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ABSTRACT

Do machines and humans process language in similar ways? A recent line of re-
search has hinted in the affirmative, demonstrating that human brain signals can be
effectively predicted using the internal representations of language models (LMs).
This is thought to reflect shared computational principles between LMs and hu-
man language processing. However, there are also clear differences in how LMs
and humans acquire and use language, even if the final task they are performing
is the same. Despite this, there is little work exploring systematic differences be-
tween human and machine language processing using brain data. To address this
question, we examine the differences between LM representations and the human
brain’s responses to language, specifically by examining a dataset of Magnetoen-
cephalography (MEG) responses to a written narrative. In doing so we identify
three phenomena that, in prior work, LMs have been found to not capture well:
emotional understanding, figurative language processing, and physical common-
sense. By fine-tuning LMs on datasets related to these phenomena, we observe
that fine-tuned LMs show improved alignment with human brain responses across
these tasks. Our study suggests that the observed divergences between LMs and
human brains may stem from LMs’ inadequate representation of these specific
types of knowledge1.

1 INTRODUCTION

Language models (LMs) now demonstrate proficiency that may equal or even surpass human-level
performance on various benchmarks involving generating contextually relevant text (Brown et al.,
2020a), answering questions (Lewis et al., 2019), translating languages (Costa-jussà et al., 2022),
and even tasks that necessitate reasoning and inference (Dasgupta et al., 2022). This has inspired
numerous researchers to leverage LM representations to investigate and model the human brain’s
language system, positing that LMs might serve as a reliable proxy for human linguistic processes
(Abdou, 2022). Prior studies have found that human neural activity, as reflected by neuroimaging
techniques like fMRI (Jain & Huth, 2018; Toneva & Wehbe, 2019), EEG (Hale et al., 2018), MEG
(Wehbe et al., 2014b), and ECoG (Goldstein et al., 2022), can be effectively predicted using rep-
resentations from language models such as BERT (Devlin et al., 2018) and GPT-2 (Radford et al.,
2019b). This correlation is hypothesized to stem from the shared computational objective of both
LMs and the human brain: predicting subsequent words based on prior context (Schrimpf et al.,
2021).

However, besides evident behavioral similarities, the extent to which LMs and human brains align
functionally in language processing remains an open question. Essentially, the methods that LMs
and humans use to acquire language are very different. LMs primarily learn through recogniz-
ing statistical regularities in surface-level linguistic symbols, whereas humans may rely on more
structured linguistic principles. Additionally, LMs that are confined to linguistic data may fail to
ground linguistic symbols in real-world contexts. This grounding is essential for humans to under-
stand language within a broader context (Harnad, 1990; Bender & Koller, 2020; Bisk et al., 2020a).
Furthermore, the contexts where LMs and humans learn language are markedly different. While
humans often communicate through active inquiry, expressing needs, and scaffolding conversations

1Data and code are available at anonymized repository: https://anonymous.4open.science/r/
divergence_MEG-F647
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Figure 1: Schematic of our experimental approach. The LM takes as input the current word along
with its preceding context to produce the current word’s embedding (last hidden layer). This embed-
ding is then used as input to a ridge regression model to predict the MEG responses associated with
the current word. The Mean Squared Error (MSE) between the predicted and actual MEG responses
is calculated. Finally, an LLM-based hypothesis proposer is employed to formulate natural language
hypotheses explaining the divergence between the language model and the human brain.

(Kuhl, 2011), LMs are predominantly trained as passive recipients of raw text data. Consequently,
LMs may struggle with comprehending social pragmatics and the nuances of words whose meanings
fluctuate across different social contexts (Mahowald et al., 2023).

We present the first endeavor, to our knowledge, to systematically explore the differences between
human and machine language processing using brain responses recorded by Magnetoencephalogra-
phy (MEG) as participants engage in reading narratives. Our main contributions are as follows:

1. In contrast to prior studies focusing on the similarities between LMs and human brains, our
research emphasizes their differences. Leveraging the high temporal resolution of MEG,
we monitor the temporal progression of errors in LM predictions on a word-by-word basis
(§2).

2. Explaining the prediction errors for every word is challenging due to the vast amount of
text. Instead of manually formulating hypotheses, we adopt an LLM-based method that
automatically proposes natural language hypotheses to explain the divergent responses be-
tween human brains and language models (§3). The top candidate explanations are related
to emotion, figurative language, and physical commonsense (§4).

3. We present evidence that fine-tuning LMs on tasks associated with these three identified
phenomena can align them more closely with human brain responses. This implies that
the observed divergences between LMs and human brains may stem from LMs’ inadequate
representation of these specific types of knowledge (§5).

2 PREDICTIVE MEG MODEL

2.1 DATA PREPARATION AND PREPROCESSING

While many studies investigating the correlation between brain responses and language models uti-
lize fMRI recordings (e.g., Caucheteux et al., 2023; Jain et al., 2020), the limitation of fMRI is its
relatively low temporal resolution, which is much coarser than the time required to process individ-
ual words. Therefore, we used a MEG dataset (Wehbe et al., 2014b; Wu et al., 2022) with eight
participants reading Chapter 9 of Harry Potter and the Sorcerer’s Stone. A total of 5,176 words
were sequentially displayed on the screen, with each word being exposed for a fixed duration of 500
milliseconds. In addition, we included data from four participants who read Chapter 10 of the same
book, consisting of 4,475 words. This additional data was used as a held-out test set for validation2.

2This data was obtained upon request from the authors of Wehbe et al. (2014b).
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Figure 2: Pearson correlation of actual MEG responses with those predicted by the LM (evaluated
on the test set). The displayed layout is a flattened representation of the helmet-shaped sensor array.
Deeper reds indicate more accurate LM predictions. Language regions are effectively predicted in
language processing time windows (refer to §2.3 for more details).

MEG data were collected from 306 channels at 102 cranial points, and sampled at a rate of 1 kHz.
The acquired data underwent preprocessing procedures using the Signal Space Separation (SSS)
method (Taulu et al., 2004) and its temporal extension, tSSS (Taulu & Simola, 2006). The signal was
then time-locked with individual words and down-sampled into non-overlapping 25ms time bins.
Given the typical low Signal-to-Noise Ratio (SNR) associated with MEG, we adopted a denoising
technique (Ravishankar et al., 2021) that takes advantage of cross-subject correspondences to get an
aggregated, denoised version of MEG responses (refer to Appendix A for more details).

2.2 PREDICTING MEG RESPONSES FROM LM REPRESENTATIONS

A substantial number of recent studies exploring the correlation between brain responses and LMs
have employed GPT-2 (Pasquiou et al., 2022; Caucheteux et al., 2022; 2023; Toneva et al., 2022).
To ensure consistency and comparability with these studies, we utilized the pre-trained GPT2-xl
model with 1.5B parameters, sourced from HuggingFace’s transformers library (Wolf et al.,
2020a), as the backbone language model. For every word w, we provided the model with a context
consisting of the preceding 99 words. We used the last hidden layer of the LM, subsequently referred
to as LM embeddings, to predict the MEG responses associated with each word (Figure 1).

Building upon established research that demonstrates the capability of LM embeddings to linearly
predict MEG responses (Wehbe et al., 2014b; Jain & Huth, 2018; Caucheteux & King, 2022a), we
utilized a ridge regression model as the encoding model. Considering the time-correlated nature of
MEG data, it was essential to maintain the temporal structure when partitioning the data for training
and testing purposes (Yang et al., 2019). Therefore, we implemented a 10-fold cross-validation
procedure to obtain LM predictions of MEG responses. For split i, we set aside one fold as the test
set Li,test and fitted a linear ridge regression model with weight matrix W i and bias bi using the
remaining folds, denoted as Li,train. The regularization parameters were chosen via nested cross-
validation. Following model training, we applied the trained weight matrix and bias to predict the
brain responses from the LM outputs for the test set:

M̂
i,test

LM = Li,testŴ
i
+ b̂

i

Finally, the test predictions from all folds were concatenated to form the comprehensive prediction
of MEG responses from the LM:

M̂LM = concati[M̂
i,test

LM ]

2.3 SPATIO-TEMPORAL PATTERNS OF CORRELATION BETWEEN LMS AND MEG

As a sanity check, we calculated the Pearson correlation between the actual MEG responses and
those predicted by the language model to determine if the model can effectively predict the brain
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He had been looking forward to learning to fly more than anything else.

"Of course he has," said Ron, wheeling around.

But Neville, nervous and jumpy and frightened of being left on the ground, pushed off hard
before the whistle had touched Madam Hooch's lips.

most divergent least divergent

1.

2.

3.

Figure 3: Sample sentences from the dataset, with colors indicating prediction error levels. Each of
the five colors corresponds to a 20-percentile range of words from the entire dataset.

areas3 and time course of language processing. As shown in Figure 2, we observe a temporal pro-
gression of accurately predicted areas after word onset. The prediction performance peaks first in the
occipital lobe between 75-100ms. Given that LM embeddings encode information (e.g., word fre-
quency) correlated to the number of letters in a word, and since MEG is sensitive to abrupt changes in
visual inputs, we attribute this early peak to the initial visual perception of a word. This is followed
by heightened prediction performance in the bilateral temporal lobe between 175-250ms, when we
expect semantic processing to start. This observation aligns with previous research indicating that
most language experiments with naturalistic stimuli reveal bilateral language representations (We-
hbe et al., 2014a; Huth et al., 2016; Deniz et al., 2019; Toneva et al., 2022). Finally, between 250-
375ms, the anterior temporal lobe and frontal lobe show increased prediction performance, which
is likely related to further semantic processing. This sequential pattern of prediction performance
replicates the spatio-temporal dynamics of language processing found in previous literature (Wehbe
et al., 2014b; Toneva et al., 2022).

3 IDENTIFYING PHENOMENA OF INTEREST

Our primary objective is to investigate the elements of MEG responses that cannot be explained well
by the LM. We work with an average of cleaned MEG responses from a group of subjects, which we
anticipate should illustrate the common elements of language processing across individuals. There-
fore, for words where MEG responses are not well predicted, it is likely that this marks a genuine
divergence between human brains and the language model. Leveraging the high temporal resolution
of MEG, we computed the Mean Squared Errors (MSEs) between actual and predicted MEG re-
sponses for each individual word on channels that demonstrated statistically significant correlation4.

3.1 AUTOMATICALLY DISCOVERING DIFFERENCES BETWEEN BRAIN AND LM
PREDICTIONS

Given the vast amount of text, manual pattern discovery becomes challenging (refer to Figure 3 for
sample sentences). To discover subtle differences between MEG responses and LM predictions,
we used a method that automatically describes differences between text corpora using proposer and
verifier LMs (Zhong et al., 2023). This system consists of first prompting an LLM (GPT-3; Brown
et al. (2020b)) with a number of samples from two corpora (D0, D1) to generate many hypotheses
on how the first corpus differs from the second, and then using a fine-tuned validator model (FLAN-
T5-XXL; Chung et al. (2022)) to validate how often each proposed hypothesis is true based on pairs
from each corpus sampled from a held-out set. Specifically, the verifier is presented with a prompt
containing two sentences from D0 and D1, and asked whether or not the hypothesis is true, and
this is repeated across the development set for each hypothesis. We note that although hypotheses
proposed by GPT-3 may not all be well-supported, especially given that not all sentences fit in its
context window, this was accounted for by the method. Namely, verifying hypotheses after they are
proposed is a much easier problem.

3These areas include the inferior frontal gyrus, superior temporal gyrus, certain sections of the middle
temporal gyrus, and angular gyrus (Blank et al., 2016; Rogalsky et al., 2015; Sahin et al., 2009; Brennan &
Pylkkänen, 2012; Friederici, 2002; Visser et al., 2010; Rogalsky & Hickok, 2009).

4See Appendix B for the number of significant channels across time.
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Table 1: Top 10 hypotheses found by the hypothesis proposer from Chapter 9, ranked by validity
Hypothesis Theme Validity p-value

includes a reference to nature or the outdoors Physical 0.2355 0.0172
employs a reference to a mythological creature or figure Physical 0.2337 0.0249
contain a reference to a character’s fear or anxiety Emotion 0.1847 0.0387
employ figurative language or metaphor Figurative 0.1811 0.0678
uses a rhetorical question - 0.1757 0.0925
contains a reference to a magical object or creature Physical 0.1641 0.0855
contain figurative language, like metaphors, similes, and personification Figurative 0.1641 0.0855
contains metaphors or figurative language Figurative 0.1525 0.0359
mention a character’s struggle to overcome a challenge Emotion 0.1356 0.0462
contain rhetorical questions - 0.1285 0.1487

This process of hypothesis proposal and verification was repeated across 3 cross-validation folds.
We used entire sentences as input to the proposer. We identified the top 100 words where the
brain responses were most accurately predicted by the LM, as opposed to the 100 least accurately
predicted words. The sentences encompassing these words were labeled as D0 and D1. We then ran
the pipeline on these sentences.

The top ten hypotheses ranked by validity5 are listed in Table 2. It should be noted that due to
the dataset’s relatively small size, some of the p-values may not be statistically significant. To
validate our findings, we extended our analysis to Chapter 10 of the same book (Appendix D). This
replication produced slightly varied but fundamentally similar topics to those discovered in Chapter
9. Importantly, these hypotheses resonate with conclusions drawn in prior research, as detailed in
§4. We identify two primary differences between the language model and the human brain: the
processing of emotion and figurative language. Other hypotheses also highlight aspects related to
characters, magical creatures, and nature – we extend our analysis by condensing these into a single
hypothesis encompassing physical commonsense.

4 SELECTED PHENOMENA

To comprehend domains like emotion, figurative language, and physical commonsense, humans use
a broad spectrum of contextual knowledge. We briefly discuss the insights and challenges high-
lighted in the existing neuropsychological and NLP literature regarding these domains.

4.1 EMOTIONS AND SOCIAL INTELLIGENCE

Emotions extend beyond introspection; they encompass predicting the feelings of others. Conse-
quently, a comprehensive understanding of emotions involves social and emotional intelligence re-
garding others (Salovey & Mayer, 1990). Under this view, emotions are intrinsic to the human expe-
rience and pervasively interact with other mental facilities, including language (Satpute & Lindquist,
2021). Neuropsychologically, research on social cognition has identified a network of brain regions
that support understanding other people’s intentions, actions, and emotions (Saxe et al., 2006).

Within NLP, creating agents with social and emotional intelligence has been a longstanding goal
(Gunning, 2018; Paiva et al., 2021). However, at present, LLMs still fall behind human abilities for
inferring the mental states and emotions of others (“theory-of-mind” tasks) (Sap et al., 2022).

4.2 FIGURATIVE LANGUAGE

Figurative language, often expressed through metaphors, similes, irony, and sarcasm, conveys mean-
ings beyond the literal sense (Shutova, 2011). Neuropsychologically, the precise locus for processing
figurative language remains debated, in part because of the difficulty of designing experiments that
correctly match between metaphors and control sentences, and take into account aspects such as

5Validity measures the difference in certainty that the hypothesis is true between the two corpora, see Zhong
et al. (2023) for more details.
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Figure 4: Performance comparison of the base model with models finetuned on (A) emotion, (B)
figurative, and (C) physical datasets. Each panel’s y-axis shows the percentage of channels in the
finetuned model with better, worse, or non-significantly different performance compared to the base
model. Finetuned models outperform the base model during language processing time windows.
Refer to Appendix H for a detailed view of each channel plotted.

familiarity, difficulty, and metaphor types (Cardillo et al., 2010; Klooster et al., 2020). Nonetheless,
there is growing evidence indicating a network within the left hemisphere dedicated to figurative lan-
guage processing (Citron, 2020), which is consistent with the general left-hemispheric localization
for language processing.

Within NLP, figurative language has not been a widely-investigated topic, in part because it relies
on a wide range of cultural and contextual knowledge that is not directly carried by language. As
such, language models currently underperform humans in both the interpretation and generation
of figurative language (Chakrabarty et al., 2022; Liu et al., 2022) and the correct represention of
idiomatic phrases (Dankers et al.; Liu & Neubig, 2022).

4.3 PHYSICAL COMMONSENSE

Physical commonsense refers to knowledge about the physical properties of everyday objects and
physical phenomena (Forbes et al., 2019; Bisk et al., 2020b). Neuropsychologically, language is
not the primary channel through which humans acquire commonsense physical knowledge. Instead,
humans typically rely on sensory inputs and interactions with their environment (Baillargeon, 1994).
Notably, the category of a physical object affects which brain regions are recruited when interacting
with that object. For example, interacting with people activates the theory of mind areas (Saxe et al.,
2006), the visual face areas (Sergent et al., 1992; Kanwisher et al., 1997), and body areas (Downing
et al., 2001), while interacting with corridors while navigating will recruit the visual place areas
(Epstein & Kanwisher, 1998) and spatial navigation areas. Interestingly, reading about objects has
been shown to activate the visual regions that are recruited when interacting with these objects
(Wehbe et al., 2014a; Huth et al., 2016).

Within NLP, acquiring physical commonsense knowledge poses a notable challenge for language
models. While these models can potentially learn representations capturing specific physical prop-
erties of the world, such as an object’s color or a game board’s state (Abdou et al., 2021; Li et al.,
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2023), it remains unclear whether text-based representations can truly capture the richness and com-
plexity of physical commonsense as exhibited by humans (Forbes et al., 2019; Bisk et al., 2020b).

5 IMPROVING BRAIN ALIGNMENT VIA FINE-TUNING

We hypothesize that the LM may not capture the three language phenomena with sufficient expres-
siveness, hindering its ability to predict associated brain responses. Drawing inspiration from Aw &
Toneva (2023), where fine-tuning on a narrative dataset enhanced brain alignment, especially for ref-
erences to story characters, we fine-tuned the GPT-2 XL model on datasets specific to each of these
phenomena to see if targeted fine-tuning could enhance the model’s alignment with brain activity.

Furthermore, we examined whether domain-specific fine-tuning would specifically bolster the
model’s capability in predicting MEG responses associated with words from that domain, as com-
pared to words outside that domain. To this end, we recruited three raters to annotate Chapter 9 of
Harry Potter across the three domains. We release these annotations as a resource for the dataset to
facilitate further analysis. Details on the annotation process can be found in Appendix E. Examples
of each phenomenon within the Harry Potter text can be found in Appendix F.

5.1 DATASETS

Emotion We study emotion using the Social IQa dataset (Sap et al., 2019). This dataset contains
questions about peoples’ feelings and motivations in a given situation. Although some questions
focus more on social norms than emotion, the dataset provides detailed scenarios and contains some
emotional narratives, which may match with situations found in fiction.

Figurative Language We study figurative language using the Fig-QA dataset (Liu et al., 2022),
which contains inferences based on figurative phrases. These phrases were written by crowd work-
ers, who were given instructions to create creative yet clear metaphors.

Physical Commonsense We study physical commonsense using the PiQA dataset (Bisk et al.,
2020b). This dataset contains goal-driven questions based on everyday situations. These questions
were taken from the website instructables.com, where people share DIY project instructions.

We also provide examples from each dataset in Table 2.

Table 2: Datasets for Fine-Tuning with Sample Questions and Answers (Correct Answer in Bold)
Dataset Type Num train Num options Sample question Sample answers

Social IQa Emotion 33.4k 3 Sydney had so much
pent up emotion, they
burst into tears at work.
How would Sydney
feel afterwards?

1. affected
2. like they released
their tension
3. worse

Fig-QA Figurative 9.6k 2 Her word had the
strength of titanium.

1. her promises can
be believed.
2. her promises cannot
be trusted

PiQA Physical 16.1k 2 When boiling butter,
when it’s ready, you
can

1. Pour it onto a plate
2. Pour it into a jar

5.2 FINETUNING SETUP

In order to keep the architecture of fine-tuned models consistent with the base model, we format the
multiple choice task as N language modeling tasks, where N is the number of options. Specifically,
for the combined context and question x, we directly concatenate each possible multiple-choice
answer {y1, ..., yN} to x to form N different sentences. After passing the concatenated sequences
through the model, we sum the logits of all tokens corresponding to each multiple-choice option
to obtain a score proportional to its log like-lihood. These scores are then gathered into a size (1,
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A B C

Figure 5: Comparison of improved MSE between (A) emotional, (B) figurative, and (C) physical
words and those outside each category. Positive values denote lower MSEs in the fine-tuned model.
Shaded region indicates standard error. Asterisks denote time points with significant differences
between the two groups (Student’s t-test with FDR correction, p=0.05).

N ) tensor, and cross-entropy loss relative to the correct multiple choice answer is used to train the
model. Further details on the fine-tuning setup can be found in Appendix C.

5.3 COMPARING FINE-TUNED MODELS WITH THE BASE MODEL

We compare the Pearson correlation between actual brain data and the predictions from the base and
the fine-tuned model to compare the two models. To identify channels with statistically significant
differences, we calculated empirical p-values by contrasting the true correlation value with 10,000
simulated ones obtained by permuting the brain data. Details can be found in Appendix G.

Fine-tuned models are better aligned with the brain on all three tasks. As illustrated in Fig-
ure 4A, the model fine-tuned on the emotion dataset exceeds the base model in performance across
the majority of channels within the 50ms to 300ms time interval post word onset. Notably, this
interval corresponds to the language processing time windows, as identified in §2.3. Although the
fine-tuned figurative model does not significantly outperform the base model in the early and late
stages, it aligns better with brain activity in the majority of channels during the 100ms-225ms in-
terval post word onset (Figure 4B). In a similar vein, the fine-tuned physical model exceeds the
base model’s performance in almost all channels during the 50-275ms interval post word onset (Fig-
ure 4C). However, interestingly, almost all channels are worse than the base model outside this
interval. This time selectivity indicates that the improvements of the fine-tuned model are likely
tailored towards linguistic comprehension rather than broader brain functionalities.

Fine-tuning improves alignment more for words annotated with that category. We compared
the reduction in prediction error for words annotated within each category and words outside each
category by computing the difference in MSE between the model fine-tuned on the corresponding
task and the base model. As demonstrated in Figure 5A, prediction errors for emotion words ex-
hibit a significant reduction compared to non-emotion words 200-275ms post word onset. Figurative
words also seem to generally yield a greater reduction in MSE than non-figurative words though we
don’t observe any significant time window (Figure 5B). Additionally, there is a significant improve-
ment in MSE for physical words over non-physical words 150-225ms post word onset (Figure 5C).

Improvements are not related to increased language-modeling ability. Prior work has found that
LMs with lower perplexity can better predict brain activity (Schrimpf et al., 2021). Therefore, one
confounding factor is that the additional fine-tuning may have improved the language model’s ability
to perform the LM task in general, leading to improved alignment. To rule out this possibility, we
performed 3-fold cross-validation on Harry Potter and the Sorcerer’s Stone, excluding Chapters 9
and 10, which were used as data in this study. We trained the base model, as well as the finetuned
emotion and figurative models, on the train set in each fold with the language modeling objective,
and found that the final average losses on the test sets were similar (See Appendix I for details).
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6 RELATED WORK

Numerous studies have found that LM hidden states can linearly map onto human brain responses
to speech and text measured by MEG, EEG, and fMRI (Wehbe et al., 2014b; Hale et al., 2018; Jain
& Huth, 2018; Abnar et al., 2019; Jat et al., 2019; Gauthier & Levy, 2019; Toneva & Wehbe, 2019;
Caucheteux & King, 2022a; Jain et al., 2020; Toneva et al., 2022; Aw & Toneva, 2022; Oota et al.,
2023; Sun et al., 2023;?; Oota et al., 2022).

At a more foundational level, studies have identified shared computational principles between LMs
and human brains. Evidence suggests that both human brains and LMs are perpetually engaged
in predicting the subsequent word (Schrimpf et al., 2021). LM surprisal is found to be positively
correlated with brain activation, reaching its peak approximately 400 ms post word onset (Goldstein
et al., 2022). This aligns well with N400, which denotes a decline in brain activation upon en-
countering unexpected words around 400 ms after word onset (Lau et al., 2009; Parviz et al., 2011;
Halgren et al., 2002). Moreover, LM representations can predict the hierarchy of brain responses
(Caucheteux & King, 2022b; Caucheteux et al., 2023). Despite this, Antonello & Huth (2022) have
pointed out that a high correlation between brain activity and LMs does not necessarily imply that
they operate under similar computational principles.

We not only observe this LM-brain alignment but can also actively intervene in it. Research has
demonstrated that the alignment between LMs and human brains can be improved by task-specific
fine-tuning. A notable instance is the study by Schwartz et al. (2019), where the fine-tuning of BERT
using both fMRI and MEG signals enhanced its ability to predict fMRI responses. Importantly, this
improvement was not participant-specific and could be transferred to hold-out individuals. Another
study (Aw & Toneva, 2023) showed that task-oriented fine-tuning, particularly for narrative summa-
rization, also facilitated better alignment with brain activity. Furthermore, altering the architecture
of BERT such that it aligns better with the brain improves its performance on downstream NLP
tasks (Toneva & Wehbe, 2019). These findings suggest a potentially symbiotic relationship between
enhancing task performance in LMs and boosting their alignment with brain responses.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We explore a critical question connecting language models with human neural activity: How do
LMs differ from human brains in processing language? We employed an LLM-based approach to
automatically propose hypotheses explaining why human brains and LMs diverge, and test these
hypotheses through fine-tuning language models on datasets related to these hypotheses. Emo-
tion, figurative language, and physical commonsense emerged as the three dominant themes. After
fine-tuning a base model on datasets related to these themes, we observed an improved alignment
between LM predictions and human brain responses in language processing time windows. We use
GPT-2 XL as the base model for these experiments in order to align with results in the previous
literature, but we note that our methods can easily be extended to more recent language models,
such as Llama-2 (Touvron et al., 2023).

We notice that the dataset we used for fine-tuning may present a different composition of physical
entities compared to the Harry Potter chapters, which often feature magical objects (e.g., broom-
stick), fantasy creatures (e.g., Peeves), and character names. As a result, models fine-tuned on
existing physical entity datasets might still not grasp certain information that causes the LM and
human brain to have divergent responses.

Our study reveals varying degrees of improved alignment in models fine-tuned on different tasks.
This variation may arise because fine-tuning within the language modality alone is insufficient for
fully aligning a language model’s understanding with human experiences. Incorporating additional
modalities, such as visual and motor information, could be essential for capturing a broader spectrum
of human knowledge. In future research, it would be beneficial to delve into whether the alignment
can be enhanced by fine-tuning LMs across multiple modalities. This could offer insights into not
only enhancing LM-brain alignment but also guiding the future design and evolution of LMs.
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A MEG PRE-PROCESSING

Because of the typical low Signal-to-Noise Ratio (SNR) associated with MEG, we adopted a de-
noising technique (Ravishankar et al., 2021) that takes advantage of cross-subject correspondences
to get an aggregated, denoised version of MEG responses.

Specifically, this process involves modeling the MEG responses Mt of subject t as a linear function
of the MEG responses Ms from a source subject s:

M̂t←s = Ŵt←sMs + b̂t←s

We estimated the target subject’s MEG responses from all other subjects:

M̂t =
1

N − 1

∑
s∈S,s ̸=t

M̂t←s

where S is the set of subjects and N is the number of subjects. These individual estimates are then
aggregated to generate a denoised version of MEG responses:

M̂ =
1

N

∑
s∈S

M̂t

B LANGUAGE CHANNELS

We identified channels where the LM prediction has a statistically significant correlation with actual
MEG responses for each time window. This resulted in fluctuating counts of significant language
channels over time, as depicted in Figure 6.
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Figure 6: Number of significant language channels as a function of time. The number initially rises,
remains consistent for a period, and then decreases as time progresses.

C FINE-TUNING DETAILS

C.1 COMPUTATIONAL DETAILS

The model we chose to examine was GPT-2 XL, an autoregressive transformer-based model with
1.5B parameters (Radford et al., 2019a). We used the implementation in the HuggingFace library
(Wolf et al., 2020b). Models were trained separately on each of the three test sets in subsection 5.1 on
4 A6000 GPUs with 16-bit quantization and a batch size of 1 per GPU. Deepspeed with ZeRo stage
2 optimization was used in order to parallelize training (Rasley et al., 2020). The Adam optimizer
was used with a learning rate of 1e-5, betas of (0.9, 0.999), epsilon of 1e-8, and no weight decay.
Models were trained with early stopping with a patience of 3 (Kingma & Ba, 2017).

C.2 MULTIPLE-CHOICE TRAINING

Let xi represent the concatenation of the context, if applicable, and the question. Then for each
answer choice yi, we concatenate it with the question and context, and feed it to the model to obtain
a sequence of logits.

ℓi = Model(xi ⊕ yi)

Then we sum the logits corresponding to the sequence, where t ∈ [1, T ] represents the total length
of xi ⊕ yi.

scorei =
T∑

t=1

ℓi,t

Finally, we take the cross-entropy loss of these values relative to a one-hot encoding of the correct
option, where ti = 1 if option i is correct, or else 0.

Pi =
exp(logiti)∑N
j=1 exp(logitj)

L = −
N∑
i=1

ti log(Pi)

C.2.1 PERFORMANCE ON MULTIPLE-CHOICE DATASETS

We note that performance of the final model may not approach that of GPT-2 XL finetuned with an
output size of N denoting each option, as we keep the output dimension the same as the size of the
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vocabulary. However, we report the final accuracy achieved by each model on the original datasets
here.

Dataset Best epoch Accuracy (%) Baseline (random) accuracy
Social IQa 4 54.86% 33.33%

Fig-QA 1 85.1% 50.00%

PiQA 1 73.88% 50.00%

Table 3: Summary of model performance on common-sense related datasets.

D HYPOTHESES ON EXTENDED DATA

We also applied the hypothesis proposer to Chapter 10 of the Harry Potter series, with the top 10
hypotheses listed in Table 4. Notably, the topics identified showed a slight variation yet maintained
a resemblance to those discovered in Chapter 9.

E ANNOTATIONS

To decide which category a word belongs to, we employed three raters who used binary coding
to indicate if a word belonged to the target category. The consistency among raters was evaluated
using Krippendorff’s alpha. Their consistency was 0.54 for emotion, 0.44 for figurative, and 0.87
for physical. Finally, if at least two out of the three people annotated a word as fitting a category, we
counted it as belonging to that category.

E.1 ANNOTATION GUIDELINES

E.1.1 EMOTION

• Include words that depict the emotions of characters, primarily adjectives and adverbs.

• Exclude words that suggest emotions indirectly. For instance, “slam the door” shouldn’t be
annotated for emotion.

E.1.2 FIGURATIVE LANGUAGE

• Identify words that have meanings extending beyond their literal interpretations.

• Annotate similes: comparisons between two unlike entities using “like” or “as”. E.g., “I’m
free as a bird.”

• Annotate metaphors: direct comparisons made without using “like” or “as”. For instance,
“He gave a talk following mine” exemplifies the “time is space” metaphor.

Table 4: Top 10 hypotheses found by the hypothesis proposer from Chapter 10, ranked by validity
Hypothesis Theme Validity p-value

contain figurative language Figurative 0.2934 0.0072
contain references to the unknown - 0.2410 0.0312
contain phrases related to the supernatural Physical 0.2131 0.0121
include references to magic or fantasy elements - 0.2107 0.0392
contain references to the supernatural Physical 0.1967 0.0159
contain words or phrases with double meanings Figurative 0.1951 0.0568
contain references to reward or punishment Emotion 0.1795 0.0373
contain references to the mysterious - 0.1787 0.0521
describe events with suspenseful or exciting tones Emotion 0.1770 0.0743
contain unexpected or unusual words - 0.1746 0.0897
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• Annotate personification, where non-human entities are endowed with human characteris-
tics. E.g., “The sun smiled down on us.”

• Annotate hyperbole: deliberate over-exaggeration for emphasis or effect. E.g., “I am
starved to death.”

• Annotate allusions: subtle references to well-known historical, cultural, or literary figures,
places, or events. These presuppose the audience’s prior knowledge for full understanding.
An example would be, “His mistake wasn’t as grave as chopping down a cherry tree.”

E.1.3 PHYSICAL COMMONSENSE

• Annotate words referring to tangible entities, such as characters (people) and physical ob-
jects.

• Do not annotate words that represent concrete ideas but lack physical substance, like
“laughter”.

• Pronouns should also be excluded.

F EXAMPLES OF PHENOMENA IN HARRY POTTER

We give some examples of the three phenomena in the dataset according to the annotations. Words
of that category are marked in bold.

F.1 EMOTION

• Harry had never believed he would meet a boy he hated more than Dudley.

• Hermione Granger was almost as nervous about flying as Neville was.

• But Neville, nervous and jumpy and frightened of being left on the ground, pushed off
hard before the whistle had touched Madam Hooch’s lips.

F.2 FIGURATIVE LANGUAGE

• His broomstick was still rising higher and higher, and started to drift lazily toward the
forbidden forest and out of sight.

• ”Ooh, sticking up for Longbottom?” said Pansy Parkinson, a hard-faced Slytherin girl.

• His heart sank faster than he’d just dived.

F.3 PHYSICAL COMMONSENSE

• Up the front steps, up the marble staircase inside, and still Professor McGonagall didn’t
say a word to him.

• Ron had a piece of steak and kidney pie halfway to his mouth, but he’d forgotten all about
it.

• They pulled on their bathrobes, picked up their wands, and crept across the tower room,
down the spiral staircase, and into the Gryffindor common room.

G ALGORITHM FOR PERMUTATION TEST

To identify channels on which the performance of the fine-tuned model and the base model has
statistically significant differences, we calculated empirical p-values by contrasting the true correla-
tion value with 10,000 simulated ones obtained by permuting the brain data as shown in Algorithm
1. Given that we are assessing multiple hypotheses simultaneously, we also used the Benjamini-
Hochberg False Discovery Rate (FDR) (Benjamini & Hochberg, 1995) to correct for multiple com-
parisons, at level α = 0.05.
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Algorithm 1 Permutation test (for one channel, one time window)
Input: Brain data D, Prediction from base model P1, Prediction from fine-tuned model P2.

D, P1, and P2 are all of size (1, N), where N is the number of words in the dataset.
Output: pvalue
X = corr(D,P1)− corr(D,P2) ▷ Pearson correlation coefficient
Counter = 0
for i in 10,000 do

Di = permute(D) ▷ Random permutation across words
Xi = corr(Di, P1)− corr(Di, P2)
if Xi > X then

Counter = Counter+ 1
end if

end for
Compute pvalue = Counter+1

10,000+1 ▷ Empirical p value

H COMPARISON BETWEEN FINE-TUNED MODELS AND THE BASE MODEL

We provide a detailed view of the Pearson correlation of the base model and models finetuned on
emotion (Figure 7), figurative (Figure 8), and physical commonsense (Figure 9) datasets with each
channel plotted.
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Figure 7: Performance evaluation of the model fine-tuned on the Social IQa (emotion) dataset versus
the base model using Pearson correlation. Each dot represents a MEG channel. Red channels
indicate better predictions by the fine-tuned model, blue channels indicate better predictions by the
base model, and gray dots denote non-significant differences. The fine-tuned model outperforms the
base model in predicting most channels during language processing time windows.

I CROSS-VALIDATION ON LANGUAGE MODELLING TASK

We perform 3-fold cross-validation on the remaining chapters of the Harry Potter book (excluding
chapters 9 and 10), where we randomly shuffle paragraphs and assign to train:validation:test sets
respectively 77%, 16.5%, and 16.5% of the data. Paragraphs that exceeded the context length were
excluded. Both the base gpt-2 xl model as well as each model finetuned on the three domains were
trained to predict the next word for 3 epochs, with the same hyperparameters used in Appendix C.
Results on the test set for each fold are listed below. The average negative-log-likelihood loss per
token at the end of training is reported in Table 5.
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Figure 8: Performance evaluation of the model fine-tuned on the Fig-QA (figurative) dataset versus
the base model using Pearson correlation. Each dot represents a MEG channel. Red channels
indicate better predictions by the fine-tuned model, blue channels indicate better predictions by the
base model, and gray dots denote non-significant differences. The fine-tuned model outperforms the
base model in predicting most channels during language processing time windows.

Model Avg. Loss (%) ± St.dev Fold 1 Loss Fold 2 Loss Fold 3 Loss
Base 0.08795 ± 0.01707 0.09794 0.06391 0.1020

Emotion 0.08613 ± 0.03011 0.1119 0.1026 0.04388

Figurative 0.06651 ± 0.02584 0.09472 0.07252 0.03229

Table 5: Summary of language-modeling loss across cross-validation folds for models on the re-
maining chapters of Harry Potter.
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Figure 9: Performance evaluation of the model fine-tuned on the PiQA (physical) dataset versus the
base model using Pearson correlation. Each dot represents a MEG channel. Red channels indicate
better predictions by the fine-tuned model, blue channels indicate better predictions by the base
model, and gray dots denote non-significant differences. The fine-tuned model outperforms the base
model in predicting most channels during language processing time windows.
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