
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERPRETABILITY OF LANGUAGE MODELS FOR
LEARNING HIERARCHICAL STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based language models are effective but complex, and understanding
their inner workings is a significant challenge. Previous research has primarily
explored how these models handle simple tasks like name copying or selection,
and we extend this by investigating how these models grasp complex, recursive
language structures defined by context-free grammars (CFGs). We introduce a
family of synthetic CFGs that produce hierarchical rules, capable of generating
lengthy sentences (e.g., hundreds of tokens) that are locally ambiguous and require
dynamic programming to parse. Despite this complexity, we demonstrate that
generative models like GPT can accurately learn this CFG language and generate
sentences based on it. We explore the model’s internals, revealing that its hidden
states precisely capture the structure of CFGs, and its attention patterns resemble
the information passing in a dynamic programming algorithm.

1 INTRODUCTION

Transformer-based language models, like GPT (OpenAI, 2023), are powerful but mysterious; many
studies attempt to uncover the inner workings of transformers. Perhaps the simplest observation
is that attention heads can pair closing brackets with open ones, see the concurrent work and the
references therein (Zhang et al., 2023). Others also demonstrate that transformer can store key-value
knowledge pairs by storing value in the hidden embedding of keys (see Allen-Zhu & Li (2023) and
the references therein).

The seminal work from Anthropic (Elhage et al., 2021; Olsson et al., 2022) focuses on induction
heads, which are logic operations on the input level (such as [A][B]...[A] implies the next token
should be [B]). They “hypothesized” that induction heads may exist to “match and copy more ab-
stract and sophisticated linguistic features, rather than precise tokens”, yet they acknowledge that
they “don’t have a strong framework for mechanistically understanding” this.

The interpretability in the wild paper (Wang et al., 2022) explored many different types of attention
heads, including “copy head”, “name mover head”, “inhibition head”, etc. Most notably, they ex-
plained how GPT2 predicts the next token “Mary” given prefix “When Mary and John went to the
store, John gave a drink to [...]” This requires some logical reasoning by selecting (not naively copy-
ing) what is the right name. While this result is very inspiring, there exists very simple rule-based
algorithm to achieve the same.

In practice, transformers perform much more complex operations, yet, there is an inherent difficulty
in interpreting those models: To interpret how transformer performs a certain task, there must be a
well-defined algorithm to solve it so one can argue that the inner representations of the transformer
align with the algorithm. Almost all of the “impressive skills” demonstrated by state-of-the-art
language models are beyond solvable by any other known algorithm. Motivated by these, we ask: Is
there a setting for us to understand how language models perform hard tasks, involving deep logics
/ reasoning / computation chains?

We propose to tackle this question in a controlled setting where the languages are generated syn-
thetically using context-free grammars (CFGs). CFGs, which include terminal (T) and nonterminal
(NT) symbols, a root symbol, and production rules, can hierarchically produce highly structured
expressions. A string is part of CFG language if a rule sequence can transform the root symbol into
this string, and the language model is asked to complete the given partial strings from the CFG.
We pick CFG because, there exists textbook-level, yet quite difficult dynamic programming (DP)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

root |->20 21
root |->20 19 21
root |->21 19 19
root |->20 20 332213123312113123211322312312111213211322311311

322333123121112131133112132121333331232212131232

221111213322131131131131111113231233133133311331

333332231211311121221111211233312331121113313333

331123333131111333312113211312121133333212111121

213223223322133221113221132323313111213223223221

211133331121322221332211212133121331332212213221

211213331232233312

an example sentence
7|->2 2 1

 7|->3 2 2
 7|->3 1 2
 7|->3 2
 8|->3 1 1
 8|->1 2
 8|->3 3 1
 9|->1 2 1
 9|->3 3
 9|->1 1

10|->8 9 9
 10|->9 7 9
 10|->7 9 9
 11|->8 8
 11|->9 7
 11|->9 7 7
 12|->7 9 7
 12|->9 8
 12|->8 8 9

13|->11 12
 13|->12 11 12
 13|->10 12 11
 14|->10 12
 14|->12 10 12
 14|->12 11
 14|->10 12 12
 15|->10 11 11
 15|->11 11 10
 15|->10 10
 15|->12 12 11

16|->15 15
 16|->13 15 13
 16|->14 13
 16|->14 14
 17|->15 14 13
 17|->14 15
 17|->15 14
 18|->14 15 13
 18|->15 13 13
 18|->13 15

19|->18 16 18
 19|->17 18
 19|->18 18
 20|->16 16
 20|->16 17
 20|->17 16 18
 21|->18 17
 21|->17 16
 21|->16 17 18
 21|->16 18

Figure 1: An example CFG used in our experiments. It generates long (e.g., length 354 in this example) and
ambiguous strings. Determining if a string x belongs to the CFG typically requires dynamic pro-
gramming, even when the CFG rules are known.

algorithm to solve CFG instances.1 Generally,

• We wish to capture long-range dependencies via CFG. The simplest example is bracket match-
ing, in ...Y(...)[[...]{...}]{...}X, the next symbol X could depend on Y that was
hundreds of tokens before. Another example is coding, where goto jumpback can only be
used if jumpback is a valid line number that could be hundreds of lines ago.

• We wish to capture local ambiguity. A coding grammar (like python) can be parsed using greedy
without ambiguity, so does bracket matching — once locally seen ...()... we know the two
parentheses must be paired together. We focus on hard CFGs that require global planning via
dynamic programming to parse.

Most popular choices of CFGs do not satisfy the two above properties. Notably, the English CFG
(e.g., derived from Penn TreeBank) has an average length of 28 tokens (too short), and is not
very locally ambiguous (e.g., RB JJ or JJ PP imply their parent must be ADJP). As we show
in Appendix I, such CFGs can even be learned using tiny GPT2 models with ∼ 100k parameters.
Thus, it is too easy for our interpretability purpose.

For such reason, we design our own synthetic CFG languages. We give one example in Figure 1
and discuss a family of 7 such CFGs with varying difficulties in Section 2 (we have 15 more in the
appendix).2 We pre-train GPT-2 (Radford et al., 2019), denoted by GPT for short, on a language
modeling task using a large corpus of strings sampled from our constructed CFGs. We test the
model’s accuracy and diversity by feeding it prefixes from the CFG (or no prefix, just the starting
token) and observing if it can generate accurate completions.

It is perhaps evident from Figure 1 that even if the CFG tree is given, deciding if the string belongs
to this language for a real person may require a scratch paper and perhaps half an hour, not to say to
learn such CFG from scratch. However, we demonstrate that GPT can learn such CFGs, and using
rotary or relative attentions is crucial, especially for complex CFGs (Results 1-3). Additionally, we
examine attention patterns and hidden states to understand how GPT achieves this. Specifically, we:

• Results 4-5. Develop a multi-head linear probing method to verify that the model’s hidden states
linearly encode NT information almost perfectly, a significant finding as pre-training does not
expose the CFG structure. (In contrast, encoder models like BERT do not.)

• Results 6-9. Introduce methods to visualize and quantify attention patterns, demonstrating that
GPT learns position-based and boundary-based attentions, contributing to understanding how it
learns CFG’s regularity, periodicity, and hierarchical structure.

• Corollary. Suggest that GPT models learn CFGs by implementing a dynamic programming-like
algorithm. The boundary-based attention allows a token to attend to its closest NT symbols in
the CFG tree, even when separated by hundreds of tokens. This resembles DP, in which the CFG
parsing on a sequence 1...i needs to be “concatenated” with another sequence i + 1...j in order
to form a solution to a larger problem on 1...j. See Figure 2+8 for illustrations.

In Appendix B, we also explore implicit CFGs (Post & Bergsma, 2013), where each T symbol is a
bag of words, and show that GPT simply learns to encode the word information on its embedding
layer. We also investigate model robustness using CFGs, showcasing under what conditions the
model can auto-correct errors and generate valid CFGs from a corrupted prefix (e.g., randomly
flipping 15% of the symbols in the prefix). These results are numbered 10 through 13.

1Not to say in the theory community, CFGs are also used to model some rich, recursive structure in lan-
guages, including some logics, grammars, formats, expressions, patterns, etc.

2A benefit of using synthetic data is to control the difficulty of the data, so that we can observe how trans-
formers learn to solve tasks at different difficulty levels, and observe their difference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

 18 17 17 17 ...

 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...

 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...

 8 8 8 8 8 9 9 9 9 9 7 7 7 9 9 8 8 9 9 7 7 7 9 9 8 8 8 9 9 9 9 7 7 7 ...

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...

1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 11 12 12 13 13 14 14 14 ...

 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 ...

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 ...

 1 2 2 2 ...

𝑥 =

𝔰6 =
𝔰5 =

𝔭6 =

𝔰4 =
𝔰3 =

𝔭5 =
𝔭4 =
𝔭3 =

𝔟♯ = 6 6 5 6 5 6 4 6 6 5 6 6 3 6 ...

…

(examples of) rules from cfg3f
…
18|->13 15
13|->12 11 12
15|->10 10
10|->8 9 9
10|->9 7 9
11|->9 7
12|->9 8
12|->8 8 9
...
8|->3 1 1
8|->1 2
8|->3 3 1
9|->1 2 1
9|->3 3
9|->1 1
…

NT boundary 𝔟6=𝔟5=𝔟4=𝔟3=1
NT ancestors 𝔰6=9, 𝔰5=10, 𝔰4=15, 𝔰3=18

NT boundary 𝔟6=𝔟5=1
NT ancestors 𝔰6=9, 𝔰5=10

NT boundary 𝔟6=1
NT ancestor 𝔰6=8

NT boundary 𝔟6=𝔟5=𝔟4=1
NT ancestors 𝔰6=8, 𝔰5=12, 𝔰4=13

… …

… … …

C
FG

/D
P

 p
ar

si
n

g
tr

an
sf

o
rm

er

p
ar

si
n

g
learns boundary-based attention to

most adjacent NT boundaries at all levels

learns NT ancestor/boundary info
linearly encoded in the hidden states

Figure 2: An example string x from G = cfg3f. Though formally defined in Section 2, bold symbols in color
represent NT boundaries which mark the ending positions of the parsed CFG subtrees at various
levels ℓ: we denote by bℓ(i) = 1 if position i is at the NT boundary for level ℓ. The NT ancestor
sℓ(i) represents the tree node’s name at level ℓ for a symbol at position i.

2 OUR SYNTHETIC CONTEXT-FREE GRAMMARS

A probabilistic context-free grammar (CFG) is a formal system defining a string distribution using
production rules. It comprises four components: terminal symbols (T), nonterminal symbols (NT),
a root symbol (root ∈ NT), and production rules (R). We represent a CFG as G = (T,NT,R),
with L(G) denoting the string distribution generated by G.

We mostly focus on L-level CFGs where each level ℓ ∈ [L] corresponds to a set of symbols NTℓ

with NTℓ ⊆ NT for ℓ < L, NTL = T, and NT1 = {root}. Symbols at different levels
are disjoint: NTi ∩ NTj = ∅ for i ̸= j. We consider rules of length 2 or 3, denoted as R =
(R1, . . . ,RL−1), where each Rℓ consists of rules in the form:

r = (a 7→ b, c, d) or r = (a 7→ b, c) for a ∈ NTℓ and b, c, d ∈ NTℓ+1

Given a non-terminal symbol a ∈ NT and any rule r = (a 7→ ⋆), we say a ∈ r. For each a ∈ NT,
its associated set of rules is R(a) :=

{
r | r ∈ Rℓ ∧ a ∈ r

}
, its degree is |R(a)|, and the CFG’s size

is (|NT1|, |NT2|, . . . , |NTL|).
Generating from CFG. To generate samples x from L(G), follow these steps:

1. Start with the root symbol NT1.
2. For each layer ℓ < L, keep a sequence of symbols sℓ =

(
sℓ,1, · · · , sℓ,mℓ

)
.

3. For the next layer, randomly sample a rule r ∈ R(sℓ,i) for each sℓ,i with uniform probability.3
Replace sℓ,i with b, c, d if r = (sℓ,i 7→ b, c, d), or with b, c if r = (sℓ,i 7→ b, c). Let the resulting
sequence be sℓ =

(
sℓ+1,1, · · · , sℓ+1,mℓ+1

)
.

4. During generation, when a rule sℓ,i 7→ sℓ+1,j , sℓ+1,j+1 is applied, define the parent parℓ+1(j) =
parℓ+1(j + 1) := i (and similarly if the rule of sℓ,i is of length 3).

5. Define NT ancestor indices p = (p1(i), . . . , pL(i))i∈[mL] and NT ancestor symbols s =
(s1(i), . . . , sL(i))i∈[mL] as shown in Figure 2:

pL(j) := j , pℓ(j) := parℓ+1(pℓ+1(j)) and sℓ(j) := sℓ,pℓ(j)

The final string is x = sL = (sL,1, · · · , sL,mL
) with xi = sL,i and length len(x) = mL. We

use (x, p, s) ∼ L(G) to represent x with its associated NT ancestor indices and symbols, sampled
according to the generation process. We write x ∼ L(G) when p and s are evident from the context.

Definition 2.1. A symbol xi in a sample (x, p, s) ∼ L(G) is the NT boundary / NT end at level
ℓ ∈ [L − 1] if pℓ(i) ̸= pℓ(i + 1) or i = len(x). We denote bℓ(i) := 1xi is the NT boundary at level ℓ as the
NT-end boundary indicator function. The deepest NT-end of i is

b♯(i) = minℓ∈{2,3,...,L−1}{bℓ(i) = 1} or ⊥ if set is empty .

The cfg3 synthetic CFG family. We focus on seven synthetic CFGs of depth L = 7 detailed
in Section C.1. The hard datasets cfg3b, cfg3i, cfg3h, cfg3g, cfg3f have sizes (1, 3, 3, 3, 3, 3, 3) and
increasing difficulties cfg3b < cfg3i < cfg3h < cfg3g < cfg3f. The easy datasets cfg3e1 and

3For simplicity, we consider the uniform case, eliminating rules with extremely low probability. Such rules
complicate the learning of the CFG and the investigation of a transformer’s inner workings (e.g., require larger
networks and longer training time). Our results do extend to non-uniform cases when the distributions are not
heavily unbalanced.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

S
NP VP

TO VP
VBD VP

TO VP
VB NP

NP PP
IN NP

PP
IN NP

.
S

NP
NP

DT NN
PP

IN NP
NP PP

IN NP
DT NN

VP
VBZ VP

VBD SBAR
S

PP
IN NP

, NP
CD NNS

VP
TO VP

VBZ VP
VBD NP

DT JJ NN NN

.

(a) real-life English CFG derived from Penn Treebank, short and simple

S

68

49

45

39

30 28

10 4

36

32

15

11 5

17

7 1

27

4 4

44

35

27

11 7

30

40

31

6 7

26

7 6

49

31

23

4 11

22

8 8

33

16

10 2

22

5 11

68

65

58

54

46

39

29

23

7 6

21

5 10

29

16

5 8

21

3 2

37

21

6 6

16

5 8

45

41

32

15 17

7 1

30

1 3

41

26

17 19

11 7

25

22

10 4

20

4 7

52

35

19

11 7

15

40

18

3 6

18

6 7

57

37

31

23

7 6

22

8 8

33

15 20

4 4

41

31

19 15

11 5

29

23

7 6

21

6 6

66

62

55

53

44

40

21

5 10

17

34

30

22

8 8

24

1 3

26

17

7 1

19

11 7

43

36

26

4 3

32

15 17

7 1

37

16

10 2

21

6 6

54

43

30

24 24

5 1

26

17 19

11 7

42

38

27

6 6

26

4 3

41

32

20

4 7

23

7 6

30

7 1

56

51

41

31

6 7

29

23

4 11

21

6 6

38

29

23

7 6

21

6 6

33

15 20

4 7

52

40

11 5

34

30

22

8 8

24

26

4 3

62

55

50

40

31

19 15

2 4

26

10 2

39

29

20

6 11

17

7 1

29

23

4 3

21

5 10

53

42

37

31

19

9 2

15

33

15

2 4

20

4 4

40

31 26

4 11

47

8 8

56

50

47

40

4 11

35

6 7

42

37

31

6 7

33

21

3 2

23

7 6

40

5 11

49

45

41

31

23

4 3

22

5 11

29

23

7 6

21

5 10

41

31

19

9 2

15

2 4

29

21

3 2

16

10 2

44

40

7 6

34

15

2 4

17

S

68

65

53

42

31 29

23

4 11

21

3 2

47

36

32

20

1 10

23

4 3

27

4 4

36

26

10 2

32

16

5 8

19

11 7

54

45

41

32

23

6 2

23

6 2

30

41

32

16

10 2

19

9 3

30

24 24

45

39

29

20

4 7

17

7 1

29

20

6 11

17

36

26

5 8

32

23

6 2

23

4 3

66

60

52

38

32

20

4 4

23

6 2

29

23

7 6

21

5 10

41

31

19

9 2

15

29

23

4 3

21

5 10

51

46

39

4 4

37

31

19

9 3

15

2 4

33

15

2 4

20

4 4

47

40

20

1 10

19

9 3

35

8 7

60

52

29

20

1 10

17

7 1

33

15

2 4

20

4 7

50

47

36

32

16 19

9 2

27

36

19

9 3

21

6 6

42

38

32

16

5 8

19

9 3

29

23

6 2

21

6 6

41

32

23

4 3

23

7 6

30

68

65

60

53

42

31

23

7 6

22

10 4

29

21

5 10

16

5 8

47

31 26

17 19

52

38

32

16 19

11 7

29

21

3 2

16

10 2

41

26

20

4 7

19

11 7

25

19

9 2

21

3 2

61

47

17 19

9 2

46

39

27

17 24

1 3

33

16 22

5 11

37

30

24

1 3

24

9 4

27

3 2

66

61

57

53

31

19

11 7

15

11 5

26

20

1 10

19

9 3

50

47

35

33

24

1 3

21

3 2

27

17 24

1 3

36

32

23

6 2

23

7 6

27

5 10

42

38

32

16 19

29

23

6 2

21

5 10

41

26

20

6 11

19

25

22

8 9

20

4 4

55

53

48

35

31

23

4 11

22

8 8

25

19

9 2

21

5 10

37

30

22

10 4

24

1 3

27

4 4

44

35

27

9 3

30

40

31

6 7

26

4 3

54

43

36

32

20

4 4

23

7 6

27

4 7

37

31

23

6 2

22

5 11

33

16

10 2

22

8 9

42

38

29

20

6 11

17

7 1

33

15

2 4

20

6 11

41

31

23

7 6

22

10 4

29

21

6 6

16

60

56

40

31

19

9 2

15

11 5

26

5 8

39

27

17 24

33

24

1 3

21

6 6

56

40

20

4 7

19

39

(b) a family of max-depth 11 CFGs where rules have length 1 or 2 that GPT can learn, see cfg0 in Appendix I

Figure 3: CFG visual comparisons: left is a medium-length sample, and right is a 80%-percentile-length sample

cfg3e2 have sizes (1, 3, 9, 27, 81, 27, 9) and (1, 3, 9, 27, 27, 9, 4) respectively. The sequences gen-
erated by these CFGs are up to 36 = 729 in length. Typically, the learning difficulty of CFGs
inversely scales with the number of NT/T symbols, assuming other factors remain constant, be-
cause having more NT/T symbols makes the language less ambiguous and more easily parsed
using greedy (see Figure 4 and we discuss more in Appendix I). We thus primarily focus on
cfg3b, cfg3i, cfg3h, cfg3g, cfg3f.

Why Such CFGs. We use CFG as a proxy to study some rich, recursive structure in languages,
which can cover some logics, grammars, formats, expressions, patterns, etc. Those structures are
diverse yet strict (for example, Chapter 3.1 should be only followed by Chapter 3.1.1, Chapter 4 or
Chapter 3.2, not others). The CFGs we consider are non-trivial, with likely over 2270 > 1080 strings
in cfg3f among a total of over 3300 > 10140 possible strings of length 300 or more (see the entropy
estimation in Figure 4). In particular, Figure 30 in the appendix shows that cfg3f cannot be learned
by transformers (much) smaller than GPT2-small. In contrast, the English CFG (e.g., derived from
Penn TreeBank) can be learned to good accuracy using tiny GPT2 models with ∼ 100k parameters
— so it is too easy for our interpretability purpose.

To obtain the cleanest interpretability result, we have selected a CFG family with a “canonical rep-
resentation” (e.g., a layered CFG). This controlled design choice allows us to demonstrate a strong
correlation between the CFG representation and the hidden states in the learned transformer. We also
create additional CFG families to examine “not-so-canonical” CFG trees, with results deferred to
Appendix I (see an example in Figure 3). We do not claim our results encompass all CFGs; our cho-
sen CFGs are already quite challenging for a transformer to learn and can lead to clean hierarchical
interpretability results.

3 RESULTS 1-3: TRANSFORMER CAN LEARN SUCH CFGS

In this section, we generate a large corpus {x(i)}i∈[N] from a synthetic CFG language L(G) in
Section 2, and pretrain a (generative, decoder-only) transformer model F on this corpus, treating
each terminal symbol as a separate token, using an auto-regressive task (see Appendix C.3 for de-
tails). We then evaluate how well the model learns such L(G).
Models. We denote the GPT2 small architecture (12-layer, 12-head, 768-dimensions) as GPT (Rad-
ford et al., 2019) and implemented its two modern variants. We denote GPT with relative positional
attention (He et al., 2020) as GPTrel, and GPT with rotary positional embedding (Su et al., 2021;
Black et al., 2022) as GPTrot. For purposes in later sections, we introduce two weaker variants.
GPTpos replaces the attention matrix with a matrix based solely on tokens’ relative positions, while
GPTuni uses a constant, uniform average of past tokens from various window lengths as the attention
matrix. Detailed explanations of these variants are in Section C.2.

We quickly summarize our findings and then elaborate them in details.

Result 1-3 (Figure 4). The GPT models can effectively learn our synthetic CFGs. Given any prefix,
they can generate completion strings

• that can perfectly adhere to the CFG rules most of the time, (accuracy)

• that are sufficiently diverse in the CFG language, and (diversity)

• that closely follow the probabilistic distribution of the CFG language. (probability)

Moreover, one had better use rotary or relative attentions; the original GPT (with absolute positional
embedding) performs even worse than GPTuni (with uniform attention).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

ge
ne

ra
ti

on
 a

cc
 (

%
) 99.8 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.9 100.0

99.5 99.5 99.8 99.8 99.4 99.5 99.8 99.8 99.6 99.7

96.8 96.9 99.7 99.6 99.6 99.5 99.0 99.0 98.9 98.8

64.1 63.8 99.1 99.2 98.6 98.4 97.0 96.9 96.7 96.9

57.1 57.3 98.8 98.8 97.6 97.7 93.9 93.8 92.8 92.9

98.1 98.9 98.4 99.0 98.2 98.9 98.3 98.9 98.6 99.0

99.3 99.5 99.6 99.7 99.6 99.7 99.5 99.7 99.4 99.6

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni cfg3bcfg3icfg3hcfg3gcfg3fcfg3e1cfg3e2en
tr

op
y

(b
it

s) 169 169 169 169 169 169
185 190 189 189 190 189
204 203 203 203 202 203
268 272 267 268 266 267
268 275 270 272 269 269
216 214 213 213 214 213
256 252 255 251 253 252

GPT GPT_rel GPT_rot GPT_pos GPT_uni
cfg3b
cfg3icfg3h
cfg3g
cfg3fcfg3e1cfg3e2

KL
 d

iv
er

ge
nc

e

0.00008 0.00011 0.00009 0.00009 0.00004
0.00024 0.00014 0.00028 0.00015 0.00021
0.00078 0.00023 0.00023 0.00027 0.00036
0.00450 0.00034 0.00047 0.00058 0.00069
0.00455 0.00043 0.00060 0.00093 0.00112
0.00019 0.00014 0.00016 0.00013 0.00011
0.00031 0.00025 0.00025 0.00011 0.00011

Figure 4: Generation accuracy (left), entropy (middle), KL-divergence (right) across multiple CFG datasets.
Observations: Less ambiguous CFGs (cfg3e1, cfg3e2, as they have fewer NT/T symbols) are easier
to learn. Transformers using relative positional embedding (GPTrel or GPTpos) are better for learning
harder CFGs. The vanilla GPT is worse than even GPTuni, which is GPT with fixed, uniform attentions.

Result 1: Completion accuracy. We evaluate F by letting it generate completions for prefixes
x:c = (x1, x2, · · · , xc) from strings x freshly sampled from L(G). The generation accuracy is
measured as Prx∼L(G)+ randomness of F [(x:c, F (x:c)) ∈ L(G)]. We use multinomial sampling without
beam search for generation.4 Figure 4 (left) shows the generation accuracies for cuts c = 0 and
c = 50. The c = 0 result tests the transformer’s ability to generate a sentence in the CFG, while
c = 50 tests its ability to complete a sentence.5 The results show that the pretrained GPT models
can often generate strings that perfectly adhere to the CFG rules for the cfg3 data family.

Result 2: Generation diversity. Could it be possible that the pretrained GPT models only mem-
orized a small subset of strings from the CFG? We evaluate this by measuring the diversity of its
generated strings. High diversity suggests a better understanding of the CFG rules.

We consider two methods to estimate diversity. One is to estimate the distribution’s entropy, which
provides a rough estimate of (the log2 of) the support size, see the middle of Figure 4. The other is
to use birthday paradox to theoretically lower bound the support size (Arora & Zhang, 2017). This
allows us to make precise claims, such as in the cfg3f dataset, there are at least 4 × 108 distinct
sentential forms derivable from a symbol at levels 1 to 5 or levels 2 to 6; not to say from the root to
level 7. Details are in Appendix D. Our general conclusion is that the pre-trained model does not
rely on simply memorizing a small set of patterns to achieve high completion accuracy.

Result 3: Distribution comparison. To fully learn a CFG, it is crucial to learn the distribution
of generating probabilities. One naive approach is to compare the marginal distributions p(a, i), for
the probability of symbol a ∈ NTℓ appearing at position i. We observe a strong alignment between
the generation probabilities and the ground-truth, included in Appendix D.2. Another approach
is to compute the KL-divergence between the per-symbol conditional distributions. Let p∗ be the
distribution over strings in the true CFG and p be that from the generative transformer model. Let
S =

{
x(i)

}
i∈[M]

be samples from the true CFG distribution. Then, the KL-divergence can be

estimated as follows:6

1
|S|

∑
x∈S

1
len(x)+1

∑
i∈[len(x)+1]

∑
t∈T∪{eos} Prp∗ [t | x1, . . . , xi−1] log

Prp∗ [t|x1,...,xi−1]

Prp[t|x1,...,xi−1]

In Figure 4 (right) we compare the KL-divergence between the true CFG distribution and the GPT
models’ output distributions using M = 20000 samples.

Connection to DP. Result 1-3 (e.g., learning the CFG’s marginal distribution) is merely an small
step towards showing that the model employs a DP-like approach. Dynamic programming (e.g., the
inside-outside algorithm Baker (1979)) can compute marginal distributions of CFGs, and such al-
gorithms can be implemented using nonlinear neural networks like transformers, achieving a global
minimum in the auto-regressive training objective.7 However, the mere existence of a dynamic-
programming transformer to obtain the training objective’s global minimum is not entirely satisfac-
tory. Does employing an AdamW stochastic optimizer for 100k iterations on the training objective
yield such an algorithm? The remainder of this paper will delve deeper to address this question.

4The last softmax layer converts the model outputs into a probability distribution over (next) symbols.
We follow this distribution to generate the next symbol, reflecting the unaltered distribution learned by the
transformer. This is the source of the “randomness of F ” and is often referred to as using “temperature τ = 1.”

5Our cfg3 family is large enough to ensure a negligible chance of a freshly sampled prefix of length 50
being seen during pretraining.

6A nearly identical formula was also used in DuSell & Chiang (2022).
7This has been carefully explored for masked language modeling case in Zhao et al. (2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

an
ce

st
or

 (
%

)

100 99.7 99.9 85.0 65.7 56.8 61.5 62.7

99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.8 99.6 99.7 99.6 99.3 99.8 99.6 99.7 99.6 99.3 99.8 99.7 99.7 99.7 99.2 99.4 84.6 71.7 64.6 66.4 65.2

99.7 98.3 98.3 99.2 100 99.7 98.1 97.8 99.0 100 99.7 98.4 98.2 99.3 100 99.7 98.5 98.5 99.4 100 99.7 98.6 98.6 99.4 100 99.9 99.8 99.8 99.7 100 67.5 47.2 50.6 66.3 92.8

100 99.2 95.6 94.6 97.3 100 99.3 96.7 97.2 99.0 100 99.3 96.6 97.2 99.0 100 99.3 96.7 96.9 98.8 100 99.4 97.0 97.2 98.9 100 99.5 95.5 85.6 90.5 70.8 56.4 49.4 57.0 73.1

100 97.6 94.3 88.4 85.9 100 97.5 94.8 92.9 93.5 100 97.7 95.2 93.3 94.2 100 97.9 95.6 93.5 93.9 100 98.2 95.8 93.2 93.5 100 99.6 96.3 84.0 77.5 71.3 49.9 44.6 59.1 68.6

100 99.8 45.4 27.6 34.6 47.2 76.3

99.9 100 100 100 100 99.8 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 100 100 99.9 36.0 16.6 23.5 44.6 78.3

Figure 5: After pre-training, hidden states of generative models encode NT-ancestor information. The NTℓ

column represents the accuracy of predicting sℓ, the NT ancestors at level ℓ, via linear probing (4.2).

It also encodes NT boundaries (Appendix E.1); and such information is discovered gradually and
hierarchically across layers and training epochs (Appendix E.2 and E.3). We compare against a
baseline which is the encoding from a randomly-intialized GPT, GPTrand (serving as a neural-tangent
kernel baseline). We also compare against DeBERTa, illustrating that BERT-like models are less
effective in learning NT information at levels close to the CFG root.

4 RESULTS 4-5: HOW DO TRANSFORMERS LEARN CFGS?

In this section, we delve into the learned representation of the transformer to understand how it
encodes CFGs. We employ various measurements to probe the representation and gain insights.

Recall classical way to solve CFGs. Given CFG G, the classical way to verify if a sequence
x satisfies L(G) is to use dynamic programming (DP) (Sakai, 1961; Sipser, 2012). One possible
implementation of DP involves using the function DP(i, j, a), which determines whether or not
xi+1, xi+1 . . . , xj can be generated from symbol a following the CFG rules. From this DP repre-
sentation, a DP recurrent formula can be easily derived.8

In the context of this paper, any sequence x ∼ L(G) that satisfies the CFG must satisfy the following
conditions:

bℓ(i) = 1, bℓ(j) = 1,∀k ∈ (i, j), bℓ(k) = 0 and sℓ(j) = a =⇒ DP(i, j, a) = 1 (4.1)

(recall the NT-boundary bℓ and the NT-ancestor sℓ notions from Section 2). Note that (4.1) is not
an “if and only if” condition because there may be a subproblem DP(i, j, a) = 1 that does not lie
on the final CFG parsing tree but is still locally parsable by some valid CFG subtree. However,
(4.1) provides a “backbone” of subproblems, where verifying their DP(i, j, a) = 1 values certifies
that the sentence x is a valid string from L(G). It is worth mentioning that there are exponentially
many implementations of the same DP algorithm9 and not all (i, j, a) tuples need to be computed
in DP(i, j, a). Only those in the “backbone” are necessary.

Connecting to transformer. In this section, we investigate whether pre-trained transformer F
also implicitly encodes the NT ancestor and boundary information. If it does, this suggests that
the transformer contains sufficient information to support all the DP(i, j, a) values in the backbone.
This is a significant finding, considering that transformer F is trained solely on the auto-regressive
task without any exposure to NT information. If it does encode the NT information after pretraining,
it means that the model can both generate and certify sentences in the CFG language.

4.1 RESULT 4: TRANSFORMER’S LAST LAYER ENCODES NT ANCESTORS/BOUNDARIES

Let l be the last layer of the transformer (other layers are studied in Appendix E.2). Given
an input string x, we denote the hidden state of the transformer at layer l and position i as
Ei(x) ∈ Rd. We first investigate whether a linear function can predict

(
b1(i), . . . , bL(i)

)
i∈[len(x)]

and
(
s1(i), . . . , sL(i)

)
i∈[len(x)] using the full

(
Ei(x)

)
i∈[len(x)]. If possible, it implies that the last-

layer hidden states encode the CFG’s structural information up to a linear transformation.

8For example, one can compute DP(i, j, a) = 1 if and only if there exists i = i1 < i2 < · · · < ik = j
such that DP(ir, ir+1, br) = 1 for all r ∈ [k − 1] and a → b1, b2, . . . , bk is a rule of the CFG. Implementing
this naively would result in a O(len4) algorithm for CFGs with a maximum rule length of 3. However, it can
be implemented more efficiently with O(len3) time by introducing auxiliary nodes (e.g., via binarization).

9Each inner loop of the dynamic programming can proceed in any arbitrary order, not limited to k = i..j or
k = j..i, and the algorithm can prune and break early. This gives a safe estimate of at least (n!)Ω(n2) possible
implementations. Furthermore, there are at least 2Ω(n) ways to perform binarization, meaning to break length-3
rules to length-2 ones. This is just to detect if a given string of length n belongs to the CFG.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

 18 17 17 17 ...

 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...

 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...

 8 8 8 8 8 9 9 9 9 9 7 7 7 9 9 8 8 9 9 7 7 7 9 9 8 8 8 9 9 9 9 7 7 7 ...

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...𝑥 =

𝔰6 =
𝔰5 =
𝔰4 =
𝔰3 =

… … …

0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 ...

 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ...

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ...

 0 1 0 0 0 ...

𝔟6 =
𝔟5 =
𝔟4 =
𝔟3 =… … …

linearly encode linearly encode

Figure 6: Illustration of Result 5 + Figure 6: GPT’s last layer hidden states at the blue positions linearly encode
the NT ancestor and boundary information in the red boxes very well. (They may not encode NT
ancestors for smaller levels because that may not be information-theoretically possible.)

Multi-head linear probing (full). Due to the high dimensionality of this linear function (e.g.,
len(x) = 300 and d = 768 yield 300 × 768 dimensions) and variable string lengths, we propose
a multi-head linear function for efficient learning. We consider a set of linear functions fr : Rd →
R|NT|, where r ∈ [H] and H is the number of “heads”. To predict any sℓ(i), we apply:

Gi(x) =
∑

r∈[H],k∈[len(x)] wr,i→k · fr(Ek(x)) ∈ R|NT| (4.2)

where wr,i→k :=
exp(⟨Pi,r,Pk,r⟩)∑

k′∈[len(x)] exp(⟨Pi,r,Pk′,r⟩)
for trainable parameters Pi,r ∈ Rd′

. Gi can be seen as

a “multi-head attention” over linear functions. We train Gi(x) ∈ R|NT| using the cross-entropy loss
to predict

(
sℓ(i)

)
ℓ∈[L]

. Despite having multiple heads,

Gi(x) is still a linear function over (Ek(x))k∈[len(x)]

as the linear weights wr,i→k depend only on positions i and k, not on x. Similarly, we train G′
i(x) ∈

RL using the logistic loss to predict the binary values
(
bℓ(i)

)
ℓ∈[L]

. Details are in Section C.4.

Using such multi-head linear probing, we discover that:

Result 4 (Figure 5). Pre-training allows GPT models to almost perfectly encode the NT an-
cestor sℓ(i) and NT boundary bℓ(i) information in the last transformer layer’s hidden states
(Ek(x))k∈[len(x)], up to a linear transformation. In contrast, encoder models (like deBERTa) may
not learn deep NT information very well.10

But, do we need this full layer for linear probing? We explore next.

4.2 RESULT 5: NT ANCESTORS ARE ENCODED AT NT BOUNDARIES

Above, we used the full hidden layer,
(
Ei(x)

)
i∈[len(x)], to predict

(
sℓ(i)

)
ℓ∈[L]

for each position i.
This is essential since it’s information-theoretically impossible to extract all of i’s NT ancestors
by only reading Ei(x) or even all hidden states to its left, especially if xi is the start of a string or
a subtree in the CFG. But, how about those ones information-theoretically possible? In particular,
how about predicting sℓ(i) at locations i with bℓ(i) = 1 — i.e., at the end of the CFG subtrees.

Multi-head linear probing (diagonal). We consider a neighborhood of position i in the hidden
states, say Ei±1(x), and use that for linear probing. In symbols, we replace wr,i→k in (4.2) with
zeros for |i− k| > 1 (tridiagonal masking), or with zeros for i ̸= k (diagonal masking).

Gi(x) =
∑

r∈[H],k∈[len(x)],|i−k|≤δ wr,i→k · fr(Ek(x)) ∈ R|NT| where δ = 0 or 1 (4.3)

Result 5 (Figure 6). For GPT models, the information of position i’s NT ancestor/boundary is
locally encoded around position i± 1 when i is on the NT boundary. This is because:

• At NT boundaries (i.e., bℓ(x) = 1), diagonal or tridiagonal multi-head linear probing (4.3) is
adequate for accurately predicting the NT ancestors sℓ(x) (see Figure 9 on Page 13).

10Among encoder-based models, deBERTa (He et al., 2020) is a modern variant of BERT, which is equipped
with relative attentions. It is expected that encoder-based models do not learn very deep NT information,
because in a masked-language modeling (MLM) task, the model only needs to figure out the missing token
from its surrounding, say, 20 tokens. This can be done by pattern matching, as opposed to a global planning
process like dynamic programming.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

(a) Bl,h,j→i for i + δ at NT-end in CFG level
ℓ. Rows represent ℓ = 2, 3, 4, 5 and columns
represent δ = −2,−1, 0, 1, 2.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) Bl,h,j→i for i+ δ1, j + δ2 at NT-
ends in CFG level ℓ = 4. Rows / columns
represent δ1, δ2 = −1, 0,+1.

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(c) Bend→end
l,h,ℓ′→ℓ,r

for NT-ends between
CFG levels ℓ′ → ℓ. Rows represent r and
columns ℓ′ → ℓ. “×” means empty entries.

Figure 7: After pretrained on our CFG data, GPT model’s attention layers have a strong bias towards “ NT-end
at level ℓ′ to the most adjacent NT-end at ℓ ”, for even different ℓ, ℓ′. For definitions see Section 5.2,
and more experiments see Appendix F.2, F.3 and F.4. Corollary: this is evidence that the model
uses dynamic-programming like approach to learn such hard, synthetic CFGs (see discussions in
Section 5.3).

• Such masking is also sufficient for accurately predicting NT boundaries bℓ(i) (deferred to
Figure 18 in Appendix E.1).

In contrast, encoder models like deBERTa do not store deep NT information at the NT boundaries.

Related work. Our probing approach is akin to the seminal work by Hewitt & Manning (2019),
which uses linear probing to examine the correlation between BERT’s hidden states and the parse
tree distance metric (similar to NT-distance in our language). Subsequent studies (Shi et al., 2022;
Zhao et al., 2023; Maudslay & Cotterell, 2021; Manning et al., 2020; Vilares et al., 2020; Wu et al.,
2020; Arps et al., 2022) have explored various probing techniques to suggest that BERT-like trans-
formers can approximate CFGs from natural languages.

Our approach differs in that we use synthetic data to demonstrate that linear probing can almost per-
fectly recover NT ancestors and boundaries, even for complex CFGs that generate strings exceeding
hundreds of tokens. We focus on pre-training generative (decoder-only) language models. For a
non-generative, encoder-based model like BERT (Kenton & Toutanova, 2019) or its modern variant
deBERTa (He et al., 2020), they do not learn deep (i.e., close to the CFG root) NT information very
well, as shown in Result 4-5.

Our results, along with Section 5, provide evidence that generative language models like GPT-2 em-
ploy a dynamic-programming-like approach to generate CFGs, while encoder-based models, typi-
cally trained via MLM, struggle to learn more complex/deeper CFGs.

5 RESULTS 6-9: HOW DO TRANSFORMERS LEARN NTS?

We now delve into the attention patterns. We demonstrate that these patterns mirror the CFG’s
syntactic structure and rules, with the transformer employing different attention heads to learn NTs
at different CFG levels.

5.1 RESULT 6: POSITION-BASED ATTENTION

We first note that the transformer’s attention weights are primarily influenced by the tokens’ relative
distance. This holds true even when trained on the CFG data with absolute positional embedding.
This implies that the transformer learns the CFG’s regularity and periodicity through positional in-
formation, which it then uses for generation. (We defer the figures to Appendix F.1 as this finding
may not surprise some readers.) Motivated by this, we explore whether using position-based atten-
tion is sufficient to learn CFGs. In Figure 4, we find that GPTpos (or even GPTuni) performs well, sur-
passing the vanilla GPT, but not reaching the full potential of GPTrel. This supports the superior prac-
tical performance of relative-position based transformer variants (such as GPTrel, GPTrot, deBERTa)
over their base models (GPT or BERT). On this other hand, this also indicates that position-based
attention alone is not enough for transformers to learn CFGs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 RESULT 7-9: BOUNDARY-BASED ATTENTION

Next, we remove the position-bias from the attention matrix to examine the remaining part. We find
that the transformer also learns a strong boundary-based attention pattern, where tokens on the NT-
end boundaries typically attend to the “most adjacent” NT-end boundaries, see Figure 2. This
attention pattern enables the transformer to effectively learn the hierarchical and recursive structure
of the CFG, and generate output tokens based on the NT symbols and rules.

Formally, let Al,h,j→i(x) for j ≥ i denote the attention weight for positions j → i at layer l and
head h of the transformer, on input sequence x. Given a sample pool {x(n)}n∈[N] ∈ L(G), we
compute for each layer l, head h,11

Al,h,p = AverageJAl,h,j→i(x
(n)) | n ∈ N, 1 ≤ i ≤ j ≤ len(x(n)) s.t. j − i = pK ,

which represents the average attention between any token pairs of distance p over the sample pool.
To remove position-bias, we focus on Bl,h,j→i(x) := Al,h,j→i(x)−Al,h,j−i in this subsection. Our
observation can be broken down into three steps.

Result 7 (Figure 7(a)). Bl,h,j→i(x) exhibits a strong bias towards tokens i at NT ends.

This can be seen in Figure 7(a), where we present the average value of Bl,h,j→i(x) over data x and
pairs i, j where i + δ is the deepest NT-end at level ℓ (symbolically, b♯(i + δ) = ℓ). The attention
weights are highest when δ = 0 and decrease rapidly for surrounding tokens.

Result 8 (Figure 7(b)). Bl,h,j→i(x) favors pairs i, j both at NT ends at some level ℓ.

This can be seen in Figure 7(b), where we show the average Bl,h,j→i(x) over data x and pairs i, j
where bℓ(i+ δ1) = bℓ(j + δ2) = 1 for δ1, δ2 ∈ {−1, 0, 1}. It is maximized when δ1 = δ2 = 0.

Result 9 (Figure 7(c)). Bl,h,j→i(x) favors “adjacent” NT-end token pairs i, j.

Above, we define “adjacency” as follows. We introduce Bend→end
l,h,ℓ′→ℓ,r to represent the average value

of Bl,h,j→i(x) over samples x and token pairs i, j that are at the deepest NT-ends on levels ℓ, ℓ′

respectively (symbolically, b♯(i) = ℓ ∧ b♯(j) = ℓ′), and are at a distance r based on the ancestor
indices at level ℓ (symbolically, pℓ(j) − pℓ(i) = r). We observe that Bend→end

l,h,ℓ′→ℓ,r decreases as r

increases, and is highest when r = 0 (or r = 1 for pairs ℓ′ → ℓ without an r = 0 entry).12

In conclusion, tokens corresponding to NT-ends at level ℓ′ statistically have higher attention weights
to their most adjacent NT-ends at every level ℓ, even after removing position-bias.13

5.3 CONNECTION TO DP

Dynamic programming (DP) comprises two components: storage and recurrent formula. Identify-
ing a specific DP implementation that a transformer follows is challenging due to the “exponentially
many” ways to implement such DPs (see Footnote 9). However, we highlight common elements in
all DP implementations and their correlation with the transformer. In Section 4, we demonstrated
that transformers can encode the DP’s storage “backbone”, encompassing all necessary DP(i, j, a)
on the correct CFG parsing tree, regardless of the DP implementation.

For the recurrent formula, consider DP(k, j, a) in the backbone, derived from DP(k, i, b) ∧
DP(i, j, c) using CFG rule a 7→ b, c. Given that DP(k, i, b) is stored near position i while DP(k, j, a)
and DP(i, j, c) are stored near position j (Result 5), the model needs to perform a memory read of
position i from position j, or j → i. Note that positions i and j are adjacent NT-ends of the same
level, and we have verified that GPT models favor attending j → i when i and j are adjacent NT-
ends, serving as evidence that (decoder-only) transformers use a DP-like approach. See Figure 8
(top) for an illustration.

11Throughout this paper, we use J·K to denote multi-sets that allow multiplicity, such as J1, 2, 2, 3K. This
allows us to conveniently talk about its set average.

12For any token pair j → i with ℓ = b♯(i) ≥ b♯(j) = ℓ′ — meaning i is at an NT-end closer to the root than
j — it satisfies pℓ(j)− pℓ(i) ≥ 1 so their distance r is strictly positive.

13Without removing position-bias, such a statement might be meaningless as the position-bias may favor
“adjacent” anything, including NT-end pairs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

 18 17 17 17 ...

 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...

 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...

 8 8 8 8 8 9 9 9 9 9 7 7 7 9 9 8 8 9 9 7 7 7 9 9 8 8 8 9 9 9 9 7 7 7 ...

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...𝑥 =

…

position 𝑗positions 𝑖

Corollary: GPT mimics
dynamic programming (DP)

learns to
parse CFG

learns to
generate
from CFG

𝐷𝑃(0, 𝑗, 𝟏𝟖)

𝐷𝑃(𝑖1, 𝑗, 𝟏𝟓)𝐷𝑃(0, 𝑖1, 𝟏𝟑)

after pretraining, model’s attention 𝑗 → 𝑖
has a strong bias from any position 𝑗

to its most adjacent NT node positions 𝑖

𝐷𝑃2(𝑗, 𝑎) = whether symbol 𝑎
can follow sequence 𝑥1…𝑥𝑗

𝐷𝑃2(𝑡, 𝟗)

𝐷𝑃(𝑖1, 𝑖2, 𝟏𝟎)

𝐷𝑃(𝑖2, 𝑗, 𝟖)

𝐷𝑃(𝑖, 𝑗, 𝑎) = whether symbol 𝑎
can generate 𝑥𝑖+1…𝑥𝑗

𝐷𝑃(𝑖1, 𝑖2, 𝟏𝟎) 𝐷𝑃(𝑖2, 𝑗, 𝟏𝟎)

…

… …

𝐷𝑃2(𝑡, 𝟏𝟎)

𝐷𝑃2 𝑡, 15 = 𝐷𝑃 0, 𝑖1, 𝟏𝟑

position 𝑗positions 𝑖

(stored here, see Results 4-5)

Figure 8: Illustration of how GPTs mimic dynamic programming. See discussions in Section 5.3.

Further reading for experts. Transformers are not only parsing algorithms but also generative
ones. Experts in CFGs (or experienced participants in coding competitions) may immediately un-
derstand that the generative process requires implementing a second DP:

let DP2(j, a) denote if prefix x1, . . . , xj can be followed with a given symbol a ∈ NT ∪T.

Suppose there is a rule b 7→ c, a, and DP(i, j, c) ∧ DP2(i, b) both hold; this implies DP2(j, a) also
holds. This is analogous to the inside-outside algorithm (Baker, 1979), and is a special case of
problem 6 in the IOI 2006 competition. In this case, the model also needs to perform a memory read
of position i from position j. Here, position i is the most adjacent NT-end to position j at a different
level; we have also verified that GPT models favor attending such j → i. See Figure 8 (bottom).

Finally, the above demonstration shows how to correctly parse and generate, but to generate follow-
ing the same distribution of CFGs, the model needs to learn DP′

2(j, a), the probability that symbol
a can follow prefix x1, . . . , xj . The recurrent formula is similar in terms of memory read patterns
(thus the attention patterns). We ignore this subtlety for conciseness.

In sum, while identifying a specific DP implementation that a transformer learns is nearly impossi-
ble, we have shown that the backbone of the DP — including the necessary DP storage states and
recurrent formula — are observable in the pretrained models’ hidden states and attention patterns.
This serves as strong evidence that pretrained (decoder-only) transformers largely mimic dynamic
programming, regardless of the specific DP implementation they choose.

6 RELATED WORK AND CONCLUSION

We defer implicit CFGs and robust CFGs to Appendix B.

Transformers can encode some CFGs, especially those that correspond to natural languages (He-
witt & Manning, 2019; Shi et al., 2022; Zhao et al., 2023; Maudslay & Cotterell, 2021; Manning
et al., 2020; Vilares et al., 2020; Wu et al., 2020; Arps et al., 2022). Deletang et al. (2023) stud-
ied transformer’s learnability on a few languages in the Chomsky hierarchy (which includes CFGs)
However, the inner mechanisms regarding how transformer can or cannot solve those tasks are un-
clear. There are works “better” than us by precisely interpreting each neuron’s function, but they
study simpler tasks using simpler architectures. For instance, Nanda et al. (2023) examined 1 or
2-layer transformers with context length 3 for the arithmetic addition. In addition to linear probing,
Murty et al. (2023) explored alternative methods to deduce the tree structures learned by a trans-
former. They developed a score to quantify the “tree-like” nature of a transformer, demonstrating
that it becomes increasingly tree-like during training. Our Figure 20 in Appendix E.3 also confirmed
on such findings. (This paper appears in May 2023, so we focus on related works before that.)

Conclusion. We studied how transformers learn synthetically generated, yet challenging CFGs,
and show the inner workings correlate with the internal states of the dynamic programming algo-
rithms needed to parse such CFGs. We hope this will point towards more opportunities towards
understanding larger models on complex tasks. (Indeed, we are writing a series of papers using the
findings and probing techniques developed from this paper; we cannot cite them due to anonymity.)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage and
Extraction. ArXiv e-prints, abs/2309.14316, September 2023. Full version available at http:
//arxiv.org/abs/2309.14316.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811.
03962.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. arXiv
preprint arXiv:1706.08224, 2017.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
in neural language models. arXiv preprint arXiv:2204.06201, 2022.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Society
of America, 65(S1):S132–S132, 1979.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In ICLR, 2023.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In ICLR, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046–30054, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with
jabberwocky probing. arXiv preprint arXiv:2106.02559, 2021.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Characterizing
intrinsic compositionality in transformers with tree projections. In ICLR, 2023.

11

http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2001.04413
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419
https://aclanthology.org/J93-2004

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report, 2023.
Matt Post and Shane Bergsma. Explicit and implicit syntactic features for text classification. In

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 866–872, 2013.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Itiroo Sakai. Syntax in universal translation. In Proceedings of the International Conference on
Machine Translation and Applied Language Analysis, 1961.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-
free-grammar via lstm and the transformer: Difference and the explanations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 8267–8276, 2022.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.
Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer

with rotary position embedding, 2021.
David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodrı́guez. Parsing as pre-

training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 9114–
9121, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4166–4176, 2020.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX
A MISSING FIGURE

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

di
ag

on
al

 m
as

ki
ng

) 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 98.9 85.7 85.7 91.3 75.6 66.8 68.0 83.4

97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 99.6 99.6 98.0 89.0 86.2 76.9 67.2 65.4 67.2 81.3

99.8 99.6 99.3 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.3 99.9 100 99.9 99.7 97.8 87.8 98.5 71.8 50.5 53.7 70.2 89.7

100 100 99.6 99.0 99.4 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.8 100 100 99.6 99.4 99.8 100 100 99.6 99.4 99.8 100 99.1 84.3 74.6 81.8 70.7 59.9 54.2 62.6 79.3

100 99.1 99.1 98.2 96.2 100 99.2 99.2 98.9 98.4 100 99.2 99.3 98.9 98.1 100 99.2 99.2 98.7 97.9 100 99.2 99.2 98.7 97.6 100 99.1 78.2 69.3 80.0 75.4 58.8 54.4 66.4 77.6

100 99.9 100 100 100 89.2 86.1 36.5 26.1 38.2 58.5 82.0

99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 100 100 99.6 90.6 89.4 38.6 23.4 30.4 52.3 82.7

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

tr
id

ia
go

na
l m

as
ki

ng
)

100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.7 99.8 100 100 100 99.0 84.7 84.3 95.0 78.9 68.8 69.2 83.5

99.1 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.6 99.7 99.4 92.0 85.4 83.3 71.2 69.8 72.2 84.5

99.8 99.6 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.0 97.3 90.8 98.1 79.6 52.7 55.2 70.3 91.6

100 100 99.6 99.1 99.5 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.9 100 100 99.7 99.4 99.8 100 100 99.7 99.4 99.8 100 99.4 90.2 75.3 83.1 76.2 61.2 54.7 62.9 81.5

100 99.2 99.1 98.4 97.6 100 99.3 99.3 99.0 99.3 100 99.3 99.3 99.0 99.1 100 99.2 99.2 98.9 98.9 100 99.2 99.2 98.8 98.8 100 98.7 84.9 69.2 79.9 79.3 60.5 54.7 67.4 83.1

100 94.3 88.7 40.3 30.4 41.3 62.4 89.5

99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 100 100 99.9 94.5 89.8 40.5 24.6 32.4 56.1 85.0

Figure 9: Generative models encode NT ancestors almost exactly at NT boundaries. The NTℓ column
represents the accuracy to predict sℓ(i) at locations i with bℓ(i) = 1, via diagonal multi-head linear
probing (4.3).

Observation. By comparing against a baseline, which is the encoding from a random GPT, we
see that BERT-like (encoder-only) transformers such as DeBERTa trained on a masked language
modeling (MLM) task, do not store deep NT ancestor information at the NT boundaries.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

no
n-

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 10: Language models learn implicit CFGs by using word embeddings to encode the (hidden) terminal
symbol.

We present word embedding correlations for GPT pre-trained on an implicit CFG with |T| = 3 and
vocabulary size |OT| = 300. There are 300 rows/columns each representing an observable token
a ∈ OT. Label ijk ∈ {0, 1}3 in the figure indicates whether a is in OTt for the three choices
t ∈ T. Details are in Section B.1.

B RESULTS 10-13: EXTENSIONS OF CFGS

B.1 RESULT 10: IMPLICIT CFGS

In an implicit CFG, terminal symbols represent bags of tokens with shared properties. For exam-
ple, a terminal symbol like noun corresponds to a distribution over a bag of nouns, while verb
corresponds to a distribution over a bag of verbs. These distributions can be non-uniform and over-
lapping, allowing tokens to be shared between different terminal symbols. During pre-training, the
model learns to associate tokens with their respective syntactic or semantic categories, without prior
knowledge of their specific roles in the CFG.

Formally, we consider a set of observable tokens OT, and each terminal symbol t ∈ T in
G is associated with a subset OTt ⊆ OT and a probability distribution Dt over OTt. The
sets (OTt)t can be overlapping. To generate a string from this implicit CFG, after generating
x = (x1, x2, . . . , xm) ∼ L(G), for each terminal symbol xi, we independently sample one element
yi ∼ Dxi

. After that, we observe the new string y = (y1, y2, · · · , ym), and let this new distribution
be called y ∼ LO(G)
We pre-train language models using samples from the distribution y ∼ LO(G). During testing, we
evaluate the success probability of the model generating a string that belongs to LO(G), given an
input prefix y:c. Or, in symbols,

Pry∼LO(G)+randomness of F
[
(y:c, F (y:c)) ∈ LO(G)

]
,

where F (y:c) represents the model’s generated completion given prefix y:c. (We again use dynamic
programming to determine whether the output string is in LO(G).)
We summarize our finding below and deferring details to Appendix G.

Result 10 (Figure 10). Generative language models can learn implicit CFGs very well. In par-
ticular, after pretraining, the token embeddings from the same subset OTt are grouped together,
indicating they use token embedding layer to encode the hidden terminal symbol information.

B.2 RESULTS 11-13: ROBUSTNESS ON CORRUPTED CFG

One may also wish to pre-train a transformer to be robust against errors and inconsistencies in
the input. For example, if the input data is a prefix with some tokens being corrupted or missing,
then one may hope the transformer to correct the errors and still complete the sentence following
the correct CFG rules. Robustness is an important property, as it reflects the generalization and
adaptation ability of the transformer to deal with real-world training data, which may not always
follow the CFG perfectly (such as having grammar errors).

To test robustness, for each input prefix x:c of length c that belongs to the CFG, we randomly select a
set of positions i ∈ [c] in this prefix — each with probability ρ — and flip them i.i.d. with a random
symbol in T. Call the resulting prefix x̃:c. Next, we feed the corrupted prefix x̃:c to the transformer F
and compute its generation accuracy in the uncorrupted CFG: Prx∼L(G), F [(x:c, F (x̃:c)) ∈ L(G)].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

b

100 99.8 100 100 100 100 100 100 100 100 100 100
98.7 100 100 100 100 100 100 100 100 100 99.2 99.9 100 100 100 99.9 100 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100
0.0 14.3 24.7 39.8 44.4 55.7 64.5 73.5 82.6 91.8 0.0 14.1 22.8 35.3 44.9 58.2 65.4 75.5 83.6 92.5 0.0 14.7 26.9 38.5 49.8 56.8 65.5 75.2 81.5 91.8 99.8
78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9 82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8 60.4 58.3 56.5 58.1 60.4 59.1 60.6 57.5 58.9 56.9 30.0
77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9 81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4 59.5 57.7 55.9 57.6 59.2 58.8 59.7 57.2 57.8 57.1 30.3
0.0 0.5 0.5 0.6 0.5 0.3 0.6 0.4 0.5 0.7 0.0 0.4 0.5 0.8 0.2 0.3 0.5 0.6 0.7 0.6 0.0 0.1 0.4 0.4 0.4 0.5 0.9 0.5 0.3 0.3 29.6
100 99.4 100 100 100 100 100 100 100 100 100 100
99.2 100 100 100 100 100 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 98.4 100 100 100 100 100 100 100 100 100 100
0.0 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 0.0 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 0.0 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3 99.9

--------------------pre-training method--------------------

Figure 11: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean
or corrupted prefixes with cuts c = 0 or c = 50, using generation temperatures τ = 0.1, 0.2, 1.0.

Observation. In Rows 4/5, by comparing against the last column, we see it is beneficial to include
low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality data
could be little (γ = 0.1 fraction) or large (every training sentence may have grammar mistake). The
transformer also learns a “mode switch” between the “correct mode” or not; details in Section B.2.

We not only consider clean pre-training, but also some versions of robust pre-training. That is, we
randomly select γ ∈ [0, 1] fraction of the training data and perturb them before feeding into the
pre-training process. We compare three types of data perturbations.14

• (T-level random perturbation). Each xi w.p. 0.15 we replace it with a random symbol in T.
• (NT-level random perturbation). Let ℓ = L − 1 and recall sℓ =

(
sℓ,1, sℓ,2, . . . , sℓ,mL−1

)
is the

sequence of symbols at NT-level ℓ. For each sℓ,i, w.p. 0.10 we perturb it to a random symbol in
NTℓ; and then generate x = sL according to this perturbed sequence.

• (NT-level deterministic perturbation). Let ℓ = L − 1 and fix a permutation π over symbols in
NTℓ. For each sℓ,i, w.p. 0.05 we perturb it to its next symbol in NTL−1 according to π; and
then generate x = sL according to this perturbed sequence.

We focus on ρ = 0.15 with a wide range of perturbation rate τ = 0.0, 0.1, . . . , 0.9, 1.0. We present
our findings in Figure 11. The main message is:

Result 11 (Figure 11, rows 4/5). When pretrained over clean data, GPT models are not so robust
to “grammar mistakes.” It is beneficial to include corrupted or low-quality pretrain data.

Specifically, GPT models achieve only ∼ 30% accuracy when pretrained over clean data x ∼ L(G).
If we pretrain from perturbed data — both when γ = 1.0 so all data are perturbed, and when
γ = 0.1 so we have a small fraction of perturbed data — GPT can achieve ∼ 79%, 82% and 60%
robust accuracies respectively using the three types of data perturbations (rows 4/5 of Figure 11).

Next, we take a closer look. If we use temperature τ = 1 for generation:
Result 12 (Figure 11, rows 3/6/9). Pre-training on corrupted data teaches model a mode switch.

• Given a correct prefix, it mostly completes with a correct string in the CFG (Row 9);

• Given a corrupted prefix, it always completes sentences with grammar mistakes (Row 6);

• When given no prefix, it generates corrupted strings with probability close to γ (Row 3).

By comparing the generation accuracies across different τ and γ, we observe:
Result 13 (Figure 11, rows 4/5/6). High robust accuracy is achieved when generating using low
temperatures τ ,15 and is not sensitive to γ – the fraction of pretrain data that is perturbed.

This should not be surprising given that the language model learned a “mode switch.” Using low
temperature encourages the model to, for each next token, pick a more probable solution. This
allows it to achieve good robust accuracy even when the model is trained totally on corrupted data
(γ = 1.0). Note this is consistent with practice: when feeding a pre-trained completion model (such

14One can easily extend our experiments by considering other types of data corruption (for evaluation), and
other types of data perturbations (for training). We refrain from doing so because it is beyond the scope of this
paper.

15Recall, when temperature τ = 0 the generation is greedy and deterministic; when τ = 1 it reflects the
unaltered distribution learned by the transformer; when τ > 0 s small it encourages the transformer to output
“more probable” tokens.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

as Llama or GPT-3-davinci003) with prompts of grammar mistakes, it tends to produce texts also
with (even new!) grammar mistakes when using a large temperature.

Our experiments suggest that, additional instruct fine-tuning may be necessary, if one wants the
model to always stay in the “correct mode” even for high temperatures. This is beyond the scope of
this paper.

C EXPERIMENT SETUPS

C.1 DATASET DETAILS

We construct seven synthetic CFGs of depth L = 7 with varying levels of learning difficulty. It can
be inferred that the greater the number of T/NT symbols, the more challenging it is to learn the CFG.
For this reason, to push the capabilities of language models to their limits, we primarily focus on
cfg3b, cfg3i, cfg3h, cfg3g, cfg3f, which are of sizes (1, 3, 3, 3, 3, 3, 3) and present increasing levels
of difficulty. Detailed information about these CFGs is provided in Figure 12:

• In cfg3b, we construct the CFG such that the degree |R(a)| = 2 for every NT a. We also ensure
that in any generation rule, consecutive pairs of T/NT symbols are distinct.
The 25%, 50%, 75%, and 95% percentile string lengths are 251, 278, 308, 342 respectively.

• In cfg3i, we set |R(a)| = 2 for every NT a. We remove the requirement for distinctness to make
the data more challenging than cfg3b.
The 25%, 50%, 75%, and 95% percentile string lengths are 276, 307, 340, 386 respectively.

• In cfg3h, we set |R(a)| ∈ {2, 3} for every NT a to make the data more challenging than cfg3i.
The 25%, 50%, 75%, and 95% percentile string lengths are 202, 238, 270, 300 respectively.

• In cfg3g, we set |R(a)| = 3 for every NT a to make the data more challenging than cfg3h.
The 25%, 50%, 75%, and 95% percentile string lengths are 212, 258, 294, 341 respectively.

• In cfg3f, we set |R(a)| ∈ {3, 4} for every NT a to make the data more challenging than cfg3g.
The 25%, 50%, 75%, and 95% percentile string lengths are 191, 247, 302, 364 respectively.

Remark C.1. From the examples in Figure 12, it becomes evident that for grammars G of depth 7,
proving that a string x belongs to L(G) is highly non-trivial, even for a human being, and even when
the CFG rules are known. The standard method of demonstrating x ∈ L(G) is through dynamic
programming. We further discuss what we mean by a CFG’s “difficulty” in Appendix I, and provide
additional experiments beyond the cfg3 data family.
Remark C.2. cfg3f is a dataset that sits right on the boundary of difficulty at which GPT2-small is
capable of learning, see Figure 30 later which shows that smaller GPT2 cannot learn such cfg3f (and
refer to subsequent subsections for training parameters). While it is certainly possible to consider
deeper and more complex CFGs, this would necessitate training a larger network for a longer period.
We choose not to do this as our findings are sufficiently convincing at the level of cfg3f.

Simultaneously, to illustrate that transformers can learn CFGs with larger |NT| or |T|, we construct
datasets cfg3e1 and cfg3e2 respectively of sizes (1, 3, 9, 27, 81, 27, 9) and (1, 3, 9, 27, 27, 9, 4). They
are too lengthy to describe so only included in the supplementary materials.

C.2 MODEL ARCHITECTURE DETAILS

We define GPT as the standard GPT2-small architecture (Radford et al., 2019), which consists of 12
layers, 12 attention heads per layer, and 768 (=12 × 64) hidden dimensions. We pre-train GPT on
the aforementioned datasets, starting from random initialization. For a baseline comparison, we also
implement DeBERTa (He et al., 2020), resizing it to match the dimensions of GPT2 — thus also
comprising 12 layers, 12 attention heads, and 768 dimensions.

Architecture size. We have experimented with models of varying sizes and observed that their
learning capabilities scale with the complexity of the CFGs. To ensure a fair comparison and en-
hance reproducibility, we primarily focus on models with 12 layers, 12 attention heads, and 768
dimensions. The transformers constructed in this manner consist of 86M parameters.

Modern GPTs with relative attention. Recent research (He et al., 2020; Su et al., 2021; Black
et al., 2022) has demonstrated that transformers can significantly improve performance by using

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

22|->20 21
22|->20 19 21
22|->21 19 19
22|->20 20
 19|->18 16 18
 19|->17 18
 19|->18 18
 20|->16 16
 20|->16 17
 20|->17 16 18
 21|->18 17
 21|->17 16
 21|->16 17 18
 21|->16 18
 16|->15 15
 16|->13 15 13
 16|->14 13
 16|->14 14
 17|->15 14 13
 17|->14 15
 17|->15 14
 18|->14 15 13
 18|->15 13 13
 18|->13 15
 13|->11 12
 13|->12 11 12
 13|->10 12 11
 14|->10 12
 14|->12 10 12
 14|->12 11
 14|->10 12 12
 15|->10 11 11
 15|->11 11 10
 15|->10 10
 15|->12 12 11
 10|->8 9 9
 10|->9 7 9
 10|->7 9 9
 11|->8 8
 11|->9 7
 11|->9 7 7
 12|->7 9 7
 12|->9 8
 12|->8 8 9
 7|->2 2 1
 7|->3 2 2
 7|->3 1 2
 7|->3 2
 8|->3 1 1
 8|->1 2
 8|->3 3 1
 9|->1 2 1
 9|->3 3
 9|->1 1

22|->21 20
22|->20 19
 19|->16 17 18
 19|->17 18 16
 20|->17 16 18
 20|->16 17
 21|->18 16
 21|->16 18 17
 16|->15 13
 16|->13 15 14
 17|->14 13 15
 17|->15 13 14
 18|->15 14 13
 18|->14 13
 13|->11 12
 13|->12 11
 14|->11 10 12
 14|->10 11 12
 15|->12 11 10
 15|->11 12 10
 10|->7 9 8
 10|->9 8 7
 11|->8 7 9
 11|->7 8 9
 12|->8 9 7
 12|->9 7 8
 7|->3 1
 7|->1 2 3
 8|->3 2
 8|->3 1 2
 9|->3 2 1
 9|->2 1

22|->19 19 20
22|->21 20 19
 19|->18 16 18
 19|->16 16
 20|->17 16 17
 20|->18 18
 21|->16 16 18
 21|->18 17
 16|->13 13
 16|->14 14
 17|->15 15
 17|->15 14
 18|->14 15 13
 18|->14 15
 13|->12 11
 13|->10 12 11
 14|->10 10 10
 14|->10 10
 15|->11 11 10
 15|->11 10 12
 10|->8 7 7
 10|->9 9
 11|->7 7 7
 11|->7 7 8
 12|->7 9 9
 12|->8 7
 7|->3 1 2
 7|->2 3 1
 8|->1 1
 8|->2 2
 9|->1 1 3
 9|->1 2

22|->20 20 21
22|->19 21
 19|->16 17
 19|->18 17
 20|->18 16
 20|->17 16
 21|->17 17 18
 21|->17 18 17
 16|->14 13
 16|->15 13
 17|->13 14
 17|->15 13 15
 18|->15 13 13
 18|->15 14 14
 18|->14 15 15
 13|->12 11
 13|->11 10
 14|->10 12 12
 14|->10 10
 14|->12 12 10
 15|->10 12
 15|->11 11 10
 10|->8 7 9
 10|->9 7
 10|->8 8
 11|->8 7 7
 11|->7 7
 11|->7 9 9
 12|->7 9
 12|->8 7
 12|->9 8
 7|->2 3 2
 7|->1 2 3
 7|->1 3 1
 8|->1 2
 8|->3 3 1
 8|->1 3
 9|->2 1 3
 9|->1 3 3

22|->19 20
22|->20 20 19
22|->20 19 21
 19|->17 17 16
 19|->18 17 16
 19|->18 16 17
 20|->16 17
 20|->18 18
 20|->16 17 17
 21|->16 16
 21|->16 16 18
 21|->18 16
 16|->14 13 13
 16|->13 14
 16|->13 13
 17|->14 13 14
 17|->14 15 13
 17|->15 14
 18|->15 13
 18|->15 15
 18|->14 13 15
 13|->10 12
 13|->11 11 11
 13|->11 11
 14|->11 12
 14|->10 11 10
 14|->10 10
 15|->10 11
 15|->12 10 10
 15|->12 11
 10|->8 8 8
 10|->7 7 7
 10|->7 7
 11|->8 8 9
 11|->9 7
 11|->8 9 7
 12|->7 9
 12|->7 8
 12|->9 9 9
 7|->2 3 1
 7|->1 1
 7|->2 2
 8|->1 3 2
 8|->1 3
 8|->3 3 1
 9|->2 3 3
 9|->2 3
 9|->2 1

cfg3b cfg3i

cfg3h

cfg3g

cfg3f

332213123312113123211322312312111213211322311311

322333123121112131133112132121333331232212131232

221111213322131131131131111113231233133133311331

333332231211311121221111211233312331121113313333

331123333131111333312113211312121133333212111121

213223223322133221113221132323313111213223223221

211133331121322221332211212133121331332212213221

211213331232233312

231221122132232312311233223313313313313312122221

123322331331132132233222123113233113233123231132

331123112311111222312312233121111123122112332321

231221111231331132212223321232133133133133113132

311122211322322113311323312313223323133133113231

222332123132132211313231123331132331112223311232

21123123111132

131231331311332131323223212232123121313121321313

113313333113123232131323213113131232121231332132

322321333311231331231332321312131133131231231311

312133311312321331232131313312131231311212312312

232213131131331133313312322132131312133312131212

1231311232131331313133123232213

113113121222312312113113121222312231112313121212

222312311131212113113123123123123123122313121212

312312312231312231112312311131211231231112312312

231231211231312112313121212231231231231231111212

312231231231312111131131131222312231223123123123

123122313121111231312312113122313121111312231231

221131231212122312313123123121112113

312312132132123323213132112332321233213123213132

313211232131221123312321232121123312313221213212

331312321213212332321123323121313213123221123323

132121313122112332312123213213231312123213232131

123213123132321321313221313232313212112331231322

112321312321313123132213121321233122132131231321

313123132213213132

a sample from cfg3b:

a sample from cfg3i:

a sample from cfg3h:

a sample from cfg3g:

a sample from cfg3f:

Figure 12: The context-free grammars cfg3b, cfg3i, cfg3h, cfg3g, cfg3f that we primarily use in this paper,
together with a sample string from each of them.

Observation. Although those CFGs are only of depth 7, they are capable of generating sufficiently
long and hard instances; after all, even when the CFG rules are given, the typical way to decide if a
string x belongs to the CFG language x ∈ L(G) may require dynamic programming.

attention mechanisms based on the relative position differences of tokens, as opposed to the absolute
positions used in the original GPT2 (Radford et al., 2019) or BERT (Kenton & Toutanova, 2019).
There are two main approaches to achieve this. The first is to use a “relative positional embedding
layer” on |j − i| when calculating the attention from j to i (or a bucket embedding to save space).
This approach is the most effective but tends to train slower. The second approach is to apply a
rotary positional embedding (RoPE) transformation (Su et al., 2021) on the hidden states; this is
known to be slightly less effective than the relative approach, but it can be trained much faster.

We have implemented both approaches. We adopted the RoPE implementation from the GPT-NeoX-
20B project (along with the default parameters), but downsized it to fit the GPT2 small model. We
refer to this architecture as GPTrot. Since we could not find a standard implementation of GPT using
relative attention, we re-implemented GPT2 using the relative attention framework from DeBERTa
(He et al., 2020). (Recall, DeBERTa is a variant of BERT that effectively utilizes relative positional
embeddings.) We refer to this architecture as GPTrel.

Weaker GPTs utilizing only position-based attention. For the purpose of analysis, we also
consider two significantly weaker variants of GPT, where the attention matrix exclusively depends
on the token positions, and not on the input sequences or hidden embeddings. In other words, the
attention pattern remains constant for all input sequences.

We implement GPTpos, a variant of GPTrel that restricts the attention matrix to be computed solely
using the (trainable) relative positional embedding. This can be perceived as a GPT variant that
maximizes the use of position-based attention. We also implement GPTuni, a 12-layer, 8-head, 1024-
dimension transformer, where the attention matrix is fixed; for each h ∈ [8], the h-th head consis-
tently uses a fixed, uniform attention over the previous 2h − 1 tokens. This can be perceived as a
GPT variant that employs the simplest form of position-based attention.
Remark C.3. It should not be surprising that GPTpos or GPTuni perform much worse than other GPT
models on real-life wikibook pre-training. However, once again, we use them only for analysis

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

purpose in this paper, as we wish to demonstrate what is the maximum power of GPT when only
using position-based attention to learn CFGs, and what is the marginal effect when one goes beyond
position-based attention.

Features from random transformer. Finally we also consider a randomly-initialized GPTrel, and
use those random features for the purpose of predicting NT ancestors and NT ends. This serves as a
baseline, and can be viewed as the power of the so-called (finite-width) neural tangent kernel (Jacot
et al., 2018; Allen-Zhu et al., 2019). We call this GPTrand.

C.3 PRE-TRAINING DETAILS

For each sample x ∼ L(G) we append it to the left with a BOS token and to the right with an
EOS token. Then, following the tradition of language modeling (LM) pre-training, we concatenate
consecutive samples and randomly cut the data to form sequences of a fixed window length 512.

As a baseline comparison, we also applied DeBERTa on a masked language modeling (MLM) task
for our datasets. We use standard MLM parameters: 15% masked probability, in which 80% chance
of using a masked token, 10% chance using the original token, and 10% chance using a random
token.

We use standard initializations from the huggingface library. For GPT pre-training, we use AdamW
with β = (0.9, 0.98), weight decay 0.1, learning rate 0.0003, and batch size 96. We pre-train the
model for 100k iterations, with a linear learning rate decay.16 For DeBERTa, we use learning rate
0.0001 which is better and 2000 steps of learning rate linear warmup.

Throughout the experiments, for both pre-training and testing, we only use fresh samples from the
CFG datasets (thus using 4.9 billion tokens = 96 × 512 × 100k). We have also tested pre-training
with a finite training set of 100m tokens; and the conclusions of this paper stay similar. To make
this paper clean, we choose to stick to the infinite-data regime in this version of the paper, because
it enables us to make negative statements (for instance about the vanilla GPT or DeBERTa, or about
the learnability of NT ancestors / NT boundaries) without worrying about the sample size. Please
note, given that our CFG language is very large (e.g., length 300 tree of length-2/3 rules and degree
4 would have at least 4300/3 possibility), there is almost no chance that training/testing hit the same
sentence.

As for the reproducibility of our result, we did not run each pre-train experiment more than once (or
plot any confidence interval). This is because, rather than repeating our experiments identically, we
find it more interesting to use the resources to run it against different datasets and against different
parameters. We pick the best model using the perplexity score from each pre-training task. When
evaluating the generation accuracy in Figure 4, we have generated more than 20000 samples for
each case, and present the diversity pattern accordingly in Figure 13.

C.4 PREDICT NT ANCESTOR AND NT BOUNDARY

Recall from Section 4.1 that we have proposed to use a multi-head linear function to probe whether
or not the hidden states of a transformer, implicitly encodes the NT ancestor and NT boundary
information for each token position. Since this linear function can be of dimension 512 × 768 —
when having a context length 512 and hidden dimension 768 — recall in (4.2), we have proposed
to use a multi-head attention to construct such linear function for efficient learning purpose. This
significantly reduces sample complexity and makes it much easier to find the linear function.

In our implementation, we choose H = 16 heads and hidden dimension d′ = 1024 when construct-
ing this position-based attention in (4.2). We have also tried other parameters but the NT ances-
tor/boundary prediction accuracies are not very sensitive to such architecture change. We again use
AdamW with β = (0.9, 0.98) but this time with learning rate 0.003, weight decay 0.001, batch size
60 and train for 30k iterations.

Once again we use fresh new samples when training such linear functions. When evaluating the
accuracies on predicting the NT ancester / boundary information, we also use fresh new samples.
Recall our CFG language is sufficiently large so there is negligible chance that the model has seen

16We have slightly tuned the parameters to make pre-training go best. We noticed for training GPTs over our
CFG data, a warmup learning rate schedule is not needed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
f 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

Figure 13: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (c = 0
or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7. Colors
represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the collision

counts (if not present, meaning there are more than 5 collisions). More experiments in Figure 14,
15, and 16

Observation. We use M = 20000 samples. The diversity pattern from the pre-trained transformer
matches that of the ground-truth. For instance, from the root one can generate Ω(M2) distinct
sequences to level ℓ2 = 5 using the CFG rules, and from every a ∈ NT2 one can generate
Ω(M2) to level ℓ2 = 6 (not to say to the T-level ℓ2 = 7); this is already more than the number
of parameters in the model. Therefore, we conclude that the pre-trained model does not rely on
simply memorizing a small set of patterns to learn the CFGs.

such a string during training.

D MORE EXPERIMENTS ON GENERATION

Diversity can be estimated through entropy. Given a distribution p over strings and a sampled subset
S =

{
x(i)

}
i∈[M]

from p, for any string x ∈ S, denote by len(x) its length so x = (x1, . . . , xlen(x)),
and denote by xlen(x)+1 = eos. The entropy in bits for p can be estimated by

− 1
|S|

∑
x∈S

∑
i∈[len(x)+1] log2 Prp

[
xi | x1, . . . , xi−1

]
We compare the entropy of the true CFG distribution and the transformer’s output distribution using
M = 20000 samples in Figure 4 (middle).

Diversity can also be estimated using the birthday paradox to lower bound the support size of a
distribution (Arora & Zhang, 2017). Given a distribution p over strings and a sampled subset S ={
x(i)

}
i∈[M]

from p, if every pair of samples in S are distinct, then with good probability the support
of p is of size at least Ω(M2). In Appendix D.1, we conducted an experiment with M = 20000.
We performed a birthday paradox experiment from every symbol a ∈ NTℓ1 to some other level
ℓ2 > ℓ1, comparing that with the ground truth. For instance, we confirmed for the cfg3f dataset,
there are at least Ω(M2) distinct sentential forms that can be derived from a symbol in level 1 to
level 5, or from level 2 to level 6, etc. — not to mention from the root in NT1 to the leaf at level 7.
In particular, M2 is already more than the number of parameters in the model.

From both experiments, we conclude that the pre-trained model does not rely on simply memoriz-
ing a small set of patterns to learn the CFGs.

D.1 GENERATION DIVERSITY VIA BIRTHDAY PARADOX

Since “diversity” is influenced by the length of the input prefix, the length of the output, and the
CFG rules, we want to carefully define what we measure.

Given a sample pool x(1), ..., x(M) ∈ L(G), for every symbol a ∈ NTℓ1 and some later level
ℓ2 ≥ ℓ1 that is closer to the leaves, we wish to define a multi-set Sa→ℓ2 that describes all possible
generations from a ∈ NTℓ1 to NTℓ2 in this sample pool. Formally,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Definition D.1. For x ∈ L(G) and ℓ ∈ [L], we use sℓ(i..j) to denote the sequence of NT ancestor
symbols at level ℓ ∈ [L] from position i to j with distinct ancestor indices:17

sℓ(i..j) = (sℓ(k))k∈{i,i+1,...,j} s.t. pℓ(k) ̸=pℓ(k+1)

Definition D.2. For symbol a ∈ NTℓ1 and some layer ℓ2 ∈ {ℓ1, ℓ1 + 1, . . . , L}, define multi-set18

Sa→ℓ2(x) =

s
sℓ2(i..j)

∣∣∣ ∀i, j, i ≤ j such that pℓ1(i− 1) ̸= pℓ1(i) = pℓ1(j) ̸= pℓ1(j + 1) ∧ a = sℓ1(i)

{

and we define the multi-set union Sa→ℓ2 =
⋃

i∈[M] Sa→ℓ2

(
x(i)

)
, which is the multiset of all sen-

tential forms that can be derived from NT symbol a to depth ℓ2.

(Above, when x ∼ L(G) is generated from the ground-truth CFG, then the ancestor indices and
symbols p, s are defined in Section 2. If x ∈ L(G) is an output from the transformer F , then we let
p, s be computed using dynamic programming, breaking ties lexicographically.)

We use Struth
a→ℓ2

to denote the ground truth Sa→ℓ2 when x(1), . . . , x(M) are i.i.d. sampled from the
real distribution L(G), and denote by

SF
a→ℓ2

=
⋃

i∈[M ′] and x
(i)
:c ,F (x

(i)
:c)∈L(G) Sa→ℓ2

(
x
(i)
:c , F (x

(i)
:c)

)
that from the transformer F . For a fair comparison, for each F and p, we pick an M ′ ≥ M such that
M =

∣∣{i ∈ [M ′] | x(i)
:p , F (x

(i)
:p) ∈ L(G)

}∣∣ so that F is capable of generating exactly M sentences
that nearly-perfectly satisfy the CFG rules.19

Intuitively, for x’s generated by the transformer model, the larger the number of distinct sequences
in SF

a→ℓ2
is, the more diverse the set of NTs at level ℓ2 (or Ts if ℓ2 = L) the model can generate

starting from NT a. Moreover, in the event that SF
a→ℓ2

has only distinct sequences (so collision
count = 0), then we know that the generation from a → ℓ2, with good probability, should include at
least Ω(M2) possibilities using a birthday paradox argument. 20

For such reason, it can be beneficial if we compare the number of distinct sequences and the collision
counts between SF

a→ℓ2
and Struth

a→ℓ2
. Note we consider all ℓ2 ≥ ℓ1 instead of only ℓ2 = L, because

we want to better capture model’s diversity at all CFG levels.21 We present our findings in Figure 13
with M = 20000 samples for the cfg3f dataset.

In Figure 14 we present that for cfg3b, cfg3i, cfg3h, cfg3g, in Figure 15 for cfg3e1, and in Figure 16
for cfg3e2. We note that not only for hard, ambiguous datasets, also for those less ambiguous
(cfg3e1, cfg3e2) datasets, language models are capable of generating very diverse outputs.

17With the understanding that pℓ(0) = pℓ(len(x) + 1) = ∞.
18Throughout this paper, we use J·K to denote multi-sets that allow multiplicity, such as J1, 2, 2, 3K. This

allows us to conveniently talk about its collision count, number of distinct elements, and set average.
19Please note M and M ′ are roughly the same, given
20A CFG of depth L, even with constant degree and constant size, can generate 22

Ω(L)

distinct sequences.
21A model might generate a same NT symbol sequence sL−1, and then generate different Ts randomly from

each NT. In this way, the model still generates strings x’s with large diversity, but SF
a→L−1(x) is small. If

SF
a→ℓ2

is large for every ℓ2 and a, then the generation from the model is truely diverse at any level of the CFG.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
b 0

0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(a) cfg3b dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
i 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(b) cfg3i dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
h 0

0 0 3 0 1 0 2 0 1 0 0 3 0 2 0 1 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(c) cfg3h dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
g 0

0 0
0 2 0 2 0 0 4 0 1 0 3 0 5 0 2 0 1 0 1 0

0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
2 5 4 3 3 5 3 3

4 2 2 2 2 1 3 1 2 0 0
1 2 2 2 1 4 1 1 2 4 0

100

101

102

103

104

(d) cfg3g dataset

Figure 14: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
e1

4 0 0 1 0 0 2 0 0 2 0 0 1 0 0 3 0 0 3 0 0 1 0 0 0 0 0 1 0 0 2 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 2 0 2 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 2 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0

100

101

102

103

104

Figure 15: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3e1
dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
e2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 3 0 2 0 1 0 0 0 0 0 2 0 3 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
0 0

0 0 0 2 0 1 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 1 1 2 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

Figure 16: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3e2
dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 MARGINAL DISTRIBUTION COMPARISON

In order to effectively learn a CFG, it is also important to match the distribution of generating
probabilities. While measuring this can be challenging, we have conducted at least a simple test on
the marginal distributions p(a, i), which represent the probability of symbol a ∈ NTℓ appearing at
position i (i.e., the probability that sℓ(i) = a). We observe a strong alignment between the generated
probabilities and the ground-truth distribution. See Figure 17.

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) cfg3b dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(b) cfg3b dataset; marginal distribution - ground
truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) cfg3i dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(d) cfg3i dataset; marginal distribution - ground
truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.2

0.4

0.6

0.8

1.0

(e) cfg3h dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(f) cfg3h dataset; marginal distribution - ground
truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(g) cfg3g dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(h) cfg3g dataset; marginal distribution - ground
truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(i) cfg3f dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(j) cfg3f dataset; marginal distribution - ground
truth

Figure 17: Marginal distribution p(a, i) difference between a trained model and the ground-truth, for an NT/T
symbol a (column) at position i (row). Figures on the left compare the marginal distribution of the
ground-truth against those generated from 5 models × 2 cut positions (c = 0/c = 50). Figures
on the right showcase the marginal distribution difference between them and the ground-truth. It is
noticeable from the figures that GPT did not learn cfg3g and cfg3f well. This is consistent with the
generation accuracies in Figure 4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENTS ON NT ANCESTOR AND NT BOUNDARY
PREDICTIONS

E.1 NT ANCESTOR AND NT BOUNDARY PREDICTIONS

Earlier, as confirmed in Figure 5, we established that the hidden states (of the final transformer layer)
have implicitly encoded the NT ancestor symbols sℓ(i) for each CFG level ℓ and token position
i using a linear transformation. In Figure 18(a), we also demonstrated that the same conclusion
applies to the NT-end boundary information bℓ(i). More importantly, for bℓ(i), we showed that this
information is stored locally, very close to position i (such as at i± 1). Detailed information can be
found in Figure 18.

Furthermore, as recalled in Figure 9, we confirmed that at any NT boundary where bℓ(i) = 1, the
transformer has also locally encoded clear information about the NT ancestor symbol sℓ(i), either
exactly at i or at i±1. To be precise, this is a conditional statement — given that it is an NT boundary,
NT ancestors can be predicted. Therefore, in principle, one must also verify that the prediction task
for the NT boundary is successful to begin with. Such missing experiments are, in fact, included in
Figure 18(b) and Figure 18(c).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)

100 96.5 88.0 95.5 98.5 99.6

99.7 99.8 99.0 99.5 99.9 99.7 99.8 99.1 99.5 99.9 99.7 99.8 99.1 99.5 99.9 99.8 99.8 99.1 99.6 99.9 99.8 99.8 99.1 99.6 99.9 87.5 88.6 94.9 97.9 99.3

99.7 99.3 99.5 99.8 99.9 99.7 99.4 99.5 99.8 99.9 99.7 99.4 99.5 99.8 99.9 99.7 99.4 99.6 99.9 100 99.7 99.4 99.6 99.9 100 88.1 86.8 94.0 97.9 99.4

99.8 98.0 98.2 99.2 99.7 99.8 98.3 98.5 99.4 99.8 99.8 98.2 98.5 99.4 99.8 99.7 98.3 98.6 99.4 99.8 99.8 98.3 98.6 99.4 99.8 92.1 85.6 93.6 97.7 99.3

100 98.3 98.8 99.3 99.7 100 98.8 99.0 99.5 99.8 100 98.8 99.1 99.5 99.8 100 98.9 99.2 99.6 99.8 100 98.8 99.1 99.5 99.8 91.7 85.6 94.8 98.1 99.4

100 71.7 84.2 94.0 97.8 99.3

99.5 99.9 100 100 100 99.6 100 100 100 100 99.6 100 100 100 100 99.7 100 100 100 100 99.7 100 100 100 100 73.1 84.6 94.2 98.0 99.3

(a) Predicting NT boundaries: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents the accuracy of predicting
bℓ using the multi-head linear probing function described in (4.2).

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)
 (

di
ag

on
al

 m
as

ki
ng

) 95.7 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 95.7 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 96.5 88.0 95.5 98.5 99.6

96.5 96.9 97.7 98.5 99.4 96.6 97.1 97.8 98.5 99.4 96.6 97.0 97.8 98.5 99.4 96.5 97.0 97.7 98.5 99.4 96.6 97.1 97.8 98.5 99.4 87.5 88.6 94.9 97.9 99.3

91.3 95.0 97.8 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 88.1 86.8 94.0 97.9 99.4

86.7 92.6 95.0 98.0 99.1 86.9 92.8 95.2 98.1 99.2 86.9 92.8 95.3 98.1 99.2 86.9 92.8 95.2 98.1 99.2 86.9 92.8 95.2 98.1 99.2 92.1 85.6 93.6 97.7 99.3

89.1 92.7 96.5 98.2 99.2 89.4 93.2 96.7 98.4 99.3 89.4 93.2 96.7 98.4 99.3 89.3 93.2 96.6 98.3 99.2 89.3 93.2 96.6 98.3 99.2 91.7 85.6 94.8 98.1 99.4

98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 71.7 84.2 94.0 97.8 99.3

96.0 99.0 99.9 100 100 96.1 99.0 99.9 100 100 96.0 99.0 99.9 100 100 96.0 99.0 99.9 100 100 96.1 99.0 99.9 100 100 73.1 84.6 94.2 98.0 99.3

(b) Predicting NT boundaries with diagonal masking: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents the
accuracy of predicting bℓ using (4.2) but setting wr,i→k = 0 for i ̸= k.

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)
 (

tr
id

ia
go

na
l m

as
ki

ng
) 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 96.5 88.0 95.5 98.5 99.6

97.7 98.2 98.3 98.9 99.6 97.8 98.2 98.4 98.9 99.6 97.7 98.2 98.4 98.9 99.6 97.8 98.2 98.4 98.9 99.6 97.8 98.2 98.4 98.9 99.6 87.5 88.6 94.9 97.9 99.3

98.0 97.2 98.7 99.4 99.8 98.1 97.3 98.8 99.4 99.8 98.1 97.3 98.8 99.4 99.8 98.1 97.4 98.7 99.4 99.8 98.1 97.4 98.7 99.4 99.8 88.1 86.8 94.0 97.9 99.4

96.7 96.3 96.5 98.7 99.5 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.7 98.8 99.6 92.1 85.6 93.6 97.7 99.3

98.3 95.4 97.4 98.7 99.6 98.4 95.7 97.6 98.9 99.6 98.4 95.7 97.6 98.9 99.6 98.4 95.7 97.6 98.8 99.6 98.4 95.7 97.6 98.8 99.6 91.7 85.6 94.8 98.1 99.4

99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 71.7 84.2 94.0 97.8 99.3

98.7 99.7 100 100 100 98.8 99.7 100 100 100 98.8 99.7 100 100 100 98.8 99.7 100 100 100 98.9 99.7 100 100 100 73.1 84.6 94.2 98.0 99.3

(c) Predicting NT boundaries with tridiagonal masking: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents
the accuracy of predicting bℓ using (4.2) but setting wr,i→k = 0 for |i− k| > 1.

Figure 18: After pre-training, the NT-end boundary information — i.e., bℓ(i) for position i and NT level ℓ —
is largely stored locally near the hidden state at position i ± 1, up to a linear transformation. This
can be compared with the prediction accuracy of the NT ancestor sℓ(i) in Figure 5.

Observation. This implies, the transformer actually knows, with a very good accuracy, that “posi-
tion i is already the end of NT on level ℓ”, by just reading all the texts until this position (possibly
peeking one more to its right).
Remark 1. It may be mathematically necessary to peek more than 1 tokens to decide if a position i
is at an NT boundary, due to CFG’s ambiguity. But, in most cases, that can be decided quite early.
Remark 2. Predicting NT boundary is a very biased binary classification task. For levels ℓ that are
close to the CFG root, most symbols are not at NT boundary for that level ℓ (see Figure 2). For such
reason, in the heatmap color of the figures above, we have normalized the columns with respect to
NT2..NT6 differently, to reflect this bias.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.2 NT PREDICTIONS ACROSS TRANSFORMER’S LAYERS

As one may image, the NT ancestor and boundary information for smaller CFG levels ℓ (i.e., closer
to CFG root) are only learned at those deeper transformer layers l. In Figure 19, we present this
finding by calculating the linear encoding accuracies with respect to all the 12 transformer layers in
GPT and GPTrel. We confirm that generative models discover such information hierarchically.

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

lay0
lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12pr

ed
ic

t
N

T
an

ce
st

or
 (

%
)

ac
ro

ss
 la

ye
rs 69.8 49.2 44.6 59.1 68.0 69.7 49.3 44.6 59.1 68.0 69.7 49.2 44.5 59.1 68.7 84.4 71.4 64.1 66.5 65.2 84.4 71.4 64.1 66.5 65.3 84.3 71.3 64.0 66.3 65.9

98.9 72.3 48.7 59.5 68.0 94.2 64.2 46.6 59.3 68.0 71.6 49.9 44.6 59.2 68.6 97.3 87.7 79.5 73.0 69.4 96.9 85.3 76.1 71.3 68.5 84.8 71.8 64.6 66.6 65.5
99.0 73.6 49.2 59.6 68.1 99.8 78.6 51.2 59.7 68.0 71.8 50.0 44.6 59.1 68.6 97.5 88.7 81.1 74.0 70.1 97.8 90.6 83.0 74.9 71.3 84.8 71.8 64.7 66.7 65.3
99.1 75.3 50.2 59.6 68.1 100 87.2 58.6 60.3 68.2 71.8 50.0 44.6 59.1 68.6 97.7 90.5 83.8 76.4 74.3 98.5 95.5 91.9 81.9 80.7 84.8 71.9 64.7 66.3 65.5
99.4 78.2 52.1 59.7 68.1 100 93.6 71.2 61.9 68.8 71.7 49.9 44.6 59.1 68.6 98.1 92.4 86.9 79.7 77.1 99.1 98.3 97.0 92.0 92.7 84.7 71.8 64.6 66.5 65.2
99.9 82.7 54.8 59.9 68.3 100 96.3 81.6 65.0 69.7 71.6 49.9 44.6 59.1 68.6 98.3 93.9 89.2 82.1 79.4 99.3 99.0 98.5 95.6 96.0 84.7 71.8 64.7 66.4 65.2
100 87.6 60.7 60.5 68.4 100 97.4 89.6 72.7 72.2 71.6 49.9 44.6 59.1 68.6 98.6 95.5 91.9 85.8 82.8 99.5 99.4 99.3 97.7 97.8 84.7 71.7 64.6 66.6 65.3
100 92.2 69.2 61.5 68.8 100 97.7 93.0 82.3 76.3 71.5 49.9 44.6 59.1 68.6 98.8 97.1 95.2 90.8 89.5 99.5 99.6 99.5 98.7 98.9 84.7 71.7 64.6 66.2 65.3
100 95.3 78.7 63.6 69.5 100 97.7 94.2 88.0 83.2 71.4 49.9 44.6 59.1 68.6 99.2 98.5 97.7 94.6 94.8 99.6 99.6 99.6 99.1 99.6 84.6 71.7 64.7 66.1 65.2
100 97.1 87.3 68.3 71.2 100 97.7 94.8 91.6 90.3 71.5 49.9 44.6 59.1 68.6 99.4 99.3 99.1 97.4 97.8 99.6 99.7 99.6 99.2 99.8 84.5 71.7 64.6 66.4 65.6
100 97.7 92.4 78.3 75.1 100 97.7 95.0 92.8 93.3 71.4 49.9 44.5 59.1 68.6 99.6 99.6 99.5 98.9 99.3 99.6 99.7 99.6 99.3 99.8 84.6 71.7 64.7 66.3 65.2
100 97.8 94.1 86.7 82.3 100 97.7 94.9 92.9 93.7 71.3 49.8 44.5 59.1 68.6 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.8 84.7 71.7 64.6 66.5 65.3
100 97.6 94.3 88.4 85.9 100 97.5 94.8 92.9 93.5 71.3 49.9 44.6 59.1 68.6 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.7 84.6 71.7 64.6 66.4 65.2

(a) Predict NT ancestors, comparing against the GPTrand baseline

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

lay0
lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12pr

ed
ic

t
N

T-
en

d
bo

un
da

ry
 a

cr
os

s
la

ye
rs 90.8 85.4 94.8 98.1 99.4 90.8 85.4 94.8 98.1 99.4 90.7 85.4 94.8 98.1 99.4 86.9 88.4 94.9 97.9 99.3 86.9 88.4 94.9 97.9 99.3 86.9 88.5 94.8 97.8 99.3

100 92.9 95.0 98.1 99.4 99.2 88.9 94.8 98.1 99.4 91.7 85.6 94.8 98.1 99.4 97.6 97.3 96.0 98.1 99.3 97.3 96.2 95.6 98.1 99.3 87.6 88.7 94.9 97.8 99.3
100 93.4 95.0 98.1 99.4 100 95.1 95.2 98.1 99.4 91.8 85.6 94.8 98.1 99.4 98.0 97.7 96.2 98.2 99.4 98.7 98.2 96.7 98.3 99.4 87.7 88.7 94.9 97.9 99.3
100 94.0 95.1 98.1 99.4 100 97.1 95.7 98.1 99.4 91.8 85.6 94.8 98.1 99.4 98.4 98.1 96.6 98.3 99.4 99.1 98.9 97.7 98.5 99.4 87.7 88.6 94.9 97.9 99.3
100 95.0 95.2 98.1 99.4 100 98.3 96.9 98.2 99.4 91.9 85.6 94.8 98.1 99.4 98.8 98.5 97.2 98.4 99.4 99.4 99.4 98.4 98.8 99.5 87.7 88.7 94.9 97.8 99.3
100 96.1 95.5 98.1 99.4 100 98.8 98.2 98.4 99.4 91.8 85.6 94.8 98.1 99.4 98.9 98.7 97.6 98.5 99.4 99.5 99.6 98.7 99.1 99.7 87.7 88.6 94.9 97.9 99.3
100 97.1 95.9 98.1 99.4 100 98.9 98.8 98.8 99.5 91.8 85.6 94.8 98.1 99.4 99.1 98.9 97.9 98.6 99.5 99.6 99.7 98.9 99.3 99.8 87.7 88.6 94.9 97.9 99.3
100 97.7 96.6 98.2 99.4 100 98.9 99.0 99.2 99.7 91.8 85.6 94.8 98.1 99.4 99.3 99.1 98.2 98.8 99.5 99.7 99.8 99.0 99.4 99.8 87.7 88.6 94.9 97.9 99.3
100 98.2 97.6 98.3 99.4 100 98.9 99.0 99.4 99.8 91.8 85.6 94.8 98.1 99.4 99.4 99.4 98.5 99.0 99.6 99.7 99.8 99.0 99.5 99.9 87.6 88.6 94.9 97.9 99.3
100 98.4 98.4 98.6 99.5 100 98.9 99.1 99.5 99.8 91.8 85.6 94.8 98.1 99.4 99.5 99.6 98.8 99.2 99.8 99.7 99.8 99.1 99.6 99.9 87.6 88.6 94.9 97.9 99.3
100 98.5 98.7 98.9 99.6 100 98.9 99.1 99.5 99.8 91.8 85.6 94.8 98.1 99.4 99.6 99.7 99.0 99.4 99.9 99.8 99.8 99.1 99.6 99.9 87.7 88.7 94.9 97.8 99.3
100 98.5 98.9 99.3 99.7 100 98.9 99.1 99.5 99.8 91.7 85.5 94.8 98.1 99.4 99.7 99.8 99.1 99.5 99.9 99.7 99.8 99.1 99.6 99.9 87.6 88.6 94.9 97.9 99.3
100 98.3 98.8 99.3 99.7 100 98.8 99.0 99.5 99.8 91.7 85.6 94.8 98.1 99.4 99.7 99.8 99.0 99.5 99.9 99.7 99.8 99.1 99.5 99.9 87.5 88.6 94.9 97.9 99.3

(b) Predict NT boundaries, comparing against the GPTrand baseline

Figure 19: Generative models discover NT ancestors and NT boundaries hierarchically.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.3 NT PREDICTIONS ACROSS TRAINING EPOCHS

Moreover, one may conjecture that the NT ancestor and NT boundary information is learned grad-
ually as the number of training steps increase. We have confirmed this in Figure 20. We emphasize
that this does not imply layer-wise training is applicable in learning deep CFGs. It is crucial to
train all the layers together, as the training process of deeper transformer layers may help back-
ward correct the features learned in the lower layers, through a process called “backward feature
correction” (Allen-Zhu & Li, 2023).

predict NT (GPT) predict NTend (GPT) predict NT (GPT_rel) predict NTend (GPT_rel)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200

pr
ed

ic
t

N
T

an
ce

st
or

/b
ou

nd
ar

y
(%

)
ac

ro
ss

 t
ra

in
in

g
ep

oc
hs

99.5 84.2 57.2 59.9 68.7 100 96.4 95.6 98.1 99.4 100 96.2 86.8 68.8 70.9 100 98.5 98.5 98.7 99.5
100 93.2 71.6 62.0 69.1 100 98.0 97.2 98.2 99.4 100 96.8 91.7 79.7 75.5 100 98.6 98.8 99.1 99.6
100 95.2 79.7 64.5 69.9 100 98.2 97.9 98.4 99.4 100 97.0 92.7 85.3 80.0 100 98.6 98.8 99.3 99.7
100 96.1 83.4 66.1 70.3 100 98.4 98.3 98.5 99.4 100 97.1 93.2 87.5 83.4 100 98.7 98.9 99.4 99.7
100 96.5 86.0 68.7 71.1 100 98.4 98.4 98.6 99.5 100 97.2 93.6 88.9 86.0 100 98.7 98.9 99.4 99.8
100 96.8 87.5 70.5 71.7 100 98.4 98.5 98.7 99.5 100 97.2 93.7 89.7 87.8 100 98.7 98.9 99.4 99.8
100 97.0 88.5 71.9 72.6 100 98.4 98.5 98.8 99.5 100 97.4 94.1 90.6 89.3 100 98.7 98.9 99.4 99.8
100 97.1 89.4 73.3 73.1 100 98.5 98.6 98.8 99.5 100 97.3 94.0 90.8 90.1 100 98.7 98.9 99.4 99.8
100 97.1 90.1 74.7 73.9 100 98.4 98.6 98.9 99.5 100 97.4 94.0 91.1 91.0 100 98.7 98.9 99.4 99.8
100 97.2 90.6 76.3 74.4 100 98.5 98.6 98.9 99.6 100 97.4 94.1 91.3 91.4 100 98.7 98.9 99.4 99.8
100 97.3 91.0 77.6 75.0 100 98.4 98.7 99.0 99.6 100 97.4 94.2 91.5 91.7 100 98.7 99.0 99.5 99.8
100 97.2 91.4 78.8 76.0 100 98.4 98.7 99.0 99.6 100 97.3 94.3 91.6 91.8 100 98.8 99.0 99.5 99.8
100 97.3 91.8 79.8 76.9 100 98.4 98.7 99.0 99.6 100 97.4 94.3 91.7 92.0 100 98.7 99.0 99.5 99.8
100 97.4 92.1 80.5 77.2 100 98.4 98.7 99.0 99.6 100 97.5 94.4 91.7 92.3 100 98.8 99.0 99.5 99.8
100 97.4 92.4 81.2 77.9 100 98.4 98.7 99.1 99.6 100 97.4 94.3 91.8 92.5 100 98.8 99.0 99.5 99.8
100 97.5 92.7 82.2 78.5 100 98.4 98.7 99.1 99.6 100 97.5 94.4 91.9 92.5 100 98.8 99.0 99.5 99.8
100 97.3 92.7 82.6 79.1 100 98.3 98.7 99.1 99.6 100 97.5 94.5 92.1 92.5 100 98.8 99.0 99.5 99.8
100 97.5 92.9 83.3 79.3 100 98.4 98.7 99.1 99.7 100 97.5 94.5 92.1 92.5 100 98.8 99.0 99.5 99.8
100 97.5 93.0 83.9 80.3 100 98.4 98.7 99.1 99.7 100 97.4 94.4 92.2 93.0 100 98.7 99.0 99.5 99.8
100 97.5 93.3 84.4 80.5 100 98.4 98.7 99.2 99.7 100 97.5 94.5 92.3 93.0 100 98.8 99.0 99.5 99.8
100 97.5 93.3 84.7 80.8 100 98.4 98.8 99.2 99.7 100 97.5 94.5 92.3 93.0 100 98.8 99.0 99.5 99.8
100 97.5 93.3 85.0 81.6 100 98.3 98.7 99.2 99.7 100 97.5 94.5 92.2 92.9 100 98.7 99.0 99.5 99.8
100 97.5 93.4 85.3 81.5 100 98.4 98.8 99.2 99.7 100 97.4 94.4 92.2 92.8 100 98.8 99.0 99.5 99.8
100 97.6 93.5 85.6 82.4 100 98.4 98.8 99.2 99.7 100 97.5 94.5 92.2 92.9 100 98.8 99.0 99.5 99.8
100 97.6 93.8 86.2 82.8 100 98.4 98.8 99.2 99.7 100 97.6 94.8 92.6 93.3 100 98.8 99.0 99.5 99.8
100 97.5 93.7 86.4 83.1 100 98.4 98.7 99.2 99.7 100 97.4 94.6 92.6 93.1 100 98.7 99.0 99.5 99.8
100 97.6 93.8 86.7 83.3 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.4 93.1 100 98.7 99.0 99.5 99.8
100 97.5 93.6 86.5 83.6 100 98.3 98.8 99.2 99.7 100 97.5 94.6 92.6 93.3 100 98.7 99.0 99.5 99.8
100 97.6 93.8 86.7 83.5 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.9 93.4 100 98.7 99.0 99.5 99.8
100 97.6 93.8 87.0 83.8 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.7 93.4 100 98.8 99.0 99.5 99.8
100 97.6 93.9 87.1 84.7 100 98.4 98.8 99.2 99.7 100 97.5 94.6 92.5 93.0 100 98.8 99.0 99.5 99.8
100 97.6 94.0 87.1 84.5 100 98.4 98.8 99.3 99.7 100 97.6 94.7 92.5 93.0 100 98.8 99.0 99.5 99.8
100 97.6 94.0 87.8 85.0 100 98.4 98.8 99.3 99.7 100 97.5 94.6 92.7 93.3 100 98.8 99.0 99.5 99.8
100 97.5 94.1 87.8 85.3 100 98.4 98.8 99.3 99.7 100 97.4 94.7 92.8 93.5 100 98.7 99.0 99.5 99.8
100 97.6 94.1 87.9 85.4 100 98.4 98.8 99.3 99.7 100 97.5 94.7 92.6 93.2 100 98.8 99.0 99.5 99.8
100 97.6 94.1 87.9 85.3 100 98.4 98.8 99.3 99.7 100 97.6 94.7 92.5 93.2 100 98.8 99.0 99.5 99.8
100 97.6 94.2 88.1 85.5 100 98.3 98.8 99.3 99.7 100 97.5 94.7 92.7 93.4 100 98.8 99.0 99.5 99.8
100 97.6 94.3 88.2 85.6 100 98.4 98.8 99.3 99.7 100 97.5 94.8 92.8 93.6 100 98.8 99.0 99.5 99.8
100 97.6 94.2 88.3 86.0 100 98.4 98.8 99.3 99.7 100 97.5 94.8 92.8 93.5 100 98.8 99.0 99.5 99.8
100 97.7 94.2 88.2 85.7 100 98.4 98.8 99.3 99.7 100 97.5 94.7 92.7 93.3 100 98.8 99.0 99.5 99.8

Figure 20: Generative models discover NT ancestors and NT boundaries gradually across training epochs (here
1 epoch equals 500 training steps). CFG levels closer to the leaves are learned faster, and their accu-
racies continue to increase as deeper levels are being learned, following a principle called “backward
feature correction” in deep hierarchical learning (Allen-Zhu & Li, 2023).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F MORE EXPERIMENTS ON ATTENTION PATTERNS

F.1 POSITION-BASED ATTENTION PATTERN

Recall from Section 5.1 that we asserted the transformer’s attention weights are primarily influenced
by the relative distance of the tokens. This remains true even when trained on the CFG data with
absolute positional embedding. We omitted the details in the main body due to space constraints,
but we will provide them now.

Formally, let Al,h,j→i(x) for j ≥ i represent the attention weight for positions j → i at layer l
and head h of the transformer, on input sequence x. For each layer l, head h, and distance p ≥ 0,
we compute the average of the partial sum

∑
1≤i′≤i Al,h,j→i′(x) over all data x and pairs i, j with

j − i = p. We observe a strong correlation between the attention pattern and the relative distance
p = j − i. The attention pattern is also multi-scale, with some attention heads focusing on shorter
distances and others on longer ones. We plot this cumulative sum for different l, h, p in Figure 21 in
both GPT/GPTrel for various datasets.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

b
da

ta

0.2

0.4

0.6

0.8

(a) GPT on cfg3b

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
b

da
ta

0.2

0.4

0.6

0.8

(b) GPTrel on cfg3b

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

i d
at

a

0.2

0.4

0.6

0.8

(c) GPT on cfg3i

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
i d

at
a

0.2

0.4

0.6

0.8

(d) GPTrel on cfg3i

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

h
da

ta

0.2

0.4

0.6

0.8

(e) GPT on cfg3h

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
h

da
ta

0.2

0.4

0.6

0.8

(f) GPTrel on cfg3h

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

g
da

ta

0.2

0.4

0.6

0.8

(g) GPT on cfg3g

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
g

da
ta

0.2

0.4

0.6

0.8

(h) GPTrel on cfg3g

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

f d
at

a

0.2

0.4

0.6

0.8

(i) GPT on cfg3f

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
f d

at
a

0.2

0.4

0.6

0.8

(j) GPTrel on cfg3f

Figure 21: Position-based attention pattern. The 12 rows in each layer represent 12 heads. Observations. The
attention pattern is multi-scale: different heads or layers have different dependencies on p.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F.2 FROM ANYWHERE TO NT-ENDS

Recall from Figure 7(a), we showed that after removing the position-bias Bl,h,j→i(x) :=

Al,h,j→i(x) − Al,h,j−i, the attention weights have a very strong bias towards tokens i that are
at NT ends. In Figure 22 we complement this experiment with more datasets.

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(a) cfg3b dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.000

0.005

0.010

0.015

0.020

0.025

(b) cfg3i dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

(c) cfg3h dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(d) cfg3g dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

(e) cfg3f dataset

Figure 22: Attention weights Bl,h,j→i(x) averaged over data x and pairs i, j such that i + δ is at the NT-end
in level ℓ of the CFG. In each cell, the four rows correspond to levels ℓ = 2, 3, 4, 5, and the five
columns represent δ = −2,−1, 0,+1,+2.

Observation. Attention is largest when δ = 0 and drops rapidly to the surrounding tokens of i.

F.3 FROM NT-ENDS TO NT-ENDS

As mentioned in Section 5.2 and Figure 7(b), not only do tokens generally attend more to NT-ends,
but among those attentions, NT-ends are also more likely to attend to NT-ends. We include this full
experiment in Figure 23 for every different level ℓ = 2, 3, 4, 5, between any two pairs j → i that are
both at NT-ends for level ℓ, for the cfg3 datasets.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(a) cfg3b at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(b) cfg3b at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) cfg3b at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

(d) cfg3b at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

(e) cfg3i at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(f) cfg3i at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(g) cfg3i at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

(h) cfg3i at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(i) cfg3h at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(j) cfg3h at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(k) cfg3h at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(l) cfg3h at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(m) cfg3g at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(n) cfg3g at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

(o) cfg3g at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

(p) cfg3g at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

(q) cfg3f at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.02

0.04

0.06

0.08

0.10

(r) cfg3f at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

(s) cfg3f at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.000

0.005

0.010

0.015

0.020

(t) cfg3f at level ℓ = 5

Figure 23: Attention pattern Bl,h,j→i(x) averaged over data x and pairs i, j such that i + δ1 and j + δ2
are at the NT-end boundaries in level ℓ of the CFG. In each block, the three rows correspond to
δ1 = −1, 0,+1 and the three columns correspond to δ2 = −1, 0,+1.

Observation. Different transformer layer/head may be in charge of attending NT-ends at different
levels ℓ. Also, it is noticeable that the attention value drops rapidly from δ1 = ±1 to δ1 = 0, but
less so from δ2 = ±1 to δ2 = 0. This should not be surprising, as it may still be ambiguous to
decide if position j is at NT-end until one reads few more tokens (see discussions under Figure 18).

F.4 FROM NT-ENDS TO ADJACENT NT-ENDS

In Figure 7(c) we have showcased that Bl,h,j→i(x) has a strong bias towards token pairs i, j that
are “adjacent” NT-ends. We have defined what “adjacency” means in Section 5.2 and introduced a
notion Bend→end

l,h,ℓ′→ℓ,r, to capture Bl,h,j→i(x) averaged over samples x and all token pairs i, j such that,
they are at deepest NT-ends on levels ℓ, ℓ′ respectively (in symbols, b♯(i) = ℓ ∧ b♯(j) = ℓ′), and of

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

distance r based on the ancestor indices at level ℓ (in symbols, pℓ(j)− pℓ(i) = r).

Previously, we have only presented by Figure 7(c) for a single dataset, and averaged over all the
transformer layers. In the full experiment Figure 24 we show that for more datasets, and Figure 25
we show that for individual layers.

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x x x x x

(a) cfg3i

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

x x x x x x x x x x

x x x
x x x x
x x x x

x x x x x
x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x x x x x
x x x x x x x x x

x x x x x x x x x x x
x x x x x x x x x x x x

(b) cfg3h

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(c) cfg3g

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(d) cfg3f

Figure 24: Attention pattern Bend→end
l,h,ℓ′→ℓ,r(x) averaged over layers l, heads h and data x. The columns represent

ℓ′ → ℓ and the rows represent r. “×” means empty entries.

Remark. We present this boundary bias by looking at how close NT boundaries at level ℓ′ attend
to any other NT boundary at level ℓ. For some distances r, this “distance” that we have defined
may be non-existing. For instance, when ℓ ≥ ℓ′ one must have r > 0. Nevertheless, we see that the
attention value, even after removing the position bias, still have a large correlation with respect to
the smallest possible distance r, between every pairs of NT levels ℓ, ℓ′. This is a strong evidence
that CFGs are implementing some variant of dynamic programming.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(a) cfg3i

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(b) cfg3h

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(c) cfg3g

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(d) cfg3f

Figure 25: Attention pattern Bend→end
l,h,ℓ′→ℓ,r(x) for each individual transformer layer l ∈ [12], averaged over heads

h and data x. The rows and columns are in the same format as Figure 24.

Observation. Different transformer layers are responsible for learning “NT-end to most adjacent
NT-end” at different CFG levels.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G MORE EXPERIMENTS ON IMPLICT CFGS

We study implicit CFGs where each terminal symbol t ∈ T is is associated a bag of observable
tokens OTt. For this task, we study eight different variants of implicit CFGs, all converted from the
exact same cfg3i dataset (see Section C.1). Recall cfg3i has three terminal symbols |T| = 3:

• we consider a vocabulary size |OT| = 90 or |OT| = 300;
• we let {OTt}t∈T be either disjoint or overlapping; and
• we let the distribution over OTt be either uniform or non-uniform.

We present the generation accuracies of learning such implicit CFGs with respect to different model
architectures in Figure 26, where in each cell we evaluate accuracy using 2000 generation samples.
We also present the correlation matrix of the word embedding layer in Figure 10 for the GPTrel model
(the correlation will be similar if we use other models).

disjoint |vocab|=90 disjoint |vocab|=300 overlap |vocab|=90 overlap |vocab|=300

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50
 uniform non-uniorm uniform non-uniorm uniform non-uniorm uniform non-uniorm

GPT
GPT_rel
GPT_rot

GPT_pos
GPT_uni

98.7 99.4 99.0 99.2 100.0 100.0 100.0 98.1 72.7 70.4 75.2 75.4 100.0 100.0 100.0 100.0
99.3 99.7 99.0 98.9 100.0 100.0 98.9 99.1 97.8 97.9 92.9 91.9 100.0 100.0 100.0 100.0
99.2 99.5 99.0 98.4 100.0 100.0 98.6 99.0 96.4 95.9 84.9 87.8 100.0 100.0 100.0 100.0
99.2 99.4 98.4 99.2 100.0 100.0 96.6 96.4 90.1 91.3 82.6 83.6 100.0 100.0 100.0 99.7
99.7 99.6 98.4 99.0 100.0 100.0 89.5 92.9 80.5 77.2 64.4 65.4 100.0 100.0 99.9 100.0

Figure 26: Generation accuracies on eight implicit CFG variants from pre-trained language models.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

H MORE EXPERIMENTS ON ROBUSTNESS

Recall that in Figure 11, we have compared clean training vs training over three types of perturbed
data, for their generation accuracies given both clean prefixes and corrupted prefixes. We now
include more experiments with respect to more datasets in Figure 27. For each entry of the figure,
we have generated 2000 samples to evaluate the generation accuracy.

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

b

100 99.8 100 100 100 100 100 100 100 100 100 100
98.7 100 100 100 100 100 100 100 100 100 99.2 99.9 100 100 100 99.9 100 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100
0.0 14.3 24.7 39.8 44.4 55.7 64.5 73.5 82.6 91.8 0.0 14.1 22.8 35.3 44.9 58.2 65.4 75.5 83.6 92.5 0.0 14.7 26.9 38.5 49.8 56.8 65.5 75.2 81.5 91.8 99.8
78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9 82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8 60.4 58.3 56.5 58.1 60.4 59.1 60.6 57.5 58.9 56.9 30.0
77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9 81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4 59.5 57.7 55.9 57.6 59.2 58.8 59.7 57.2 57.8 57.1 30.3
0.0 0.5 0.5 0.6 0.5 0.3 0.6 0.4 0.5 0.7 0.0 0.4 0.5 0.8 0.2 0.3 0.5 0.6 0.7 0.6 0.0 0.1 0.4 0.4 0.4 0.5 0.9 0.5 0.3 0.3 29.6
100 99.4 100 100 100 100 100 100 100 100 100 100
99.2 100 100 100 100 100 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 98.4 100 100 100 100 100 100 100 100 100 100
0.0 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 0.0 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 0.0 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3 99.9

--------------------pre-training method--------------------

(a) cfg3b dataset

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

i

99.0 99.9 99.8 99.7 100.0 99.7 99.6 99.3 99.1 99.4 98.0 98.8 99.4 99.5 99.4 99.6 99.3 98.9 99.3 99.7 99.6 98.4 99.4 99.8 99.4 98.3 99.6 97.9 99.6 98.5 97.7
95.0 99.6 99.4 98.7 99.2 98.8 99.2 98.9 98.7 99.4 96.5 98.1 99.2 99.2 99.2 98.7 98.7 98.2 98.8 99.4 98.9 97.8 99.2 99.3 98.8 98.6 98.9 98.2 98.4 98.2 98.0
0.0 13.6 25.9 36.2 44.0 57.9 64.0 73.3 84.4 92.6 0.0 14.7 25.1 33.8 46.4 53.5 63.0 73.5 84.6 92.0 0.0 17.2 25.6 37.3 43.8 54.5 66.8 75.1 84.3 91.3 99.8
71.9 75.1 73.2 72.9 73.2 73.1 74.3 72.5 71.7 70.9 78.6 75.2 77.0 76.6 77.6 78.6 78.7 78.2 78.4 78.8 48.2 46.8 48.4 46.9 46.4 47.6 48.2 46.4 48.2 48.0 36.8
71.3 73.3 72.0 72.3 71.0 71.9 73.8 72.5 72.2 70.2 76.5 75.9 75.6 75.4 76.7 76.4 78.2 76.2 78.2 75.1 49.0 46.1 48.3 46.9 46.1 46.7 49.6 47.0 48.4 47.9 37.0
0.0 0.4 0.6 0.7 0.3 0.5 0.9 0.6 0.4 0.7 0.0 0.5 0.5 0.5 0.3 0.6 0.4 0.5 0.4 0.4 0.0 0.3 0.3 0.4 0.4 0.6 0.6 0.4 0.3 0.5 37.1
99.1 100.0 99.9 99.9 99.8 99.6 99.8 99.2 99.3 99.4 98.8 99.2 99.5 99.4 99.1 99.8 99.3 99.3 99.6 99.7 99.7 99.2 99.1 99.9 99.2 99.4 99.7 98.4 99.3 98.8 98.6
96.0 99.7 99.9 99.4 99.6 99.7 99.5 99.3 99.1 99.2 97.7 99.0 99.6 99.7 99.5 99.8 99.4 98.7 99.4 99.7 99.2 98.8 99.4 99.8 99.5 99.7 99.7 99.2 99.4 99.1 98.6
0.0 90.1 94.4 96.6 97.6 98.9 98.8 98.7 99.7 99.4 0.0 93.3 95.8 96.7 97.9 99.0 99.2 99.2 99.2 99.1 0.0 85.1 90.3 94.5 96.2 97.2 97.3 98.6 99.0 99.3 99.9

--------------------pre-training method--------------------

(b) cfg3i dataset

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

h

61.5 89.0 98.0 98.1 97.5 94.9 96.9 98.0 98.4 98.1 95.2 97.1 99.2 99.1 99.6 99.2 98.2 99.5 99.0 98.2 88.9 98.6 98.6 99.1 99.0 99.3 99.2 98.6 98.5 98.7 97.2
44.9 93.1 98.3 98.7 98.8 97.9 98.7 99.4 98.9 99.1 83.4 97.3 98.5 98.9 99.2 99.1 99.1 99.4 98.7 99.1 72.1 98.6 98.7 99.1 99.1 99.6 99.2 99.3 98.9 99.0 99.0
0.0 14.9 22.0 34.3 46.4 55.5 66.0 71.3 83.8 91.5 0.0 11.7 24.2 34.3 43.0 56.2 66.9 76.8 83.6 91.3 0.0 15.2 26.6 40.7 41.5 54.7 63.2 74.3 84.2 90.9 99.6
29.6 35.5 43.1 41.5 43.3 39.5 45.9 41.7 43.4 41.0 50.4 49.4 49.8 51.2 51.6 51.5 50.2 50.3 52.3 47.0 35.4 37.2 36.3 35.5 35.3 33.9 36.6 36.6 37.0 33.8 18.4
20.2 29.3 34.1 32.0 32.5 33.4 37.0 35.1 35.5 34.2 44.3 43.4 44.5 46.6 43.3 48.1 46.6 47.2 48.8 41.6 27.3 29.9 29.5 30.1 28.5 27.2 30.7 30.4 30.1 29.2 17.1
0.0 1.1 0.3 0.6 0.4 0.7 1.0 0.5 0.8 0.6 0.0 0.7 0.2 0.8 0.3 0.7 0.0 1.4 0.1 0.6 0.0 0.5 1.3 1.0 0.8 0.4 0.9 0.8 0.4 0.7 12.0
61.9 92.3 98.9 98.5 98.7 96.1 98.0 99.2 99.0 98.8 92.9 98.6 99.3 99.7 99.3 99.3 99.0 99.4 99.3 98.6 87.6 98.8 99.4 99.4 99.8 99.2 98.9 99.5 98.9 99.4 98.3
48.3 94.3 99.4 99.5 99.5 98.9 98.9 99.6 99.7 99.2 83.5 98.9 99.2 99.7 99.8 99.4 99.5 99.8 99.5 99.6 78.9 98.8 99.3 99.4 99.6 99.6 99.5 99.7 99.6 99.3 99.2
0.0 84.2 92.1 95.9 97.0 97.4 98.4 99.1 98.8 99.2 0.0 89.8 95.6 95.7 97.4 98.6 99.3 99.4 99.1 99.4 0.0 72.1 84.2 90.6 94.6 97.0 97.4 98.6 98.4 98.9 99.9

--------------------pre-training method--------------------

(c) cfg3h dataset

Figure 27: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean
or corrupted prefixes with cuts c = 0 or c = 50, using generation temperatures τ = 0.1, 0.2, 1.0.

Observation 1. In Rows 4/5, by comparing against the last column, we see it is beneficial to
include low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality
data could be little (γ = 0.1 fraction) or large (every training sentence may have grammar mistake).
Observation 2. In Rows 3/6/9 of Figure 11 we see pre-training teaches the model a mode switch.
When given a correct prefix it is in the correct mode and completes with correct strings (Row 9);
given corrupted prefixes it always completes sentences with grammar mistakes (Row 6); given no
prefix it generates corrupted strings with probability γ (Row 3).
Observation 3. Comparing Rows 4/5 to Row 6 in Figure 11 we see that high robust accuracy is
achieved only when generating using low temperatures τ . Using low temperature encourages the
model to, for each next token, pick a more probable solution. This allows it to achieve good robust
accuracy even when the model is trained totally on corrupted data (γ = 1.0).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

S
NP VP

TO VP
VBD VP

TO VP
VB NP

NP PP
IN NP

PP
IN NP

.
S

NP
NP

DT NN
PP

IN NP
NP PP

IN NP
DT NN

VP
VBZ VP

VBD SBAR
S

PP
IN NP

, NP
CD NNS

VP
TO VP

VBZ VP
VBD NP

DT JJ NN NN

.

(a) the real-life CFG derived from Penn Treebank, short and simple

S

20

16

15

12

7

3 2

9

1 1

7

3 2 2

12

7

3 2 2

9

1 2 1

7

2 2 1

11

8

1 2

8

1 2

15

10

7

2 2 1

9

3 3

9

3 3

10

9

3 3

7

3 1 2

9

1 2 1

17

15

10

9

3 3

7

3 2

9

1 1

10

8

1 2

9

1 1

9

1 2 1

14

10

9

1 1

7

3 2 2

9

1 2 1

12

9

3 3

8

1 2

12

8

3 3 1

8

3 1 1

9

3 3

21

18

15

10

9

3 3

7

2 2 1

9

1 1

10

8

3 3 1

9

1 1

9

1 2 1

13

10

9

3 3

7

2 2 1

9

1 2 1

12

9

1 1

8

3 1 1

11

9

1 1

7

2 2 1

7

2 2 1

13

10

9

1 2 1

7

2 2 1

9

1 2 1

12

7

3 2

9

3 3

7

3 2 2

11

9

1 2 1

7

3 2

7

3 2 2

17

15

10

9

3 3

7

3 1 2

9

1 1

11

8

3 1 1

8

3 1 1

11

9

1 2 1

7

3 2

14

12

7

2 2 1

9

3 3

7

2 2 1

10

9

3 3

7

3 2 2

9

3 3

12

8

3 3 1

8

3 1 1

9

3 3

13

11

9

1 2 1

7

2 2 1

7

3 1 2

12

7

3 2 2

9

1 1

7

3 1 2

S

20

17

14

10

7

3 1 2

9

3 3

9

3 3

12

9

1 2 1

8

1 2

15

11

9

1 2 1

7

3 2

7

3 2

11

8

1 2

8

3 1 1

10

8

3 1 1

9

3 3

9

1 1

16

14

12

7

3 1 2

9

3 3

7

3 1 2

10

7

3 2

9

1 2 1

9

3 3

12

8

3 3 1

8

3 1 1

9

3 3

14

12

8

3 1 1

8

3 1 1

9

3 3

11

9

1 2 1

7

3 2 2

18

15

10

8

3 3 1

9

3 3

9

1 2 1

10

7

3 1 2

9

1 2 1

9

1 1

13

11

9

1 1

7

3 2 2

12

7

3 2 2

9

1 2 1

7

2 2 1

13

12

9

3 3

8

3 3 1

11

9

1 2 1

7

2 2 1

12

7

3 2

9

3 3

7

2 2 1

21

18

15

12

7

3 2 2

9

3 3

7

2 2 1

12

8

3 3 1

8

1 2

9

3 3

11

9

3 3

7

3 2

13

12

8

3 3 1

8

3 3 1

9

3 3

11

9

1 1

7

3 2 2

12

8

3 3 1

8

3 1 1

9

1 2 1

13

10

7

2 2 1

9

1 2 1

9

3 3

12

9

3 3

8

3 3 1

11

9

1 1

7

2 2 1

7

3 2

17

15

10

7

3 1 2

9

3 3

9

3 3

11

8

1 2

8

3 1 1

11

9

3 3

7

3 2 2

7

3 1 2

14

10

8

3 3 1

9

3 3

9

1 2 1

12

8

3 1 1

8

1 2

9

1 1

12

7

3 2

9

1 2 1

7

3 1 2

(b) the cfg3 family we used in the main body of this paper has rule lengths 2 or 3 (cfg3f in this figure)

S

21

18

14

9

4 2 4

8

4 3 4

8

3 2 2

15

13

10 8

4 3 4

11

8

4 3 4

9

2 3 4

10

1 4 2

17

12

10 8

1 2

10

4 1

11

8

1 2

9

4 2 4

10

13

10

4 2

8

4 3 4

19

16

13

8

3 2 2

8

4 3 4

8

3 2 2

11

4 2 4

13

8

3 2 2

8

4 3 4

8

3 2 2

15

11

8

4 3 4

9

3 4 4

11

8

3 2 2

9

2 3 4

13

8

1 2

8

4 3 4

8

4 3 4

14

12

9

3 4 4

9

2 3 4

13

10

4 2

8

1 2

21

19

15

11

3 4 4

13

8

4 3 4

8

3 2 2

8

1 2

11

8

4 3 4

9

2 3 4

10

4 1

15

11

8

4 3 4

9

2 3 4

11

8

3 2 2

9

2 3 4

13

8

4 3 4

8

1 2

8

1 2

17

13

8

1 2

8

1 2

8

1 2

12

10

1 4 2

9

4 2 4

18

14

12

9

3 4 4

8

1 2

8

3 2 2

13

9

4 2 4

10 10

13

8

1 2

8

1 2

8

4 3 4

15

13

8

3 2 2

8

1 2

8

3 2 2

11

4 2 4

S

21

18

15

11

8

1 2

9

2 3 4

11

8

3 2 2

9

4 2 4

10

13

8

3 2 2

8

4 3 4

8

1 2

14

12

10

4 1

9

3 4 4

13

9

3 4 4

10 10

4 2

16

13

8

1 2

8

4 3 4

8

1 2

11

8

1 2

9

4 2 4

10

1 4 2

13

10

4 2

8

3 2 2

17

13

8

1 2

8

4 3 4

8

1 2

12

10

1 4 2

9

3 4 4

19

15

13

8

1 2

8

4 3 4

8

1 2

11

8

1 2

9

3 4 4

14

12

9

2 3 4

8

4 3 4

8

4 3 4

13

10

4 2

8

4 3 4

13

9

2 3 4

10

4 1

10

15

11

4 2 4

13

10

4 1

8

1 2

11

8

3 2 2

9

2 3 4

10

4 1

21

19

15

13

9

4 2 4

10 10

11

2 3 4

14

10

1 4 2

8

3 2 2

10

4 2

15

11

8

1 2

9

2 3 4

10

4 2

13

10

4 2

8

3 2 2

11

8

1 2

9

4 2 4

17

14

12

10

4 1

9

3 4 4

13

10

1 4 2

8

4 3 4

16

12

9

2 3 4

9

2 3 4

11

8

3 2 2

9

2 3 4

13

9

4 2 4

10

4 1

10

4 1

14

12

10

4 1

8

1 2

10

13

10

4 1

8

4 3 4

13

10 8

3 2 2

18

14

9

2 3 4

9

2 3 4

14

12

9

4 2 4

9

3 4 4

13

8

3 2 2

8

4 3 4

8

4 3 4

13

10 8

4 3 4

(c) the cfg8 family has rule lengths 1, 2, or 3 (cfg8e in this figure)

S

26

21

17

12 13

10

3 3 4

8 10

2 4 3

14

8 9

3 2 4

8

16

23

18

15

11

2 4

10

3 3 4

15

10

2 4 3

10

3 3 4

11

1 2 1

18

13

8 11

3 3

15

10

3 3 4

10

3 3 4

11

1 1

16

25

23

18

12 14

9

3 2

8 9

3 2 4

12

18

12 14

9

3 2 4

8 9

3 2 4

12

21

17

12 13

8 11

1 2 1

14

8 10

2 3 1

11

3 3

16

26

20 21

19

14

8 10

3 3 4

11

2 4

15

11

3 3

10

2 4 3

11

1 2 1

13

8 11

1 2 1

16 17

12 13

8 11

3 3

14

9

4 4

8 9

3 2 4

S

26

20 21

17

14

8 9

3 2

8

13

10

1 1 3

8 10

3 3 4

15

11

1 1

10

1 1 3

16

25

23

18

14

9

4 4

8 9

4 4

12 12

18

14

9

4 4

8 9

3 2 4

12 12

21

18

15

11

2 4

10

1 1 3

15

10

1 1 3

10

3 3 4

11

2 4

16 17

12 12 14

9

3 2

8 9

3 2

26

23

18

14

8 10

3 3 4

11

2 4

12 12

18

12 14

9

3 2 4

8 9

2 2 3

12

16

22

16 17

14

9

2 2 3

8 9

3 2 4

13

9

2 2 3

10

2 4 3

11

1 1

15

9

3 2 4

9

4 4

8

19

14

8 9

3 2

8

15

10

2 3 1

10

1 1 3

11

3 3

13

8 11

1 2 1

23

18

13

9

4 4

10

3 3 4

11

1 2 1

15

10

2 4 3

10

2 4 3

11

2 4

18

13

10

3 3 4

8 10

1 1 3

15

9

4 4

9

3 2

8

16

(d) the cfg9 family has rule lengths 1, 2, or 3 (cfg9e in this figure)

S

68

49

45

39

30 28

10 4

36

32

15

11 5

17

7 1

27

4 4

44

35

27

11 7

30

40

31

6 7

26

7 6

49

31

23

4 11

22

8 8

33

16

10 2

22

5 11

68

65

58

54

46

39

29

23

7 6

21

5 10

29

16

5 8

21

3 2

37

21

6 6

16

5 8

45

41

32

15 17

7 1

30

1 3

41

26

17 19

11 7

25

22

10 4

20

4 7

52

35

19

11 7

15

40

18

3 6

18

6 7

57

37

31

23

7 6

22

8 8

33

15 20

4 4

41

31

19 15

11 5

29

23

7 6

21

6 6

66

62

55

53

44

40

21

5 10

17

34

30

22

8 8

24

1 3

26

17

7 1

19

11 7

43

36

26

4 3

32

15 17

7 1

37

16

10 2

21

6 6

54

43

30

24 24

5 1

26

17 19

11 7

42

38

27

6 6

26

4 3

41

32

20

4 7

23

7 6

30

7 1

56

51

41

31

6 7

29

23

4 11

21

6 6

38

29

23

7 6

21

6 6

33

15 20

4 7

52

40

11 5

34

30

22

8 8

24

26

4 3

62

55

50

40

31

19 15

2 4

26

10 2

39

29

20

6 11

17

7 1

29

23

4 3

21

5 10

53

42

37

31

19

9 2

15

33

15

2 4

20

4 4

40

31 26

4 11

47

8 8

56

50

47

40

4 11

35

6 7

42

37

31

6 7

33

21

3 2

23

7 6

40

5 11

49

45

41

31

23

4 3

22

5 11

29

23

7 6

21

5 10

41

31

19

9 2

15

2 4

29

21

3 2

16

10 2

44

40

7 6

34

15

2 4

17

S

68

65

53

42

31 29

23

4 11

21

3 2

47

36

32

20

1 10

23

4 3

27

4 4

36

26

10 2

32

16

5 8

19

11 7

54

45

41

32

23

6 2

23

6 2

30

41

32

16

10 2

19

9 3

30

24 24

45

39

29

20

4 7

17

7 1

29

20

6 11

17

36

26

5 8

32

23

6 2

23

4 3

66

60

52

38

32

20

4 4

23

6 2

29

23

7 6

21

5 10

41

31

19

9 2

15

29

23

4 3

21

5 10

51

46

39

4 4

37

31

19

9 3

15

2 4

33

15

2 4

20

4 4

47

40

20

1 10

19

9 3

35

8 7

60

52

29

20

1 10

17

7 1

33

15

2 4

20

4 7

50

47

36

32

16 19

9 2

27

36

19

9 3

21

6 6

42

38

32

16

5 8

19

9 3

29

23

6 2

21

6 6

41

32

23

4 3

23

7 6

30

68

65

60

53

42

31

23

7 6

22

10 4

29

21

5 10

16

5 8

47

31 26

17 19

52

38

32

16 19

11 7

29

21

3 2

16

10 2

41

26

20

4 7

19

11 7

25

19

9 2

21

3 2

61

47

17 19

9 2

46

39

27

17 24

1 3

33

16 22

5 11

37

30

24

1 3

24

9 4

27

3 2

66

61

57

53

31

19

11 7

15

11 5

26

20

1 10

19

9 3

50

47

35

33

24

1 3

21

3 2

27

17 24

1 3

36

32

23

6 2

23

7 6

27

5 10

42

38

32

16 19

29

23

6 2

21

5 10

41

26

20

6 11

19

25

22

8 9

20

4 4

55

53

48

35

31

23

4 11

22

8 8

25

19

9 2

21

5 10

37

30

22

10 4

24

1 3

27

4 4

44

35

27

9 3

30

40

31

6 7

26

4 3

54

43

36

32

20

4 4

23

7 6

27

4 7

37

31

23

6 2

22

5 11

33

16

10 2

22

8 9

42

38

29

20

6 11

17

7 1

33

15

2 4

20

6 11

41

31

23

7 6

22

10 4

29

21

6 6

16

60

56

40

31

19

9 2

15

11 5

26

5 8

39

27

17 24

33

24

1 3

21

6 6

56

40

20

4 7

19

39

(e) the cfg0 family has max-depth 11 and rule lengths 1 or 2 (cfg0e in this figure)

Figure 28: CFG comparisons: left is a medium-length sample and right is a 80%-percentile-length sample

I BEYOND THE CFG3 DATA FAMILY

The primary focus of this paper is on the cfg3 data family, introduced in Section C.1. This paper
does not delve into how GPTs parse English or other natural languages. In fact, our CFGs are more
“difficult” than, for instance, the English CFGs derived from the Penn TreeBank (PTB) (Marcus
et al., 1993). By “difficult”, we refer to the ease with which a human can parse them. For example,
in the PTB CFG, if one encounters RB JJ or JJ PP consecutively, their parent must be ADJP. In
contrast, given a string

3322131233121131232113223123121112132113223113113223331231211121311331121321213333312322121312322211112133221311311311
3111111323123313313331133133333223121131112122111121123331233112111331333333112333313111133331211321131212113333321211
1121213223223322133221113221132323313111213223223221211133331121322221332211212133121331332212213221211213331232233312

that is in cfg3f, even with all the CFG rules provided, one would likely need a large piece of scratch
paper to perform dynamic programming by hand to determine the CFG tree used to generate it.

Generally, the difficulty of CFGs scales with the average length of the strings. For instance, the
average length of a CFG in our cfg3 family is over 200, whereas in the English Penn Treebank
(PTB), it is only 28. However, the difficulty of CFGs may inversely scale with the number of Non-
Terminal/Terminal (NT/T) symbols. Having an excess of NT/T symbols can simplify the parsing of
the string using a greedy approach (recall the RB JJ or JJ PP examples mentioned earlier). This
is why we minimized the number of NT/T symbols per level in our cfg3b, cfg3i, cfg3h, cfg3g, cfg3f
construction. For comparison, we also considered cfg3e1, cfg3e2, which have many NT/T symbols
per level. Figure 4 shows that such CFGs are extremely easy to learn.

To broaden the scope of this paper, we also briefly present results for some other CFGs. We in-
clude the real-life CFG derived from the Penn Treebank, and three new families of synthetic CFGs
(cfg8, cfg9, cfg0). Examples from these are provided in Figure 28 to allow readers to quickly com-
pare their difficulty levels.

I.1 THE PENN TREEBANK CFG

We derive the English CFG from the Penn TreeBank (PTB) dataset (Marcus et al., 1993). To make
our experiment run faster, we have removed all the CFG rules that have appeared fewer than 50 times
in the data.22 This results in 44 T+NT symbols and 156 CFG rules. The maximum node degree is

22These are a large set of rare rules, each appearing with a probability ≤ 0.2%. We are evaluating whether
the generated sentence belongs to the CFG, a process that requires CPU-intensive dynamic programming. To
make the computation time tractable, we remove the set of rare rules.

Note that cfg3 does not contain rare rules either. Including such rules complicates the CFG learning pro-
cess, necessitating a larger transformer and extended training time. It also complicates the investigation of a

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64
cut0cut10

ge
n

ac
c

67.7 90.6 94.8 97.2 97.6 94.4 97.0 97.8 97.9 98.7 99.1 97.1 98.6 98.9 99.5 99.6 99.7 99.7 99.8 99.9
78.1 93.0 95.8 98.0 98.3 94.7 97.5 98.2 98.2 99.1 99.3 97.2 98.8 98.8 99.7 99.7 99.8 99.8 99.9 99.9

(a) generation accuracies for cuts c = 0 and c = 10

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64

KL div
0.07981 0.01357 0.00806 0.00435 0.00317 0.00914 0.00450 0.00299 0.00394 0.00179 0.00119 0.00505 0.00190 0.00220 0.00079 0.00064 0.00066 0.00052 0.00044 0.00034

(b) KL-divergence

truth

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64

entropy
model_size

61.1 60.1 62.0 58.7 58.7 57.9 58.3 59.1 58.4 57.4 57.0 57.8 59.2 58.4 59.4 57.4 57.3 57.2 56.9 57.0 57.2

12K 68K 135K 235K 335K 135K 235K 335K 468K 864K 1.3M 468K 864K 1.7M 3.3M 4.9M 7.3M 10.9M 19.2M 85.5M

(c) entropy and model size

Figure 29: Real-life PTB CFG learned by GPTrot of different model sizes.

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64
cut0cut10

ge
n

ac
c

0.0 0.0 0.0 0.4 0.0 0.0 0.4 1.0 0.1 1.7 8.7 0.0 1.0 0.2 5.5 34.3 11.3 47.0 56.8 97.8
0.0 0.0 0.0 2.1 1.8 0.0 0.4 1.1 0.1 1.7 8.9 0.0 1.0 0.3 5.6 34.1 11.3 47.1 56.7 97.8

Figure 30: By contrast, small GPTrot model sizes cannot learn the cfg3f data (compare to Figure 29(a)).

65 (for the non-terminal NP) and the maximum CFG rule length is 7 (for S -> ‘‘ S , ’’ NP
VP .). If one performs binarization (to ensure all the CFG rules have a maximum length of 2), this
results in 132 T+NT symbols and 288 rules.
Remark I.1. Following the notion of this paper, we treat those symbols such as NNS (common
noun, plural), NN (common noun, singular) as terminal symbols. If one wishes to also take into
consideration the bag of words (such as the word vocabulary of plural nouns), we have called it
implicit CFG and studied it in Section B.1. In short, adding bag of words does not increase the
learning difficult of a CFG; the (possibly overlapping) vocabulary words will be simply encoded in
the embedding layer of a transformer.

For this PTB CFG, we also consider transformers of sizes smaller than GPT2-small. Recall GPT2-
small has 12 layers, 12 heads, and 64 dimensions for each head. More generally, we let GPT-ℓ-h-d
denote an ℓ-layer, h-head, d-dim-per-head GPTrot (so GPT2-small can be written as GPT-12-12-64).

We use transformers of different sizes to pretrain on this PTB CFG. We repeat the experiments
in Figure 4 (with the same pretrain parameters described in Appendix C.3), that is, we compute
the generation accuracy, completion accuracy (with cut c = 10), the output entropy and the KL-
divergence. We report the findings in Figure 29. In particular:

• Even a 135K-sized GPT2 (GPT-2-4-16) can achieve generation accuracy ∼95% and have a KL
divergence less than 0.01. (Note the PTB CFG has 30 terminal symbols so its KL divergence
may appear larger than that of cfg3 in Figure 4.)

• Even a 1.3M-sized GPT2 (GPT-6-4-32) can achieve generation accuracy 99% and have a KL
divergence on the order of 0.001.

• Using M = 10000 samples, we estimate the entropy of the ground truth PTB CFG is around 60
bits, and the output entropy of those learned transformer models are also on this magnitude.

• By contrast, those small model sizes cannot learn the cfg3f data, see Figure 30.

transformer’s inner workings if these rare rules are not perfectly learned.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg8a
cfg8b
cfg8c
cfg8d
cfg8e

ge
ne

ra
ti

on
 a

cc
 (

%
)

99.6 99.6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8
99.8 99.8 100 100 100 100 100 100 99.9 99.9
95.3 95.2 99.4 99.4 99.2 99.2 98.7 98.6 98.8 98.8
97.5 97.5 98.3 98.3 98.0 98.0 97.9 97.9 97.6 97.4
82.1 82.3 97.4 97.6 93.7 93.7 94.6 94.4 93.0 93.5

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg9a
cfg9b
cfg9c
cfg9d
cfg9e

ge
ne

ra
ti

on
 a

cc
 (

%
)

99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 100 99.9
99.8 99.9 99.9 100 99.9 99.8 99.9 99.9 99.9 99.9
99.4 99.4 99.6 99.7 99.6 99.6 99.4 99.5 99.7 99.7
99.8 99.9 99.8 99.9 99.9 99.9 99.8 99.9 99.9 99.9
96.6 96.7 99.7 99.8 99.7 99.7 99.1 98.9 98.6 98.8

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg0a
cfg0b
cfg0c
cfg0d
cfg0e

ge
ne

ra
ti

on
 a

cc
 (

%
)

97.4 97.5 98.9 98.8 98.3 98.4 98.5 98.5 98.5 98.4
90.9 91.3 96.0 95.9 94.1 93.1 92.9 92.8 92.5 92.5
99.5 99.6 99.6 99.7 99.6 99.6 99.7 99.7 99.6 99.6
98.0 98.3 98.5 98.6 98.4 98.5 98.7 98.8 98.1 98.2
99.7 99.8 99.7 99.7 99.7 99.7 99.7 99.8 99.7 99.7

Figure 31: Generation accuracies for cfg8/9/0 data family; suggesting our results also hold for unbalanced
trees with len-1 rules.

I.2 MORE SYNTHETIC CFGS

Remember that the cfg3 family appears “balanced” because all leaves are at the same depth and the
non-terminal (NT) symbols at different levels are disjoint. This characteristic aids our investigation
into the inner workings of a transformer learning such a language. We introduce three new synthetic
data families, which we refer to as cfg8/9/0 (each with five datasets, totaling 15 datasets). These
are all “unbalanced” CFGs, which support length-1 rules.23 Specifically, the cfg0 family has a depth
of 11 with rules of length 1 or 2, while the cfg8/9 family has depth 7 with rules of length 1/2/3. In
all of these families, we demonstrate in Figure 31 that GPT can learn them with a satisfactory level
of accuracy.

For this ICLR submission, we have included all the trees used in the supplementary materials. Be-
low, we provide descriptions of how we selected them.

CFG8 family. The cfg8 family consists of five CFGs, namely cfg8a/b/c/d/e. They are constructed
similarly to cfg3b/i/h/g/f, with the primary difference being that we sample rule lengths uniformly
from {1, 2, 3} instead of {2, 3}. Additionally,

• In cfg8a, we set the degree |R(a)| = 2 for every NT a; we also ensure that in any generation rule,
consecutive pairs of terminal/non-terminal symbols are distinct. The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8b, we set |R(a)| = 2 for every NT a; we remove the distinctness requirement to make the
data more challenging than cfg8a. The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8c, we set |R(a)| ∈ {2, 3} for every NT a to make the data more challenging than cfg8b.
The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8d, we set |R(a)| = 3 for every NT a. We change the size to (1, 3, 3, 3, 3, 3, 4) because
otherwise a random string would be too close (in editing distance) to this language.

• In cfg8e, we set |R(a)| ∈ {3, 4} for every NT a. We change the size to (1, 3, 3, 3, 3, 3, 4) because
otherwise a random string would be too close to this language.

A notable feature of this data family is that, due to the introduction of length-1 rules, a string in this
language L(G) may be globally ambiguous. This means that there can be multiple ways to parse it
by the same CFG, resulting in multiple solutions for its NT ancestor/boundary information for most
symbols. Therefore, it is not meaningful to perform linear probing on this dataset, as the per-symbol
NT information is mostly non-unique.24

CFG9 family. Given the ambiguity issues arising from the cfg8 data construction, our goal is to
construct an unbalanced and yet challenging CFG data family where the non-terminal (NT) infor-
mation is mostly unique, thereby enabling linear probing.

To accomplish this, we first adjust the size to (1, 4, 4, 4, 4, 4, 4), then we permit only one NT per
layer to have a rule of length 1. We construct five CFGs, denoted as cfg9a/b/c/d/e, and their
degree configurations (i.e., R(a)) are identical to those of the cfg8 family. We then employ rejection
sampling by generating a few strings from these CFGs and checking if the dynamic programming
(DP) solution is unique. If it is not, we continue to generate a new CFG until this condition is met.

Examples from cfg9e are illustrated in Figure 28. We will conduct linear probing experiments on
this data family.

23When a length-1 CFG rule is applied, we can merge the two nodes at different levels, resulting in an
“unbalanced” CFG.

24In contrast, the cfg3 data family is only locally ambiguous, meaning that it is difficult to determine its
hidden NT information by locally examining a substring; however, when looking at the entire string as a whole,
the NT information per symbol can be uniquely determined with a high probability (if using for instance
dynamic programming).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

an
ce

st
or

 (
%

)

100 98.7 83.6 83.9 71.9 94.1
99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 100 100 100 100 100 84.8 78.6 82.6 82.8 91.0
99.6 99.8 99.7 99.8 100 99.7 99.8 99.7 99.8 100 99.7 99.8 99.7 99.8 100 99.7 99.8 99.8 99.8 100 99.7 99.9 99.8 99.9 100 100 100 100 99.9 100 86.4 66.8 66.4 69.7 94.7
100 99.7 99.6 99.4 99.6 100 99.7 99.5 99.3 99.6 100 99.7 99.5 99.4 99.7 100 99.8 99.6 99.5 99.7 100 99.8 99.6 99.5 99.7 100 100 99.8 99.6 99.9 91.7 66.3 69.4 69.6 75.1
99.1 98.5 95.6 95.0 93.9 99.1 98.5 95.5 95.2 94.9 99.1 98.6 95.8 95.3 95.0 99.1 98.7 96.1 95.3 94.6 99.2 98.8 96.3 95.5 94.7 99.7 99.6 98.4 96.9 93.9 72.6 56.1 52.0 54.4 67.2

Figure 32: Same as Figure 5 but for the cfg9 family. After pre-training, hidden states of generative models
implicitly encode the NT ancestors information. The NTℓ column represents the accuracy of pre-
dicting sℓ, the NT ancestors at level ℓ. This suggests our probing technique applies more broadly.

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

di
ag

on
al

 m
as

ki
ng

)

100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 98.4 98.7 95.6 89.6 91.6 84.6 96.8
98.2 97.3 99.8 100 100 98.2 97.3 99.8 100 100 98.2 97.2 99.8 100 100 98.2 97.3 99.8 100 100 98.2 97.2 99.8 99.9 100 100 100 100 99.9 99.6 85.0 76.6 73.1 71.0 81.0
97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 100 100 99.9 94.6 97.0 73.7 65.7 68.6 79.0 95.9
99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.0 97.8 99.8 99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.1 97.8 99.8 100 100 99.8 97.9 97.8 92.9 80.1 81.5 78.8 83.9
98.5 98.5 97.1 94.0 98.8 98.5 98.5 97.2 94.2 99.0 98.6 98.6 97.2 94.2 99.0 98.6 98.5 97.1 94.1 98.7 98.5 98.5 97.1 94.0 98.6 99.6 99.0 95.9 89.0 88.0 81.1 71.1 70.5 68.4 82.5

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

tr
id

ia
go

na
l m

as
ki

ng
)

100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 99.8 99.7 97.8 93.4 94.8 90.5 99.2
98.8 98.3 99.9 100 100 98.8 98.3 99.9 99.9 100 98.8 98.2 99.9 99.9 100 98.8 98.2 99.9 100 100 98.8 98.2 99.9 100 100 100 100 100 100 99.9 88.0 82.7 76.5 77.5 93.1
98.1 99.3 99.7 100 100 98.1 99.3 99.7 100 100 98.1 99.3 99.7 100 100 98.1 99.3 99.8 100 100 98.1 99.3 99.7 100 100 100 100 99.9 98.6 98.6 77.7 69.7 73.8 83.0 99.2
99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 100 100 99.8 99.3 99.5 94.2 81.3 82.7 82.4 91.6
98.7 98.7 97.6 95.6 99.2 98.8 98.8 97.7 95.7 99.3 98.7 98.8 97.7 95.7 99.3 98.7 98.8 97.7 95.6 99.1 98.7 98.7 97.6 95.5 99.1 99.6 99.3 97.8 93.3 91.2 82.8 73.1 72.1 71.0 85.1

Figure 33: Same as Figure 9 but for the cfg9 data family. Generative pre-trained transformer encodes NT
ancestors almost exactly at NT boundaries. The NTℓ column represents the accuracy of predicting
sℓ(i) at locations i with bℓ(i) = 1. This suggests our probing technique applies more broadly.

CFG0 family. Since all the CFGs above support rules of length 3, we have focused on L = 7 to
prevent the string length from becoming excessively long.25 In the cfg0 family, we construct five
CFGs, denoted as cfg0a/b/c/d/e. All of them have a depth of L = 11. Their rule lengths are
randomly selected from {1, 2} (compared to {2, 3} for cfg3 or {1, 2, 3} for cfg8/9). Their degree
configurations (i.e., R(a)) are identical to those of the cfg8 family. We have chosen their sizes as
follows, noting that we have enlarged the sizes as otherwise a random string would be too close to
this language:

• We use size [1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4] for cfg0a/b.
• We use size [1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6] for cfg0c.
• We use size [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for cfg0d/e.

Once again, the CFGs generated in this manner are globally ambiguous like the cfg8 family, so we
cannot perform linear probing on them. However, it would be interesting to demonstrate the ability
of transformers to learn such CFGs.

Additional experiments. We present the generation accuracies (or the complete accuracies for cut
c = 20) for the three new data families in Figure 31. It is evident that the cfg8/9/0 families can be
learned almost perfectly by GPT2-small, especially the relative/rotary embedding ones.

As previously mentioned, the cfg9 data family is not globally ambiguous, making it an excellent
synthetic data set for testing the encoding of the NT ancestor/boundary information, similar to what
we did in Section 4. Indeed, we replicated our probing experiments in Figure 32 and Figure 33 for
the cfg9 data family. This suggests that our probing technique has broader applicability.

25Naturally, a larger transformer would be capable of solving such CFG learning tasks when the string
length exceeds 1000; we have briefly tested this and found it to be true. However, conducting comprehensive
experiments of this length would be prohibitively expensive, so we have not included them in this paper.

40

	1 Introduction
	2 Our Synthetic Context-Free Grammars
	3 Results 1-3: Transformer Can Learn Such CFGs
	4 Results 4-5: How Do Transformers Learn CFGs?
	4.1 Result 4: Transformer's Last Layer Encodes NT Ancestors/Boundaries
	4.2 Result 5: NT Ancestors are Encoded At NT Boundaries

	5 Results 6-9: How Do Transformers Learn NTs?
	5.1 Result 6: Position-Based Attention
	5.2 Result 7-9: Boundary-Based Attention
	5.3 Connection to DP

	6 Related Work and Conclusion
	A Missing Figure
	B Results 10-13: Extensions of CFGs
	B.1 Result 10: Implicit CFGs
	B.2 Results 11-13: Robustness on Corrupted CFG

	C Experiment Setups
	C.1 Dataset Details
	C.2 Model Architecture Details
	C.3 Pre-Training Details
	C.4 Predict NT ancestor and NT boundary

	D More Experiments on Generation
	D.1 Generation Diversity via Birthday Paradox
	D.2 Marginal Distribution Comparison

	E More Experiments on NT Ancestor and NT Boundary Predictions
	E.1 NT Ancestor and NT Boundary Predictions
	E.2 NT Predictions Across Transformer's Layers
	E.3 NT Predictions Across Training Epochs

	F More Experiments on Attention Patterns
	F.1 Position-Based Attention Pattern
	F.2 From Anywhere to NT-ends
	F.3 From NT-ends to NT-ends
	F.4 From NT-ends to Adjacent NT-ends

	G More Experiments on Implict CFGs
	H More Experiments on Robustness
	I Beyond the CFG3 Data Family
	I.1 The Penn TreeBank CFG
	I.2 More Synthetic CFGs

