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Abstract

How can we train graph-based models to recognize unseen classes while keeping labeling
costs low? Graph open-set learning (GOL) and out-of-distribution (OOD) detection aim to
address this challenge by training models that can accurately classify known, in-distribution
(ID) classes while identifying and handling previously unseen classes during inference. It
is critical for high-stakes, real-world applications where models frequently encounter unex-
pected data, including finance, security, and healthcare. However, current GOL methods
assume access to a large number of labeled ID samples, which is unrealistic for large-scale
graphs due to high annotation costs.
In this paper, we propose LEGO-Learn (Label-Efficient Graph Open-set Learning), a novel
framework that addresses open-set node classification on graphs within a given label budget
by selecting the most informative ID nodes. LEGO-Learn employs a GNN-based filter to
identify and exclude potential OOD nodes and then selects highly informative ID nodes for
labeling using the K-Medoids algorithm. To prevent the filter from discarding valuable ID
examples, we introduce a classifier that differentiates between the C known ID classes and an
additional class representing OOD nodes (hence, a C + 1 classifier). This classifier utilizes a
weighted cross-entropy loss to balance the removal of OOD nodes while retaining informative
ID nodes. Experimental results on four real-world datasets demonstrate that LEGO-Learn
significantly outperforms leading methods, achieving up to a 6.62% improvement in ID
classification accuracy and a 7.49% increase in AUROC for OOD detection.

1 Introduction

Graph-structured data has become increasingly important in various fields, including social networks (Xiao
et al., 2020; Fan et al., 2019; Hao et al., 2024), citation networks (Cummings & Nassar, 2020; Gao et al.,
2021), and biological systems (Ktena et al., 2017; Zhang et al., 2021b; Xu et al., 2021; 2020; Bai et al., 2020),
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due to its ability to model complex relationships between entities. Traditional node classification approaches
in these contexts typically operate under a closed-set assumption, where both the labeled and unlabeled data
are drawn from the same class distribution. However, in many real-world scenarios, models are expected
to operate in an open-set environment, encountering previously unseen classes or out-of-distribution (OOD)
data during test time (Zhang et al., 2021a; Qin et al., 2024; Dong et al., 2024; Liu et al., 2023; Guo et al.,
2023; Fang et al., 2022; Yang et al., 2024a; Heo & Kang, 2024). This discrepancy between training and test
distributions necessitates models that can classify in-distribution (ID) data while reliably detecting OOD
instances, despite being trained exclusively on ID data. Some recent works (Wu et al., 2020; Song & Wang,
2022; Zhao et al., 2020; Wu et al., 2023) have aimed to extend graph neural networks (GNNs) to the open-set
learning paradigm. On the one hand, these approaches enable GNNs to perform robustly under open-set
conditions. On the other hand, they assume access to a large amount of labeled ID data for training.
However, accessing a large amount of labeled data is unrealistic for large-scale, real-world graphs, where
obtaining accurate labeled data is costly and time-consuming (Settles, 2009; Tang et al., 2021). Without
considering the label budget, current solutions become impractical for resource-constrained settings, where
efficient use of labeled data is critical (Liu et al., 2021). Thus, improving the label efficiency is the key to
practical graph open-set learning (GOL) methods. As shown in Fig. 1, GOL refers to the task of learning
from graph data in scenarios where the unlabeled nodes may belong to unknown classes. The goal is to
accurately classify ID (known) nodes while effectively detecting and handling OOD (unknown) nodes. A
detailed problem definition of GOL is provided in §3.1.

Label Efficiency Challenges in GOL. There are two applicable approaches to addressing this issue. First,
label-efficient learning techniques, such as graph active learning (GAL), can effectively reduce labeling costs
for closed-set node classification tasks (Cai et al., 2017; Ning et al., 2022; Wu et al., 2019). They focus on
selecting the most informative nodes for labeling, minimizing the number of labels required for successful
training. Thus, GAL methods prioritize labeling nodes that exhibit high uncertainty or diversity, which often
include OOD samples that differ significantly from majority ID samples (Yan et al., 2024; Safaei et al., 2024).
However, the literature indicates that open-set learning benefits more from labeled ID data than from OOD
samples (Ning et al., 2022; Park et al., 2022; Yang et al., 2024b; Safaei et al., 2024), as OOD samples cannot be
directly used to train the target ID classifier. When querying OOD examples for labeling, human annotators
would disregard these OOD examples as they are unnecessary for the target task, leading to a waste of the
labeling budget (Park et al., 2022). Consequently, GOL benefits more from labeled ID samples than OOD
samples, which makes applying GAL methods for GOL non-ideal. Second, there are also label-efficient
learning for open-set scenarios in the context of image classification Ning et al. (2022); Park et al. (2022);
Yang et al. (2024b); Mao et al. (2024); Han et al. (2023); Yan et al. (2024). However, the grid-like structure
of image data—where each sample is assumed independent—differs fundamentally from the interconnected
nature of graphs. In graph data, nodes are not isolated but influenced by their neighboring nodes, presenting
unique challenges. Thus, label-efficient open-set methods for images do not directly translate to GOL, where
dependencies between nodes must be considered in the design. In summary, addressing the intersection
of open-set classification, label efficiency, and OOD detection for graph data—referred to as GOL in this
work—presents a complex challenge. There is a pressing need for novel approaches that balance label
efficiency and accurate OOD detection in graphs, ensuring that models generalize effectively while operating
within labeling constraints.

Our Observations and Proposal. Consider a citation network where the goal is to classify papers into
specific ML research fields, such as robotics, computer vision, and natural language processing (see Fig. 1).
However, the network also includes papers from unrelated fields like neuroscience and biology, which do not
contribute to the primary classification task. Labeling these OOD papers would be inefficient, as they do not
aid in training the ID classifier, as we discussed above. Therefore, a practical label-efficient GOL method is
needed, with two key properties: (1) accurately identifying and filtering OOD nodes and (2) selecting the
most informative ID nodes for labeling to enhance classifier training.

In this work, we focus on label-efficient graph open-set learning (see the problem definition in §3.1), aiming to
train an accurate and robust ID classifier within a specific label budget. Our objective is to select informative
ID examples for training, enabling the classifier to make confident predictions for ID nodes and effectively
detecting OOD nodes, where the classifier is expected to show low confidence. To achieve this, we propose

2



Published in Transactions on Machine Learning Research (05/2025)

a label-efficient graph open-set learning framework, termed LEGO-Learn. Our approach addresses two key
challenges: (1) filtering out OOD nodes while preserving informative ID nodes, and (2) selecting the most
valuable ID nodes for labeling. As shown in Fig. 2, we start by tackling the first challenge: filtering OOD
nodes. We introduce a GNN-based filter, which captures graph structure and node dependencies to identify
potential OOD nodes. This step ensures that most OOD nodes are removed before any labeling occurs.
Next, we focus on selecting the most informative ID nodes for labeling. Given the limited label budget, we
use the K-Medoids algorithm to choose diverse, representative nodes from the filtered potential ID set. This
ensures that the labeled nodes provide maximum utility for training the classifier by covering various parts
of the graph’s feature space. Once we have the labeled ID nodes, they are used to train our ID classifier.
However, we found that while a strong filter effectively removes OOD nodes, it can also discard informative
ID nodes. To mitigate this, we design a (C + 1) class classifier with a weighted cross-entropy loss. This
classifier reduces the risk of over-filtering by penalizing the removal of valuable ID nodes, ensuring that the
filter retains a balanced set of useful data for further training.

Figure 1: The illustration of graph open-set classifica-
tion in a citation network. We aim to classify papers
into ML research fields such as robotics, CV, and NLP
(ID classes). We want to find nodes from ID classes to
train the ID classifier.

Our technical contributions include:
• First Label-efficient Graph Open-set

Learning Method. To the best of our knowl-
edge, we are the first to identify this critical
real-world problem and provide a thorough
setting and solution.

• Novel Framework Design. We introduce
LEGO-Learn, a general framework that effec-
tively filters out potential OOD nodes while se-
lecting highly informative ID nodes for manual
labeling. The core of LEGO-Learn is a GNN-
based filter, designed with a weighted cross-
entropy loss to balance between purity—the pro-
portion of retained ID examples—and informa-
tiveness—the usefulness of selected examples for
improving the target task.

• Effectiveness. LEGO-Learn is validated on four
extensive node classification datasets, all under
label budget constraints. Experimental results
show that LEGO-Learn can efficiently filter out
OOD nodes and improve both ID classification
and OOD detection. Specifically, LEGO-Learn
achieves up to a 6.62% increase in classification

accuracy and a 7.49% improvement in AUROC for OOD detection compared to 12 baseline methods.
The code is available at: https://github.com/zhengtaoyao/lego.

2 Related Work

2.1 Node-level Graph Open-set Learning

Recent literature has extensively studied the detection of OOD samples on which models should exhibit
low confidence. OODGAT (Song & Wang, 2022) introduces a GNN model that explicitly captures the
interactions between different kinds of nodes, effectively separating inliers from outliers during feature prop-
agation. OpenWGL (Wu et al., 2020) introduces an uncertain node representation learning method based on
a variational graph autoencoder, which can identify nodes from unseen classes. GKDE (Zhao et al., 2020)
introduces a network for uncertainty-aware estimation, designed to predict the Dirichlet distribution of nodes
and detect OOD data. GNNSafe (Wu et al., 2023) demonstrates that standard GNN classifiers inherently
have strong capabilities for detecting OOD samples and introduces a provably effective OOD discriminator
built on an energy function derived directly from graph neural networks trained using standard classification
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loss. However, all of these methods assume the availability of sufficient ID labels in an open-set scenario,
which is not always practical in real-world situations where labeled data is often costly to obtain.

2.2 Label-efficient Graph Learning

Many label-efficient learning methods are designed to optimize the performance of semi-supervised node
classification under a label budget constraint. AGE (Cai et al., 2017) selects the most informative nodes
for training by considering both graph-based information (such as node centrality) and the learned node
embeddings (including node classification uncertainty and embedding representativeness). FeatProp (Wu
et al., 2019) selects nodes by propagating their features through the graph structure, followed by K-Medoids
clustering, which makes it less susceptible to inaccuracies in the representations learned by under-trained
models. Recently, based on K-Medoids clustering to select important nodes, MITIGATE (Chang et al., 2024)
devises a masked aggregation mechanism for generating distance features that consider representations in
latent space and features in the previously labeled set. These graph label-efficient learning methods are
usually based on the closed-set assumption that the unlabeled data are drawn from known classes, which
causes them to fail in open-set node classification tasks. OWGAL (Xu et al., 2023) studies the learning
problem on evolving graphs with insufficient labeled data and known classes. It uses prototype learning and
label propagation to assign high uncertainty scores to target nodes in both the representation and topology
spaces. While also considering label efficiency in open-world settings, their approach differs from ours by
dynamically expanding the GNN classifier to accommodate new known classes instead of detecting OOD
nodes. In contrast, our goal is to train a robust ID classifier, with a fixed number of known classes, that
achieves high label efficiency in the open-set setting.

2.3 Label-efficient Open-set Annotation

Label-efficient open-set learning has been widely studied in image classification field. LfOSA (Ning et al.,
2022) is one of the first active learning framework for real-world large-scale open-set annotation tasks. It can
precisely select examples of known classes by decoupling detection and classification. MQ-Net (Park et al.,
2022) utilizes meta-learning techniques to achieve the optimal balance between purity and informativeness.
PAL (Yang et al., 2024b) evaluates unlabeled instances based on informativeness and representativeness,
balancing pseudo-ID and pseudo-OOD instances in each round. Actively querying pseudo-OOD instances
improves both the ID classifier and OOD detector. EOAL (Safaei et al., 2024) quantifies uncertainty using
closed-set and distance-based entropy scores to distinguish known from unknown samples, then applies
clustering to select the most informative instances. Yan et al. (2024) selects highly informative ID samples
by balancing two proposed criteria: contrastive confidence and historical divergence, which measure the
possibility of being ID and the hardness of a sample, respectively. However, these approaches are based on
the assumption that data samples are generated independently, making them difficult to apply to graph-
structured data, where node instances are interdependent.

3 Proposed Method

3.1 Problem Definition

Node-level Graph Open-set Classification. Given a graph G = (V, E , X), where V is the set of nodes and
E is the set of edges, along with node features X = {xv | v ∈ V} and node labels Y = {yv | v ∈ V}. We have
a limited labeled node set VL and a large unlabeled node set VU , where VL = {vL

i }nL
i=1 and VU = {vU

j }nU
j=1.

Each labeled node vL
i belongs to one of C known classes YL = {yc}C

c=1, while an unlabeled node vU
j may

belong to an unknown class not included in YL.

The problem is framed in a semi-supervised, transductive setting, where we can access the full set of nodes
during training but only a subset of class labels (ID classes). In general, the task is twofold:

1. OOD Detection: For each node v ∈ V, determine whether it belongs to one of the in-distribution C
known classes or from the out-of-distribution unknown classes.
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Figure 2: An overview of our framework LEGO-Learn. The first step is to use a GNN-based filter to identify
and remove OOD nodes, while using a C + 1 classifier with weighted cross-entropy loss to avoid mistakenly
eliminating valuable ID nodes (§3.3). A K-Medoids-based node selection method (§3.5) is then applied to
choose the most informative ID nodes, which are annotated and used for the next round of training the
ID classifier (§3.4). Finally, the filter is retrained with both ID and unknown nodes, and a post-hoc OOD
detection method is applied to strengthen the ID classifier’s ability to recognize unseen classes (§3.6).

2. ID Classification: For nodes identified as ID nodes, classify them into one of the predefined C classes.

Label-efficient Graph OOD Detection and ID Classification. Given an initial training set Vtrain on G,
a labeling budget B, and a loss function l, our goal is to selectively construct a query set that contains as many
known (ID) examples as possible. At the same time, we aim to select the most informative and representative
ID nodes. After selection, the chosen ID nodes are labeled with class labels, while the remaining selected
nodes are considered unknown (OOD) nodes.
The goal of the selection procedure is to select a subset of nodes under a label budget constraint, such that
querying their labels will allow us to construct a strong ID classifier. Thus we want to select a subset of
nodes Vs ⊂ V \ Vtrain that produces a model f with the lowest loss on the remaining nodes Vtest:

arg min
Vs:|Vs|=B

Evi∈Vtest [l(yi, ỹi)] (1)

where f is our target ID classifier, ỹi is the label prediction with f of node vi. Specifically, let VL be the
current labeled set, VU the pool of unlabeled nodes available for selection, and VO the set of nodes identified
as OOD, i.e., not belonging to any known ID class. Then after querying the labels of the selected nodes
Vs, p known nodes Vs

L are annotated and the labeled set is updated to VL = VL ∪ Vs
L, while q nodes Vs

O

with unknown OOD classes are added to the unknown set VO and VO = VO ∪ Vs
O. Also, VU = VU \ Vs and

|B| = p + q. Thus, the precision of ID classes can be defined as:

precision = p

p + q
(2)

3.2 Overview of LEGO-Learn

In real-world scenarios, graphs often contain a large number of unlabeled nodes, many of which may be
OOD nodes and irrelevant to the target task. Remember that our objective is to train an ID classifier using
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only a limited number of ID labels, aiming for high accuracy in ID classification while effectively detecting
OOD data, where the classifier is expected to exhibit low confidence. Therefore, we strive to filter out as
many OOD nodes as possible before labeling. To achieve this, the first step is to design a GNN-based
filter to identify and remove potential OOD nodes (see §3.3). However, many useful ID nodes often exhibit
high prediction uncertainty, especially during the initial rounds of training. These “hard but informative"
ID nodes are more likely to be mistaken for OOD nodes. As a result, filtering out OOD nodes may also
unintentionally remove a significant number of these valuable ID nodes. To mitigate this issue, we employ a
C + 1 classifier with a weighted cross-entropy loss to strike a balance between purity—ensuring that filtered
nodes are truly OOD—and informativeness—retaining as many useful ID nodes as possible.

Using the current labeled ID nodes, we can train the target ID classifier and generate node representations
(see §3.4). Then we can obtain the representation of the unlabeled potential ID nodes from the ID classifier
and the filter. Next, a K-Medoids-based node selection method is applied to select the most informative
nodes from the unlabeled potential ID nodes (see §3.5). After these informative nodes are annotated, the
newly labeled ID nodes can be used in the next round of training for the target ID classifier. Additionally,
both the unknown OOD nodes and the labeled ID nodes are employed to retrain the GNN filter. After
training the ID classifier with all the annotated nodes, any post-hoc OOD detection methods can be applied
to the classifier to enhance its ability to recognize unseen classes (see §3.6). Fig. 2 illustrates the pipeline of
the proposed framework LEGO-Learn.

Algorithm 1 The LEGO-Learn algorithm
1: Require: Current filter fθ and classifier gθ, current labeled set VL, unknown set VO and unlabeled set

VU , query batch size b
2: Ensure: θf , θg, VL, VO and VU for the next iteration
3: Process:
4: # Filter training ▷ §3.3
5: Update θf by minimizing Lf in Eq. (4) using VL and VO

6: Get the current potential unlabeled ID nodes VID
U from the first C classes of prediction of unlabeled

set VU

7: # ID classifier training ▷ §3.4
8: Update θg by minimizing L in Eq. (7) using VL

9: Get the embeddings HID
U of nodes VID

U

10: # K-Medoids based node selection ▷ §3.5
11: Compute pairwise distance based on embeddings HID

U and get m medoids
12: Select b nodes Vs from the m medoids with the highest uncertainty of prediction
13: # Node annotation
14: Query the selected nodes’ labels and obtain Vs

L and Vs
O, where |Vs

L| + |Vs
O| = |Vs| = b

15: Update labeled, unknown, and unlabeled sets: VL = VL ∪ Vs
L, VO = VO ∪ Vs

O and VU = VU \ Vs

16: Output: θf , θg, VL, VO and VU for the next iteration
17: # OOD detection ▷ §3.6
18: Apply post-hoc OOD detection methods to the trained ID classifier for identifying OOD nodes.

3.3 Step 1: Removing OOD Nodes via GNN Filter

Assume that we want to train a C-class ID classifier. To achieve this, we extend the filter with an additional
(C +1)− th output to predict the unknown class. We want to detect whether a node belongs to an unknown
(C + 1) − th class, possibly filtering out as many OOD nodes as possible before annotation. In this case,
we select nodes predicted to belong to the first C known classes for the next step, while excluding those
identified as unknown. In this paper, we use a two-layer standard graph convolutional network (GCN) as
the OOD filter, and set the output dimension of the last layer as C + 1.

The output of the OOD filter is the representation matrix Zfilter ∈ RN×(C+1) for all nodes:

Zfilter = GNNfilter(A, X) (3)
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Here, we denote the OOD filter as GNNfilter. However, sometimes the graph has many OOD nodes (i.e,
the number of OOD nodes is much larger than the number of nodes of any ID class). To prevent filtering
out too many useful ID nodes, we use the following weighted cross-entropy loss function:

Lf = −
N∑

i=1
(

C∑
c=1

y
(c)
i log p̂

(c)
i + w(C+1)y

(C+1)
i log p̂

(C+1)
i ). (4)

Here we introduce the weight w(C+1) to balance the purity and informativeness. While a larger w(C+1) can
effectively filter out OOD nodes, it may also unintentionally remove many highly informative ID nodes, which
is undesirable for the later process. Conversely, a smaller w(C+1) is preferable when OOD nodes dominate
the training set, as it prevents the excessive removal of valuable ID data.

With Zfilter from the GNN filter, we can select the nodes predicted to belong to the first C classes as
potential ID nodes and pass them to the node selection module to further select the most informative ones
for labeling. The unlabeled set is denoted as VU , and the potential ID node set is represented as VID

U .

To specify the relationship between VID
U and VU more precisely, we use the output of the OOD filter Zfilter

to identify the indices of the potential unlabeled ID nodes by selecting nodes whose predicted class labels
fall within the known classes 1 to C:

idx =
{

i ∈ VU

∣∣ arg max
c

Zfilter[i, c] ≤ C

}
(5)

Finally, the potential ID node set is defined as:

VID
U =

{
vi

∣∣ i ∈ idx
}

(6)

3.4 Step 2: Train ID Classifier with the Current ID Node Set

With the help of the OOD filter, we can train the target ID classifier with more labeled ID nodes while
adhering to the label budget constraint. Assume that the current labelled node set is VL, then the cross-
entropy loss function for node classification over the labeled node set is defined as:

L = − 1
|VL|

∑
i∈VL

C∑
c=1

yic ln ŷic (7)

Here, any GNN can be used as the ID classifier. For example, consider a two-layer GCN. The output of the
first layer is as follows:

H = σ
(

D̃− 1
2 ÃD̃− 1

2 XW(0)
)

(8)

where Ã = A + I and D̃ii =
∑

j Ãij , I is the identity matrix, and W(0) is the weight matrix. This
propagated node feature matrix H is used for subsequent clustering to select the most informative nodes.
The final output of the ID classifier is the representation matrix Z ∈ RN×C for all nodes, which is:

Z = σ
(

D̃− 1
2 ÃD̃− 1

2 HW(1)
)

(9)

3.5 Step 3: K-Medoids Based Node Selection

Most node selection methods generally prioritize nodes with high prediction uncertainty or diverse repre-
sentations for labeling. However, open-set noise distorts these metrics, as OOD nodes also exhibit high
uncertainty and diversity due to their lack of class-specific features or shared inductive biases with ID ex-
amples. Thanks to our OOD filter, which removes many OOD nodes, we can focus on selecting the most
informative ones from the remaining potential ID nodes.
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After obtaining the indices idx of the first C classes of unlabeled nodes predicted by the OOD filter and
the propagated node feature matrix H from the ID classifier, we can derive the representation of potential
unlabeled ID nodes:

HID
U = H(idx, :) (10)

Then we compute the pairwise Euclidean distance between nodes in the unlabeled potential ID node set:

d(vi, vj) = ∥hi − hj∥2 , (11)

where hi and hj are the propagated node feature of node vi, vj from the ID classifier. Similar to prior
studies (Liu et al., 2022), we then perform K-Medoids clustering on VID

U , where the centers selected for the
candidate set must be actual nodes within the graph. The number of clusters is defined as m. After getting
the m medoids, we select the top b nodes with the highest uncertainty of prediction for annotation.

3.6 Post-hoc OOD Detection

Our goal is to develop a powerful and robust ID classifier. To achieve this, the classifier must excel in two
key aspects: first, it should provide accurate and high-confidence predictions for ID nodes; second, it should
give low-confidence predictions for OOD nodes, ensuring effective differentiation between the two. In this
way even without a post-hoc method the ID classifier inherently possesses the ability to identify an OOD
node.

Any post-hoc OOD detectors (Liang et al., 2017; Lee et al., 2018; Hendrycks & Gimpel, 2016; Yang et al.,
2022) can be applied into our framework, since the ID classifier is already capable of OOD detection (Wu
et al., 2023; Vaze et al., 2021), and a good post-hoc method will strengthen its OOD detection ability. For
each node vi, it has a final representation vector zi ∈ RC from the output of ID classifier. Here we simply use
the entropy of the predicted class distribution as OOD scores as in Macêdo et al. (2021); Ren et al. (2019).
The entropy of zi is calculated as follows:

ei = −
C∑

j=1
zij log(zij) (12)

The higher the entropy of zi, the more likely it is that node vi belongs to an unknown class. The process of
LEGO-Learn approach is summarized in Algorithm 1.

4 Experiments

Our experiments address the following research questions (RQ): RQ1 (§4.2): How effective is the proposed
LEGO-Learn in ID class classification and node-level OOD detection in comparison to other leading base-
lines? RQ2 (§4.3 and §4.4): What nodes are important for open-set classification and how does the OOD filter
influence the open-set learning performance? RQ3 (§4.5): How do different design modules in LEGO-Learn
impact its effectiveness?

4.1 Experimental Setup

4.1.1 Datasets

We test LEGO-Learn on four real-world datasets (Sen et al., 2008; Shchur et al., 2018; McAuley et al., 2015)
that are widely used as benchmarks for node classification, i.e., Cora, AmazonComputers, AmazonPhoto and
LastFMAsia. We preprocess datasets using the same pipeline as in Song & Wang (2022). For each dataset,
we split all classes into ID and OOD sets, ensuring that the ID classes are relatively balanced in terms of
node count. The OOD class and OOD ratio for the four datasets are shown in Appendix A. Additionally,
the number of ID classes is set to a minimum of three to prevent overly simple classification tasks.

For each dataset with C ID classes, we randomly select 10 × C of ID nodes and the same number of OOD
nodes as the validation set. We then randomly select 500 ID nodes and 500 OOD nodes as the test set. All
remaining nodes constitute the "unlabeled node pool".
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Table 1: Performance comparison (best highlighted in bold) of different models on ID classification and OOD
detection tasks for Cora and Amazon-CS datasets. LEGO-Learn achieves the best across all baselines.

Model Method Cora Amazon-CS
ID ACC ↑ AUROC ↑ AUPR ↑ FPR ↓ ID ACC ↑ AUROC↑ AUPR ↑ FPR↓

GCN-ENT

Random 0.8254 0.7742 0.7821 0.5190 0.7420 0.6686 0.6833 0.6604
Uncertainty 0.8112 0.7609 0.7585 0.5689 0.5920 0.5963 0.5952 0.7788

FeatProp 0.8530 0.7678 0.7696 0.5500 0.7346 0.7082 0.7121 0.6079
MITIGATE 0.8346 0.7551 0.7649 0.5511 0.6304 0.6666 0.6551 0.7039

OODGAT

Random 0.7287 0.7861 0.8165 0.4533 0.8048 0.7533 0.7652 0.4849
Uncertainty 0.7884 0.7961 0.8173 0.4615 0.7428 0.7564 0.7853 0.4630

FeatProp 0.7772 0.8055 0.8233 0.4414 0.8044 0.8135 0.8276 0.3757
MITIGATE 0.7998 0.7965 0.8175 0.4579 0.7950 0.8446 0.8361 0.3553

GNNSafe

Random 0.8166 0.7390 0.7585 0.7092 0.7490 0.6445 0.6437 0.7836
Uncertainty 0.7892 0.7226 0.7163 0.6582 0.6656 0.6031 0.5982 0.7864

FeatProp 0.8448 0.7473 0.7560 0.6640 0.7290 0.6820 0.6620 0.7034
MITIGATE 0.8410 0.7633 0.7728 0.6256 0.7088 0.6536 0.6390 0.7440

LEGO-Learn 0.8684 0.8804 0.8878 0.2869 0.8710 0.8533 0.8474 0.3216

Table 2: Performance comparison (best highlighted in bold) of different models on ID classification and
OOD detection tasks for Amazon-photo and LastFMAsia datasets. LEGO-Learn achieves the best across
all baselines.

Model Method Amazon-photo LastFMAsia
ID ACC ↑ AUROC ↑ AUPR ↑ FPR ↓ ID ACC ↑ AUROC ↑ AUPR ↑ FPR ↓

GCN-ENT

Random 0.9054 0.7970 0.7937 0.4883 0.6902 0.7990 0.8148 0.4702
Uncertainty 0.7784 0.7228 0.7158 0.6270 0.6170 0.7306 0.7366 0.6079

FeatProp 0.8950 0.8014 0.7983 0.4888 0.6518 0.7765 0.7788 0.5425
MITIGATE 0.8552 0.7818 0.7744 0.5234 0.6598 0.7719 0.7751 0.5547

OODGAT

Random 0.9306 0.8776 0.8891 0.2863 0.7616 0.8752 0.8917 0.3005
Uncertainty 0.9098 0.8173 0.8336 0.3978 0.6888 0.8307 0.8518 0.3963

FeatProp 0.9390 0.8823 0.8806 0.2955 0.7278 0.8662 0.8786 0.3406
MITIGATE 0.9264 0.8628 0.8693 0.3373 0.7088 0.8448 0.8645 0.3735

GNNSafe

Random 0.8936 0.7664 0.7560 0.5869 0.6980 0.7885 0.7998 0.5997
Uncertainty 0.8066 0.7077 0.6970 0.6873 0.6470 0.6962 0.6905 0.6957

FeatProp 0.8794 0.7550 0.7297 0.5931 0.6652 0.7318 0.7240 0.6527
MITIGATE 0.8672 0.7695 0.7542 0.5944 0.6662 0.7113 0.7046 0.6868

LEGO-Learn 0.9648 0.9257 0.9279 0.1856 0.7818 0.8852 0.9035 0.2627

4.1.2 Baselines

We compare LEGO-Learn with two types of baselines: (1) graph OOD detection methods, including GCN-
ENT (Kipf & Welling, 2016), OODGAT (Song & Wang, 2022), GNNSafe (Wu et al., 2023) (2) node selection
methods for node classification, including random, uncertainty (Luo et al., 2013), FeatProp (Wu et al., 2019),
MITIGATE (Chang et al., 2024). However, since there are no current methods specifically designed for our
setting, we need to modify the baselines to better fit our context. In general, we use the following baselines:

• GCN-ENT-random, GCN-ENT-uncertainty, GCN-ENT-FeatProp, GCN-ENT-MITIGATE: we use GCN
as the backbone of ID classifier and node embeddings’ entropy as post-hoc OOD detection method. We
use four different selection methods to select training nodes to label: (1) randomly select nodes from
the unlabeled node pool (2) select the nodes with largest uncertainty of predictions (3) use graph active
learning method FeatProp (Wu et al., 2019) to select nodes (4) use the K-Medoids based method with
masked aggregation mechanism proposed in Chang et al. (2024) to select nodes.
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• OODGAT-random, OODGAT-uncertainty, OODGAT-FeatProp, OODGAT-MITIGATE: we use
OODGAT as the ID classification and OOD detection backbone and combine it with the previous four
selection strategies.

• GNNSafe-random, GNNSafe-uncertainty, GNNSafe-FeatProp, GNNSafe-MITIGATE: similarly, we use
GNNSafe as the graph open-set classification backbone, combining it with the previous four selection
strategies.

For our model LEGO-Learn, we use two OODGAT layers as ID classifier and entropy as OOD score. We use
two standard GCN layers as the OOD filter. It is important to note that we rely solely on the ID classifier for
OOD detection, as our goal is to assess its ability to make accurate predictions for ID nodes while effectively
identifying OOD nodes.

4.1.3 Evaluation Metrics

For the ID classification task, we use classification accuracy (ID ACC) as the evaluation metric. For the OOD
detection task, we employ three commonly used metrics from the OOD detection literature (Song & Wang,
2022): the area under the ROC curve (AUROC), the precision-recall curve (AUPR), and the false positive
rate when the true positive rate reaches 80% (FPR@80). In all experiments, OOD nodes are considered
positive cases. Details about these metrics are provided in Appendix B.

4.1.4 Implementation Details

The initial label budget for all datasets is 5 nodes per ID class. The total label budget is 15 nodes per ID
class. For each round of selection, we select 2×C of nodes from the unlabeled pool and annotate the selected
nodes for all methods. It should be noted that although the total number of final labeled nodes is 15 × C,
many of these labeled nodes may be OOD nodes and therefore cannot be used to train the ID classifier.

For all K-Medoids based selection methods, the number of clusters is set to 48. In each round of node
selection, we select 2×C of nodes with the highest uncertainty of prediction from the 48 medoids. All GCNs
have 2 layers with hidden dimensions of 32. The weight for the unknown class in the filter’s loss function is
chosen from {0.001, 0.1, 0.2} based on the results of the validation set. All models use a learning rate of 0.01
and a dropout probability of 0.5. We average all results across 10 different random seeds.

4.2 Main Results

We present the performance comparison of different models on ID classification and OOD detection tasks
for four datasets in Tables 1 and 2. From the results, we make the following observations:

1. LEGO-Learn outperforms all baselines: Across all datasets, our proposed method LEGO-Learn
consistently outperforms all baseline models in both ID classification accuracy and OOD detection metrics.
Specifically, on four datasets, for ID classification, the best improvement is observed on Amazon-photo
dataset, where ID accuracy increases from 80.48% (achieved by the best baseline OODGAT with random
selection) to 87.10%, a 6.62% improvement. Moreover, LEGO-Learn demonstrates remarkable improvement
in OOD detection metrics, achieving higher AUROC and AUPR scores while maintaining a lower FPR@80
across all datasets. The best improvement is seen on the Cora dataset, where the OOD AUROC increases
from 80.55% (achieved by the best baseline, OODGAT with FeatProp) to 88.04%, a 7.49% improvement.

2. Effectiveness of K-Medoids clustering: The baselines incorporating FeatProp and MITIGATE, which
use clustering-based node selection methods, generally perform better than those using uncertainty-based
selection. This suggests that clustering helps select more informative nodes. However, they still fall short
compared to LEGO-Learn, highlighting the effectiveness of our integrated approach that combines OOD
filtering with clustering.

3. Limitations of uncertainty-based selection: Baselines using uncertainty-based node selection often
perform worse than those using random selection because they tend to select nodes with high prediction
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uncertainty, which are often OOD nodes in an open-set setting, leading to lower precision and negatively
affecting the performance of the ID classifier.

4. OODGAT layer can enhance OOD detection performance more than ID classification ac-
curacy: Using the same node selection method, models employing OODGAT layers as the backbone for
the ID classifier generally demonstrate significantly better OOD detection performance compared to those
with GCN layers. This improvement arises because OODGAT layers are specifically designed for node-level
OOD detection, effectively separating ID nodes from OOD nodes during feature propagation. However, due
to having more parameters than standard GCN layers, OODGAT layers may struggle to achieve high ID
classification accuracy when the number of labeled nodes available for training is limited.

4.3 What Nodes Are Important for Graph Open-set Classification?

We calculate the final precision of ID nodes for various selection methods, as defined in Ning et al. (2022).
Precision here refers to the ratio of true ID nodes to the total number of selected and annotated nodes. The
baseline results are averaged across three different graph open-set learning models. As shown in Table 3,
LEGO-Learn achieves the highest precision across all datasets. This demonstrates our method can effectively
filter out OOD nodes before node selection and annotation. Interestingly, most node selection methods
achieve lower precision compared with random selection. That is because current selection methods tend to
select nodes with higher uncertainty in predictions or greater diverse in representations, while nodes with
higher uncertainty are more likely to be OOD nodes.

Table 3: Precision values of ID nodes.

Model Method Cora
Amazon-

CS
Amazon-

Photo
LastFM-

Asia

GCN-ENT

random 0.4783 0.4933 0.4853 0.4600
uncertainty 0.3500 0.4053 0.2960 0.2874
FeatProp 0.3383 0.4067 0.2920 0.2622

MITIGATE 0.3333 0.4080 0.2747 0.2852

OODGAT

random 0.4783 0.4933 0.4853 0.4600
uncertainty 0.3400 0.2973 0.3093 0.2370
FeatProp 0.3350 0.3427 0.2600 0.2444

MITIGATE 0.3433 0.3040 0.2600 0.2274

GNNSafe

random 0.4783 0.4933 0.4853 0.4600
uncertainty 0.3467 0.4560 0.3160 0.3274
FeatProp 0.3650 0.4240 0.3013 0.2889

MITIGATE 0.3667 0.4346 0.2893 0.2889
LEGO-Learn 0.5733 0.6333 0.6173 0.6978

Although current node selection methods cannot select a high proportion of ID nodes from the unlabeled node
pool, they can achieve competitive performance compared to random selection, which has higher precision.
This suggests that highly informative nodes are very useful for training the ID classifier. Our method can
not only select informative nodes but can also filter out many potential OOD nodes, enabling it to achieve
both high precision in ID node selection and high classification accuracy.

4.4 A Strong Filter Is Not All You Need

In general, if the GNN filter can remove more OOD nodes, the precision of ID nodes will improve. As a
result, the ID classifier will be better trained with more ID nodes and perform more effectively. However,
this is not always the case. While a filter with a large w(C+1) (strong filter) can filter out more OOD nodes,
it does not always lead to improved performance of the ID classifier. We compare the performance of our
method using a strong filter (w(C+1) = 1) and a normal filter (w(C+1) = 0.1) on LastFMAsia dataset. The
results are shown in Table 4.
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Table 4: Comparison of strong filter and normal filter performance on LastFMAsia. The strong filter may
improve ID classification precision while decreasing the accuracy.

ID ACC ↑ AUROC ↑ AUPR ↑ FPR ↓ Precision ↑
Strong Filter 0.7602 0.8818 0.9010 0.2636 0.7444
Normal Filter 0.7810 0.8710 0.8881 0.3036 0.6385

As we can see from the results, the strong filter significantly increases the precision of ID nodes (from 0.6385
to 0.7444) but does not enhance ID classification performance (a drop from 0.7810 to 0.7602) compared to
the normal filter with a smaller w(C+1). This indicates that while a strong filter removes out more OOD
nodes before annotation, it also filters out many useful ID nodes. As a result, it becomes impossible to select
these valuable nodes in later stages. Often, these informative ID nodes are more similar to OOD nodes due
to their high prediction uncertainty. More importantly, this demonstrates that highly informative nodes are
crucial for training the ID classifier. Sometimes, using fewer informative nodes is more effective for training
the ID classifier than relying on a larger number of simpler nodes. In summary, this suggests that we should
use the weight w(C+1) to balance purity and informativeness. We leave the design of a more powerful filter,
capable of removing most OOD nodes while retaining the majority of informative ID nodes, for future work.

4.5 Ablation Study

To understand the contribution of each component in our proposed framework LEGO-Learn, we conduct an
ablation study on Cora dataset by systematically removing or altering specific modules and observing the
impact on the performance. Table 5 presents the results of this study across four key variants of our model:

Table 5: Ablation study on Cora. LEGO-Learn achieves the best performance.
ID ACC ↑ AUROC ↑ AUPR ↑ FPR ↓

LEGO-Learn-ATT 0.8644 0.8285 0.8299 0.4220
LEGO-Learn-Filter 0.7998 0.7965 0.8175 0.4579
LEGO-Learn-Cluster 0.7764 0.7689 0.8023 0.4683
LEGO-Learn 0.8684 0.8804 0.8878 0.2869

• LEGO-Learn-ATT: The OODGAT layer in the GNN-based ID classifier for LEGO-Learn is replaced
with GCN-ENT.

• LEGO-Learn-Filter: The backbone uses K-Medoids clustering for node selection but omits the OOD
filtering process. All unlabeled nodes in the original graph are used for clustering, and the medoids with
highest uncertainty are selected for annotation. The annotated ID nodes are used to train the ID classifier.

• LEGO-Learn-Cluster: The node clustering part is removed. The backbone employs the GNN-based
OOD filter without additional clustering or selection steps. Instead, after filtering, nodes are randomly
selected for annotation to train the ID classifier.

LEGO-Learn vs. LEGO-Learn-Filter/LEGO-Learn-Cluster: The performance of LEGO-Learn (the
complete framework) significantly outperforms both LEGO-Learn-Filter and LEGO-Learn-Cluster, demon-
strating the necessity of each component. The node selection module better selects the most informative
nodes, allowing the ID classifier to be well-trained. Additionally, the filter is crucial because it removes most
of the OOD nodes, thereby improving the purity of ID nodes.

Impact of OODGAT Layer (LEGO-Learn-ATT): Replacing the original OODGAT layer with a stan-
dard GCN-ENT model (LEGO-Learn-ATT) results in a noticeable drop in both AUROC (from 0.8804 to
0.8285) and AUPR (from 0.8878 to 0.8299). The GNN-based OODGAT layer clearly enhances the per-
formance of the model in detecting OOD nodes compared to GCN layers, suggesting that the attention
mechanism used for separating ID nodes and OOD nodes can lead to better OOD detection.
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5 Conclusion and Future Directions

In this paper, we addressed the problem of label-efficient graph open-set learning for the first time and in-
troduced LEGO-Learn (Label-Efficient Graph Open-set Learning), a novel framework designed to tackle the
challenges of open-set node classification on graphs under strict label budget constraints. LEGO-Learn in-
tegrates a GNN-based OOD filter with a K-Medoids-based node selection strategy, enhanced by a weighted
cross-entropy loss to balance the retention of informative ID nodes while filtering out OOD nodes. Our
extensive experiments on four real-world datasets demonstrate that LEGO-Learn consistently outperforms
state-of-the-art methods in both ID classification accuracy and OOD detection under label budget con-
straints. Ablation studies further highlight the importance of each component in our framework. Future
work includes scaling LEGO-Learn to accommodate larger and more complex graphs, developing improved
node selection strategies for OOD detection, optimizing the trade-off between purity and informativeness,
exploring the performance of graph open-set learning under varying proportions of OOD nodes, and modeling
different annotators’ accuracy when labeling different types of nodes.
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A Datasets Information

Cora is a citation network where each node represents a published paper, and each edge indicates a citation
between papers. The objective is to predict the topic of each paper as its label class. This dataset includes
2708 nodes, 10556 edges, 1433 features, and 7 distinct classes.

Amazon-CS is a product co-purchasing network from the Amazon platform, where each node represents a
product, and each edge indicates that two connected products are frequently bought together. The label
of each node corresponds to the product’s category. This dataset contains 13752 nodes, 491722 edges, 767
features, and 10 classes.

Amazon-Photo is a product co-purchasing network on Amazon, where each node represents a product and
each edge indicates that two connected products are frequently bought together. The label of each node
corresponds to the product’s category. This dataset includes 7650 nodes, 238162 edges, 745 features, and 8
classes.

The LastFMAsia dataset consists of 7624 users from the LastFM music platform, who are classified into one
of 18 regions based on their listening habits. The graph is built on the basis of users’ friend connections,
containing 55612 edges. Each user is described by a feature vector of 128 attributes representing the artists
they listen to. The task is to classify users into one of the 18 regions based on their musical preferences and
social connections.

Table 6: OOD class and OOD ratio for different datasets
Dataset OOD class OOD ratio
Cora [0, 1, 3] 0.51
Amazon-Computer [0, 3, 4, 5, 9] 0.49
Amazon-Photo [1, 6, 7] 0.52
LastFMAsia [1, 2, 3, 4, 5, 9, 10, 12, 17] 0.53

Table 7: Statistics for main datasets
Dataset #Nodes #Edges #Features #Classes
Cora 2708 10556 1433 7
Amazon-Computer 13752 491722 767 10
Amazon-Photo 7650 238162 745 8
LastFMAsia 7624 55612 128 18

B Descriptions of Evaluation Metrics

AUROC stands for "Area Under the Receiver Operating Characteristic Curve." It is a performance metric
used in binary classification tasks to evaluate how well a model distinguishes between positive and negative
classes. A higher AUROC value indicates better model performance in distinguishing between the two
classes.

AUPR stands for the area under the precision-recall (PR) curve, similar to AUC, but it provides a more
effective performance evaluation for imbalanced data.

FPR80 refers to the false positive rate (FPR) when the true positive rate (TPR) reaches 80%. It is used
to measure the likelihood that an OOD example is incorrectly classified as ID when most ID samples are
correctly identified. A lower FPR80 value indicates better detection performance.
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C Different Label Budgets

Here, we present the results for different label budgets on LastFMAsia. As shown in Table 8 and Table 9,
LEGO-Learn achieves better performance across various label budgets.

Table 8: 20 × C label budget

ID ACC ↑ AUROC ↑ AUPR ↑ FPR80 ↓
GCN-ENT 0.6844 0.7863 0.7923 0.5158
LEGO-Learn 0.7826 0.9057 0.9179 0.2287

Table 9: 10 × C label budget

ID ACC ↑ AUROC ↑ AUPR ↑ FPR80 ↓
GCN-ENT 0.6248 0.7527 0.7518 0.5903
LEGO-Learn 0.7512 0.8624 0.8812 0.3116

D Standard Deviation Results

We assess the model’s stability by presenting the standard deviation values of LEGO-Learn and GCN-ENT
for two datasets in Table 10. As shown in the table, our method and the baseline generally exhibit similar
variance values.

Table 10: Our method and baseline generally have similar standard deviation values.

ID ACC ↑ AUROC ↑ AUPR ↑ FPR80 ↓
Cora (LEGO-Learn) 6.54% 1.40% 0.30% 13.63%
LastFMAsia (LEGO-Learn) 3.41% 3.13% 2.45% 10.24%
Cora (GCN-ENT) 6.31% 5.47% 5.64% 14.93%
LastFMAsia (GCN-ENT) 4.25% 2.90% 3.32% 12.63%

E OOD Detection Under Different Category Divisions

To demonstrate generalizability, we modify the OOD divisions of Cora (where the ID classes are now 1,
2, 3, and 4) and LastFMAsia (where the ID classes range from 0 to 8). The results of LEGO-Learn and
GCN-ENT, using the same K-Medoids method, are presented in Table 11. From these results, we observe
that LEGO-Learn consistently outperforms the baseline, regardless of the division.

F Parameter Sensitivity Analysis

The ID classification accuracy of LEGO-Learn under different w values in the filter for LastFMAsia is
presented in Table 12.

G OOD Scores

We visualize the OOD scores predicted by LEGO-Learn for ID and OOD nodes in the test set. As shown in
the Fig. G, the scores for ID and OOD inputs are well-separated. This proves that our method effectively
identifies OOD nodes and accurately predicts ID nodes.
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Table 11: The results of LEGO-Learn and GCN-ENT for another OOD division of Cora and LastFMAsia.

Model ID ACC AUROC AUPR FPR80
GCN-ENT (Cora) 0.8249 0.8290 0.8216 0.4550
LEGO-Learn (Cora) 0.8376 0.9210 0.9244 0.2086
GCN-ENT (LastFMAsia) 0.7294 0.7575 0.7473 0.5850
LEGO-Learn (LastFMAsia) 0.8024 0.8684 0.8714 0.3427

Table 12: ID classification accuracy of our method under different w values for LastFMAsia.

w 0.01 0.1 0.2 0.3 0.4 1
LastFMAsia 0.7624 0.7800 0.7770 0.7692 0.7650 0.7602

Figure 3: OOD scores histogram
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