Under review as a conference paper at ICLR 2025

INTERPRETABILITY OF LANGUAGE MODELS FOR
LLEARNING HIERARCHICAL STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based language models are effective but complex, and understanding
their inner workings is a significant challenge. Previous research has primarily
explored how these models handle simple tasks like name copying or selection,
and we extend this by investigating how these models grasp complex, recursive
language structures defined by context-free grammars (CFGs). We introduce a
family of synthetic CFGs that produce hierarchical rules, capable of generating
lengthy sentences (e.g., hundreds of tokens) that are locally ambiguous and require
dynamic programming to parse. Despite this complexity, we demonstrate that
generative models like GPT can accurately learn this CFG language and generate
sentences based on it. We explore the model’s internals, revealing that its hidden
states precisely capture the structure of CFGs, and its attention patterns resemble
the information passing in a dynamic programming algorithm.

1 INTRODUCTION

Transformer-based language models, like GPT (OpenAl, 2023), are powerful but mysterious; many
studies attempt to uncover the inner workings of transformers. Perhaps the simplest observation
is that attention heads can pair closing brackets with open ones, see the concurrent work and the
references therein (Zhang et al., 2023). Others also demonstrate that transformer can store key-value
knowledge pairs by storing value in the hidden embedding of keys (see Allen-Zhu & Li (2023) and
the references therein).

The seminal work from Anthropic (Elhage et al., 2021; Olsson et al., 2022) focuses on induction
heads, which are logic operations on the input level (such as [A][B]...[A] implies the next token
should be [B]). They “hypothesized” that induction heads may exist to “match and copy more ab-
stract and sophisticated linguistic features, rather than precise tokens”, yet they acknowledge that
they “don’t have a strong framework for mechanistically understanding” this.

The interpretability in the wild paper (Wang et al., 2022) explored many different types of attention
heads, including “copy head”, “name mover head”, “inhibition head”, etc. Most notably, they ex-
plained how GPT2 predicts the next token “Mary” given prefix “When Mary and John went to the
store, John gave a drink to [...]” This requires some logical reasoning by selecting (not naively copy-
ing) what is the right name. While this result is very inspiring, there exists very simple rule-based
algorithm to achieve the same.

In practice, transformers perform much more complex operations, yet, there is an inherent difficulty
in interpreting those models: 7o interpret how transformer performs a certain task, there must be a
well-defined algorithm to solve it so one can argue that the inner representations of the transformer
align with the algorithm. Almost all of the “impressive skills” demonstrated by state-of-the-art
language models are beyond solvable by any other known algorithm. Motivated by these, we ask: Is
there a setting for us to understand how language models perform hard tasks, involving deep logics
/ reasoning / computation chains?

We propose to tackle this question in a controlled setting where the languages are generated syn-
thetically using context-free grammars (CFGs). CFGs, which include terminal (T) and nonterminal
(NT) symbols, a root symbol, and production rules, can hierarchically produce highly structured
expressions. A string is part of CFG language if a rule sequence can transform the root symbol into
this string, and the language model is asked to complete the given partial strings from the CFG.
We pick CFG because, there exists textbook-level, yet quite difficult dynamic programming (DP)

Under review as a conference paper at ICLR 2025

root |>2021 19]->181618 16|->1515 131112 1015899 7]>221

root [>201921 19]->1718 16]>131513 13|>121112 10]979 7|>322 an example sentence

root |>211919 19]->1818 16]->1413 13]>101211 10]799 7|>312

root |[>2020 20]|->1616 16]->1414 14]->1012 11588 71>32 213123312113123211322312312111213211322311311
20]->1617 17|>151413 14]>121012 11]97 8]>311 322333123121112131133112132121333331232212131
20]->171618 17]->1415 14]>1211 115977 8]>12 221111213322131131131131111113231233133133311331
21]->1817 17|>1514 14]>101212 12[>797 8|>331 333332231211311121221111211233312331121113313333
21]>1716 18|>141513 15|>101111 12[->98 9]>121 331123333131111333312113211312121133333212111121
21]>161718 18]->151313 15[>111110 12[>889 9|33 1 133221113221132323313111213; 1
21|->1618 1851315 151010 9]->11 11133331121 133221121213312133133221221

15|>121211 211213331232233312

Figure 1: An example CFG used in our experiments. It generates long (e.g., length 354 in this example) and
ambiguous strings. Determining if a string x belongs to the CFG typically requires dynamic pro-
gramming, even when the CFG rules are known.

algorithm to solve CFG instances.! Generally,

* We wish to capture long-range dependencies via CFG. The simplest example is bracket match-
ing,in ...Y(...)[[...1{...}1{...}X the next symbol X could depend on Y that was
hundreds of tokens before. Another example is coding, where goto Jjumpback can only be
used if jumpback is a valid line number that could be hundreds of lines ago.

* We wish to capture local ambiguity. A coding grammar (like python) can be parsed using greedy
without ambiguity, so does bracket matching — once locally seen . . . () . . . we know the two
parentheses must be paired together. We focus on hard CFGs that require global planning via
dynamic programming to parse.

Most popular choices of CFGs do not satisfy the two above properties. Notably, the English CFG
(e.g., derived from Penn TreeBank) has an average length of 28 tokens (too short), and is not
very locally ambiguous (e.g., RB JJ or JJ PP imply their parent must be ADJP). As we show
in Appendix I, such CFGs can even be learned using tiny GPT2 models with ~ 100k parameters.
Thus, it is too easy for our interpretability purpose.

For such reason, we design our own synthetic CFG languages. We give one example in Figure 1
and discuss a family of 7 such CFGs with varying difficulties in Section 2 (we have 15 more in the
appendix).”? We pre-train GPT-2 (Radford et al., 2019), denoted by GPT for short, on a language
modeling task using a large corpus of strings sampled from our constructed CFGs. We test the
model’s accuracy and diversity by feeding it prefixes from the CFG (or no prefix, just the starting
token) and observing if it can generate accurate completions.

It is perhaps evident from Figure 1 that evern if the CFG tree is given, deciding if the string belongs
to this language for a real person may require a scratch paper and perhaps half an hour, not to say to
learn such CFG from scratch. However, we demonstrate that GPT can learn such CFGs, and using
rotary or relative attentions is crucial, especially for complex CFGs (Results 1-3). Additionally, we
examine attention patterns and hidden states to understand how GPT achieves this. Specifically, we:

* Results 4-5. Develop a multi-head linear probing method to verify that the model’s hidden states
linearly encode NT information almost perfectly, a significant finding as pre-training does not
expose the CFG structure. (In contrast, encoder models like BERT do not.)

* Results 6-9. Introduce methods to visualize and quantify attention patterns, demonstrating that
GPT learns position-based and boundary-based attentions, contributing to understanding how it
learns CFG’s regularity, periodicity, and hierarchical structure.

* Corollary. Suggest that GPT models learn CFGs by implementing a dynamic programming-like
algorithm. The boundary-based attention allows a token to attend to its closest NT symbols in
the CFG tree, even when separated by hundreds of tokens. This resembles DP, in which the CFG
parsing on a sequence 1...¢ needs to be “concatenated” with another sequence ¢ + 1...j in order
to form a solution to a larger problem on 1...5. See Figure 2+8 for illustrations.

In Appendix B, we also explore implicit CFGs (Post & Bergsma, 2013), where each T symbol is a
bag of words, and show that GPT simply learns to encode the word information on its embedding
layer. We also investigate model robustness using CFGs, showcasing under what conditions the
model can auto-correct errors and generate valid CFGs from a corrupted prefix (e.g., randomly
flipping 15% of the symbols in the prefix). These results are numbered 10 through 13.

INot to say in the theory community, CEFGs are also used to model some rich, recursive structure in lan-
guages, including some logics, grammars, formats, expressions, patterns, etc.

2A benefit of using synthetic data is to control the difficulty of the data, so that we can observe how trans-
formers learn to solve tasks at different difficulty levels, and observe their difference.

Under review as a conference paper at ICLR 2025

o0 ;
£ _ (examples of) rules from cfg3f
2 53 = e .
8 54 = 3 13 13 13715 15 1 18]->1315
:_‘ 55 = 12 TT 11 11 11 11 12 10 135121112
_ . 1] =9] 15|-51010
8 % = h b 10]>899
It} 1 1A | | T A 1 A | 10979
' 11]->97
© x= 1 3 3 3 3 1 2 2 2 1 1 12 1 31 11 3 3 2 2 1... 12]598
12|->889
g " learns boundary-based attention to 8l>311
. . 8|->12
= £ most adjacent NT boundaries at all levels 1 Kt
o NT boundary be=1 !
e 2 . " 9 9|->121
1] o =
c g8 learns NT ancestor/boundary info CIEREE 9]>33
J . X N NT boundary be=bs=b,=1 NT boundary bg=bs=1 NT boundary bg=bs=b,=b;=1 9l->11
- linearly encoded in the hidden states NT ancestors s¢=", 55=12, 5,=13 NT ancestors ss=", s5=10 NT ancestors sg=", 55=10, 5,=15, 55=18.

Figure 2: An example string « from G = cfg3f. Though formally defined in Section 2, bold symbols in color
represent NT boundaries which mark the ending positions of the parsed CFG subtrees at various
levels £: we denote by be(i) = 1 if position 7 is at the NT boundary for level £. The NT ancestor
5¢(1) represents the tree node’s name at level £ for a symbol at position 3.

2 OUR SYNTHETIC CONTEXT-FREE GRAMMARS

A probabilistic context-free grammar (CFG) is a formal system defining a string distribution using
production rules. It comprises four components: terminal symbols (T'), nonterminal symbols (NT),
a root symbol (root € NT), and production rules (R). We represent a CFG as G = (T,NT,R),
with L(G) denoting the string distribution generated by G.

We mostly focus on L-level CFGs where each level £ € [L] corresponds to a set of symbols N'T,
with NT, C NT for ¢ < L, NT;, = T, and NT; = {root}. Symbols at different levels
are disjoint: NT; N INT; = @ for i # j. We consider rules of length 2 or 3, denoted as R =
(R1,...,Rr—1), where each R, consists of rules in the form:

r=(a—bc,d) or r=(a+—bec) for a€ NT;, and b,c,d € NTyq
Given a non-terminal symbol a € NT and any rule » = (a — *), we say a € r. For eacha € NT,

its associated set of rules is R(a) := {r | r € Ry Aa € r}, its degree is |R(a)|, and the CFG’s size
is (INTy|, [INTy|,...,[NTL|).

Generating from CFG. To generate samples x from L(G), follow these steps:

1. Start with the root symbol N'T.

2. For each layer ¢ < L, keep a sequence of symbols s, = (sm, e ,Sz,mz)-

3. For the next layer, randomly sample a rule r € R(sg,;) for each sy ; with uniform probability.?
Replace s, ; with b, ¢, d if r = (s¢; — b, ¢, d), or with b, cif = (s¢,; —> b,). Let the resulting
sequence be sy = (se+171, e ,se+17m2+1).

4. During generation, when arule sy ; — s¢41,j, S¢41,j+1 is applied, define the parent par, ,(j) =
pary,((j + 1) := i (and similarly if the rule of sy ; is of length 3).

5. Define NT ancestor indices p = (p1(4),...,PL(%))ic[m,] and NT ancestor symbols s =
(51(4),...,50(7))ie[m,] as shown in Figure 2:
pr(j) =7, Ppe(d) = pargy(per1(d)) and 5¢(f) := sep,(5)
The final string is * = sp, = (sp1, " ,SL,m,) With z; = sp; and length len(z) = mp. We

use (z,p,s) ~ L(G) to represent = with its associated NT ancestor indices and symbols, sampled
according to the generation process. We write ~ L(G) when p and s are evident from the context.

Definition 2.1. A symbol z; in a sample (x,p,s) ~ L(G) is the NT boundary / NT end at level

Ce [L—1)ifpe(i) # pe(i + 1) or i = len(x). We denote by(i) := Ly, is the NT boundary at tevel ¢ @S the
NT-end boundary indicator function. The deepest NT-end of i is

b4 (i) = minge(a 3, n—131be(i) = 1} or Lifsetis empty .
The cfg3 synthetic CFG family. We focus on seven synthetic CFGs of depth L = 7 detailed

in Section C.1. The hard datasets cfg3b, cfg3i, cfg3h, cfg3g, cfg3f have sizes (1, 3, 3,3, 3,3, 3) and
increasing difficulties cfg3b < cfg3i < cfg3h < cfg3g < cfg3f. The easy datasets cfg3el and

3For simplicity, we consider the uniform case, eliminating rules with extremely low probability. Such rules
complicate the learning of the CFG and the investigation of a transformer’s inner workings (e.g., require larger
networks and longer training time). Our results do extend to non-uniform cases when the distributions are not
heavily unbalanced.

Under review as a conference paper at ICLR 2025

(a) real-life English CFG derived from Penn Treebank, short and simple

(b) a family of max-depth 11 CFGs where rules have length 1 or 2 that GPT can learn, see cfg0 in Appendix I

Figure 3: CFG visual comparisons: left is a medium-length sample, and right is a 80%-percentile-length sample

cfg3e2 have sizes (1,3,9,27,81,27,9) and (1, 3,9,27,27,9, 4) respectively. The sequences gen-
erated by these CFGs are up to 35 = 729 in length. Typically, the learning difficulty of CFGs
inversely scales with the number of NT/T symbols, assuming other factors remain constant, be-
cause having more NT/T symbols makes the language less ambiguous and more easily parsed
using greedy (see Figure 4 and we discuss more in Appendix I). We thus primarily focus on
cfg3b, cfg3i, cfg3h, cfg3g, cfg3f.

Why Such CFGs. We use CFG as a proxy to study some rich, recursive structure in languages,
which can cover some logics, grammars, formats, expressions, patterns, etc. Those structures are
diverse yet strict (for example, Chapter 3.1 should be only followed by Chapter 3.1.1, Chapter 4 or
Chapter 3.2, not others). The CFGs we consider are non-trivial, with likely over 227° > 10%° strings
in cfg3f among a total of over 33°0 > 10'4° possible strings of length 300 or more (see the entropy
estimation in Figure 4). In particular, Figure 30 in the appendix shows that cfg3f cannot be learned
by transformers (much) smaller than GPT2-small. In contrast, the English CFG (e.g., derived from
Penn TreeBank) can be learned to good accuracy using tiny GPT2 models with ~ 100k parameters
— 50 it is too easy for our interpretability purpose.

To obtain the cleanest interpretability result, we have selected a CFG family with a “canonical rep-
resentation” (e.g., a layered CFG). This controlled design choice allows us to demonstrate a strong
correlation between the CFG representation and the hidden states in the learned transformer. We also
create additional CFG families to examine ‘“not-so-canonical” CFG trees, with results deferred to
Appendix I (see an example in Figure 3). We do not claim our results encompass all CFGs; our cho-
sen CFGs are already quite challenging for a transformer to learn and can lead to clean hierarchical
interpretability results.

3 RESULTS 1-3: TRANSFORMER CAN LEARN SUCH CFGS

In this section, we generate a large corpus {x(i)}ie[~] from a synthetic CFG language L(G) in
Section 2, and pretrain a (generative, decoder-only) transformer model F' on this corpus, treating
each terminal symbol as a separate token, using an auto-regressive task (see Appendix C.3 for de-
tails). We then evaluate how well the model learns such L(G).

Models. We denote the GPT2 small architecture (12-layer, 12-head, 768-dimensions) as GPT (Rad-
ford et al., 2019) and implemented its two modern variants. We denote GPT with relative positional
attention (He et al., 2020) as GPT,e, and GPT with rotary positional embedding (Su et al., 2021;
Black et al., 2022) as GPT,,t. For purposes in later sections, we introduce two weaker variants.
GPTpos replaces the attention matrix with a matrix based solely on tokens’ relative positions, while
GPT,ni uses a constant, uniform average of past tokens from various window lengths as the attention
matrix. Detailed explanations of these variants are in Section C.2.

We quickly summarize our findings and then elaborate them in details.

Result 1-3 (Figure 4). The GPT models can effectively learn our synthetic CFGs. Given any prefix,
they can generate completion strings

e that can perfectly adhere to the CFG rules most of the time, (accuracy)
e that are sufficiently diverse in the CFG language, and (diversity)
e that closely follow the probabilistic distribution of the CFG language. (probability)

Moreover, one had better use rotary or relative attentions, the original GPT (with absolute positional
embedding) performs even worse than GPT,; (with uniform attention).

Under review as a conference paper at ICLR 2025

GPT GPTrel GPTrot GPT_pos GPT_uni

3, 998 99.8[99.8 99.9/99.8 99.9/99.9 99.9/99.9 100 GPT GPT_rel GPT_rot GPT_pos GPT_uni

% %
%3, 99-5 99.5/99.8 99.8/99.4 99.5/99.8 99.8/99.6 99.7) truth GPT GPT_rel GPT_rot GPT_pos GPT_uni 035 0.00008 | 0.00011 | 0.00009 | 0.00009 | 0.00004

%3, 96.8 96.9[99.7 99.6[99.6 99.5[99.0 99.0[08.9 988 Do3s s, 0.00024 | 0.00014 | 0.00028 | 0.00015 | 0.00021

169 | 169 | 169 | 169 | 169 | 169
o3, 185 | 190 | 189 | 189 | 190 | 189
95, 204 | 203 | 203 | 203 | 202 | 203

%3, ~0.00078 | 0.00023 | 0.00023 | 0.00027 | 0.00036
93 268 272 267 268 266 267
95, 268 275 270 272 269 269

s, [ERIEE 0-00034 | 0.00047 | 0.00058 | 0.00069
To3, [REGZEER 0.00043 | 0.00060 | 0.00093 | 0.00112
%
93,
e; 216 314 313 313 314 313 e, 0.00019 | 0.00014 | 0.00016 | 0.00013 | 0.00011

93 %3,
e> 256 | 252 | 255 | 251 | 253 | 252 e> _0.00031 | 0.00025 | 0.00025 | 0.00011 | 0.00011

S

ey
L &
¢ &

99.1 99.2(98.6 98.4/97.0 96.9/96.7 96.9)

98.8 98.8[97.6 97.7/93.9 93.8/92.8 92.9)

&
&
2

generation acc (%)

98.1 98.9[98.4 99.0/98.2 98.9/98.3 98.9/98.6 99.0)

entropy (bits)
KL divergence

&
&
b

99.3 99.599.6 99.7]99.6 99.7[99.5 99.799.4 996

CUL0 CUtS0 Ut CUtS0 cutDd CUt50 cutd CutS0 Cut0 cut50

Figure 4: Generation accuracy (left), entropy (middle), KL-divergence (right) across multiple CFG datasets.
Observations: Less ambiguous CFGs (cfg3el, cfg3e2, as they have fewer NT/T symbols) are easier
to learn. Transformers using relative positional embedding (GPT, or GPT,s) are better for learning
harder CFGs. The vanilla GPT is worse than even GPT,n;, which is GPT with fixed, uniform attentions.

Result 1: Completion accuracy. We evaluate I’ by letting it generate completions for prefixes
.. = (x1,22, -+ ,x.) from strings x freshly sampled from L(G). The generation accuracy is
measured as Pr,.7,(@) + randomness of 7[(T:¢, F'(7.c)) € L(G)]. We use multinomial sampling without
beam search for generation.* Figure 4 (left) shows the generation accuracies for cuts ¢ = 0 and
¢ = 50. The ¢ = 0 result tests the transformer’s ability to generate a sentence in the CFG, while
¢ = 50 tests its ability to complete a sentence.’ The results show that the pretrained GPT models
can often generate strings that perfectly adhere to the CFG rules for the cfg3 data family.

Result 2: Generation diversity. Could it be possible that the pretrained GPT models only mem-
orized a small subset of strings from the CFG? We evaluate this by measuring the diversity of its
generated strings. High diversity suggests a better understanding of the CFG rules.

We consider two methods to estimate diversity. One is to estimate the distribution’s entropy, which
provides a rough estimate of (the log, of) the support size, see the middle of Figure 4. The other is
to use birthday paradox to theoretically lower bound the support size (Arora & Zhang, 2017). This
allows us to make precise claims, such as in the cfg3f dataset, there are at least 4 x 10® distinct
sentential forms derivable from a symbol at levels 1 to 5 or levels 2 to 6; not to say from the root to
level 7. Details are in Appendix D. Our general conclusion is that the pre-trained model does not
rely on simply memorizing a small set of patterns to achieve high completion accuracy.

Result 3: Distribution comparison. To fully learn a CFG, it is crucial to learn the distribution
of generating probabilities. One naive approach is to compare the marginal distributions p(a,), for
the probability of symbol a € N'T, appearing at position . We observe a strong alignment between
the generation probabilities and the ground-truth, included in Appendix D.2. Another approach
is to compute the KL-divergence between the per-symbol conditional distributions. Let p* be the
distribution over strings in the true CFG and p be that from the generative transformer model. Let
S = {w(i)}i (M) be samples from the true CFG distribution. Then, the KL-divergence can be

estimated as follows:®
1 1 Pry«[t|z,...,zi—1]
ST ZxES len(z)+1 Zie[len(x)+1] ZtETU{eos} PI‘p* [t | L1y 7xi—1] log Pry[t|z,...,zi-1]
In Figure 4 (right) we compare the KL-divergence between the true CFG distribution and the GPT
models’ output distributions using M = 20000 samples.

Connection to DP. Result 1-3 (e.g., learning the CFG’s marginal distribution) is merely an small
step towards showing that the model employs a DP-like approach. Dynamic programming (e.g., the
inside-outside algorithm Baker (1979)) can compute marginal distributions of CFGs, and such al-
gorithms can be implemented using nonlinear neural networks like transformers, achieving a global
minimum in the auto-regressive training objective.” However, the mere existence of a dynamic-
programming transformer to obtain the training objective’s global minimum is not entirely satisfac-
tory. Does employing an AdamW stochastic optimizer for 100k iterations on the training objective
yield such an algorithm? The remainder of this paper will delve deeper to address this question.

“The last softmax layer converts the model outputs into a probability distribution over (next) symbols.
We follow this distribution to generate the next symbol, reflecting the unaltered distribution learned by the
transformer. This is the source of the “randomness of " and is often referred to as using “temperature 7 = 1.”

0ur cfg3 family is large enough to ensure a negligible chance of a freshly sampled prefix of length 50
being seen during pretraining.

8 A nearly identical formula was also used in DuSell & Chiang (2022).

"This has been carefully explored for masked language modeling case in Zhao et al. (2023).

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni GeBERTa baseline (GPT_rand)

3, 100 100 100 100 100{100 100 100 100 100100 100 100 100 100(100 100 100 100 100100 100 100 100 100|100 100 100 99.7 99.9/85.0;

gz, 99.6 997 99.6 99.2 99.7|99.6 9.7 99.6 9.2 99.7(99.6 9.7 99.6 99.2 99.8(99.6 99.7 99.6 99.3 99.8[99.6 99.7 99.6 99.3 99.8[99.7 99.7 99.7 99.2 99.4[84.6 TLT

o3, 99.7 98.3 983 99.2 100{99.7 98.1 97.8 9.0 100 (99.7 98.4 98.2 99.3 100(99.7 98.5 98.5 99.4 100 99.7 98.6 98.6 9.4 100(99.9 9.8 99.8 99.7 100 W

3, 100 99.2 95.6 94.6 973100 99.3 96.7 97.2 9.0/ 100 99.3 96.6 97.2 9.0/ 100 9.3 96.7 96.9 98.8|100 99.4 97.0 97.2 98.9| 100 9.5 95.5 85.6 90.5(70.8 m

3, 100 97.6 94.3 88.4 85.9| 100 97.5 94.8 92.9 93.5/100 97.7 95.2 93.3 94.2/ 100 97.9 95.6 93.5 93.9| 100 98.2 95.8 93.2 93.5| 100 99.6 96.3 84.0 77.5(71.3)

&£
&

100 100 100 100 100[100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 99.8

&
&
Y

predict NT ancestor (%)

99.9 100 100 100 100(99.8 100 100 100 100(99.9 100 100 100 100/99.9 100 100 100 100[99.9 100 100 100 100|100 100 100 100 99.9
"NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

Figure 5: After pre-training, hidden states of generative models encode NT-ancestor information. The N7}
column represents the accuracy of predicting s¢, the NT ancestors at level /, via linear probing (4.2).

It also encodes NT boundaries (Appendix E.1); and such information is discovered gradually and
hierarchically across layers and training epochs (Appendix E.2 and E.3). We compare against a
baseline which is the encoding from a randomly-intialized GPT, GPT.nq (serving as a neural-tangent
kernel baseline). We also compare against DeBERTa, illustrating that BERT-like models are less
effective in learning NT information at levels close to the CFG root.

4 RESULTS 4-5: How DO TRANSFORMERS LEARN CFGS?

In this section, we delve into the learned representation of the transformer to understand how it
encodes CFGs. We employ various measurements to probe the representation and gain insights.

Recall classical way to solve CFGs. Given CFG G, the classical way to verify if a sequence
x satisfies L(G) is to use dynamic programming (DP) (Sakai, 1961; Sipser, 2012). One possible
implementation of DP involves using the function DP(i, j, a), which determines whether or not
Zit1,Ti+1 - -+, T; can be generated from symbol a following the CFG rules. From this DP repre-
sentation, a DP recurrent formula can be easily derived.®

In the context of this paper, any sequence x ~ L(G) that satisfies the CFG must satisfy the following
conditions:

be(i) = 1,b(j) = 1,Vk € (,7), be(k) = 0 and s,(j) = a = DP(i,j,a) = 1 @.1)

(recall the NT-boundary b, and the NT-ancestor s, notions from Section 2). Note that (4.1) is not
an “if and only if” condition because there may be a subproblem DP (i, j,a) = 1 that does not lie
on the final CFG parsing tree but is still locally parsable by some valid CFG subtree. However,
(4.1) provides a “backbone” of subproblems, where verifying their DP (i, j, a) = 1 values certifies
that the sentence x is a valid string from L(G). It is worth mentioning that there are exponentially
many implementations of the same DP algorithm® and not all (i, j,a) tuples need to be computed
in DP(4, j,). Only those in the “backbone” are necessary.

Connecting to transformer. In this section, we investigate whether pre-trained transformer F
also implicitly encodes the NT ancestor and boundary information. If it does, this suggests that
the transformer contains sufficient information to support all the DP (3, j, a) values in the backbone.
This is a significant finding, considering that transformer F' is trained solely on the auto-regressive
task without any exposure to NT information. If it does encode the NT information after pretraining,
it means that the model can both generate and certify sentences in the CFG language.

4.1 RESULT 4: TRANSFORMER’S LAST LAYER ENCODES NT ANCESTORS/BOUNDARIES

Let [be the last layer of the transformer (other layers are studied in Appendix E.2). Given
an input string x, we denote the hidden state of the transformer at layer ! and position i as
E;(z) € R%. We first investigate whether a linear function can predict (by(i),...,b. (7))

and (s1(i),. .. ’EL(i))ie[len(m)] using the full (Ei(x))ie[len(z)]
layer hidden states encode the CFG’s structural information up to a linear transformation.

i€ [len(z)]
. If possible, it implies that the last-

8For example, one can compute DP(i,j,a) = 1 if and only if there exists i = i1 < 42 < -+ < i = j
such that DP(¢r, 4r41,b,) = 1 forall r € [k — 1] and a — by, ba, . .., by is a rule of the CFG. Implementing
this naively would result in a O(len*) algorithm for CFGs with a maximum rule length of 3. However, it can
be implemented more efficiently with O(len®) time by introducing auxiliary nodes (e.g., via binarization).

9Each inner loop of the dynamic programming can proceed in any arbitrary order, not limited to k = 4..j or

k = j..i, and the algorithm can prune and break early. This gives a safe estimate of at least (n!)m"2> possible

implementations. Furthermore, there are at least 2(n) ways to perform binarization, meaning to break length-3
rules to length-2 ones. This is just to detect if a given string of length n belongs to the CFG.

Under review as a conference paper at ICLR 2025

53 =
54 =

; 18 18 18 15 12 18 E
3 15 15 15 15 15 15 18
5 = 0
o s A- ."\ R I
\ | A |
3

= 3 1 2 ?211][121 1 11 3 3 1 11 2 2

:gi linearly encode \.I I / linearly encode

by =
bl—

-

Figure 6: Illustratlon of Result 5 + Figure 6: GPT’s last layer hidden states at the blue posmons linearly encode
the NT ancestor and boundary information in the red boxes very well. (They may not encode NT
ancestors for smaller levels because that may not be information-theoretically possible.)

Multi-head linear probing (full). Due to the high dimensionality of this linear function (e.g.,
len(xz) = 300 and d = 768 yield 300 x 768 dimensions) and variable string lengths, we propose
a multi-head linear function for efficient learning. We consider a set of linear functions f,: R —
RINTI where r € [H] and H is the number of “heads”. To predict any s,(i), we apply:

Gi() = 2o reim kefen(a)) Wri—k - fr(Ex(2)) € RINTI (4.2)

exp({Pi,r, Pr,r))
€[len(z)] eXP(<Pi,r7Pk/,r))
a “multi-head attention” over linear functions. We train G;(z) € RI™TI using the cross-entropy loss
to predict (s,(i)) x Despite having multiple heads,

for trainable parameters F; . € R?. G, can be seen as

where wy ;1 = S

Le[L
G(x) is still a linear function over (£ (2))cten(x)]

as the linear weights w, ;_, depend only on positions i and k, not on . Similarly, we train G}(z) €

R¥ using the logistic loss to predict the binary values (bg(i)) te(n)” Details are in Section C.4.

Using such multi-head linear probing, we discover that:
Result 4 (Figure 5). Pre-training allows GPT models to almost perfectly encode the NT an-

cestor 5¢(i) and NT boundary by(i) information in the last transformer layer’s hidden states
(Ex())kepien(z)) up to a linear transformation. In contrast, encoder models (like deBERTa) may

not learn deep NT information very well."

But, do we need this full layer for linear probing? We explore next.

4.2 RESULT 5: NT ANCESTORS ARE ENCODED AT NT BOUNDARIES

Above, we used the full hidden layer, (Ei(x))ie[len(z)], to predict (5@(2'))E€[L] for each position i.
This is essential since it’s information-theoretically impossible to extract all of i’s NT ancestors
by only reading E;(x) or even all hidden states to its left, especially if x; is the start of a string or
a subtree in the CFG. But, how about those ones information-theoretically possible? In particular,

how about predicting s,(¢) at locations ¢ with by(i) = 1 — i.e., at the end of the CFG subtrees.

Multi-head linear probing (diagonal). We consider a neighborhood of position ¢ in the hidden
states, say Ej;11(z), and use that for linear probing. In symbols, we replace w; ;. in (4.2) with
zeros for |i — k| > 1 (tridiagonal masking), or with zeros for ¢ # k (diagonal masking).

Gi(x) = 2 e kefen(a)) li—ki<s Wri—k - fr(Bx(w)) € RINT| where 6 =0orl (4.3)
Result 5 (Figure 6). For GPT models, the information of position i’s NT ancestor/boundary is
locally encoded around position i + 1 when i is on the NT boundary. This is because:

* At NT boundaries (i.e., bo(x) = 1), diagonal or tridiagonal multi-head linear probing (4.3) is
adequate for accurately predicting the NT ancestors sy(x) (see Figure 9 on Page 13).

IOAmong encoder-based models, deBERTa (He et al., 2020) is a modern variant of BERT, which is equipped
with relative attentions. It is expected that encoder-based models do not learn very deep NT information,
because in a masked-language modeling (MLM) task, the model only needs to figure out the missing token
from its surrounding, say, 20 tokens. This can be done by pattern matching, as opposed to a global planning
process like dynamic programming.

Under review as a conference paper at ICLR 2025

for GPTrel over cfg3h data
for GPTrel over cfg3f data

any—-(NTend, + 2) attention
(NTend, = 1)»(NTend, + 1) attention
for GPTrel over cfg3h data
NTend,—NTend, attention pattern

(a) By, p,j—i fori + & at NT-end in CFG level (b) By, j—ifori+ 61,5 + 62 at NT- (c) B‘Z'.“;Iji"i“ for NT-ends between
£. Rows represent £ = 2,3,4,5 and columns ends in CFG level £ = 4. Rows / columns CFG levels £/ — £. Rows represent and
represent § = —2, —1,0,1, 2. represent 81,92 = —1,0, +1. columns £/ — £. “X” means empty entries.
Figure 7: After pretrained on our CFG data, GPT model’s attention layers have a strong bias towards “ NT-end
at level £’ to the most adjacent NT-end at £ , for even different £, ¢'. For definitions see Section 5.2,
and more experiments see Appendix F.2, F.3 and F4. Corollary: this is evidence that the model
uses dynamic-programming like approach to learn such hard, synthetic CFGs (see discussions in
Section 5.3).

* Such masking is also sufficient for accurately predicting NT boundaries b,(i) (deferred to
Figure 18 in Appendix E.1).

In contrast, encoder models like deBERTa do not store deep NT information at the NT boundaries.

Related work. Our probing approach is akin to the seminal work by Hewitt & Manning (2019),
which uses linear probing to examine the correlation between BERT’s hidden states and the parse
tree distance metric (similar to NT-distance in our language). Subsequent studies (Shi et al., 2022;
Zhao et al., 2023; Maudslay & Cotterell, 2021; Manning et al., 2020; Vilares et al., 2020; Wu et al.,
2020; Arps et al., 2022) have explored various probing techniques to suggest that BERT-like trans-
formers can approximate CFGs from natural languages.

Our approach differs in that we use synthetic data to demonstrate that linear probing can almost per-
fectly recover NT ancestors and boundaries, even for complex CFGs that generate strings exceeding
hundreds of tokens. We focus on pre-training generative (decoder-only) language models. For a
non-generative, encoder-based model like BERT (Kenton & Toutanova, 2019) or its modern variant
deBERTa (He et al., 2020), they do not learn deep (i.e., close to the CFG root) NT information very
well, as shown in Result 4-5.

Our results, along with Section 5, provide evidence that generative language models like GPT-2 em-
ploy a dynamic-programming-like approach to generate CFGs, while encoder-based models, typi-
cally trained via MLM, struggle to learn more complex/deeper CFGs.

5 RESULTS 6-9: HOw DO TRANSFORMERS LEARN NTS?

We now delve into the attention patterns. We demonstrate that these patterns mirror the CFG’s
syntactic structure and rules, with the transformer employing different attention heads to learn NTs
at different CFG levels.

5.1 RESULT 6: POSITION-BASED ATTENTION

We first note that the transformer’s attention weights are primarily influenced by the tokens’ relative
distance. This holds true even when trained on the CFG data with absolute positional embedding.
This implies that the transformer learns the CFG’s regularity and periodicity through positional in-
formation, which it then uses for generation. (We defer the figures to Appendix F.1 as this finding
may not surprise some readers.) Motivated by this, we explore whether using position-based atten-
tion is sufficient to learn CFGs. In Figure 4, we find that GPTos (or even GPT,,;) performs well, sur-
passing the vanilla GPT, but not reaching the full potential of GPT,. This supports the superior prac-
tical performance of relative-position based transformer variants (such as GPT,j, GPT o, deBERTa)
over their base models (GPT or BERT). On this other hand, this also indicates that position-based
attention alone is not enough for transformers to learn CFGs.

Under review as a conference paper at ICLR 2025

5.2 RESULT 7-9: BOUNDARY-BASED ATTENTION

Next, we remove the position-bias from the attention matrix to examine the remaining part. We find
that the transformer also learns a strong boundary-based attention pattern, where tokens on the NT-
end boundaries typically attend to the “most adjacent” NT-end boundaries, see Figure 2. This
attention pattern enables the transformer to effectively learn the hierarchical and recursive structure
of the CFG, and generate output tokens based on the NT symbols and rules.

Formally, let A, j_;(x) for j > i denote the attention weight for positions j — ¢ at layer [and
head h of the transformer, on input sequence x. Given a sample pool {x(")}nem € L(G), we
compute for each layer [, head h,'!

Aipyp = Average[[Al)h,jﬁi(x(")) [neN,1<i<j< len(x(")) st.j—i=p] ,

which represents the average attention between any token pairs of distance p over the sample pool.
To remove position-bias, we focus on By 1, j—i(x) := Ay p j—i(x) — Ay p,j—i in this subsection. Our
observation can be broken down into three steps.

Result 7 (Figure 7(a)). By j—i(x) exhibits a strong bias towards tokens i at NT ends.

This can be seen in Figure 7(a), where we present the average value of Bl,h7j%(x) over data x and

pairs 4, 7 where i + J is the deepest NT-end at level £ (symbolically, b%(i + §) = £). The attention
weights are highest when § = 0 and decrease rapidly for surrounding tokens.

Result 8 (Figure 7(b)). By p ;—i(x) favors pairs i, j both at NT ends at some level (.

This can be seen in Figure 7(b), where we show the average B j%(ac) over data x and pairs @, j
where by (i + 61) = be(j + 02) = 1 for §1,02 € {—1,0, 1}. It is maximized when §; = J, = 0.

Result 9 (Figure 7(c)). By j—i(x) favors “adjacent” NT-end token pairs i, j.

Above, we define “adjacency” as follows. We introduce Bf“;f?i;‘} - to represent the average value
of Bl’h,j%i(m) over samples z and token pairs i, j that are at the deepest NT-ends on levels £, ¢/

respectively (symbolically, b%(i) = ¢ A b*(j) = ¢'), and are at a distance 7 based on the ancestor
indices at level ¢ (symbolically, ps(j) — p¢(i) = 7). We observe that Bi“,fz,’f‘f}}r decreases as r

increases, and is highest when r = 0 (or r = 1 for pairs £ — ¢ without an r = 0 entry).'?

In conclusion, tokens corresponding to NT-ends at level ¢’ statistically have higher attention weights
to their most adjacent NT-ends at every level £, even after removing position-bias."3

5.3 CONNECTION TO DP

Dynamic programming (DP) comprises two components: storage and recurrent formula. Identify-
ing a specific DP implementation that a transformer follows is challenging due to the “exponentially
many” ways to implement such DPs (see Footnote 9). However, we highlight common elements in
all DP implementations and their correlation with the transformer. In Section 4, we demonstrated
that transformers can encode the DP’s storage “backbone”, encompassing all necessary DP (%, j, a)
on the correct CFG parsing tree, regardless of the DP implementation.

For the recurrent formula, consider DP(k,j,a) in the backbone, derived from DP(k,i,b) A
DP(i, j, ¢) using CFG rule a — b, c. Given that DP(k, i, b) is stored near position ¢ while DP(k, 7, a)
and DP(i, j, ¢) are stored near position j (Result 5), the model needs to perform a memory read of
position ¢ from position 7, or 7 — i. Note that positions ¢ and j are adjacent NT-ends of the same
level, and we have verified that GPT models favor attending j — ¢ when 7 and j are adjacent N'T-
ends, serving as evidence that (decoder-only) transformers use a DP-like approach. See Figure 8
(top) for an illustration.

""Throughout this paper, we use [-] to denote multi-sets that allow multiplicity, such as [1,2,2, 3]. This
allows us to conveniently talk about its set average.

"2For any token pair j — i with £ = b¥(i) > b*(j) = ¢/ — meaning i is at an NT-end closer to the root than
J — it satisfies pe(j) — pe(i) > 1 so their distance is strictly positive.

BWithout removing position-bias, such a statement might be meaningless as the position-bias may favor
“adjacent” anything, including NT-end pairs.

Under review as a conference paper at ICLR 2025

| DP(0,],18) DP(i, j, a) = whether symbol a
[DP(0,iy,13) I DP(iy,j,15) can generate X;4 ... X;

[oG | DP(iz,j,10) \

learns to

after pretraining, model’s attention j — i

- . ——— —— parse CFG
has a strong bias from any position j

to its most adjacent NT node positions i

i ! Corollary: GPT mimics
13 15! . .
12 1 Tf w1 | . dynamic programming (DP)
_——— I, = L] -

A A A A . _ i
=12 15312312211 1121151211531 1111221.]
“““ 1 learns to
i 2 generate
<—_ from CFG
T men e DP,(j, a) = whether symbol a

T

DPy(t, ")

Figure 8: Illustration of how GPTs mimic dynamic programming. See discussions in Section 5.3.

can follow sequence x; ... x;

Further reading for experts. Transformers are not only parsing algorithms but also generative
ones. Experts in CFGs (or experienced participants in coding competitions) may immediately un-
derstand that the generative process requires implementing a second DP:

let DP2 (4, @) denote if prefix 1, ..., z; can be followed with a given symbol « € NT U T.

Suppose there is a rule b — ¢, a, and DP(i, j, ¢) A DP2(i, b) both hold; this implies DP5(j, a) also
holds. This is analogous to the inside-outside algorithm (Baker, 1979), and is a special case of
problem 6 in the IOI 2006 competition. In this case, the model also needs to perform a memory read
of position ¢ from position j. Here, position ¢ is the most adjacent NT-end to position j at a different
level; we have also verified that GPT models favor attending such j — 7. See Figure 8§ (bottom).

Finally, the above demonstration shows how to correctly parse and generate, but to generate follow-
ing the same distribution of CFGs, the model needs to learn DP5 (3, a), the probability that symbol
a can follow prefix z1,...,x;. The recurrent formula is similar in terms of memory read patterns
(thus the attention patterns). We ignore this subtlety for conciseness.

In sum, while identifying a specific DP implementation that a transformer learns is nearly impossi-
ble, we have shown that the backbone of the DP — including the necessary DP storage states and
recurrent formula — are observable in the pretrained models’ hidden states and attention patterns.
This serves as strong evidence that pretrained (decoder-only) transformers largely mimic dynamic
programming, regardless of the specific DP implementation they choose.

6 RELATED WORK AND CONCLUSION

We defer implicit CFGs and robust CFGs to Appendix B.

Transformers can encode some CFGs, especially those that correspond to natural languages (He-
witt & Manning, 2019; Shi et al., 2022; Zhao et al., 2023; Maudslay & Cotterell, 2021; Manning
et al., 2020; Vilares et al., 2020; Wu et al., 2020; Arps et al., 2022). Deletang et al. (2023) stud-
ied transformer’s learnability on a few languages in the Chomsky hierarchy (which includes CFGs)
However, the inner mechanisms regarding how transformer can or cannot solve those tasks are un-
clear. There are works “better” than us by precisely interpreting each neuron’s function, but they
study simpler tasks using simpler architectures. For instance, Nanda et al. (2023) examined 1 or
2-layer transformers with context length 3 for the arithmetic addition. In addition to linear probing,
Murty et al. (2023) explored alternative methods to deduce the tree structures learned by a trans-
former. They developed a score to quantify the “tree-like” nature of a transformer, demonstrating
that it becomes increasingly tree-like during training. Our Figure 20 in Appendix E.3 also confirmed
on such findings. (This paper appears in May 2023, so we focus on related works before that.)

Conclusion. We studied how transformers learn synthetically generated, yet challenging CFGs,
and show the inner workings correlate with the internal states of the dynamic programming algo-
rithms needed to parse such CFGs. We hope this will point towards more opportunities towards
understanding larger models on complex tasks. (Indeed, we are writing a series of papers using the
findings and probing techniques developed from this paper; we cannot cite them due to anonymity.)

10

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage and
Extraction. ArXiv e-prints, abs/2309.14316, September 2023. Full version available at http:
//arxiv.org/abs/2309.14316.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available athttp://arxiv.org/abs/1811.
03962.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. arXiv
preprint arXiv:1706.08224, 2017.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
in neural language models. arXiv preprint arXiv:2204.06201, 2022.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Society
of America, 65(S1):S132-S132, 1979.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In ICLR, 2023.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In ICLR, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp.- 4129-4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-14109.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571—
8580, 2018.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171—
4186, 2019.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046-30054, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330, 1993. URL
https://aclanthology.org/J93-2004.

Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with
jabberwocky probing. arXiv preprint arXiv:2106.02559, 2021.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Characterizing
intrinsic compositionality in transformers with tree projections. In /CLR, 2023.

11

http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2001.04413
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419
https://aclanthology.org/J93-2004

Under review as a conference paper at ICLR 2025

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAl. Gpt-4 technical report, 2023.

Matt Post and Shane Bergsma. Explicit and implicit syntactic features for text classification. In
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 866-872, 2013.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Itiroo Sakai. Syntax in universal translation. In Proceedings of the International Conference on
Machine Translation and Applied Language Analysis, 1961.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-

free-grammar via Istm and the transformer: Difference and the explanations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 8267-8276, 2022.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

David Vilares, Michalina Strzyz, Anders Sggaard, and Carlos Gémez-Rodriguez. Parsing as pre-
training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 9114—
9121, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593,2022.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4166-4176, 2020.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

12

Under review as a conference paper at ICLR 2025

A MISSING FIGURE

GPT GPT_rel

100 99.6 99.8 100|100 100 99.6 99.8

APPENDIX

100

GPT_rot

100 100 99.6 99.8

100

GPT_pos

100 100 99.6 99.8 100

GPT_uni

100 100 99.6 99.8

100

deBERTa

baseline (GPT_rand)

100 100 98.9

98.4 100 100 100(97.2 98.4 100 100

100

97.2 98.4 100 100

100

97.298.4 100 100 100

97.2 98.4 100 100

100

99.6 99.6 98.0

99.6 99.3 100 100(99.8 99.7 99.4 100

100

99.8 99.7 99.4 100

100

99.8 99.7 99.4 100 100

99.8 99.7 99.3 99.9

100

99.9 99.7 97.8

100 99.6 99.0 99.4/100 100 99.7 99.5

99.9|

100 100 99.7 99.5

99.8)

100 100 99.6 99.4 9.8

100 100 99.6 99.4

99.8

100 99.1

99.199.1 98.2 96.2| 100 99.2 99.2 98.9

98.4]

100 99.2 99.3 98.9

98.1]

100 99.2 99.2 98.7 97.9)

100 99.2 99.2 98.7

97.6

100 99.1

100 100 100 100|100 100 100 100

100

100 100 100 100

100

100 100 100 100 100

100 100 100 100

99.9

99.9 100 100 100(99.6 99.9 100 100

100

99.6 99.9 100 100

100

99.6 99.9 100 100 100

99.6 99.9 100 100

100

NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3

Gt GPT_rel

100 99.6 99.8 100|100 100 99.6 99.8

NT2

100

NT6 NTS NT4 NT3
GPT_rot

100 100 99.6 99.8

NT2

100

NT6 NTS NT4 NT3 NT2
GPT_pos

100 100 99.6 99.8 100

NT6 NT5 NT4 NT3
GPT_uni

100 100 99.7 99.8

NT2

100

NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

deBERTa baseline (GPT_rand)

99.2 100 100 100(99.2 99.2 100 100

100

99.2 99.2 100 100

100

99.299.2 100 100 100

99.2 99.2 100 100

100

99.6 99.5 100 100(99.8 99.7 9.5 100

100

99.8 9.7 99.5 100

100

99.8 99.7 99.5 100 100

99.8 99.7 99.5 100

100

100 99.6 99.1 99.5/100 100 99.7 9.5

99.9|

100 100 99.7 99.5

99.9)

100 100 99.7 99.4 9.8

100 100 99.7 99.4

99.8

99.2 9.1 98.4 97.6/100 99.3 99.3 99.0

99.3]

100 99.3 99.3 99.0

99.1

100 99.2 99.2 98.9 98.9)

100 99.2 99.2 98.8

98.8

100 100 100 100|100 100 100 100

100

100 100 100 100

100

100 100 100 100 100

100 100 100 100

100

99.9 100 100 100(99.9 99.9 100 100

100

99.9.99.9 100 100

100

99.999.9 100 100 100

99.9 99.9 100 100

100

'g o3, 100
95 o, 972
£g oy
%,
o %3, 99.8
o
E. 93, 100
z %3, 100
£ 3 %5, 100
B
%
gj O3, 996
NT6
'g o35 100
E' Yoz, 991
o,
o %3, 99.8
= %
i %3, 100
E %3, 100
2.8 %y 100
83,0
£E 36, 99.9
NT6

Figure 9: Generative models encode NT ancestors almost exactly at NT boundaries.
represents the accuracy to predict s,(2) at locations ¢ with by (i) = 1, via diagonal multi-head linear
3).

probing (4

NTS NT4 NT3 NT2 NT6 NTS NT4 NT3

NT2

NT6 NTS NT4 NT3

NT2

NT6 NTS NT4 NT3 NT2

NT6 NTS NT4 NT3

NT2

NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

Observation. By comparing against a baseline, which is the encoding from a random GPT, we
see that BERT-like (encoder-only) transformers such as DeBERTa trained on a masked language

modeling (MLM) task, do not store deep NT ancestor information at the NT boundaries.

13

The NT,; column

Under review as a conference paper at ICLR 2025

%y %, 94 %, o, 40, W1y % 9, 95 %, oy 20; 222,

N
N

s
&

-025 -0.25

uniform OT distribution

-0.50 -0.50

non-uniform OT distribution
S
N

-0.75 -0.75

correlations of word embeddings

°
o
8

correlations of word embeddings

-1.00 -1.00

Figure 10: Language models learn implicit CFGs by using word embeddings to encode the (hidden) terminal
symbol.

We present word embedding correlations for GPT pre-trained on an implicit CFG with |T| = 3 and
vocabulary size |OT| = 300. There are 300 rows/columns each representing an observable token
a € OT. Label ijk € {0,1}* in the figure indicates whether a is in OT; for the three choices
t € T. Details are in Section B.1.

B RESULTS 10-13: EXTENSIONS OF CFGs

B.1 RESULT 10: ImpLICIT CFGSs

In an implicit CFG, terminal symbols represent bags of tokens with shared properties. For exam-
ple, a terminal symbol like noun corresponds to a distribution over a bag of nouns, while verd
corresponds to a distribution over a bag of verbs. These distributions can be non-uniform and over-
lapping, allowing tokens to be shared between different terminal symbols. During pre-training, the
model learns to associate tokens with their respective syntactic or semantic categories, without prior
knowledge of their specific roles in the CFG.

Formally, we consider a set of observable tokens OT, and each terminal symbol ¢ € T in
G is associated with a subset OT; C OT and a probability distribution D; over OT;. The
sets (OT;); can be overlapping. To generate a string from this implicit CFG, after generating
x = (z1,22,...,Tm) ~ L(G), for each terminal symbol x;, we independently sample one element
y; ~ D,,. After that, we observe the new string y = (Y1, Y2, - , Ym), and let this new distribution
be called y ~ Lo (G)

We pre-train language models using samples from the distribution y ~ Lo (G). During testing, we
evaluate the success probability of the model generating a string that belongs to Lo (G), given an
input prefix y... Or, in symbols,

Prwao(g)+randcmness of I [(y:c,F(y:c)) € LO(g)] s

where F'(y..) represents the model’s generated completion given prefix y... (We again use dynamic
programming to determine whether the output string is in Lo (G).)

We summarize our finding below and deferring details to Appendix G.

Result 10 (Figure 10). Generative language models can learn implicit CFGs very well. In par-
ticular, after pretraining, the token embeddings from the same subset O'T'; are grouped together,
indicating they use token embedding layer to encode the hidden terminal symbol information.

B.2 RESULTS 11-13: ROBUSTNESS ON CORRUPTED CFG

One may also wish to pre-train a transformer to be robust against errors and inconsistencies in
the input. For example, if the input data is a prefix with some tokens being corrupted or missing,
then one may hope the transformer to correct the errors and still complete the sentence following
the correct CFG rules. Robustness is an important property, as it reflects the generalization and
adaptation ability of the transformer to deal with real-world training data, which may not always
follow the CFG perfectly (such as having grammar errors).

To test robustness, for each input prefix z.. of length c that belongs to the CFG, we randomly select a
set of positions ¢ € [c] in this prefix — each with probability p — and flip them i.i.d. with a random
symbol in T'. Call the resulting prefix Z... Next, we feed the corrupted prefix T... to the transformer F’
and compute its generation accuracy in the uncorrupted CFG: Pr .1 (g), rl(T.c, F(2.c)) € L(G)].

14

Under review as a conference paper at ICLR 2025

rainin thod:
NT-level 0.1 random perturbation T-level &15 randomgperturbat\on NT-level 0.05 deterministic permutation
100 100 100 100 100 100 100 100 100 100'100 100 100 100 100 100 100 100 100 100'998 100 100 100 100 100 100 100 100 100|100
98.7 100 100 100 100 100 100 100 100 100[99.2 99.9 100 100 100 99.9 100 100 100 100[98.5 100 100 100 100 100 100 100 100 100|100
[SORESE 0.0 14.3 24.7 39.8 44.4 0.0 14.1 22.8 35.3 44.9 0.0 14.7 26.9 38.5 49.8 75.2 81.5 91.8
corrupted cut50 1=0.1178.

corrupted cut50 1=0.2-77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9/81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4)
IR RRCIRSSE 0.0 0.5 0.5 0.6 05 03 06 04 05 07 00 04 05 08 02 03 05 06 07 06 0.0 01 04 04 04 05 09 05 03 03
cut50 t=0.1-100 100 100 100 100 100 100 100 100 100|100 100 100 100 100 100 100 100 100 100[99.4 100 100 100 100 100 100 100 100 100
cut50 t=0.2-99.2 100 100 100 100 100 100 100 100 100[99.6 100 100 100 100 100 100 100 100 100[98.4 100 100 100 100 100 100 100 100 100
cutso =1 JEE 915 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99,Ah92,8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99 7&8344 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3/99.9
10 09 08 07 06 05 04 03 02 01 1.0 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 0.1 clean

cut0 t=0.1-
cut0 1=0.2 -

generation acc (%) for cfg3b

Figure 11: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean
or corrupted prefixes with cuts ¢ = 0 or ¢ = 50, using generation temperatures 7 = 0.1, 0.2, 1.0.

Observation. In Rows 4/5, by comparing against the last column, we see it is beneficial to include
low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality data
could be little (v = 0.1 fraction) or large (every training sentence may have grammar mistake). The
transformer also learns a “mode switch” between the “correct mode” or not; details in Section B.2.

We not only consider clean pre-training, but also some versions of robust pre-training. That is, we
randomly select v € [0, 1] fraction of the training data and perturb them before feeding into the
pre-training process. We compare three types of data perturbations.'*

* (T-level random perturbation). Each z; w.p. 0.15 we replace it with a random symbol in T.

¢ (NT-level random perturbation). Let £ = L — 1 and recall s, = (sm, 50,2y, SZ,mL_l) is the
sequence of symbols at NT-level . For each s ;, w.p. 0.10 we perturb it to a random symbol in
NTy; and then generate x = sy, according to this perturbed sequence.

e (NT-level deterministic perturbation). Let £ = L — 1 and fix a permutation 7 over symbols in
NT,. For each s¢;, w.p. 0.05 we perturb it to its next symbol in NT'z_; according to 7; and
then generate © = s, according to this perturbed sequence.

We focus on p = 0.15 with a wide range of perturbation rate 7 = 0.0,0.1,...,0.9,1.0. We present
our findings in Figure 11. The main message is:

Result 11 (Figure 11, rows 4/5). When pretrained over clean data, GPT models are not so robust
to “grammar mistakes.” It is beneficial to include corrupted or low-quality pretrain data.

Specifically, GPT models achieve only ~ 30% accuracy when pretrained over clean data x ~ L(G).
If we pretrain from perturbed data — both when v = 1.0 so all data are perturbed, and when
~ = 0.1 so we have a small fraction of perturbed data — GPT can achieve ~ 79%, 82% and 60%
robust accuracies respectively using the three types of data perturbations (rows 4/5 of Figure 11).

Next, we take a closer look. If we use temperature 7 = 1 for generation:

Result 12 (Figure 11, rows 3/6/9). Pre-training on corrupted data teaches model a mode switch.
* Given a correct prefix, it mostly completes with a correct string in the CFG (Row 9);
* Given a corrupted prefix, it always completes sentences with grammar mistakes (Row 6);

» When given no prefix, it generates corrupted strings with probability close to y (Row 3).

By comparing the generation accuracies across different 7 and -y, we observe:

Result 13 (Figure 11, rows 4/5/6). High robust accuracy is achieved when generating using low
temperatures T,'> and is not sensitive to vy — the fraction of pretrain data that is perturbed.

This should not be surprising given that the language model learned a “mode switch.” Using low
temperature encourages the model to, for each next token, pick a more probable solution. This
allows it to achieve good robust accuracy even when the model is trained totally on corrupted data
(v = 1.0). Note this is consistent with practice: when feeding a pre-trained completion model (such

14One can easily extend our experiments by considering other types of data corruption (for evaluation), and
other types of data perturbations (for training). We refrain from doing so because it is beyond the scope of this
paper.

'SRecall, when temperature 7 = 0 the generation is greedy and deterministic; when 7 = 1 it reflects the
unaltered distribution learned by the transformer; when 7 > 0 s small it encourages the transformer to output
“more probable” tokens.

15

Under review as a conference paper at ICLR 2025

as Llama or GPT-3-davinci003) with prompts of grammar mistakes, it tends to produce texts also
with (even new!) grammar mistakes when using a large temperature.

Our experiments suggest that, additional instruct fine-tuning may be necessary, if one wants the
model to always stay in the “correct mode” even for high temperatures. This is beyond the scope of
this paper.

C EXPERIMENT SETUPS

C.1 DATASET DETAILS

We construct seven synthetic CFGs of depth L = 7 with varying levels of learning difficulty. It can
be inferred that the greater the number of T/NT symbols, the more challenging it is to learn the CFG.
For this reason, to push the capabilities of language models to their limits, we primarily focus on
cfg3b, cfg3i, cfg3h, cfg3g, cfg3f, which are of sizes (1,3, 3,3, 3, 3,3) and present increasing levels
of difficulty. Detailed information about these CFGs is provided in Figure 12:

* In cfg3b, we construct the CFG such that the degree |R(a)| = 2 for every NT a. We also ensure
that in any generation rule, consecutive pairs of T/NT symbols are distinct.

The 25%, 50%, 75%, and 95% percentile string lengths are 251, 278, 308, 342 respectively.

* In cfg3i, we set |[R(a)| = 2 for every NT a. We remove the requirement for distinctness to make
the data more challenging than cfg3b.
The 25%, 50%, 75%, and 95% percentile string lengths are 276, 307, 340, 386 respectively.

* In cfg3h, we set |R(a)| € {2, 3} for every NT a to make the data more challenging than cfg3i.
The 25%, 50%, 75%, and 95% percentile string lengths are 202, 238, 270, 300 respectively.

* In cfg3g, we set |R(a)| = 3 for every NT a to make the data more challenging than cfg3h.
The 25%, 50%, 75%, and 95% percentile string lengths are 212, 258, 294, 341 respectively.

* In cfg3f, we set |R(a)| € {3,4} for every NT a to make the data more challenging than cfg3g.
The 25%, 50%, 75%, and 95% percentile string lengths are 191, 247, 302, 364 respectively.
Remark C.1. From the examples in Figure 12, it becomes evident that for grammars G of depth 7,
proving that a string x belongs to L(G) is highly non-trivial, even for a human being, and even when
the CFG rules are known. The standard method of demonstrating x € L(G) is through dynamic
programming. We further discuss what we mean by a CFG’s “difficulty” in Appendix I, and provide

additional experiments beyond the cfg3 data family.

Remark C.2. cfg3f is a dataset that sits right on the boundary of difficulty at which GPT2-small is
capable of learning, see Figure 30 later which shows that smaller GPT2 cannot learn such cfg3f (and
refer to subsequent subsections for training parameters). While it is certainly possible to consider
deeper and more complex CFGs, this would necessitate training a larger network for a longer period.
We choose not to do this as our findings are sufficiently convincing at the level of cfg3f.

Simultaneously, to illustrate that transformers can learn CFGs with larger |N'T| or |T|, we construct
datasets cfg3el and cfg3e2 respectively of sizes (1, 3,9,27,81,27,9) and (1, 3,9, 27,27,9,4). They
are too lengthy to describe so only included in the supplementary materials.

C.2 MODEL ARCHITECTURE DETAILS

We define GPT as the standard GPT2-small architecture (Radford et al., 2019), which consists of 12
layers, 12 attention heads per layer, and 768 (=12 x 64) hidden dimensions. We pre-train GPT on
the aforementioned datasets, starting from random initialization. For a baseline comparison, we also
implement DeBERTa (He et al., 2020), resizing it to match the dimensions of GPT2 — thus also
comprising 12 layers, 12 attention heads, and 768 dimensions.

Architecture size. 'We have experimented with models of varying sizes and observed that their
learning capabilities scale with the complexity of the CFGs. To ensure a fair comparison and en-
hance reproducibility, we primarily focus on models with 12 layers, 12 attention heads, and 768
dimensions. The transformers constructed in this manner consist of 86M parameters.

Modern GPTs with relative attention. Recent research (He et al., 2020; Su et al., 2021; Black
et al., 2022) has demonstrated that transformers can significantly improve performance by using

16

Under review as a conference paper at ICLR 2025

2252120 22|->191920 22]->202021 22|->1920 22|>2021
2252019 22|->212019 22]->1921 22]->202019 225201921
19]->1617 18 19]->1816 18 19]->1617 22|->201921 22|->211919 a Sample from Cfg3b
19]->171816 19]->1616 19]->1817 1915171716 22|52020
20]->171618 20]->171617 20|->1816 195181716 19]->181618 312312132132123323213132112332321233213123213132
20]->1617 20|->1818 20]->1716 19]->181617 19]->1718 313211232131221123312321232121123312313221213212
21/->1816 21]->161618 21|->171718 20|->1617 19|->1818 33131232121321 1123323121313213123221123323
21|->161817 21|>1817 21|>171817 20|->1818 20|->1616 132121313122112332312123213213231312123213232131
16]->1513 16]->1313 16]->1413 20|->161717 2051617 123213123132321321313221313232313212112331231322
16|->131514 16]->1414 16]->1513 2151616 205171618 112321312321313123132213121321233122132131 231321
175141315 17]->1515 17]>1314 21|>161618 21]->1817 313123132213213132
175151314 17]->1514 17]->151315 21|->1816 21|->1716
185151413 185141513 18151313 16141313 21|>161718 .
18]->1413 18]->1415 18]->1514 14 16]->1314 21]->1618 a Sample from Cfggl.
13[>1112 13]>1211 18|>141515 161313 16]->1515
1351211 135101211 13]>1211 17|->1413 14 16]->131513 113113121222312312113113121 12231112313121212
14]->111012 14]->1010 10 13]->1110 17]->141513 16]->1413 222312311131212113113123123123123123122313121212
1415101112 14151010 14]5101212 17]515 14 16]>1414 312312312231312231112312311131211231231112312312
15]->121110 15]->111110 14]->1010 18]->1513 17]->1514 13 231231211231312112313121212231231231231231111212
15]->111210 15]->111012 14]->1212 10 18]->1515 17]->1415 312231231231312111131131131222312231223123123123
10]->798 10]->877 15]->1012 18]->141315 1751514 123122313121111231312312113122313121111312231231
1015987 101599 15]51111 10 1351012 18]5121513 221131231212122312313123123121112113
11|>879 11]5777 105879 13]>111111 18>151313
11]>789 11]>778 10597 13]>1111 18]->1315 .
12]->897 12|-5799 10]->88 14]>1112 131112 a sample from Cfg3h
125978 12|87 115877 14]->101110 13|>121112 131231331311332131 3212232123121313121321313
71->31 712312 ul->77 141->1010 131->101211 113313333113123232131323213113131232121231332132
71123 7|>231 11799 1551011 14]->1012 302321333311231331231 1312131133131231231311
Cfgab 8132 Cfg3| 8l-11 121579 1515121010 121012 31213331131237 13312321313 1331213 1231311212312312
8]>312 8>22 12|87 15]>1211 14]>1211 13131131331133313312322132131312133312131212
91->321 91->113 12]->98 10]->888 141->101212 1231311232131331313133123232213
9]->21 9]->12 715232 10]>777 155101111
7|>123 1077 15|->111110 .
e 111895 5010 a sample from cfg3g:
8l->12 11->97 15|->121211 2312211221 12311233223313313313313312122221
Cfg3h 8|->331 11]->897 10]->899 1 13311321 123113233113233123231132
8]->13 12]->79 10]->979 331123112311111222312312233121111123122112332321
any D, we 231221111231331132212223321232133133133133113132
311122211322322113311323312313: 133133113231
;:zﬁl ﬁ}zg% 123132132211313231123331132331112223311232
Tio22 12]2797 2112312311132
8|->132 12|->98
81513 1215889 a sample from cfg3f:
8]>331 71221
cfg3g 9]->233 7|->322 13123312113123211322312312111213211 11311
9]->23 71312 3123121112131133112132121333331232212131232
9|->21 71->32 221111213322131131131131111113231233133133311331
8[->311 1211311121221111211233312331121113313333
2:*%1 3311 131111333312113211312121133333212111121
> 1322322332213322111322113; 1311121 3221
Cfgaf 9]->121 211133331121 1332211212133121331332212213221
9->33 211213331232233312
9>11

Figure 12: The context-free grammars cfg3b, cfg3i, cfg3h, cfg3g, cfg3f that we primarily use in this paper,
together with a sample string from each of them.

Observation. Although those CFGs are only of depth 7, they are capable of generating sufficiently
long and hard instances; after all, even when the CFG rules are given, the typical way to decide if a
string belongs to the CFG language = € L(G) may require dynamic programming.

attention mechanisms based on the relative position differences of tokens, as opposed to the absolute
positions used in the original GPT2 (Radford et al., 2019) or BERT (Kenton & Toutanova, 2019).
There are two main approaches to achieve this. The first is to use a “relative positional embedding
layer” on |j — i| when calculating the attention from j to ¢ (or a bucket embedding to save space).
This approach is the most effective but tends to train slower. The second approach is to apply a
rotary positional embedding (RoPE) transformation (Su et al., 2021) on the hidden states; this is
known to be slightly less effective than the relative approach, but it can be trained much faster.

‘We have implemented both approaches. We adopted the RoPE implementation from the GPT-NeoX-
20B project (along with the default parameters), but downsized it to fit the GPT2 small model. We
refer to this architecture as GPT,.;. Since we could not find a standard implementation of GPT using
relative attention, we re-implemented GPT2 using the relative attention framework from DeBERTa
(He et al., 2020). (Recall, DeBERTa is a variant of BERT that effectively utilizes relative positional
embeddings.) We refer to this architecture as GPT.

Weaker GPTs utilizing only position-based attention. For the purpose of analysis, we also
consider two significantly weaker variants of GPT, where the attention matrix exclusively depends
on the token positions, and not on the input sequences or hidden embeddings. In other words, the
attention pattern remains constant for all input sequences.

We implement GPTp.s, a variant of GPT, that restricts the attention matrix to be computed solely
using the (trainable) relative positional embedding. This can be perceived as a GPT variant that
maximizes the use of position-based attention. We also implement GPT,;, a 12-layer, 8-head, 1024-
dimension transformer, where the attention matrix is fixed; for each h € [8], the h-th head consis-
tently uses a fixed, uniform attention over the previous 2" — 1 tokens. This can be perceived as a
GPT variant that employs the simplest form of position-based attention.

Remark C.3. It should not be surprising that GPTpes or GPTn; perform much worse than other GPT
models on real-life wikibook pre-training. However, once again, we use them only for analysis

17

Under review as a conference paper at ICLR 2025

purpose in this paper, as we wish to demonstrate what is the maximum power of GPT when only
using position-based attention to learn CFGs, and what is the marginal effect when one goes beyond
position-based attention.

Features from random transformer. Finally we also consider a randomly-initialized GPT,|, and
use those random features for the purpose of predicting NT ancestors and NT ends. This serves as a
baseline, and can be viewed as the power of the so-called (finite-width) neural tangent kernel (Jacot
et al., 2018; Allen-Zhu et al., 2019). We call this GPT,,nq.

C.3 PRE-TRAINING DETAILS

For each sample 2 ~ L(G) we append it to the left with a BOS token and to the right with an
EOS token. Then, following the tradition of language modeling (LM) pre-training, we concatenate
consecutive samples and randomly cut the data to form sequences of a fixed window length 512.

As a baseline comparison, we also applied DeBERTa on a masked language modeling (MLM) task
for our datasets. We use standard MLM parameters: 15% masked probability, in which 80% chance
of using a masked token, 10% chance using the original token, and 10% chance using a random
token.

We use standard initializations from the huggingface library. For GPT pre-training, we use AdamW
with 8 = (0.9,0.98), weight decay 0.1, learning rate 0.0003, and batch size 96. We pre-train the
model for 100k iterations, with a linear learning rate decay.'® For DeBERTa, we use learning rate
0.0001 which is better and 2000 steps of learning rate linear warmup.

Throughout the experiments, for both pre-training and testing, we only use fresh samples from the
CFG datasets (thus using 4.9 billion tokens = 96 x 512 x 100k). We have also tested pre-training
with a finite training set of 100m tokens; and the conclusions of this paper stay similar. To make
this paper clean, we choose to stick to the infinite-data regime in this version of the paper, because
it enables us to make negative statements (for instance about the vanilla GPT or DeBERTa, or about
the learnability of NT ancestors / NT boundaries) without worrying about the sample size. Please
note, given that our CFG language is very large (e.g., length 300 tree of length-2/3 rules and degree
4 would have at least 4390/3 possibility), there is almost no chance that training/testing hit the same
sentence.

As for the reproducibility of our result, we did not run each pre-train experiment more than once (or
plot any confidence interval). This is because, rather than repeating our experiments identically, we
find it more interesting to use the resources to run it against different datasets and against different
parameters. We pick the best model using the perplexity score from each pre-training task. When
evaluating the generation accuracy in Figure 4, we have generated more than 20000 samples for
each case, and present the diversity pattern accordingly in Figure 13.

C.4 PREDICT NT ANCESTOR AND NT BOUNDARY

Recall from Section 4.1 that we have proposed to use a multi-head linear function to probe whether
or not the hidden states of a transformer, implicitly encodes the NT ancestor and NT boundary
information for each token position. Since this linear function can be of dimension 512 x 768 —
when having a context length 512 and hidden dimension 768 — recall in (4.2), we have proposed
to use a multi-head attention to construct such linear function for efficient learning purpose. This
significantly reduces sample complexity and makes it much easier to find the linear function.

In our implementation, we choose H = 16 heads and hidden dimension d’ = 1024 when construct-
ing this position-based attention in (4.2). We have also tried other parameters but the NT ances-
tor/boundary prediction accuracies are not very sensitive to such architecture change. We again use
AdamW with 5 = (0.9, 0.98) but this time with learning rate 0.003, weight decay 0.001, batch size
60 and train for 30k iterations.

Once again we use fresh new samples when training such linear functions. When evaluating the
accuracies on predicting the NT ancester / boundary information, we also use fresh new samples.
Recall our CFG language is sufficiently large so there is negligible chance that the model has seen

16We have slightly tuned the parameters to make pre-training go best. We noticed for training GPTs over our
CFG data, a warmup learning rate schedule is not needed.

18

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

ococococococoll

coocoocoofl

coocooooff

diversity pattern for cfg3f

cuto cut50 cut0 cut50 cuto cut50 cut0 cut50 cuto cut50

Figure 13: Comparing the generation diversity Sf{iﬁ'}gz and ST, ¢, across different learned GPT models (¢ = 0

or ¢ = 50). Rows correspond to NT symbols a and columns correspond to {5 = 2,3, ..., 7. Colors
represent the number of distinct elements in S;'it’}b, and the white numbers represent the collision
counts (if not present, meaning there are more than 5 collisions). More experiments in Figure 14,

15, and 16

Observation. We use M = 20000 samples. The diversity pattern from the pre-trained transformer
matches that of the ground-truth. For instance, from the root one can generate 2(M?) distinct
sequences to level £ = 5 using the CFG rules, and from every a € NT5 one can generate
Q(M?) to level £ = 6 (not to say to the T-level £5 = 7); this is already more than the number
of parameters in the model. Therefore, we conclude that the pre-trained model does not rely on
simply memorizing a small set of patterns to learn the CFGs.

such a string during training.

D MORE EXPERIMENTS ON GENERATION

Diversity can be estimated through entropy. Given a distribution p over strings and a sampled subset
S ={z® }ie[M] from p, for any string = € S, denote by len(z) its length s0 # = (21, . . ., Tien(x))
and denote by Tjen(z)+1 = €0s. The entropy in bits for p can be estimated by

_ﬁ > zes Zie[len(m)+1] log, Pry, [952 [ESPRR xi*ﬂ

We compare the entropy of the true CFG distribution and the transformer’s output distribution using
M = 20000 samples in Figure 4 (middle).

Diversity can also be estimated using the birthday paradox to lower bound the support size of a
distribution (Arora & Zhang, 2017). Given a distribution p over strings and a sampled subset S =
{x(i) }1 (M) from p, if every pair of samples in S are distinct, then with good probability the support

of p is of size at least Q(M?). In Appendix D.1, we conducted an experiment with M = 20000.
We performed a birthday paradox experiment from every symbol a € NT), to some other level
ly > (1, comparing that with the ground truth. For instance, we confirmed for the cfg3f dataset,
there are at least (M ?) distinct sentential forms that can be derived from a symbol in level 1 to
level 5, or from level 2 to level 6, etc. — not to mention from the root in N'T'; to the leaf at level 7.
In particular, M? is already more than the number of parameters in the model.

From both experiments, we conclude that the pre-trained model does not rely on simply memoriz-
ing a small set of patterns to learn the CFGs.

D.1 GENERATION DIVERSITY VIA BIRTHDAY PARADOX

Since “diversity” is influenced by the length of the input prefix, the length of the output, and the
CFG rules, we want to carefully define what we measure.

Given a sample pool =), ...,z ¢ L(G), for every symbol a € NT,, and some later level
ly > {; that is closer to the leaves, we wish to define a multi-set S,_,¢, that describes all possible
generations from a € NTy, to NT,, in this sample pool. Formally,

19

Under review as a conference paper at ICLR 2025

Definition D.1. For x € L(G) and £ € [L], we use s4(i..J) to denote the sequence of NT ancestor

symbols at level { € [L] from position i to j with distinct ancestor indices:"’

850(1--5) = (50(K)) ke (s,i41,... 5} 5. pe(k)spe(k+1)

Definition D.2. For symbol a € N'Ty, and some layer 5 € {{1,01 + 1,. .., L}, define multi-sei's
Sfl—%z (Z‘) = H:sfz (Zj) ’ V’L,j,Z < .7 such that pél (7' - 1) 7é pf] (Z) = p@] (.7) 7é p@] (.7 + 1) ANa = 50, (Z):ﬂ

and we define the multi-set union Sg_yp, = Uie[M] Sae, (x(i)), which is the multiset of all sen-
tential forms that can be derived from NT symbol a to depth (.

(Above, when z ~ L(G) is generated from the ground-truth CFG, then the ancestor indices and
symbols p, s are defined in Section 2. If x € L(G) is an output from the transformer ', then we let
p, s be computed using dynamic programming, breaking ties lexicographically.)

We use S to denote the ground truth S, ¢, when z"), ... () are i.i.d. sampled from the

real distribution L(G), and denote by

- (1) (i)
Saty = Uie[M']andxf§>,F(z§§>)eL(g) Sasty (w26, F(w:0'))

that from the transformer F'. For a fair comparison, for each F' and p, we pick an M’ > M such that
M =|{ie[M]| x:(;),F(x:(;;)) € L(G)}| so that F is capable of generating exactly M sentences
that nearly-perfectly satisfy the CFG rules."

Intuitively, for 2’s generated by the transformer model, the larger the number of distinct sequences
in S, is, the more diverse the set of NTs at level {5 (or Ts if £, = L) the model can generate

starting from NT a. Moreover, in the event that Sf”,, has only distinct sequences (so collision
count = 0), then we know that the generation from a — ¢5, with good probability, should include at

least (M ?) possibilities using a birthday paradox argument. 2

For such reason, it can be beneficial if we compare the number of distinct sequences and the collision

counts between S, and S . Note we consider all £, > ¢, instead of only /; = L, because

we want to better capture model’s diversity at all CFG levels.”! We present our findings in Figure 13
with M = 20000 samples for the cfg3f dataset.

In Figure 14 we present that for cfg3b, cfg3i, cfg3h, cfg3g, in Figure 15 for cfg3el, and in Figure 16
for cfg3e2. We note that not only for hard, ambiguous datasets, also for those less ambiguous
(cfg3el, cfg3e2) datasets, language models are capable of generating very diverse outputs.

"With the understanding that p¢(0) = pe(len(z) + 1) = oco.

" Throughout this paper, we use [-] to denote multi-sets that allow multiplicity, such as [1,2,2, 3]. This
allows us to conveniently talk about its collision count, number of distinct elements, and set average.

Please note M and M’ are roughly the same, given

%A CFG of depth L, even with constant degree and constant size, can generate 927" distinct sequences.

2! A model might generate a same N'T symbol sequence sz, _1, and then generate different Ts randomly from
each NT. In this way, the model still generates strings 2’s with large diversity, but SI',; | (x) is small. If
sk, ¢, 18 large for every £2 and a, then the generation from the model is truely diverse at any level of the CFG.

20

Under review as a conference paper at ICLR 2025

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
2 0 0 0
0 0 0 0 104
2 0 0 0
5} 0 0 0
1S3
e 0 103
c
1™
[]
£ 102
]
Q
2
.ﬁ 101
1Y
[
2
T 10°
cut0 cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50
(a) cfg3b dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
-
2 10
N
[5]
e
8 0
c
-
[]
- 10?
]
Q
>
el
‘» 10t
Y
[
2
T 10°
cut0 cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50
(b) cfg3i dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
< 00
[u] 0 104
> 0
-
5] 0
1S3
2 103
c
-
K]
b= 10?
]
Qo
2
.E 101
1Y
(]
2
T 10°
cuto cut50 cuto cut50 cut0 cut50 cut0 cut50 cut0 cut50
(c) cfg3h dataset
truth GPT GPT_rel GPT_rot GPT_pos GPT_uni
Y z .
0 10
2 0
5] 0
= 3
K] 2 103
c
F
]
E 102
©
o
2
] 10t
Y
]
2
° 100
cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50
(d) cfg3g dataset
Figure 14: Comparing the generation diversity S;’”j'}Z and ST, ¢, across different learned GPT models (and for
¢ = 0 or ¢ = 50). Rows correspond to NT symbols a and columns correspond to > = 2,3,...,7.

Colors represent the number of distinct elements in S;’”j'}y and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions).

21

Under review as a conference paper at ICLR 2025

o
S

| |
cooco Boocococcool
o o o
E2

truth GPT GPT_rel GPT_rot GPT_pos
0 3 100
00
10

~ooco lBmcocoo

00
0
0
0
o
0
0
0
il

cooo lBloococoo

] | | | | |
- I I I I I | 10*
° 1) | |) |
m
o] | | | | |
T
s] | | | | | h
:] | I I | |
£] | | | | |
]] | | | | |
b]] 1 1] | 10?
4] | | | | |
2] | 1 1 | |
2] | | | | |
&] | | | | |
4 10!
]
2
T
10°

cutd cut50 cutd cut50 cutd cut50 cutd cut50 cutd cut50

Figure 15: Comparing the generation diversity 53'1322 and SI", ¢, across different learned GPT models (and for
¢ = 0 or ¢ = 50). Rows correspond to NT symbols a and columns correspond to #2 = 2,3,...,7.
Colors represent the number of distinct elements in f{i}%, and the white numbers represent the
collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3el

dataset.

22

Under review as a conference paper at ICLR 2025

truth GPT GPT _rel GPT_rot GPT_pos GPT_uni
000 200

10 00 20 10
00 00 00 10
00 00 00 00

]
cow
ocoo

=)
N
.
=)
=)

0
(]
0
0
0
0
0
0

corooooo
cooorooo
coooN oo o
coolorooo
oo ol@oooo
oo olooooo
coo®oor oo
oo ooor oo

N

0]]]]] | 10%
u |] | | B | | |] | | || | | |] | | ||

B]] i i] |

5]

[T

[

-

9 2
bl 10
[}

Qo

>

- 10!
]

1Y

(]

2

EC] 100

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

Figure 16: Comparing the generation diversity 82'13'1}2 and SI", ¢, across different learned GPT models (and for
¢ = 0 or ¢ = 50). Rows correspond to NT symbols a and columns correspond to #2 = 2,3,...,7.
Colors represent the number of distinct elements in Sf{if'l}z, and the white numbers represent the
collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3e2

dataset.

23

Under review as a conference paper at ICLR 2025

D.2 MARGINAL DISTRIBUTION COMPARISON

In order to effectively learn a CFG, it is also important to match the distribution of generating
probabilities. While measuring this can be challenging, we have conducted at least a simple test on
the marginal distributions p(a, i), which represent the probability of symbol a € N'T, appearing at
position ¢ (i.e., the probability that 5,(¢) = a). We observe a strong alignment between the generated

probabilities and the ground-truth distribution. See Figure 17.

il
[|l. i,
T

| l | | | | | |
1501

200

2s0-JI1

0 a0 w0 o arso

(c) cfg3i dataset; marginal distribution

I

(e) cfg3h dataset; marglnal dlstrlbutlon

| énhh I ;hﬂ i éIJ)[H W

(g) cfg3g dataset; marginal distribution

absolute position

1
P
P
Wi
(
|
|
|
l

absolute position

absolute position

aaaaaaa

absolute position

ppppp

INROIRRHIN

(1) cfg3f dataset, margmal d1str1but10n

ppppp

_absolute posmon

Figure 17: Marginal distribution p(a, ¢) difference between a trained model and the ground-truth, for an NT/T
symbol a (column) at position ¢ (row). Figures on the left compare the marginal distribution of the
ground-truth against those generated from 5 models x 2 cut positions (¢ = 0/c = 50). Figures
on the right showcase the marginal distribution difference between them and the ground-truth. It is
noticeable from the figures that GPT did not learn cfg3g and cfg3f well. This is consistent with the

generation accuracies in Figure 4.

(((((

(b) cfg3b dataset
truth

(d) cfg3|
truth

ssssss

absolute position

250~

uuuuu

®) cfg3h dataset
truth

bsolute positi

uuuuu

(h) cfg3g dataset
truth

cuso

(j) cfg3f dataset;
truth

24

uuuuuuuuuuuuuu

marginal distribution - ground

; marginal dlstrlbutlon - ground

uuuuuuuuuuuuuuuuuu

margmal d1str1but10n - ground

aso 0 s a0 o

marginal distribution - ground

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENTS ON NT ANCESTOR AND NT BOUNDARY
PREDICTIONS

E.1 NT ANCESTOR AND NT BOUNDARY PREDICTIONS

Earlier, as confirmed in Figure 5, we established that the hidden states (of the final transformer layer)
have implicitly encoded the NT ancestor symbols s4(i) for each CFG level ¢ and token position
1 using a linear transformation. In Figure 18(a), we also demonstrated that the same conclusion
applies to the NT-end boundary information b,(7). More importantly, for b,(i), we showed that this
information is stored locally, very close to position ¢ (such as at ¢ &= 1). Detailed information can be
found in Figure 18.

Furthermore, as recalled in Figure 9, we confirmed that at any NT boundary where b,(i) = 1, the
transformer has also locally encoded clear information about the NT ancestor symbol s,(7), either
exactly at ¢ or at i+ 1. To be precise, this is a conditional statement — given that it is an NT boundary,
NT ancestors can be predicted. Therefore, in principle, one must also verify that the prediction task
for the NT boundary is successful to begin with. Such missing experiments are, in fact, included in
Figure 18(b) and Figure 18(c).

25

Under review as a conference paper at ICLR 2025

GPT
100 100 100 100 100

GPT_rel

100 100 100 100 100

GPT_rot

100 100 100 100 100

GPT_pos

100 100 100 100 100

GPT_uni

100 100 100 100 100

baseline (GPT_rand)

96.5 98.5 99.6

. 99.799.899.099.599.9

99.7 99.8 99.1 99.5 99.9

99.7 99.8 99.1 99.5 99.9;

99.8 99.8 99.1 99.6 99.9,

99.8 99.8 99.1 99.6 99.9

87.5

99.7 99.399.5 99.8 99.9

99.7 99.4 99.5 99.8 99.9

99.7 99.4 99.5 99.8 99.9

99.7 99.4 99.6 99.9 100

99.7 99.4 99.6 99.9 100

88.1

o 99.898.098.2 99.2 99.7,

99.8 98.3 98.5 99.4 99.8

99.8 98.2 98.5 99.4 99.8

99.7 98.3 98.6 99.4 99.8,

99.8 98.3 98.6 99.4 99.8

92.1

100 98.398.8 99.3 99.7|

100 98.8 99.0 99.5 99.8|

100 98.8 99.1 99.5 99.8;

100 98.9 99.2 99.6 99.8

100 98.8 99.1 99.5 99.8|

91.7

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

oo 99.599.9 100 100 100

99.6 100 100 100 100

99.6 100 100 100 100

99.7 100 100 100 100

99.7 100 100 100 100

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

predict NT-end boundary (%)

(a) Predicting NT boundaries: the column N7} for £ = 2,3, 4,5, 6 represents the accuracy of predicting
b, using the multi-head linear probing function described in (4.2).

@ GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)
aéA C@gb 95.7 100 99.6 99.599.9/95.8 100 99.6 99.5 99.9/95.8 100 99.6 99.5 99.9/95.7 100 99.6 99.5 99.9/95.8 100 99.6 99.5 99.9/96.5 98.5 99.6|
.g g Cfgg/_ 96.596.9 97.7 98.5 99.4/96.6 97.1 97.8 98.5 99.4/96.6 97.0 97.8 98.5 99.4/96.5 97.0 97.7 98.5 99.4/96.6 97.1 97.8 98.5 99.4/87.5

g é C@Jb 91.395.097.899.199.6/91.595.2 97.9 99.1 99.6/91.5 95.2 97.9 99.1 99.6/91.5 95.2 97.9 99.1 99.6/91.5 95.2 97.9 99.1 99.6/88.1 99.
E‘_B %39 86.792.6 6.992.8 6.992.8 6.992.8 6.992.8 92.1

'2 §, C{o‘?r 89.192.7 96.5 9.4 93.2 96.7 9.4 93.296.7 9.393.296.6 9.393.296.6 91.7 99..
Eg 0{-93@1 98.299.699.999.9 99.8/98.2 99.6 99.9 99.9 99.8/98.2 99.6 99.9 99.9 99.8/98.2 99.6 99.9 99.9 99.8/98.2 99.6 99.9 99.9 99.8|

§~ Cfggee 96.099.099.9 100 100{96.199.099.9 100 100{96.099.099.9 100 100{96.099.099.9 100 100{96.199.099.9 100 100

‘n'_ NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

(b) Predicting NT boundaries with diagonal masking: the column N7} for £ = 2,3, 4,5, 6 represents the
accuracy of predicting b using (4.2) but setting w,. ;5 = 0 for ¢ # k.

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

99.9 100 99.6 99.6 99.9/99.9 100 99.6 99.6 99.999.9 100 99.6 99.6 99.9/99.9 100 99.6 99.6 99.9/99.9 100 99.6 99.6 99.9/96.5 98.599.6

793, 97.798.298.398.999.6/97.8 98.2 98.4 98.9 99.6/97.7 98.2 98.4 98.9 99.6/97.8 98.2 98.4 98.9 99.6/97.8 98.2 98.4 98.9 99.6/87.5

98.097.298.7 99.4 99.8/98.1 97.3 98.8 99.4 99.8/98.1 97.3 98.8 99.4 99.8|98.1 97.4 98.7 99.4 99.8/98.1 97.4 98.7 99.4 99.888.1

96.7 96.3 96.5 98.7 99.5/96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.8 98.8 99.6/96.7 96.5 96.7 98.8 99.6|92A1

98.395.497.498.7 99.6/98.4 95.7 97.6 98.9 99.6/98.4 95.7 97.6 98.9 99.6/98.4 95.7 97.6 98.8 99.6/98.4 95.7 97.6 98.8 99.6|91.7

7 99.9 100 100 100 99.9/99.9 100 100 100 99.9/99.9 100 100 100 99.9/99.9 100 100 100 99.9/99.9 100 100 100 99.9;

(tridiagonal masking)

> 98.799.7 100 100 100/98.899.7 100 100 100/98.899.7 100 100 100/98.899.7 100 100 100/98.999.7 100 100 100

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

predict NT-end boundary (%)

(c) Predicting NT boundaries with tridiagonal masking: the column N7y for £ = 2,3,4,5, 6 represents
the accuracy of predicting b, using (4.2) but setting w. ;. = 0 for |7 — k| > 1.

Figure 18: After pre-training, the NT-end boundary information — i.e., b¢(4) for position ¢ and NT level £ —
is largely stored locally near the hidden state at position ¢ &= 1, up to a linear transformation. This
can be compared with the prediction accuracy of the NT ancestor s¢(¢) in Figure 5.

Observation. This implies, the transformer actually knows, with a very good accuracy, that “posi-
tion 7 is already the end of NT on level £”, by just reading all the texts until this position (possibly
peeking one more to its right).

Remark 1. It may be mathematically necessary to peek more than 1 tokens to decide if a position ¢
is at an NT boundary, due to CFG’s ambiguity. But, in most cases, that can be decided quite early.
Remark 2. Predicting NT boundary is a very biased binary classification task. For levels ¢ that are
close to the CFG root, most symbols are not at NT boundary for that level ¢ (see Figure 2). For such
reason, in the heatmap color of the figures above, we have normalized the columns with respect to
NT2..NT6 differently, to reflect this bias.

26

Under review as a conference paper at ICLR 2025

1404
E.2 NT PREDICTIONS ACROSS TRANSFORMER’S LAYERS
1405
1406 As one may image, the NT ancestor and boundary information for smaller CFG levels ¢ (i.e., closer
1407 to CFG root) are only learned at those deeper transformer layers . In Figure 19, we present this
1405 finding by calculating the linear encoding accuracies with respect to all the 12 transformer layers in
GPT and GPT,¢. We confirm that generative models discover such information hierarchically.
1409
1410
141 1 GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i
w Ay, 84.4 84.4 84.3
P
141 2 % /SyJ 98.9 94.2 97.3 87.7 79.5 96.9 85.3 84.8
1413 o s 990 99.8 97.5 88.7 81.1 97.8 90.6 83.0 84.8
141 4 § /6_1,3 99.1 100 87.2 97.7 90.5 83.8 98.5 95.5 91.9 81.9 80.7/|84.8
141 5 [/qu 99.4 100 93.6 98.1 92.4 86.9 79.7 99.1 98.3 97.0 92.0 92.7/84.7
g /eJ’S 99.9 82.7 100 96.3 81.6 98.3 93.9 89.2 82.1 79.4/99.3 99.0 98.5 95.6 96.0/84.7
1416 5 %y 100 87.6 100 97.4 89.6 98.6 95.5 91.9 85.8 82.8(99.5 99.4 99.3 97.7 97.8/84.7
141 7 E /GJ,) 100 92.2 100 97.7 93.0 82.3 98.8 97.1 95.2 90.8 89.5/99.5 99.6 99.5 98.7 98.9/84.7
141 8 g /s-"@ 100 95.3 100 97.7 94.2 88.0 83.2 99.2 98.5 97.7 94.6 94.8/99.6 99.6 99.6 99.1 99.6/84.6
E /61,9 100 97.1 87.3 100 97.7 94.8 91.6 90.3 99.4 99.3 99.1 97.4 97.8/99.6 99.7 99.6 99.2 99.8/84.5
141 9 i‘-‘) /eJ'Jo 100 97.7 92.4 100 97.7 95.0 92.8 93.3 99.6 99.6 99.5 98.9 99.3/99.6 99.7 99.6 99.3 99.8/84.6
1420 § /‘3.1'11 100 97.8 94.1 86.7 82.3| 100 97.7 94.9 92.9 93.7 99.6 99.7 99.6 99.2 99.7/99.6 99.7 99.6 99.2 99.8/84.7
1421 ‘9- /‘71’1? 100 97.6 94.3 88.4 85.9' 100 97.5 94.8 92.9 93.5 99.6 99.7 99.6 99.2 99.7/99.6 99.7 99.6 99.2 99.7/84.6
NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS5 NT4 NT3 NT2
1422
1423 (a) Predict NT ancestors, comparing against the GPT,,nq baseline
1424
1 425 GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i
1426 S, 39,
1427 w 4
1428 g /ek?
.,
1429 _E foy s 99.5 99.6 98.7 99.1 99.7
1430 S A 99.1 98.9 97.9 99.6 99.7 98.9 99.3 99.8
1431 S %, 99.3 99.1 98.2 98.8 99.7 99.8 99.0 99.4 99.8
.g /éye 100 98.2 97.6 100 98.9 99.0 99.4 99.8 99.4 99.4 98.5 99.0 99.6{/99.7 99.8 99.0 99.5 99.9
1432 E /a‘,,g 100 98.4 98.4 100 98.9 99.1 99.5 99.8 99.5 99.6 98.8 99.2 99.8/99.7 99.8 99.1 99.6 99.9
1433 ; /QJQ 100 98.9 99.1 99.5 99.8| 99.6 99.7 99.0 99.4 99.9/99.8 99.8 99.1 99.6 99.9
1434 é /QJQJ 100 98.5 98.9 99.3 99.7|100 98.9 99.1 99.5 99.8, 99.7 99.8 99.1 99.5 99.9/99.7 99.8 99.1 99.6 99.9
E. /GJQQ 100 98.3 98.8 99.3 99.7' 100 98.8 99.0 99.5 99.8| 99.7 99.8 99.0 99.5 99.9/99.7 99.8 99.1 99.5 99.9
1435 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2
1436
1437 (b) Predict NT boundaries, comparing against the GPT,,nq baseline
1438 Figure 19: Generative models discover NT ancestors and NT boundaries hierarchically.
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

27

Under review as a conference paper at ICLR 2025

E.3 NT PREDICTIONS ACROSS TRAINING EPOCHS

Moreover, one may conjecture that the NT ancestor and NT boundary information is learned grad-
ually as the number of training steps increase. We have confirmed this in Figure 20. We emphasize
that this does not imply layer-wise training is applicable in learning deep CFGs. It is crucial to
train all the layers together, as the training process of deeper transformer layers may help back-
ward correct the features learned in the lower layers, through a process called “backward feature

correction” (Allen-Zhu & Li, 2023).

predict NT (GPT)

predict NTend (GPT)

s 100
20 b 100 98.0

5 b 100 98.2 97.9

100 98.4 98.3
100 98.4 98.4
100 98.4 98.5

100 98.4 98.8

100

predict NT (GPT_rel)

91.7

79.7

predict NTend (GPT _rel)

98.6

98.8

99.1

99.6

100

92.7

85.3

98.6

98.8

99.3

99.7

100

97.1

93.2

87.5

83.4

98.7

98.9

99.4

99.7

100

97.2

93.6

88.9

86.0

98.7

98.9

99.4

99.8

100

97.2

93.7

89.7

87.8

98.7

98.9

99.4

99.8

100

97.4

94.1

90.6

89.3

98.7

98.9

99.4

99.8

100 98.5 98.8 99.5

100

97.3

94.0

90.8

90.1

98.7

98.9

99.4

99.8

100 98.4 98.6 98.9 99.5

100

97.4

94.0

91.1

91.0

98.7

98.9

99.4

99.8

Sp 100 97.2 b 100 98.5 98.6 98.9 99.6

100

97.4

94.1

91.3

91.4

98.7

98.9

99.4

99.8

100 97.3 100 98.4 98.7 99.0 99.6

100

97.4

94.2

91.5

91.7

98.7

99.0

99.5

99.8

6p 100 97.2 91.4 100 98.4 98.7 99.0 99.6

100

97.3

94.3

91.6

91.8

98.8

99.0

99.5

99.8

65 100 97.3 91.8 100 98.4 98.7 99.0 99.6

100

97.4

94.3

91.7

92.0

98.7

99.0

99.5

99.8

’p 100 97.4 92.1 100 98.4 98.7 99.0 99.6

100

97.5

94.4

91.7

92.3

98.8

99.0

99.5

99.8

25 100 97.4 92.4 100 98.4 98.7 99.1 99.6

100

97.4

94.3

91.8

92.5

98.8

99.0

99.5

99.8

8 100 97.5 92.7 100 98.4 98.7 99.1 99.6

100

97.5

94.4

91.9

92.5

98.8

99.0

99.5

99.8

&5 100 97.3 92.7 100 98.3 98.7 99.1 99.6

100

97.5

94.5

92.1

92.5

98.8

99.0

99.5

99.8

9 100 97.5 92.9 100 98.4 98.7 99.1 99.7

100

97.5

94.5

92.1

92.5

98.8

99.0

99.5

99.8

95 100 97.5 93.0 100 98.4 98.7 99.1 99.7

100

97.4

94.4

92.2

93.0

98.7

99.0

99.5

99.8

100 100 97.5 93.3 100 98.4 98.7 99.2 99.7

100

97.5

94.5

92.3

93.0

98.8

99.0

99.5

99.8

)s 100 97.5 93.3 100 98.4 98.8 99.2 99.7

100

97.5

94.5

92.3

93.0

98.8

99.0

99.5

99.8

110 100 97.5 93.3 85.0 81.6| 100 98.3 98.7 99.2 99.7

100

97.5

94.5

92.2

92.9

98.7

99.0

99.5

99.8

115 100 97.5 93.4 85.3 81.5| 100 98.4 98.8 99.2 99.7

100

97.4

94.4

92.2

92.8

98.8

99.0

99.5

99.8

120 100 97.6 93.5 85.6 82.4| 100 98.4 98.8 99.2 99.7

100

97.5

94.5

92.2

92.9

98.8

99.0

99.5

99.8

125 100 97.6 93.8 86.2 82.8| 100 98.4 98.8 99.2 99.7

100

97.6

94.8

92.6

93.3

98.8

99.0

99.5

99.8

130 100 97.5 93.7 86.4 83.1| 100 98.4 98.7 99.2 99.7

100

97.4

94.6

92.6

93.1

98.7

99.0

99.5

99.8

135 100 97.6 93.8 86.7 83.3| 100 98.4 98.8 99.2 99.7

100

97.5

94.7

92.4

93.1

98.7

99.0

99.5

99.8

140 100 97.5 93.6 86.5 83.6| 100 98.3 98.8 99.2 99.7

100

97.5

94.6

92.6

93.3

98.7

99.0

99.5

99.8

J45 100 97.6 93.8 86.7 83.5|100 98.4 98.8 99.2 99.7

100

97.5

94.7

92.9

93.4

98.7

99.0

99.5

99.8

150 100 97.6 93.8 87.0 83.8| 100 98.4 98.8 99.2 99.7

100

97.5

94.7

92.7

93.4

98.8

99.0

99.5

99.8

155 100 97.6 93.9 87.1 84.7| 100 98.4 98.8 99.2 99.7

100

0785

94.6

92.5

93.0

98.8

99.0

99.5

99.8

predict NT ancestor/boundary (%) across training epochs
~
Q

16‘0 100 97.6 94.0 87.1 84.5|100 98.4 98.8 99.3 99.7

100

97.6

94.7

92.5

93.0

98.8

99.0

99.5

99.8

16‘5 100 97.6 94.0 87.8 85.0| 100 98.4 98.8 99.3 99.7

100

O/785)

94.6

92.7

93.3

98.8

99.0

99.5

99.8

1)0 100 97.5 94.1 87.8 85.3| 100 98.4 98.8 99.3 99.7

100

97.4

94.7

92.8

93.5

98.7

99.0

99.5

99.8

175 100 97.6 94.1 87.9 85.4| 100 98.4 98.8 99.3 99.7

100

78S

94.7

92.6

93.2

98.8

99.0

99.5

99.8

1190 100 97.6 94.1 87.9 85.3| 100 98.4 98.8 99.3 99.7

100

97.6

94.7

92.5

93.2

98.8

99.0

99.5

99.8

1195 100 97.6 94.2 88.1 85.5|100 98.3 98.8 99.3 99.7

100

97.5

94.7

92.7

93.4

98.8

99.0

99.5

99.8

190 100 97.6 94.3 88.2 85.6| 100 98.4 98.8 99.3 99.7

100

97.5

94.8

92.8

93.6

98.8

99.0

99.5

99.8

195 100 97.6 94.2 88.3 86.0| 100 98.4 98.8 99.3 99.7

100

97.5

94.8

92.8

93.5

98.8

99.0

99.5

99.8

200 100 97.7 94.2 88.2 85.7| 100 98.4 98.8 99.3 99.7

100

97.5

94.7

92.7

93.3

98.8

99.0

99.5

99.8

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

Figure 20: Generative models discover NT ancestors and NT boundaries gradually across training epochs (here
1 epoch equals 500 training steps). CFG levels closer to the leaves are learned faster, and their accu-
racies continue to increase as deeper levels are being learned, following a principle called “backward

NT6

NT5

NT4

NT3

NT2

NT5

feature correction” in deep hierarchical learning (Allen-Zhu & Li, 2023).

28

NT4

NT3

NT2

Under review as a conference paper at ICLR 2025

F MORE EXPERIMENTS ON ATTENTION PATTERNS

F.1 POSITION-BASED ATTENTION PATTERN

Recall from Section 5.1 that we asserted the transformer’s attention weights are primarily influenced
by the relative distance of the tokens. This remains true even when trained on the CFG data with
absolute positional embedding. We omitted the details in the main body due to space constraints,
but we will provide them now.

Formally, let A; j, j_;(z) for j > ¢ represent the attention weight for positions j — i at layer [
and head h of the transformer, on input sequence x. For each layer [, head h, and distance p > 0,
we compute the average of the partial sum), ., ., A; . j— () over all data 2 and pairs i, j with
j —1i = p. We observe a strong correlation between the attention pattern and the relative distance
p = j — 4. The attention pattern is also multi-scale, with some attention heads focusing on shorter
distances and others on longer ones. We plot this cumulative sum for different [, h, p in Figure 21 in
both GPT/GPT, for various datasets.

29

Under review as a conference paper at ICLR 2025

distance p = |j-i| distance p = |j-i
110 T30 10 170 o0 210 230 250 270 290 110 D30 350" 170 190 210 230 250 270 290
£ £
£ £
08
g 8 08
& &
15 23
T 13
Sa HE
o) 0.6 o 0.6
] 28
g5 gy
L] L
3
E; 0.4 EE 0.4
2
§ §
2% aE
(14 15
Y 02 59 02
B* £0
I3 W
]]
H H
(a) GPT on cfg3b (b) GPT,e on cfg3b
distance p = |j-i| distance p = |j-i|
110 U300 10 Moo 210 230 1300”10 Mo 210
£ n e %
I /s o P
£ A 08 £ W 08
8 4 £,
28 4 25 %
p 4
53 4 55 o
-1 B2 4
€5 % 06 2€ s 06
20 4, £5 2
5 . RE
w3 04 o0 U 04
53, Be
B g5 o,
26 A ‘EE oo
58 %, 02 S5 %0 02
£, 25,
G G Yy
o 4 2 5
2 Ay, a
(c) GPT on cfg3i (d) GPT,e on cfg3i
distance p = |j-i| distance p = j-i
1500 10 Thoo 210 15050 g
£ £
4
£ 08 g5 % 08
s 8 BT /.
a'm ag &
cT € /o
M H
£3 06 EE 2 06
S P
£ £ 0
5 g
33 o 32 os
o 85 G,
8k 8E
28 85 Gy
E 28,
A 02 £64, 02
2 254
£ 284,
8 RN
g 2
(f) GPT,el on cfg3h
distance p
50 50" 170 heo 210
£ £
9 ° ‘ay
£s 08 %% /:e 08
% ag W
T c E
) 0
27 o 28 4 0
£% £5 %
3] LN
k] 53 4,
@0 0.4 Q= 4 0.4
@ 0T Ay
sk 88,
26 5 2
e R
g8 02 S W 0.2
2 E5 4,
i) @ g
] -
H 2
(h) GPT, on cfg3g
distance p
)
£ £ ™
H 5
£, o8 £s »
2% 8% 4 08
£T Ew %
Sw 5
£8 06 28 s 06
g 5,
£ £ Ve
Sg 28 W
38 R L 0a
I} I s
S ng Ve
206 Qo fy
€v &G 4
K] 0.2 S Y 02
L 284,
g P
a R

(i) GPT on cfg3f (j) GPT,¢ on cfg3f

Figure 21: Position-based attention pattern. The 12 rows in each layer represent 12 heads. Observations. The
attention pattern is multi-scale: different heads or layers have different dependencies on p.

30

Under review as a conference paper at ICLR 2025

F.2 FROM ANYWHERE TO NT-ENDS

Recall from Figure 7(a), we showed that after removing the position-bias By p j_i(z) =

A ioi(z) — Zl,}L7j_i, the attention weights have a very strong bias towards fokens i that are
at NT ends. In Figure 22 we complement this experiment with more datasets.

headl head2 head3 headd headS head6 head7 head8 head9headl0head1l head12 headl head2 head3 headd headS head6 head7 head8 head9headl0head1lhead12

c8 . c® :
S& - S%
=T S 5 2
S a i s - :
[} o 2 0.05 [:
Mmoo, i - i [oo
T s - O 3
B, i 5 :
—~ 0 TR :
N, i N = i 0.01
Ho ™ + 9
S0 M 50 :
ISR 4 S = - oo
e [>
el B SE :
ol i ZE :
Tn'/% 3 TO a
(U] e 0.01 T 3
XN 2 > 4
58]] :
Y= 2, H H

0.00

21012-2101221012-2101221012-2101221012-21012.21012-21012:2101221012 21012-2101221012-2101221012-2101221012-21012.21012-21012:21012:21012

(a) cfg3b dataset (b) cfg3i dataset

© ©
58~ 58
e® . 2w
sT ™ £3
O % oD 0.01
4‘: g %y, J‘: @

.

0 y= 0.03 [} \E’ : 0.01
— 0 —~ 9 3
N N H
HO ™ H 9 1 &
13, 13
) w50
53 - 53
£ c&
2., o 28
1o o
c c
<2 <2

B
%,
2 0.00

21012-2101221012-2101221012-21012-21012-21012-21012-21012-21012:21012 21012-2101221012-2101221012-2101221012-21012.21012-21012-21012-21012

(c) cfg3h dataset (d) cfg3g dataset

headl head2 head3 headd headS head6 head7 head8 headdheadl0 headllhead12

‘a,

8
- 0
2
£3 -
- 4
gm /H 004
O 2
[T
2% .
N =
M g 0.03
~ > ay
S ° W
5@ p 0.02
E|— 4,
=a
T0 2 0.01
p
2y
T y=
0.00

21012-2101221012-2201221012-21012-21012-21012-21012-21012-2101 221012

(e) cfg3f dataset

Figure 22: Attention weights B; 5 ;—:(x) averaged over data = and pairs 4, j such that ¢ + ¢ is at the NT-end
in level £ of the CFG. In each cell, the four rows correspond to levels £ = 2, 3,4, 5, and the five
columns represent 6 = —2, —1,0,+1, 42.

Observation. Attention is largest when § = 0 and drops rapidly to the surrounding tokens of 4.

F.3 FRrROM NT-ENDS TO NT-ENDS

As mentioned in Section 5.2 and Figure 7(b), not only do tokens generally attend more to NT-ends,
but among those attentions, NT-ends are also more likely to attend to NT-ends. We include this full
experiment in Figure 23 for every different level ¢ = 2, 3,4, 5, between any two pairs j — 4 that are
both at NT-ends for level /, for the cfg3 datasets.

31

Under review as a conference paper at ICLR 2025

W h om0 mi e WL W3 ha s hs w7 he h Mo n M2

s
£
1
L]
2
™
2
1
g
$
3

+ 1)-(NTend, * 1) attention

c
S
S
g
g
£
®
H
g
8
e
£
I
W
3
8
g
2

(NTend:;

(d) cfg3batlevel / =5

£
5
3
v
3
2
&

(NTend, & 1)>(NTend, * 1) attention
(NTends + 1)-(NTend, + 1) attention
(NTends = 1)»(NTends + 1) attention

(g) cfg3iatlevel £ = 4

er cfg3h data
1) attention
3h data

+1)-(NTends + 1) attention

+1)-(NTends
GPTrel over

(NTend, + 1)-(NTend, + 1) attention
(NTend, + 1)»(NTend, + 1) attention

(NTend:

ooz

oone

(NTend, + 1)-(NTend, + 1) attention
for GPTrel ove

o000

(q) cfg3f atlevel £ =2 (r) cfg3f atlevel £ = 3 (s) cfg3f atlevel ¢ =4 (t) cfg3f atlevel £ =5

Figure 23: Attention pattern B; » ;—;(x) averaged over data x and pairs ¢, j such that ¢ + §; and j + d2
are at the NT-end boundaries in level ¢ of the CFG. In each block, the three rows correspond to
01 = —1,0,+1 and the three columns correspond to 2 = —1,0, +1.

Observation. Different transformer layer/head may be in charge of attending NT-ends at different
levels £. Also, it is noticeable that the attention value drops rapidly from ; = +1 to §; = 0, but
less so from d2 = £1 to 62 = 0. This should not be surprising, as it may still be ambiguous to
decide if position j is at NT-end until one reads few more tokens (see discussions under Figure 18).

F.4 FROM NT-ENDS TO ADJACENT NT-ENDS

In Figure 7(c) we have showcased that B; 5, j;(x) has a strong bias towards token pairs i, j that
are “adjacent” NT-ends. We have defined what “adjacency” means in Section 5.2 and introduced a

notion Bf’}f?i‘f} - to capture By p, j_y; (x) averaged over samples x and all token pairs i, j such that,

they are at deepest NT-ends on levels £, ¢’ respectively (in symbols, bf(i) = £ A b%(j) = ¢), and of

32

Under review as a conference paper at ICLR 2025

distance r based on the ancestor indices at level £ (in symbols, py(5) — pe(i) = 7).

Previously, we have only presented by Figure 7(c) for a single dataset, and averaged over all the
transformer layers. In the full experiment Figure 24 we show that for more datasets, and Figure 25
we show that for individual layers.

Figure 24:

r=4

r=8

1l
-
[N)

r=16

for GPTrel over cfg3h data

NTend;—»NTend, attention pattern
for GPTrel over cfg3i data
NTend;—»NTend, attention pattern

(a) cfg3i (b) cfg3h
S AP FoF oG o AT AT F T T T N N N W NN W

r—o -

r=12 r=12

r=16 r=16

NTend,;—»NTend, attention pattern
for GPTrel over cfg3g data
NTend,;—NTend, attention pattern
for GPTrel over cfg3f data

(c) cfg3g (d) cfg3f

Attention pattern Bf,";l']éifﬂm (z) averaged over layers [, heads h and data . The columns represent

¢ — £ and the rows represent 7. ““x” means empty entries.

Remark. We present this boundary bias by looking at how close NT boundaries at level ¢ attend
to any other NT boundary at level ¢. For some distances 7, this “distance” that we have defined
may be non-existing. For instance, when £ > ¢’ one must have r > 0. Nevertheless, we see that the
attention value, even after removing the position bias, still have a large correlation with respect to
the smallest possible distance r, between every pairs of NT levels £, £'. This is a strong evidence
that CFGs are implementing some variant of dynamic programming.

33

Under review as a conference paper at ICLR 2025

layl lay2 lay3 laya lays lay6 lay? lay8 lay9 lay10 lay11 lay12

layl lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay1l lay12

layl lay2 lay3 lay4 lays lay6 lay7 lay8 lay9 lay10 lay11 lay12

layl lay2 lay3 lay4 lays lay6 lay7 lay8 lay9 lay10 lay11 lay12

(d) cfg3f

Figure 25: Attention pattern ij‘g}eﬂf&r (x) for each individual transformer layer [€ [12], averaged over heads

h and data x. The rows and columns are in the same format as Figure 24,

Observation. Different transformer layers are responsible for learning “NT-end to most adjacent
NT-end” at different CFG levels.

34

Under review as a conference paper at ICLR 2025

G MORE EXPERIMENTS ON IMPLICT CFGS

We study implicit CFGs where each terminal symbol ¢ € T is is associated a bag of observable
tokens O'T;. For this task, we study eight different variants of implicit CFGs, all converted from the

exact same cfg3i dataset (see Section C.1). Recall cfg3i has three terminal symbols | T| = 3:

* we consider a vocabulary size |OT| = 90 or |OT| = 300;
* we let {OT;},cT be either disjoint or overlapping; and
¢ we let the distribution over OT; be either uniform or non-uniform.

We present the generation accuracies of learning such implicit CFGs with respect to different model
architectures in Figure 26, where in each cell we evaluate accuracy using 2000 generation samples.
We also present the correlation matrix of the word embedding layer in Figure 10 for the GPT,¢ model

(the correlation will be similar if we use other models).

GPT -
GPT_rel -
GPT _rot -

GPT_pos -
GPT_uni-

disjoint [vocab|=90

disjoint |[vocab|=300

overlap |vocab|=90

98.7 99.4 99.0 99.2 | 100.0 100.0 100.0 98.1

99.3 99.7 99.0 989 |100.0 100.0 989 99.1 | 97.8 97.9

99.2 995 99.0 98.4 |100.0 100.0 98.6 99.0 | 96.4 95.9

99.2 994 984 99.2 | 100.0 100.0 96.6 96.4 |90 91.3

997 996 98.4 99.0 | 100.0 100.0 [NBOISI 02.9

cutd cut50 cut0 cut50 cut0 cut50 cutd cut50 cutd cut50
uniform non-uniorm uniform non-uniorm uniform

929 91.9

cutd cut50
non-uniorm

overlap |vocab|=300

100.0 100.0

100.0

100.0

100.0 100.0

100.0

100.0

100.0 100.0

100.0

100.0

100.0 100.0

100.0

99.7

100.0 100.0

99.9

100.0

cutd cut50
uniform

cuto

cut50

non-uniorm

Figure 26: Generation accuracies on eight implicit CFG variants from pre-trained language models.

35

Under review as a conference paper at ICLR 2025

H MORE EXPERIMENTS ON ROBUSTNESS

Recall that in Figure 11, we have compared clean training vs training over three types of perturbed
data, for their generation accuracies given both clean prefixes and corrupted prefixes. We now
include more experiments with respect to more datasets in Figure 27. For each entry of the figure,
we have generated 2000 samples to evaluate the generation accuracy.

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

cutd T=0.1-100 100 100 100 100 100 100 100 100 100'100 100 100 100 100 100 100 100 100 100'99.3 100 100 100 100 100 100 100 100 100|100

cutd T=0.2-98.7 100 100 100 100 100 100 100 100 100/99.2 99.9 100 100 100 99.9 100 100 100 100[98.5 100 100 100 100 100 100 100 100 100

EMGRESR 0.0 14.3 24.7 39.8 44.4 0.0 14.1 22.8 35.3 44.9 0.0 14.7 26.9 38.5 49.8 75:2 81,5 91.8/99.8

corrupted cut50 T=0.1-78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9|82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8
corrupted cut50 t=0.2 - 77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9|81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4
L Rea® 00 05 0.5 0.6 05 03 06 04 05 07 00 04 05 08 02 03 05 06 07 06 00 01 04 04 04 05 09 05 03 03
cut50 T=0.1- 100 100 100 100 100 100 100 100 100 100|100 100 100 100 100 100 100 100 100 100[99.4 100 100 100 100 100 100 100 100 100

cut50 T=0.2-99.2 100 100 100 100 100 100 100 100 1ooﬁ 100 100 100 100 100 100 100 100 100&100 100 100 100 100 100 100 100 100|100

cut50 t=1 N8 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3|99.9
10 09 08 07 06 05 04 03 02 01 10 09 08 07 06 05 04 03 02 01 10 09 08 0.7 06 05 04 03 0.2 0.1 clean

generation acc (%) for cfg3b

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation
cut0 T=0.1-99.0 99.9 99.8 99.7100.099.7 99.6 99.3 99.1 99 4'9&0 98.8 99.4 99.5 99.4 99.6 99.3 98.9 99.3 99.7'99.6 98.4 99.4 99.8 99.4 98.3 99.6 97.9 99.6 98.5/97.7
cut0 T=0.2-95.0 99.6 99.4 98.7 9.2 98.8 9.2 98.9 98.7 99.4[96.5 98.1 99.2 99.2 99.2 98.7 98.7 98.2 98.8 99.4[98.9 97.8 99.2 99.3 98.8 98.6 98.9 98.2 98.4 98.2(98.0

EIGRISE 0.0 13.6 25.9 36.2 44.0 0.0 14.7 25.1 33.8 46.4 0.0 17.2 25.6 37.3 43.8 75.184.3 91.3(99.8
corrupted cut50 t=0.1 {71.9 75.1 73.2 72.9 732 73.1 74.3 72.5 71.7 70.9|78.6 752 77.0 76.6 77.6 78.6 78.7 78.2 78.4 78.8 LN NN R W X W LN NN PN LV W PR ENELK]
corrupted cut50 t=0.2 {71.3 73.3 72.0 72.3 71.0 71.9 73.8 72.5 722 76.5 75.0 75.6 75.4 76.7 76.4 78.2 76.2 78.2 75.1 FLX EIN LKW IX-W IR QTR XWX T Ry KR X

PN ISREIRESE 0.0 0.4 06 07 03 05 09 06 04 07 00 05 05 05 03 06 04 05 04 04 00 03 03 04 04 06 06 04 03 05 37.1
cut50 1=0.1-99.1100.099.9 99.9 99.8 99.6 99.8 99.2 99.3 99.4/98.8 99.2 99.5 99.4 99.1 99.8 99.3 99.3 99.6 99.7|99.7 99.2 99.1 99.9 99.2 99.4 99.7 98.4 99.3 98.8/98.6
cut50 T=0.2-96.0 99.7 99.9 99.4 9.6 9.7 9.5 99.3 99.1 992%990 99.6 99.7 99.5 99.8 99.4 98.7 99.4 99‘7%9&5 99.4 99.8 99.5 99.7 99.7 99.2 99.4 99.1[98.6

cuts0 =1 g 90.1 94.4 96.6 97.6 98.9 98.8 98.7 99.7 99.4 93.3 95.8 96.7 97.9 99.0 99.2 99.2 99.2 99.1 85.1 90.3 94.5 96.2 97.2 97.3 98.6 99.0 99.3{99.9
1.0 09 08 07 06 05 04 03 02 01 1.0 09 08 07 0.6 05 04 03 02 01 1.0 09 08 07 06 05 04 03 02 0.1 clean
--pre-training data perturbation ratio y OR clean data--

(b) cfg3i dataset

generation acc (%) for cfg3i

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation
cut0 T=0.1 89.0 98.0 98.1 97.5 94.9 96.9 98.0 98.4 98. 1'95.2 97.1 99.2 99.1 99.6 99.2 98.2 99.5 99.0 98.2'88.9 98.6 98.6 99.1 99.0 99.3 99.2 98.6 98.5 98.7|97.2
cuto PYR-] 03.1 98.3 98.7 98.8 97.9 98.7 99.4 98.9 99.183.4 97.3 98.5 98.9 99.2 99.1 99.1 99.4 98.7 99.172.1 98.6 98.7 99.1 99.1 99.6 99.2 99.3 98.9 99.0/99.0
[EMGRESR 0.0 14.9 22.0 34.3 46.4. 713 83.8 91.5 UVEREWAP X RV R RN) ICEEEGEEE] 0.0 15.2 26.6 40.7 415 74.3 84.2 90.9/99.6

[LIGVACERMEORENRE 29.6 35.5 43.1 41.5 43.3 39.5 45.9 41.7 43.4 41.0 49.4 49.8 47.0 35.4 37.2 36.3 35.5 35.3 33.9 36.6 36.6 37.0 33.8
corrupted cut50 20.2 29.3 34.1 32.0 32,5 33.4 37.0 35.1 35.5 34.2 44.3 43.4 445 46.6 43.3 48.1 46.6 47.2 48.8 41.6 27.3 29.9 29.5 30.1 28.5 27.2 30.7 30.4 30.1 29.2
[SUOLIELRSICREIR 00 1.1 03 06 04 07 10 05 08 06 00 07 02 08 03 07 00 14 01 06 00 05 13 1.0 08 04 09 08 04 07
cut50 t=0.1 92.3 98.9 98.5 98.7 96.1 98.0 99.2 99.0 98.8|92.9 98.6 99.3 99.7 99.3 99.3 99.0 99.4 99.3 98.6|87.6 98.8 99.4 99.4 99.8 99.2 98.9 99.5 98.9 99.4|98.3

LERE] 94.3 99.4 99.5 99.5 98.9 98.9 99.6 99.7 99.2|83.5 98.9 99.2 99.7 99.8 99.4 99.5 99.8 99.5 99.6/78.9 98.8 99.3 99.4 99.6 99.6 99.5 99.7 99.6 99.3|99.2

cut50 =1 JNUl 84.2 92.1 95.9 97.0 97.4 98.4 99.1 98.8 99. ZhBQ.B 95.6 95.7 97.4 98.6 99.3 99.4 99.1 99.4&@84.2 90.6 94.6 97.0 97.4 98.6 98.4 98.9/99.9

1.0 09 08 07 06 05 04 03 02 01 1.0 09 08 07 06 05 04 03 02 01 1.0 09 08 07 06 05 04 03 02 0.1 clean

generation acc (%) for cfg3h

(c) cfg3h dataset

Figure 27: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean
or corrupted prefixes with cuts ¢ = 0 or ¢ = 50, using generation temperatures 7 = 0.1, 0.2, 1.0.

Observation 1. In Rows 4/5, by comparing against the last column, we see it is beneficial to
include low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality
data could be little (y = 0.1 fraction) or large (every training sentence may have grammar mistake).
Observation 2. In Rows 3/6/9 of Figure 11 we see pre-training teaches the model a mode switch.
When given a correct prefix it is in the correct mode and completes with correct strings (Row 9);
given corrupted prefixes it always completes sentences with grammar mistakes (Row 6); given no
prefix it generates corrupted strings with probability v (Row 3).

Observation 3. Comparing Rows 4/5 to Row 6 in Figure 11 we see that high robust accuracy is
achieved only when generating using low temperatures 7. Using low temperature encourages the
model to, for each next token, pick a more probable solution. This allows it to achieve good robust
accuracy even when the model is trained totally on corrupted data (v = 1.0).

36

Under review as a conference paper at ICLR 2025

A/AS{X;MX Kﬁﬁﬁm

AN AN AT AN AN AT A
ARMAARARARKCARKARKANAAR AR AREANARAKARANCRRAAAGRRKRAKARAAARKNA AR AARKARANA AARARA DA ARHARR ALK AR AN AN KA AARARIRAK LA KRRANAARAA K AR %

(b) the cfg3 family we used in the main body of this paper has rule lengths 2 or 3 (cfg3f in this figure)

T ‘ﬁ“?/>,

N AN AN
ARAR KRR ENNAMANEARANRD" A ALK ANADA DAY KANA ERN KRR ANKR ANVAR BEAVEARAR (NAARAREARE " ARRARA AARAAAARAAAARARKRIAN KA AAK AR

(c) the cfg8 family has rule lengths 1, 2, or 3 (cfg8e in this figure)

N RA ANAANN NN NANAA RN KON AAAAD AR AR AN AAAANAR T AANACAN A AR NN

(d) the cfg9 family has rule lengths 1, 2, or 3 (cfg9e in this figure)

(e) the cfg0 family has max-depth 11 and rule lengths 1 or 2 (cfgOe in this figure)

Figure 28: CFG comparisons: left is a medium-length sample and right is a 80%-percentile-length sample

I BEYOND THE CFG3 DATA FAMILY

The primary focus of this paper is on the cfg3 data family, introduced in Section C.1. This paper
does not delve into how GPTs parse English or other natural languages. In fact, our CFGs are more
“difficult” than, for instance, the English CFGs derived from the Penn TreeBank (PTB) (Marcus
et al., 1993). By “difficult”, we refer to the ease with which a human can parse them. For example,
in the PTB CFG, if one encounters RB JJ or JJ PP consecutively, their parent must be ADJP. In
contrast, given a string

3322131233121131232113223123121112132113223113113223331231211121311331121321213333312322121312322211112133221311311311
3111111323123313313331133133333223121131112122111121123331233112111331333333112333313111133331211321131212113333321211
1121213223223322133221113221132323313111213223223221211133331121322221332211212133121331332212213221211213331232233312

that is in cfg3f, even with all the CFG rules provided, one would likely need a large piece of scratch
paper to perform dynamic programming by hand to determine the CFG tree used to generate it.

Generally, the difficulty of CFGs scales with the average length of the strings. For instance, the
average length of a CFG in our cfg3 family is over 200, whereas in the English Penn Treebank
(PTB), it is only 28. However, the difficulty of CFGs may inversely scale with the number of Non-
Terminal/Terminal (NT/T) symbols. Having an excess of NT/T symbols can simplify the parsing of
the string using a greedy approach (recall the RB JJ or JJ PP examples mentioned earlier). This
is why we minimized the number of NT/T symbols per level in our cfg3b, cfg3i, cfg3h, cfg3g, cfg3f
construction. For comparison, we also considered cfg3el, cfg3e2, which have many NT/T symbols
per level. Figure 4 shows that such CFGs are extremely easy to learn.

To broaden the scope of this paper, we also briefly present results for some other CFGs. We in-
clude the real-life CFG derived from the Penn Treebank, and three new families of synthetic CFGs
(cfg8, cfg9, cfg0). Examples from these are provided in Figure 28 to allow readers to quickly com-
pare their difficulty levels.

1.1 THE PENN TREEBANK CFG

We derive the English CFG from the Penn TreeBank (PTB) dataset (Marcus et al., 1993). To make
our experiment run faster, we have removed all the CFG rules that have appeared fewer than 50 times
in the data.?? This results in 44 T+NT symbols and 156 CFG rules. The maximum node degree is

ZThese are a large set of rare rules, each appearing with a probability < 0.2%. We are evaluating whether
the generated sentence belongs to the CFG, a process that requires CPU-intensive dynamic programming. To
make the computation time tractable, we remove the set of rare rules.

Note that cfg3 does not contain rare rules either. Including such rules complicates the CFG learning pro-
cess, necessitating a larger transformer and extended training time. It also complicates the investigation of a

37

Under review as a conference paper at ICLR 2025

9%,
%, %, %, %, %, %, %, %, %, %, %@, %, %@, 9%, %, %, 9, 9%, %, ,
Cr, ey o, Peg, Pre To, Peg, Pre, Ty Feg Pre Ty, FPeg, Py Ty Feg Py Te e 2,
o Ve 6 e Ve e T T TN N o W Y6 Y6y U6 "6y V6 6p 6 6 6y
8 wp 90.6] 94.8 | 97.2 | 97.6 | 94.4 | 97.0 | 97.8 | 97.9 | 98.7 | 99.1 | 97.1 | 98.6 | 98.9 | 99.5 | 99.6 | 99.7 | 99.7 | 99.8 | 99.9 f
C
H “zo 11782 | 93.0 | 95.8 | 98.0 | 983 | 94.7 | 97.5 | 982 | 98.2 | 99.1 | 99.3 | 97.2 | 98.:8 | 98.8 | 99.7 | 99.7 | 99.8 | 99.8 | 99.9 | 99.9 |
o
(a) generation accuracies for cuts ¢ = 0 and ¢ = 10
b,
e, e, e, e, e, e, o, e, e, e, e, Y, e, e, e, e, e, e, e, Aza
2. 2, e g, s g, 2o g, s <2, % 2, 3 o, - e‘*l 3 g % 23 % e‘& 6 %2, S e‘*l 6y 2, 6 3 6y %6, 6 S‘&sq e, o 22, 6,
i
(b) KL-divergence
%,
n, Wr, Br, %o, Wr. Br, Pu, Wr. Br, Pu, Wr. Br, Pu, Wr, B, n. W, Pr Pn. o
Gy g R Ry e, The, TR, e, ey, TR, The, e, TR, The, TR, e, e, e, e The, 9y
4 V6 Ve e Ne e TV TNo T o N W T Y6 U6y T6p T6p 6 g 6 6y
E’nr,% 61.1 | 60.1 | 62.0 | 58.7 | 58.7 | 57.9 | 58.3 | 59.1 | 58.4 | 57.4 | 57.0 | 57.8 | 59.2 | 58.4 | 59.4 | 57.4 | 57.3 | 57.2 | 56.9 | 57.0 | 57.2
2
70,
‘76’(% 12K | 68K | 135K | 235K | 335K | 135K | 235K | 335K | 468K | 864K | 1.3M | 468K | 864K | 1.7M | 3.3M | 4.9M | 7.3M |10.9M|19.2M|85.5M
e

(c) entropy and model size
Figure 29: Real-life PTB CFG learned by GPT,: of different model sizes.

%,
%, %, %, %, %, %, %, %, %, 9%, %, 9%, %, %, %, 9%, %, 9%, %, 4
%, Aq? % %, " % 6. s Py, As? %, 2, t{q A&q %, 2, Lie %, 2, r;q‘q Aaq %, 2 A&S %, 6 13\1
k Voo T W W W ey Y6 6y U6 76y 6 6y 6 6y
1.0 0.2 5.5 343 113 47.0

1.0 03 56 341 113 47.1

Figure 30: By contrast, small GPT,,: model sizes cannot learn the cfg3f data (compare to Figure 29(a)).

65 (for the non-terminal NP) and the maximum CFG rule length is 7 (for S -> ** S , '’ NP
VP .). If one performs binarization (to ensure all the CFG rules have a maximum length of 2), this
results in 132 T+NT symbols and 288 rules.

Remark 1.1. Following the notion of this paper, we treat those symbols such as NNS (common
noun, plural), NN (common noun, singular) as ferminal symbols. If one wishes to also take into
consideration the bag of words (such as the word vocabulary of plural nouns), we have called it
implicit CFG and studied it in Section B.1. In short, adding bag of words does not increase the
learning difficult of a CFG; the (possibly overlapping) vocabulary words will be simply encoded in
the embedding layer of a transformer.

For this PTB CFG, we also consider transformers of sizes smaller than GPT2-small. Recall GPT2-
small has 12 layers, 12 heads, and 64 dimensions for each head. More generally, we let GPT-¢-h-d
denote an ¢-layer, h-head, d-dim-per-head GPT,,; (so GPT2-small can be written as GPT-12-12-64).

We use transformers of different sizes to pretrain on this PTB CFG. We repeat the experiments
in Figure 4 (with the same pretrain parameters described in Appendix C.3), that is, we compute
the generation accuracy, completion accuracy (with cut ¢ = 10), the output entropy and the KL-
divergence. We report the findings in Figure 29. In particular:

* Even a 135K-sized GPT2 (GPT-2-4-16) can achieve generation accuracy ~95% and have a KL
divergence less than 0.01. (Note the PTB CFG has 30 terminal symbols so its KL divergence
may appear larger than that of cfg3 in Figure 4.)

* Even a 1.3M-sized GPT2 (GPT-6-4-32) can achieve generation accuracy 99% and have a KL
divergence on the order of 0.001.

e Using M = 10000 samples, we estimate the entropy of the ground truth PTB CFG is around 60
bits, and the output entropy of those learned transformer models are also on this magnitude.

* By contrast, those small model sizes cannot learn the cfg3f data, see Figure 30.

transformer’s inner workings if these rare rules are not perfectly learned.

38

Under review as a conference paper at ICLR 2025

GPT GPTrel GPTrot GPT_pos GPT_uni GPT GPT_rel GPT_rot GPT_pos GPT_uni GPT GPT_rel GPT_rot GPT_pos GPT_uni

S
&

2

<
&

99.6 99.6/99.9 99.9/99.9 99.9[99.9 99.9/99.9 99.8]
99.8 99.8/100 100|100 100|100 100[99.9 99.9]
95.3 95.2/99.4 99.4/99.2 99.2|98.7 98.6/98.8 98.8]
97.5 97.5/98.3 98.3|98.0 98.0(97.9 97.9/97.6 97.4]

97.4 97.6/93.7 93.7|94.6 94.4/93.0 93.5
cut0 cut20 cutd cut20 cut0 cut20 cutd cut20 cutd cut20

<
&

99.9 99.9/99.9 99.9/99.9 99.9/99.9 99.9/100 99.9
99.8 99.9/99.9 100 [99.9 99.8/99.9 99.999.9 99.9
99.4 99.4/99.6 99.7|99.6 99.6/99.4 99.5/99.7 99.7
99.8 99.9/99.8 99.9/99.9 99.9/99.8 99.9/99.9 99.9
96.6 96.7/99.7 99.8/99.7 99.7/99.1 98.9/98.6 98.8
cutd cut20 cutO cut20 cutd cut20 cutd cut20 cutd cut20

Figure 31: Generation accuracies for cfg8/9/0 data family; suggesting our results also hold for unbalanced
trees with len-1 rules.

97.4 97.5/98.9 98.898.3 98.4[98.5 98.5/98.5 98.4)
90.9 91.3/96.0 95.9|94.1 93.1|92.9 92.8[92.5 92.5
99.5 99.6/99.6 99.7|99.6 99.6[99.7 99.7/99.6 99.6/
98.0 98.3/98.5 98.6|98.4 98.5(98.7 98.8/98.1 98.2
99.7 99.8/99.7 99.7|99.7 99.7|99.7 99.8/99.7 99.7
cut0 cut20 cutd cut20 cutd cut20 cutd cut20 cuto cut20

s
&
g
&
2
S

§

S
§
g
$
2
S
N

g
&£

5

&
&

S
&

&
8

generation acc (%)
generation acc (%)
generation acc (%)

§
S

1.2 MORE SYNTHETIC CFGs

Remember that the cfg3 family appears “balanced” because all leaves are at the same depth and the
non-terminal (NT) symbols at different levels are disjoint. This characteristic aids our investigation
into the inner workings of a transformer learning such a language. We introduce three new synthetic
data families, which we refer to as cfg8/9/0 (each with five datasets, totaling 15 datasets). These
are all “unbalanced” CFGs, which support length-1 rules.?® Specifically, the cfg0 family has a depth
of 11 with rules of length 1 or 2, while the cfg8/9 family has depth 7 with rules of length 1/2/3. In
all of these families, we demonstrate in Figure 31 that GPT can learn them with a satisfactory level
of accuracy.

For this ICLR submission, we have included all the trees used in the supplementary materials. Be-
low, we provide descriptions of how we selected them.

CFG8 family. The cfg8 family consists of five CFGs, namely cfg8a/b/c/d/e. They are constructed
similarly to cfg3b/i/h/g/f, with the primary difference being that we sample rule lengths uniformly
from {1, 2, 3} instead of {2, 3}. Additionally,

* In cfg8a, we set the degree |R(a)| = 2 for every NT a; we also ensure that in any generation rule,
consecutive pairs of terminal/non-terminal symbols are distinct. The size is (1,3, 3, 3, 3, 3, 3).

* In cfg8b, we set [R(a)| = 2 for every NT a; we remove the distinctness requirement to make the
data more challenging than cfg8a. The size is (1, 3,3, 3, 3, 3, 3).

* In cfg8c, we set |R(a)| € {2,3} for every NT a to make the data more challenging than cfg8b.
The size is (1,3, 3,3, 3, 3, 3).

* In cfg8d, we set |[R(a)| = 3 for every NT a. We change the size to (1,3, 3,3, 3, 3,4) because
otherwise a random string would be too close (in editing distance) to this language.

* Incfg8e, we set |R(a)| € {3, 4} forevery NT a. We change the size to (1, 3, 3, 3, 3, 3,4) because
otherwise a random string would be too close to this language.

A notable feature of this data family is that, due to the introduction of length-1 rules, a string in this
language L(G) may be globally ambiguous. This means that there can be multiple ways to parse it
by the same CFG, resulting in multiple solutions for its NT ancestor/boundary information for most
symbols. Therefore, it is not meaningful to perform linear probing on this dataset, as the per-symbol
NT information is mostly non-unique.**

CFG9 family. Given the ambiguity issues arising from the cfg8 data construction, our goal is to
construct an unbalanced and yet challenging CFG data family where the non-terminal (NT) infor-
mation is mostly unique, thereby enabling linear probing.

To accomplish this, we first adjust the size to (1,4,4,4,4,4,4), then we permit only one NT per
layer to have a rule of length 1. We construct five CFGs, denoted as cfg9a/b/c/d/e, and their
degree configurations (i.e., R(a)) are identical to those of the cfg8 family. We then employ rejection
sampling by generating a few strings from these CFGs and checking if the dynamic programming
(DP) solution is unique. If it is not, we continue to generate a new CFG until this condition is met.

Examples from cfg9e are illustrated in Figure 28. We will conduct linear probing experiments on
this data family.

BWhen a length-1 CFG rule is applied, we can merge the two nodes at different levels, resulting in an
“unbalanced” CFG.

2*In contrast, the cfg3 data family is only locally ambiguous, meaning that it is difficult to determine its
hidden NT information by locally examining a substring; however, when looking at the entire string as a whole,
the NT information per symbol can be uniquely determined with a high probability (if using for instance
dynamic programming).

39

Under review as a conference paper at ICLR 2025

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)
g, 100 100 100 100 100|100 100 100 100 100|100 100 100 100 100|100 100 100 100 100100 100 100 100 100{100 100 100 100 100|98.7 83.6 83.9 71.9 94.1'
Cfg%e 99.9'99.9 100 100 100{99.9 99.9 100 100 100(99.9 99.9 100 100 100(99.9 99.9 100 100 100[99.9 99.9 100 100 100{100 100 100 100 100
Y99 99.699.8 99.7 99.8 100[99.7 9.8 99.7 99.8 100/99.7 99.8 9.7 99.8 100|997 99.8 99.8 99.8 100[99.7 99.9 99.8 99.9 100|100 100 100 99.9 100
99, 100 99.7 99.6 99.4 99.6/ 100 99.7 9.5 9.3 99.6| 100 99.7 99.5 99.4 99.7| 100 99.8 99.6 99.5 99.7/ 100 99.8 99.6 9.5 99.7[100 100 99.8 99.6 99.9|
P99, 99.198.5 95.6 95.0 93.9]99.1 98.5 95.5 95.2 94.9|99.1 98.6 95.8 95.3 95.0/99.1 98.7 96.1 95.3 94.6[99.2 98.8 96.3 95.5 94.7[99.7 99.6 98.4 96.9 93.9)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

84.8 78.6 82.6 82.8 91.0,

redict NT ancestor (%)

Figuare 32: Same as Figure 5 but for the cfg9 family. After pre-training, hidden states of generative models
implicitly encode the NT ancestors information. The N7} column represents the accuracy of pre-
dicting s¢, the NT ancestors at level £. This suggests our probing technique applies more broadly.

GPT GPT_rel GPT_rot GPT_pos. GPT_uni deBERTa baseline (GPT_rand)
%9, 100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 100 100 98.4 98.7|95.6 896 91.6

99, 98.297.399.8 100 100[98.2 97.3 9.8 100 100{98.2 97.2 99.8 100 100/98.2 97.3 9.8 100 10098.2 97.2 9.8 9.9 100|100 100 100 99.9 99.6,
9. 97.398.9 99.6 100 100[97.3 98.9 99.6 100 100[97.3 98.9 99.6 100 100[97.3 98.9 9.6 100 100[97.3 98.9 9.6 100 100|100 100 99.9 94.6 97.0|

094 99.9 99.9 99.1 97.8 99.8/99.9 99.9 99.1 97.8 99.8|99.9 99.9 99.0 97.8 99.8|99.9 99.9 99.1 97.8 99.8/99.9 99.9 99.1 97.8 9.8/ 100 100 99.8 97.9 97.8}
o9, 98.5 985 97.1 94.0 98.8[98.5 98.5 97.2 94.2 99.0[98.6 98.6 97.2 94.2 99.0[98.6 98.5 97.1 94.1 98.7[98.5 98.5 97.1 94.0 98.699.6 99.0 95.9/89.0.

predict NT at NT-end

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

GPT GPT_rel GPT_rot GPT_pos. GPT_uni deBERTa baseline (GPT_rand)

9, 100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100|100 99.9 100 100 100

995 98.8 98.3 99.9 100 100 98.8 98.3 99.9 99.9 100|98.8 98.2 99.9 99.9 10098.8 98.2 99.9 100 10098.8 98.2 99.9 100 100|100 100 100 100 99.9|
0. 98.199.399.7 100 100[98.1 99.3 99.7 100 100|98.1 99.3 99.7 100 100/98.1 99.3 99.8 100 100|98.1 99.3 9.7 100 100|100 100 99.9 98.6 98.6

99, 99.999.9 9.2 98.5 100[99.9 9.9 99.2 98.5 10099.9 99.9 99.2 98.5 100[99.9 9.9 9.2 98.5 100[99.9 9.9 9.2 98.5 100|100 100 99.8 99.3 99.594.2]
09, 98.7 98.7 97.6 95.6 99.2|98.8 98.8 97.7 95.7 99.3|98.7 98.8 97.7 95.7 99.3|98.7 98.8 97.7 95.6 99.1|98.7 98.7 97.6 95.5 99.1[99.6 99.3 97.8 93.3 91.2)

predict NT at NT-end

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NTS NT4 NT3 NT2

Figure 33: Same as Figure 9 but for the cfg9 data family. Generative pre-trained transformer encodes NT
ancestors almost exactly at NT boundaries. The N7, column represents the accuracy of predicting
s¢(2) at locations ¢ with be(¢) = 1. This suggests our probing technique applies more broadly.

CFGO family. Since all the CFGs above support rules of length 3, we have focused on L = 7 to
prevent the string length from becoming excessively long.> In the cfg0 family, we construct five
CFGs, denoted as cfgla/b/c/d/e. All of them have a depth of L = 11. Their rule lengths are
randomly selected from {1, 2} (compared to {2, 3} for cfg3 or {1, 2,3} for cfg8/9). Their degree
configurations (i.e., R(a)) are identical to those of the cfg8 family. We have chosen their sizes as
follows, noting that we have enlarged the sizes as otherwise a random string would be too close to
this language:

o We use size [1,2,3,4,4,4,4,4,4,4, 4] for cfgla/b.
* We use size [1,2,3,4,5,6,6,6,6,6, 6] for cfgOc.
* We use size [1,2,3,4,5,6,7,8,9,10, 11] for cfg0d/e.

Once again, the CFGs generated in this manner are globally ambiguous like the cfg8 family, so we
cannot perform linear probing on them. However, it would be interesting to demonstrate the ability
of transformers to learn such CFGs.

Additional experiments. We present the generation accuracies (or the complete accuracies for cut
¢ = 20) for the three new data families in Figure 31. It is evident that the cfg8/9/0 families can be
learned almost perfectly by GPT2-small, especially the relative/rotary embedding ones.

As previously mentioned, the cfg9 data family is not globally ambiguous, making it an excellent
synthetic data set for testing the encoding of the NT ancestor/boundary information, similar to what
we did in Section 4. Indeed, we replicated our probing experiments in Figure 32 and Figure 33 for
the cfg9 data family. This suggests that our probing technique has broader applicability.

*Naturally, a larger transformer would be capable of solving such CFG learning tasks when the string
length exceeds 1000; we have briefly tested this and found it to be true. However, conducting comprehensive
experiments of this length would be prohibitively expensive, so we have not included them in this paper.

40

	1 Introduction
	2 Our Synthetic Context-Free Grammars
	3 Results 1-3: Transformer Can Learn Such CFGs
	4 Results 4-5: How Do Transformers Learn CFGs?
	4.1 Result 4: Transformer's Last Layer Encodes NT Ancestors/Boundaries
	4.2 Result 5: NT Ancestors are Encoded At NT Boundaries

	5 Results 6-9: How Do Transformers Learn NTs?
	5.1 Result 6: Position-Based Attention
	5.2 Result 7-9: Boundary-Based Attention
	5.3 Connection to DP

	6 Related Work and Conclusion
	A Missing Figure
	B Results 10-13: Extensions of CFGs
	B.1 Result 10: Implicit CFGs
	B.2 Results 11-13: Robustness on Corrupted CFG

	C Experiment Setups
	C.1 Dataset Details
	C.2 Model Architecture Details
	C.3 Pre-Training Details
	C.4 Predict NT ancestor and NT boundary

	D More Experiments on Generation
	D.1 Generation Diversity via Birthday Paradox
	D.2 Marginal Distribution Comparison

	E More Experiments on NT Ancestor and NT Boundary Predictions
	E.1 NT Ancestor and NT Boundary Predictions
	E.2 NT Predictions Across Transformer's Layers
	E.3 NT Predictions Across Training Epochs

	F More Experiments on Attention Patterns
	F.1 Position-Based Attention Pattern
	F.2 From Anywhere to NT-ends
	F.3 From NT-ends to NT-ends
	F.4 From NT-ends to Adjacent NT-ends

	G More Experiments on Implict CFGs
	H More Experiments on Robustness
	I Beyond the CFG3 Data Family
	I.1 The Penn TreeBank CFG
	I.2 More Synthetic CFGs

