scope bounds

Avg. kL 16.4 16.2
Avg. kR 23.1 22.8
Avg. kL/n 0.51 0.47
Avg. kR/n 0.76 0.70
Scope starts with cue 85.5% 78.7%

Note: OOV = Out Of Vocabulary tokens, that is, not appearing in the
BioWordVec pre-trained embeddings. Avg. = average.

5 Results and Discussion

5.1 Task 1 performance

The results indicate that BiLSTM-based models
can detect negation cues reasonably well in the
Abstracts corpus, but perform poorly on the Full
Papers corpus. The difference not surprising, since
we know from previous studies that most models
perform worse on the Full Papers corpus. In Ta-
ble 3, we report the performance of the proposed
methods compared to the current state-of-the-art
machine learning and neural network methods. It is
clear that the models underperform on both corpora
by a large margin.

The most surprising result is that none of the
models perform remarkably better than the baseline
model of non-trainable word embeddings. Adding
a BiLSTM layer even leads to worse performance:
The precision and recall measures indicate that less
tokens are labeled as a cue with a BiLSTM layer,
reducing the false positives, but increasing the false
negatives. Apparently, the BiLSTM layer cannot
capture more syntactical information needed for
cue detection than already present in the embed-
dings. The embeddings do not benefit from a CRF
layer either. It is only with a BiLSTM-CRF com-
bination that the overall performance improves by
predicting more non-cue labels for tokens that are
indeed not a cue token. Among the currently pro-
posed models, we conclude that the BiLSTM+CRF
model is the best for the Abstracts corpus.

In contrast, training the embeddings does lead
to a better performance on the Full Papers corpus.

Here, the performance measures are more conclu-
sive. The F1 measure is halved after adding a BiL-
STM layer to the embeddings, and adding a CRF
leads to no predicted cue labels at all. We therefore
use the trained embeddings model to obtain the cue
predictions for the Full Papers corpus.

5.2 Task 2 performance

Overall, it is clear that the models suffer from im-
perfect cue information. The F1 on the scope reso-
lution task can decrease up to 9% on the Abstracts
corpus and 18% on the Full Papers corpus, when
moving from gold to predicted information, see
Table 4. The BiLSTM model seems to be the most
robust against this effect. The transition scores of a
CRF layer might make the model more receptive
to cue inputs. When the model is presented a false
positive cue, the transition score from an O-label
to a C makes it easier to predict a false positive C.
It is also clear why the post-processing algorithm
performs worse with imperfect cue information, as
it guarantees that all false positive cues will receive
a false positive scope label. This is confirmed by
the sharp drop in precision (14%) and the small
drop in recall (4%), see Table 5.

As a secondary aim, we investigated the effect
of the CRF layer and the post-processing algorithm
on the Percentage of Correct Scopes. In all cases,
we see that the post-processing algorithm yields
the highest PCS. However, this comes at the cost
of a lower F1 measure at the token level when
the model receives predicted cue inputs. Another
disadvantage of this approach is that is not easily
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Table 3: Performance of the cue detection models.

BioScope Abstracts
Method P R F1 PECM
Baseline 80.59 87.81 84.05 76.95
Emb. train (E) 79.87 89.61 84.46 74.22
E + BiLSTM 84.87 82.44 83.64 78.52
E + CRF 82.62 83.51 83.07 76.95
E + BiLSTM + CRF 83.22 87.10 85.11 80.86
Metalearner (Morante and Daelemans, 2009) 100 98.75 99.37 98.68
NegBERT (Khandelwal and Sawant, 2020) NR NR 95.65 NR

BioScope Full Papers
Method P R F1 PECM
Baseline 64.18 62.32 63.24 47.46
Emb. train (E) 60.23 76.81 67.52 49.15
E + BiLSTM 58.33 20.28 30.11 18.64
E + CRF NaN 0 NaN 0
E + BiLSTM + CRF 60.53 66.67 63.45 45.76
Metalearner (Morante and Daelemans, 2009) 100 95.72 96.08 92.15
NegBERT (Khandelwal and Sawant, 2020) NR NR 90.23 NR

Note: PECM=Percentage Exact Cue Matches.

Table 4: F1 scores on the scope resolution task with Gold versus Predicted cue inputs.

Abstracts, Cue detection F1 = 85.11
Method Gold input Predicted input Difference
BiLSTM 90.25 83.90 6.35
BiLSTM+CRF 91.58 84.43 7.15
BiLSTM+post 90.17 80.87 9.30

Full Papers, Cue detection F1 = 67.52
Method Gold input Predicted input Difference
BiLSTM 72.80 56.98 15.82
BiLSTM+CRF 76.10 59.19 16.91
BiLSTM+post 73.29 54.79 18.50

transferable to genres where the annotation style is
different. For example, discontinuous scopes are
quite common in the Conan Doyle corpus (Morante
and Daelemans, 2012).

The results indicate that the BiLSTM+CRF
model often resolves more scopes completely than
the BiLSTM model. This could be partly explained
by the increase in continuous predictions, as earlier
suggested by Fancellu et al. (Fancellu et al., 2017).
However, on the Full Papers corpus with predicted
inputs, the CRF-based model yields a lower PCS.
The precision and recall measures indicate that the
BiLSTM+CRF model predicts more positive cue
labels, which may result in scopes that are too wide.
We also see that there remains a substantive per-
centage of discontinuous predictions. This may be
solved by higher-order CRF layers, that is, includ-
ing transitions of label k to label k + 2.

6 Conclusion and Future Work

The current study adopted a neural network-based
approach to both sub tasks of negation resolv-
ing: cue detection and scope resolution. In this

way, the task would be completely independent
of hand-crafted features, and would more realis-
tically demonstrate the performance on the scope
detection task. The study showed that the applica-
bility of the BiLSTM approach does not extend to
cue detection: isolated word embeddings are just
as effective. These embeddings could capture fea-
tures that are informative for cue detection, but they
need more ‘flexible’ contextual information to dis-
tinguish negative or neutral use of a potential cue
token within a given sentence. There are various
architectures available that could tackle this prob-
lem more effectively: Encoder-Decoder LSTMs
(Wang et al., 2016), attention based architectures
(Chen, 2019; Khandelwal and Sawant, 2020; Britto
and Khandelwal, 2020), hierarchical LSTMs and
Embeddings from Language Models (ELMo and
BERT, (Peters et al., 2018; Devlin et al., 2018)).

The scope resolution performance of a
BiLSTM+CRF-based method with inaccurate cue
labels is hopeful. The model still outperforms most
early methods, and performs on par with some
recent methods. It would be interesting to assess
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Table 5: Performance of the scope resolution model on the Abstracts corpus.

BioScope Abstracts
Cues Method P R F1 PCS PCP

Gold

BiLSTM 89.80 90.70 90.25 68.34 87.89
BiLSTM+CRF 91.07 92.10 91.58 70.31 92.19
BiLSTM+post 90.43 89.92 90.17 72.66 100
Metalearner (Morante and Daelemans, 2009) 90.68 90.68 90.67 73.36 100
RecurCRFs* (Fei et al., 2020) 94.9 90.1 93.6 92.3 -
NegBERT (Khandelwal and Sawant, 2020) NR NR 95.68 NR NR

Pred

BiLSTM 81.83 86.08 83.90 58.59 83.07
BiLSTM+CRF 81.29 87.82 84.43 58.98 87.40
BiLSTM+post 76.40 85.90 80.87 60.55 100
Metalearner (Morante and Daelemans, 2009) 81.76 83.45 82.60 66.07 100

BioScope Full Papers
Cues Method P R F1 PCS PCP

Gold

BiLSTM 94.21 59.31 72.80 28.81 88.14
BiLSTM+CRF 80.87 71.86 76.10 32.20 89.83
BiLSTM+post 94.86 59.72 73.29 32.20 100
Metalearner (Morante and Daelemans, 2009) 84.47 84.95 84.71 50.26 100
NegBERT (Khandelwal and Sawant, 2020) NR NR 87.35 NR NR

Pred

BiLSTM 67.69 49.19 56.98 18.64 56.92
BiLSTM+CRF 57.55 60.93 59.19 16.95 63.08
BiLSTM+post 49.92 60.73 54.79 22.03 100
Metalearner (Morante and Daelemans, 2009) 72.21 69.72 70.94 41.00 100

Note: PCS = Percentage Correct Scopes, PCP=Percentage Continuous scope Predictions. *These results were reported for the
complete BioScope corpus.

the robustness of other neural network-based
models against imperfect cue inputs, possibly
with different levels and forms of cue accuracy.
Additionally, this robustness could be integrated in
the approach. For example, we could capture the
prediction uncertainty of the cue inputs by feeding
the probabilities instead of the labels to the scope
resolution model.
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A Appendices

A.1 Related Work
Negation resolving has been tackled by a range of
approaches: rule-based methods, Machine Learn-
ing (ML) and Conditional Random Fields (CRFs).
In this section, we will briefly discuss these ap-
proaches, followed by a discussion of neural
network-based studies. An brief overview of the
performance of earlier proposed methods is pro-
vided in Table 6.
Rule-based methods were the first methods used
for negation detection, but only later they were ap-
plied to negation resolving. Examples of rule-based
approaches are the use of regular expression algo-
rithms (Chapman et al., 2001; Mehrabi et al., 2015),
pre-defined lexicons and syntax trees, (de Albornoz
et al., 2012; Ballesteros et al., 2012) and text repre-
sentations with formal semantic structures (Basile
et al., 2012). Within this approach, it is common
to first detect the negation cues, and subsequently
resolve their scope.

Although rule-based methods show acceptable
performance on both tasks, they do not easily gen-
eralize to other domains or even data sets. Ma-
chine Learning (ML) classifiers were introduced
to overcome this problem, performing on par with
or better than rule-based methods (Lapponi et al.,
2012; Cruz et al., 2016). Examples are memory-
based learning algorithms (Morante et al., 2008),
Support Vector Machines (SVM) (Gyawali and
Solorio, 2012), metalearning approaches (Morante
and Daelemans, 2009) and hybrid methods, com-
bining SVM classifiers with heuristic rules (Read
et al., 2012; Packard et al., 2014). Most ML meth-
ods are also designed for a two-step procedure
where scope resolution is influenced by the accu-
racy of the cue predictions. Morante et al. (Morante
and Daelemans, 2009) showed the importance of
this problem by comparing their system with per-
fect and imperfect cue information, and reported a
8% decrease in token-based F1 measure. Packard
et al. (Packard et al., 2014) made a similar compar-
ison and reported a 4% F1 decrease when moving
from gold cue annotations to predicted cue labels.

The two-step procedure was also adopted by re-
searchers using Conditional Random Fields (CRF)
models. These models are well suited for sequence
labeling tasks, since a token sequence can be easily
represented as a linear graph. Most of these mod-
els achieve acceptable performance on the scope
resolution task with the use of predicted cue fea-

tures and other syntactic features (Agarwal and Yu,
2010; Abu-Jbara and Radev, 2012; White, 2012; Li
and Lu, 2018).

Recently, researchers started to investigate the
application of neural network models to scope res-
olution. In this way, hand-crafted features needed
for Machine Learning could be replaced by unsu-
pervised features. For example, Qian et al. (Qian
et al., 2016) used Convolutional Neural Networks
(CNNs) to extract path features and combined these
with position features. BiLSTM-based models be-
came the state of the art (Fancellu et al., 2016,
2017; Lazib et al., 2019), capable of integrating
word and cue embeddings into their memory cells.
Later, Fei et al. (Fei et al., 2020) outperformed this
method with a Recursive Neural Network that auto-
matically learns syntactic features, combined with
a CRF layer. All these methods aim at the scope
resolution task, assuming gold cue information.

More recently, transformer-based models have
shown to be the current state of the art (Khandelwal
and Sawant, 2020; Britto and Khandelwal, 2020).
Importantly, these models are also capable of de-
tecting negation cues. In the second stage of the
task, they use a method that replaces the original
token in the sentence by a special cue token. Cur-
rently, this stage is only performed with gold cue
tokens.

The tasks can also be solved separately, that is,
by not passing information of the first sub task
to the second. Gautam et al. (Gautam et al.,
2018) developed an Encoder-Decoder LSTM for
this approach. They showed that this model can
detect negation cues with a 100% precision in con-
versation data, using only word embeddings, and
achieved near equal performance with simple one-
hot word vectors. However, the model performed
considerably worse on the scope resolution task.

Serveega et al. (Sergeeva et al., 2019) recog-
nized the dependency of neural network-based
models on gold cue information, and proposed
a BiLSTM-based model that achieved acceptable
performance without using cue inputs. However,
they do use Part-Of-Speech (POS) tags and depen-
dency tree features. They compared model per-
formance with gold cues, predicted cues and no
cues and concluded that gold cues lead to the best
performance, with little difference between pre-
dicted cues and no cues. For the cue predictions,
they used an hierarchical LSTM model. Another
method that did not use cue inputs was proposed



12

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

ACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Table 6: Performance of existing methods on two corpora.

Conan Doyle corpus (Morante and Daelemans, 2012)
Approach Method Cue det. F1 Scope res. F1 Cue input

RB Lexicon (de Albornoz et al., 2012) 90.26 76.03 Pred
Lexicon (Ballesteros et al., 2012) 71.88 62.65 Pred

ML

Lexicon+SVM (Gyawali and Solorio, 2012) 85.77 76.23 Pred
SVM (Read et al., 2012) 92.10 85.26 Pred

MRS Crawler (Packard et al., 2014) - 86.6 Gold
82.4 Pred*

CRF CRF (Abu-Jbara and Radev, 2012) 90.98 82.70 Pred
CRF (White, 2012) 90.00 83.51 Pred

NN BiLSTM (Fancellu et al., 2016) - 88.72 Gold
NegBERT (Khandelwal and Sawant, 2020) 92.94 92.36 Gold

BioScope Abstracts corpus (Vincze et al., 2008)
Approach Method Cue det. F1 Scope res. F1 Cue input

ML
Memory-based (Morante et al., 2008) 91.54 88.40 Gold

80.99 Pred

Metalearner (Morante and Daelemans, 2009) 90.67 Gold99.37 82.60 Pred

NN

CNN (Qian et al., 2016) - 89.91 Gold
BiLSTM+CRF (Fancellu et al., 2017) - 92.11 Gold
BiLSTM (Taylor and Harabagiu, 2018) NR 88.85 None
NegBERT (Khandelwal and Sawant, 2020) 95.65 95.68 Gold

Note: RB = Rule-based, ML = Machine Learning, CRF = Conditional Random Field, NN = Neural Networks. NR = Not Reported, a dash
indicates that no cue detection was performed. *Predictions from SVM (Read et al., 2012).

by Taylor and Harabagiu (Taylor and Harabagiu,
2018). They tackled both tasks simultaneously with
a cue/outside/inside labeling scheme and showed
that the BiLSTM still correctly identified 89.02%
of the scope tokens.

A.2 Motivation of the scope labeling scheme
The scope labeling scheme was motivated by the
transition scores in a CRF model. Let T 5×5 be a
matrix such that Ti,j represents a score associated
with predicting label i for tk and label j for tk+1.
Based on the structure of a scope within a sentence,
we could expect the following kind of structure
within T , where −2 = impossible, −1 = unlikely,
1 = likely, 2 = very likely:

T =


O B C A

O 1 1 1 −2
B −2 1 1 −2
C −1 −2 −1 2
A 1 −2 −2 1




