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Abstract

While large language models (LLMs) demonstrate strong reasoning capabilities
utilizing reinforcement learning (RL) with verifiable reward, whether large vision-
language models (VLMs) can directly inherit such capabilities through similar post-
training strategies remains underexplored. In this work, we conduct a systematic
compositional probing study to evaluate whether current VLMs trained with RL
or other post-training strategies can compose capabilities across modalities or
tasks under out-of-distribution conditions. We design a suite of diagnostic tasks
that train models on unimodal tasks or isolated reasoning skills, and evaluate
them on multimodal, compositional variants requiring skill integration. Through
comparisons between supervised fine-tuning (SFT) and RL-trained models, we
identify three key findings: (1) RL-trained models consistently outperform SFT on
compositional generalization, demonstrating better integration of learned skills; (2)
although VLMs achieve strong performance on individual tasks, they struggle to
generalize compositionally under cross-modal and cross-task scenarios, revealing
a significant gap in current training strategies; (3) enforcing models to explicitly
describe visual content before reasoning (e.g., caption-before-thinking), along with
rewarding progressive vision-to-text grounding, yields notable gains. It highlights
two essential ingredients for improving compositionality in VLMs: visual-to-text
alignment and accurate visual grounding. Our findings shed light on the current
limitations of RL-based reasoning VLM training and provide actionable insights
toward building models that reason compositionally across modalities and tasks.

1 Introduction

Recent breakthroughs in large language models (LLMs) have shown that strong reasoning capabilities
can emerge through RL, as exemplified by GPT-o1 [Jaech et al., 2024] and DeepSeek-R1 [Guo et al.,
2025]. These models demonstrate impressive performance on complex multi-step reasoning tasks in
the language-only domain, revealing the potential of RL-style post-training to enhance logical and
compositional reasoning [Team et al., 2025, Hou et al., 2025, Shen et al., 2025b]. Inspired by these
advances, researchers have begun exploring whether similar training paradigms can be extended to
VLMs, which integrate visual perception with language reasoning [Zhan et al., 2025, Huang et al.,
2025, Hao et al., 2025, Yang et al., 2025, Wang et al., 2025].

Previous attempts to apply RL with verifiable rewards to VLMs have shown promising gains on
individual vision-language tasks such as visual math solving and object localization [Shen et al., 2025a,
Meng et al., 2025, Pan and Liu, 2025]. However, it remains unclear whether these improvements
extend beyond isolated benchmarks to more complex, realistic scenarios that require the integration
of multiple reasoning capabilities. While the compositional abilities of LLMs have been increasingly
studied in the context of skill composition [Zhao et al., 2024, Xu et al., 2024b], the extent to
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Given the following 
shapes: a rectangle with 

width 5 ... What is the 
total area of all shapes?

<answer>38</answer>

5 × 4

2, 3, ℎ = 7

There are 3 shapes on a 
4x4 grid: a purple 
trapezoid at position (0, 
2), ... is closest to the 
purple trapezoid? 
  <answer>(1,2)</answer>

                

Pure-Text (PT) Task Multi-Modal (MM) Task

Task A + B

Compositional Task

(Total area of Nearest Shapes)

Task A

Geometric Reasoning

(Total Shape Area)

Task B

Spatial Reasoning

(Nearest Grid Position)

There are 3 shapes on a 
4x4 grid: a red trapezoid 
at position (1, 2) with 
base 4 ... total area of 
the nearest shape and the 

target shape? 
  <answer>105</answer>

Cross-modality Compositional Ability

There are 3 shapes 
on a 4x4 grid ... 
total area of the 
nearest shape to the 
target shape and the 
target shape? 

Which shape is 
closest to the 
purple trapezoid?
... 

What is the total 
area of all shapes 
shown in the image?

Cross-task

Compositional

Ability

4,8 ,h=4
S=4

S=9

<answer>(1,2)</answer>
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Figure 1: Demonstration of the tasks and partial results for probing of cross-modality and cross-task
compositional ability.

which VLMs exhibit similar capabilities remains largely underexplored. In particular, it is still an
open question whether VLMs can coherently combine skills acquired independently either across
modalities (e.g., transferring textual reasoning to visual inputs) or across reasoning domains (e.g.,
integrating spatial and arithmetic reasoning) to solve tasks that demand such composition.

To better understand the performance of compositional generalization in VLMs, we investigate
two core dimensions: cross-modal and cross-task reasoning. We focus on the following research
questions(RQ): RQ1 Can reasoning abilities acquired through pure-text training be composed with
visual recognition to solve multimodal reasoning tasks? RQ2 Can independently learned visual
reasoning skills be integrated to tackle composite tasks that require both capabilities? RQ3 Can such
compositional ability generalize to out-of-distribution (OOD) variants with altered task objectives?
To support this investigation, we design a set of diagnostic tasks and carefully curated training and
evaluation splits, each aimed at isolating specific challenges such as cross-modal reasoning, visual
skill composition, and generalization to new task settings as partially demonstrated in Firgure 1.

We conduct comprehensive experiments across multiple post-training strategies to evaluate the
compositional capabilities of VLMs. Our study yields three key observations: (1) RL-trained models
consistently outperform SFT in compositional settings, particularly for cross-task generalization; (2)
despite strong performance on individual tasks, VLMs exhibit significant limitations in compositional
reasoning under multimodal input; and (3) explicitly structuring the reasoning process through visual-
to-text prompting and reinforcing intermediate progress reward [Luo et al., 2024] lead to substantial
gains in compositional performance.

In a nutshell, our contributions to this work can be summarized as follows:

- We introduce ComPABench, a diagnostic benchmark that systematically evaluates compositional
generalization in VLMs across modalities, reasoning tasks, and distribution shifts.

- We conduct a comprehensive empirical analysis of post-training strategies, and reveal their limitations
in both cross-modal and cross-task compositional generalization.

- We identify a simple yet effective solution, RL-Ground, that helps reduce the compositional gap
in existing post-training strategies by aligning visual inputs to text before reasoning and rewarding
accurate grounding of visual content during intermediate reasoning steps.

Together, we hope these contributions can lay a foundation for advancing VLMs toward more robust
multimodal reasoning with stronger compositional generalization.

2 Related Work

2.1 Post-training for VLM Reasoning

Following the success of reasoning-oriented LLMs such as GPT-o1 [Jaech et al., 2024], significant
efforts have been devoted to developing advanced reasoning capabilities in VLMs after supervised
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fine-tuning over various fundamental visual tasks [Wang et al., 2024a, Chen et al., 2024, Team et al.,
2025, Wu et al., 2024, Abouelenin et al., 2025]. Early approaches range from manually designed
structured reasoning pathsXu et al. [2024a] to tree-based search strategies Xu et al. [2024a], Yao
et al. [2024]. The breakthrough of Deepseek-R1 [Guo et al., 2025] in outcome-based reward RL
with GRPO [Shao et al., 2024] for LLMs has inspired attempts to adapt this paradigm to VLMs.
However, directly transplanting Deepseek-R1’s training methodology to VLMs has proven ineffective.
Huang et al. [2025] identify two primary failure modes: (1) the learning algorithm struggles to
obtain meaningful positive rewards for complex samples, and (2) models tend to bypass visual
inputs and rely solely on textual cues for reasoning. Similarly, Zhan et al. [2025] demonstrate that
direct application of outcome reward RL fails to enhance VLMs’ reasoning performance. While Du
et al. [2025] partially validate the transferability of text-based reasoning capabilities to multimodal
tasks, their analysis remains confined to mathematics-oriented domains. Current VLMs, particularly
open-source implementations, still exhibit significant gaps in multimodal reasoning compared to
human-level performance Hao et al. [2025].

2.2 Generalization Probing for Training Strategies

The post-training phase of large models, particularly the choice between supervised fine-tuning
and reinforcement learning, has significant implications for generalization. Several recent works
have sought to explore these effects for different strategies respectively [Wang et al., 2024b, Zhao
et al., 2025]. Chu et al. [2025] conducted a systematic comparison of SFT and RL, finding that
SFT often leads to memorization of training patterns, whereas RL enables stronger generalization
by encouraging models to discover and apply more transferable principles. Kirk et al. [2023] also
confirmed that RLHF-trained models exhibit improved robustness to distribution shifts at the cost
of reduced response diversity. In contrast, Yue et al. [2025] revisits the widely held belief that RL
with verifiable rewards (RLVR) enables LLMs to acquire fundamentally new reasoning abilities,
showing instead that RLVR primarily reweights the model’s existing reasoning distribution rather than
expanding it, which limits exploratory capacity despite improved efficiency. Our work differentiates
from these works by systematically analyzing the limitations of current post-training strategies when
applied to VLMs, focusing specifically on their compositional generalization capabilities across
modalities, tasks, and out-of-distribution settings.

3 Preliminaries

To ground the experimental design and training protocols used in this work, we first formalize
the three training paradigms employed throughout our evaluation: Supervised Fine-Tuning (SFT),
Reinforcement Learning with Verifiable Reward (RL), and RL training initialized from an SFT-
trained checkpoint (SFT-init RL). We also detail the learning objectives used in each setting, with a
particular emphasis on the Generalized Reinforcement Policy Optimization (GRPO) strategy adopted
in DeepSeek-R1 training [Guo et al., 2025].

3.1 Supervised Fine-Tuning

Supervised fine-tuning aligns a pretrained VLM with the target task distribution using paired data
(x, y), where x is the input prompt and y = (y1, . . . , yT ) is the corresponding output sequence. The
model is trained to minimize the negative log-likelihood (NLL) of the target output under the causal
language modeling objective:

LSFT(θ) = −
T

∑
t=1

log pθ(yt ∣ x, y<t) (1)

This objective encourages syntactic correctness and semantic alignment with human-provided exam-
ples. In our setup, x may contain text-only format, or both image and text formats. y includes both a
reasoning trace (enclosed in a <think> block) and a final response (enclosed in a <answer> block).
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3.2 Reinforcement Learning with GRPO

We adopt Group Relative Policy Optimization (GRPO) as the optimization strategy in our RL
training framework. GRPO generalizes token-level policy optimization with a structured per-sample
reward-to-advantage computation and includes a KL regularization term to the reference policy πref
(typically the SFT model).

Let G denote the number of generated candidate answers for a given question q, and ∣o(i)∣ denote the
number of tokens in the i-th output o(i). The GRPO loss is defined as:

JGRPO(θ) = −
1

G

G

∑
i=1

1

∣o(i)∣

∣o(i)∣
∑
t=1

[πθ(o(i)t ∣ q, o(i)< t)
πθ(o(i)t ∣ q, o(i)< t)

⋅A(i, t) − β ⋅KL(πθ ∥ πref)] (2)

Here, A(i, t) is the estimated advantage at time step t for the i-th sample, and β controls the strength
of the KL regularization term. The inner term represents a scaled policy gradient with a reward signal
modulated at each token step.

In practice, A(i, t) is typically derived from a scalar reward r(q, o(i)) measuring task success, which
may combine:

• Answer correctness: Whether the generated prediction matches the ground-truth answer.

• Format adherence: Whether the output satisfies the specified constraints of format.

This formulation ensures that the model improves generation quality while maintaining consistency
with the reference distribution.

3.3 SFT-Initialized RL Training

To stabilize and accelerate the RL training process, we explore a hybrid strategy where reinforcement
learning is initialized from a model pretrained with SFT, similar to R1Guo et al. [2025]. In this
setting, the reference policy π0 used in the KL term is set to the SFT-trained model, and the initial
parameters θ0 of the policy πθ are inherited from the same checkpoint. This strategy offers two key
benefits: (1) it enables faster convergence by leveraging prior alignment to task distributions, and (2)
it mitigates early-stage instability common in pure RL setups.

Together, these training paradigms define the backbone of our experimental pipeline, enabling us to
probe the strengths and failure modes of VLMs in compositional, multimodal, and generalization-
intensive reasoning settings.

4 Experiments

To assess compositional generalization in VLMs under different post-training strategies, we conduct
experiments from three perspectives: cross-modal composition, cross-task reasoning, and out-of-
distribution generalization. We first present ComPABench, our diagnostic benchmark, followed by
training setups and evaluation results addressing the three research questions.

4.1 Benchmark for Probing of Compositional Ability

Task Type Training Subset Test Subset

Cross-Modal Composition PT-GR, PT-SR PT-GR, PT-SR, MM-GR, MM-SR
Cross-Task Composition (Pure-text) PT-GR, PT-SR PT-GR, PT-SR, PT-Comp

Cross-Task Composition (Multimodal) MM-GR, MM-SR MM-GR, MM-SR, MM-Comp
OOD Composition MM-GR, MM-SR MM-GR-OOD, MM-SR-OOD, MM-Comp-OOD

Table 1: Statistics of our proposed ComPABench for different task settings. The abbreviations of
different types of dataset can be found in the right bottom of blocks in Figure 2.
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             <answer>(1,2)</answer>

              

                 
               

       <answer>38</answer>

Given the following shapes: a rectangle with width 5 
and height 4, a trapezoid with bases 2 and 3 and 
height 7. What is the total area of all shapes? 
Please round the result to the nearest integer.

<answer>38</answer>

5 × 4

2, 3, ℎ = 7

There are 3 shapes on a 4x4 grid: a purple trapezoid 
at position (0,2), a cyan trapezoid at position (1,2), 
a grey rectangle at position (3,0). Which shape is 
closest to the purple trapezoid in terms of Manhattan 
distance? The final answer is the grid position of 
the closest shape like (row_index, column_index).

<answer>(1,2)</answer>

                         
                         

      <answer>105</answer>

Pure-text (PT) Task Multi-modal (MM) Task

Compositional

Task

Geometric 

Reasoning

(Shape Area)

Spatial 

Reasoning

(Grid Position)

There are 3 shapes on a 6x6 grid: a red trapezoid at 
position (2, 4) with base 4, 8 and height 4, a blue 
square at position (4, 1) with side 6, a green square 
at position (1, 2) with side 9. Find the shape that 
is nearest to the red trapezoid at (2, 4) in terms of 
Manhattan distance. What is the total area of this 
nearest shape and the target shape? Please round the 
result into the nearest integer.      
                  <answer>105</answer>

Cross-modality Compositional Ability

Cross-task

Compositional

Ability S=9

4,8,
h=4

S=4

PT-GR

There are 3 shapes on a 6x6 grid. 
Find the shape that is nearest to 
the red trapezoid in terms of 
Manhattan distance, what is the 
total area of the nearest shape 
to the target shape and the 
target shape? Please round the 
result into the nearest integer.

There are 3 shapes on a 4x4 grid. 
Which shape is closest to the purple 
trapezoid in terms of Manhattan 
distance? The final answer is the 
grid position of the closest shape 
like (row_index, column_index)

What is the total area of all 
shapes shown in the image, 
please round the result into 
the nearest integer?

PT-SR

PT-Comp

MM-GR

MM-SR

MM-Comp

       <answer>(4,0)</answer>

    <answer>63</answer>

5 × 4

6, 8, ℎ = 9OOD 

Geometric 

Reasoning

OOD 

Spatial 

Reasoning

There are 3 shapes on a 6x6 grid. Which 
shape is farthest from the red square in 
terms of Manhattan distance? The final 
answer is the grid position of the 
farthest shape like (row_index, 
column_index).

What is the largest area among all 
shapes shown in the image, please round 
the result into the nearest integer?

OOD Independent Tasks

MM-GR-OOD

MM-SR-OOD <answer>49</answer>

There are 4 shapes on 
a 5x5 grid. Find the 
shape that is farthest
from the yellow square 
in terms of Manhattan 
distance, what is the 
area of the shape with 
the larger area between 
these two shapes? Please
round the result into 
the nearest integer.

S=7

7 × 5 5,2,h=6

4,8,h=3

OOD Compositional Tasks

MM-COMP-OOD

RQ1

RQ2

RQ3

Figure 2: Demonstration of proposed ComPABench for RQ1, RQ2, and RQ3.

To systematically evaluate the compositional ability of VLMs trained under different post-training
strategies, we design a set of finely controlled tasks aligned with our three core research questions,
where we call this benchmark as ComPABench. Each task setting is implemented with paired pure-
text and multimodal variants to allow cross-modality and cross-task comparisons. Figure 2 illustrates
the benchmark design across individual and compositional tasks, together with the corresponding
OOD variants for evaluating transfer robustness.

Cross-Modal Compositional ability (RQ1). To evaluate whether reasoning abilities acquired
from pure-text training can transfer to visual inputs at inference, we construct parallel task formats
with matched semantics but differing input modalities. In the geometric reasoning task, the model
computes the total area of multiple shapes described either in pure-text or shown in an image with
labeled dimensions. In the spatial reasoning task, it identifies the grid index of the shape closest to a
given target, based on either textual position descriptions or an image depicting a grid with embedded
shapes. By comparing performance across modalities, we assess the model’s ability to compose
textual reasoning with visual perception.

Cross-Task Compositional ability (RQ2). We probe whether models can integrate independently
acquired skills by composing geometric and spatial reasoning in a single task. Here, we evaluate
whether models trained on each skill individually can solve questions requiring both, such as
computing the total area of a target shape and the shape closest to the target. We test VLM under
both pure-text and multimodal settings to compare the compositional ability of different input types.

Compositional OOD Generalization (RQ3). To evaluate whether compositional reasoning extends
to variants of seen tasks, we develop OOD tasks that modify the objective of individual task, so as
the compositional ones. For example, instead of asking for the total area, the model must identify
the largest area (for geometric reasoning), or select the farthest shape rather than the nearest (for
spatial reasoning). In the compositional OOD setting, models are asked to perform combined tasks
using these novel objectives (e.g., compute the area of the larger of between the target shape and the
farthest shape of it), probing compositional ability in a more challenging setting.

5



This benchmark provides a unified and controlled evaluation for diagnosing cross-modal and cross-
task generalization, as well as robustness to distributional shifts. We present the detailed composition
for each of the tasks in Table 1. More specifically, we generate 4K samples for each individual type
of data in training and 500 samples for evaluation. For instance, for Cross-Model Composition task,
we mix 4K PT-GR and 4K PT-SR data to train a VLM, and test it on 500 PT-GR, 500 PT-SR, etc.
The proposed ComPABench directly supports our investigation into the compositional abilities of
current reasoning VLMs under different post-training strategies. More details about the construction
of ComPABench is provided in the supplementary materials.

4.2 Experiment Settings

To evaluate the effect of different post-training strategies on compositional generalization, we conduct
all experiments using backbone models: Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct.
For training configurations, we apply consistent hyperparameters: a per-device batch size of 1, a
learning rate of 1e−6, and a total of 1 training epoch. For RL experiments, we generate 8 completions
per prompt in training. And we set the scale before KL divergence constraints to 0, as we observe
a dramatic performance degradation with KL divergence in the objective of optimization. All
experiments are conducted on 4 NVIDIA H100 GPUs. Our implementation of GRPO is based on the
open-source R1-V1.

4.3 Evaluation Result

In this subsection, we present experimental results answering the three research questions introduced
previously.

4.3.1 RQ1: Cross-Modality Compositional Generalization

Figure 3: Performance comparison when post-trained with pure-text and evaluated with either
pure-text or image-format(multi-modal) questions.

Pure-text to multimodal generalization gap. We first evaluate whether reasoning skills acquired
from pure-text training transfer effectively to visual input at inference time as shown in Figure 3.
While the original Qwen2.5-VL models (without post-training) already show high accuracy on the
proposed pure-text tasks, SFT boosts performance in the pure-text modality generally, reaching
near-perfect accuracy for the grid position task (99.2% for 3B and 99.8% for 7B), and maintains
similar performance or improves moderately for shape area task. However, the models trained solely
on pure-text data fail dramatically when tested on the corresponding multimodal tasks, dropping
sharply to 13% (3B) and 16.2% (7B) on shape areas, and to just 4.8% (3B) and 4.2% (7B) on grid
positions. This large accuracy gap (exceeding 94 points in the worst case) indicates that purely textual
training alone does not inherently enable visual reasoning for SFT post-training, despite semantic
alignment between tasks.

Moderate improvement with RL training. RL generally achieves competitive performance com-
pared to SFT in the pure-text modality after pure-text training, with only one notable exception

1https://github.com/Deep-Agent/R1-V
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Figure 4: Trend of multi-modal performance without and with pure-text training initialization.

where RL underperforms SFT (82% vs. 99.2% on 3B grid position tasks). Despite this, RL enhances
multimodal accuracy compared to pure-text-only SFT models. For instance, RL improves multimodal
shape area accuracy from 20.8% to 28.0% (7B), yet still far below the pure-text setting. On the
grid-position multimodal task, RL yields only modest improvements (6.2% for 3B and 5.2% for 7B),
barely surpassing the performance of the original base model. These results indicate that while RL
enables partial compositional generalization from reasoning skills acquired on text to multimodal
visual tasks, its effectiveness remains limited when trained exclusively on textual data.

Impact of initializing multimodal training with pure-text priors. To better understand how
pure-text training influences subsequent multimodal reasoning, we further examine models initialized
with pure-text reasoning priors before multimodal training as shown in Figure 4). In this scenario,
initializing multimodal RL with models already trained on pure-text data significantly enhances visual
task performance. Specifically, for the 3B grid-position task, accuracy increases substantially from
49.6% (direct multimodal RL) to 64.4% (text-initialized multimodal RL). In contrast, the beneficial
effect of pure-text initialization is minimal or even slightly detrimental for SFT (91.8% versus 89.6%
on Grig Position for 7B model). This discrepancy between RL and SFT likely arises because, during
multimodal SFT training, the reasoning path is explicitly provided in the <think> block preceding
the answer, whereas RL must discover the correct reasoning path solely from final-answer supervision.
Therefore, initializing RL with text-trained models, where semantics closely match, may help the
model more efficiently converge toward the appropriate reasoning strategy.

These findings collectively confirm that pure-text reasoning capabilities, even when trained to
near perfection, do not automatically generalize to multimodal inputs. RL-based training provides
moderate improvements over pure-text SFT but is insufficient by itself. Importantly, initializing
multimodal RL from a pure-text reasoning model can enhance performance, suggesting an effective
strategy for scenarios where multimodal data is limited or costly.

4.3.2 RQ2: Compositional Reasoning from Independently Acquired Skills

Pure-text compositional performance. In the pure-text setting (left column of Fig. 5), the original
Qwen2.5-VL models (without additional post-training) already exhibit moderate compositional
capabilities, achieving 49.4% accuracy (3B) and 46.4% accuracy (7B). However, SFT on individual
geometric and spatial reasoning tasks separately severely impairs compositional accuracy, dropping
performance drastically to just 0.6% (3B) and 2.2% (7B), despite nearly perfect accuracy on each
sub-skill individually. This catastrophic forgetting indicates that standard SFT actively disrupts the
model’s inherent compositional capability. In contrast, RL with a final-answer reward substantially
improves compositional reasoning, raising accuracy significantly to 93% (3B) and 81.2% (7B). Thus,
RL effectively preserves and enhances compositional generalization in text-only setting for VLMs.

Multimodal compositional performance. In the multimodal setting (right column of Fig. 5), the
original models (without any multimodal post-training) struggle significantly, achieving low accuracy
(5.8% for 3B and 13% for 7B). Similar to the pure-text case, multimodal SFT also fails, reaching only
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Figure 5: Comparison of Results for compositional reasoning from independently acquired skills.

2.2% (3B) and 7.2% (7B), indicating that standard SFT alone does not enable effective cross-task
multimodal compositional reasoning. While multimodal RL training improves upon SFT, achieving
17.4% (3B) and 31.2% (7B), it remains far below pure-text RL levels, highlighting inherent challenges
in multimodal compositional reasoning for cross-task scenario.

Limitations of SFT-init RL. Initializing multimodal RL training from an SFT checkpoint (SFT-init
RL) does not enhance compositional performance; instead, accuracy remains extremely low (2.6%
for 3B, dropping to 1.0% for 7B). This indicates that RL struggles to correct flawed compositional
strategies established by prior SFT training. We attribute this issue primarily to our hybrid training
strategy, which alternates evenly between SFT and RL updates (half-half step attribution). Although
SFT-init successfully boosts RL performance on individual tasks as expected due to explicit reasoning
path supervision during SFT, it simultaneously imposes strong biases that limit RL’s flexibility in
adjusting compositional strategies. Consequently, while SFT-init can facilitate faster learning of
individual skills, it may inadvertently hinder compositional generalization across tasks compared to
RL trained without SFT initialization.

Impact of progress-reward grounding (RL-Ground). Motivated by these failures, we explore a
strategy that explicitly targets visual-to-text alignment and reasoning decomposition. Our proposed
potential solution, RL-Ground, combines two key components: (1) a <caption> block that forces
the model to first describe visual content in natural language before entering the reasoning stage,
and (2) a fine-grained progress reward that provides supervision at the level of intermediate vision-
grounded reasoning (e.g., correct shape area computation or distance estimation), rather than only at
the final answer.

2,4,h=6S=2

3✕4

What is the total 
area of all shapes 
shown in the image?

<caption>A blue 3x4 blue 
triangle, a purple trapezoid 
labeled 2, 4, h=6 and and a 
yellow square labeled s=2 on 
a white background</caption>

<think>
Triangle Area=(a×b)/2=(3×4)/2=6
Trapezoid Area = (a1+a2)×h/2=(2+4)×6/2=16
Square Area=s^2=2^2=4
Total Area=6+16+4=26
</think>

<answer>
26
</answer>

<caption>...</caption><think>...</think><answer>...</answer> +1Format Reward:

Progress Reward: 1/3 + 0 + 1/3 = +2/3 Accuracy Reward: 0

Figure 6: Illustration of RL-Ground framework.

As shown in Fig. 6, the <caption> module promotes an early transformation of visual inputs into
language, triggering the reasoning together with text instead of merely visual inputs. Simultaneously,
the progress reward allows the model to build up compositional reasoning over verifiable subgoals,
reducing reliance on sparse final accuracy reward signals. This structure leads to significant gains: RL-
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Ground achieves 28.6% (3B) and 52.8% (7B), surpassing the other evaluated post-training strategies.
We provide more ablations and training progress on RL-Ground in the supplementary materials.

These findings clearly illustrate that cross-task compositional generalization is challenging under
multimodal settings. Simple exposure to independently trained sub-skills via standard SFT or RL
alone proves insufficient, and even harmful (in the case of SFT). Instead, caption-before-think formats
coupled with dense progress reward significantly improve multimodal compositional reasoning,
offering a promising direction for future training paradigms.

4.3.3 RQ3: Generalization to OOD Compositional Task

Figure 7: Comparison of Results for generalization to OOD independent and compositional tasks.

SFT vs. RL under OOD generalization. We evaluate model robustness on OOD tasks that modify
the reasoning objective while maintaining similar multimodal inputs. Results show that SFT exhibits
task-dependent generalization: it completely fails on the largest-area task (1.8% for 3B and 1.4% for
7B), but achieves moderate accuracy on the grid position of the farthest shape task (74.2% for 3B and
27.8% for 7B), suggesting limited transferability when visual structures closely align with training
data. However, it fails on the OOD compositional task (1.2% for 3B and 2.8% for 7B), reaffirming
its lack of compositional flexibility. In contrast, RL generalizes strongly to independent OOD tasks,
achieving 95.8% (3B) and 95% (7B) on the largest-area task, and 44% (3B) and 83.8% (7B) on the
farthest shape task, comparable to or better than in-domain individual task results from Fig. 5. For the
OOD compositional task, RL reveals a scale-dependent trend: while it performs poorly on 3B (6.6%),
the 7B model generalizes better, achieving 40.4% and surpassing its in-distribution compositional
performance. These results indicate that while SFT’s generalization is brittle and task-specific, RL
better supports abstract reasoning transfer, particularly at larger model scales.

RL-Ground achieves robust generalization. RL-Ground consistently achieves high accuracy across
all OOD tasks. For individual OOD task, it outperforms all other methods, reaching 83.2% (3B) and
88.6% (7B) on the farthest shape task(Grid Position OOD). RL-Ground performs merely slightly
behind the original RL method in Shape Area OOD task. Notably, RL-Ground also demonstrates
best performance on the OOD compositional task, achieving 38% on 3B and 52.8% on 7B model,
both matching or exceeding its in-domain compositional performance. These results confirm that
combining caption-before-think with progress reward not only enhances in-distribution compositional
ability, but also significantly improves robustness to unseen task objectives.

In a nutshell, while SFT exhibits limited and inconsistent generalization under OOD shifts, RL gener-
alizes well to new reasoning objectives, particularly at larger model size. RL-Ground demonstrates
the strongest and most stable generalization across all settings, showing clear advantages for both
individual and compositional OOD tasks.

4.4 Generalization and Grounding Analysis of RL-Ground

While RL-Ground was developed and evaluated on synthetic tasks from ComPABench to facilitate
controlled analysis, the techniques it introduces are broadly applicable to real-world VQA settings.
In particular, the use of explicit visual grounding via the <caption> step and step-wise progress
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reward are not bound to specific data domains. These mechanisms address fundamental challenges in
VLMs such as compositional reasoning, grounding robustness, and sparse reward learning.

To validate that RL-Ground is not overly tailored to synthetic setups, we conduct two complementary
studies. First, we introduce two auxiliary visual grounding tasks, Shape Area Grounding and Grid
Position Grounding. The two tasks isolate grounding ability from high-level reasoning. In Shape
Area Grounding, the model is prompted with a question such as “What is the area of the red triangle?”
requiring it to detect the correct shape, recognize its geometry, and compute the corresponding area.
Grid Position Grounding challenges the model to locate an object based on color and shape and return
its precise row and column index on a grid. Both tasks demand perception and test whether the model
extracts the relevant visual facts without performing full reasoning chains.

Table 2 reports results across grounding and reasoning tasks for all evaluated strategies. RL-Ground
achieves high scores in both grounding subtasks with 96.2% on Shape Area Grounding and 88.6% on
Grid Position Grounding, demonstrating its superior visual grounding alignment via the <caption>
step and step-wise reward optimization. These improvements directly translate into the highest
compositional reasoning accuracy (52.8%), validating the hypothesis that strong grounding enables
generalizable multi-hop reasoning.

Interestingly, while standard RL already provides significant gains over SFT with a substantial boost
in SA Grounding (96.6% vs. 1.2%) and GP Grounding (74.8% vs. 65.4%), the RL-Ground variant
consistently outperforms both, indicating the added benefit of incorporating explicit grounding and
structured rewards. This performance trend mirrors the results on the compositional task, where RL-
Ground again leads by a wide margin, affirming that improved visual grounding is tightly correlated
with stronger generalization and reasoning capabilities.

Table 2: Evaluation of VLMs across grounding and compositional reasoning tasks. “SA” = Shape
Area, “GP” = Grid Position. RL-Ground achieves the strongest visual grounding and generalization.

Model SA SA Grounding GP GP Grounding Compositional

Qwen2.5-VL-7B-Instruct 20.8 89.4 4.8 24.4 13.8
SFT 73.6 1.2 91.8 65.4 7.2
RL 74.6 96.6 83.2 74.8 31.2
SFT-init-RL 76.6 1.2 89.8 43.6 1.0
RL-Ground 73.8 96.2 88.4 88.6 52.8

Beyond ComPABench, we assess whether RL-Ground generalizes to real-world language patterns.
We perform a zero-shot evaluation on the Geometry3K dataset [Lu et al., 2021], which is a natural
language-based VQA benchmark involving spatial and geographic reasoning. RL-Ground, trained
only on synthetic data, achieves 21.2% accuracy, outperforming the base Qwen2.5-VL-3B-Instruct
(14.8%), SFT (9.2%), and RL-only (17.8%) models. This demonstrates that caption-before-reasoning
and progress reward confer robustness that transfers across tasks and domains.

5 Conclusion

We introduce ComPABench, a benchmark for evaluating compositional ability in VLMs across
cross-modal, cross-task, and OOD settings. Inspired by recent RLVR progress in language models,
we assess whether similar training strategies improve compositional reasoning in VLMs. Through
comparisons of SFT, RL, and SFT-initialized RL, we find that RL better integrates independently
learned skills, especially in cross-task and OOD scenarios. Yet, compositional reasoning with
visual inputs remains challenging. Our proposed RL-Ground strategy, combining caption-before-
reasoning and progress rewards, yields strong in-distribution and out-of-distribution gains in terms
of compositional ability across tasks, underscoring the value of structured prompting and grounded
supervision for improving the compositional generalization of multimodal reasoning. To further
understand its effect, we evaluate RL-Ground on auxiliary visual grounding tasks and find that
it substantially improves grounding fidelity compared to baselines, which in turn correlates with
higher compositional performance. Moreover, RL-Ground generalizes effectively to real-world
visual question answering, despite being trained only on synthetic data. These findings highlight the
transferability of visual-grounded RL and point to new directions for robust multimodal reasoning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Explicitly stated in the last two paragraphs of Sec 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Limitations section in supplementary materials.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13



Justification: no theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: as seen in experiment settings at Section 4.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code and data are provided in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As seen in Sec 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Inference has run for 3 times to get the average score for inference, but no
error bar is reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As seen in Sec 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As seen in Broader impacts section in supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed dataset has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The appropriate license is included for each asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: It includes in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: As seen in Sec 1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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