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ABSTRACT

Model evaluation is a crucial step in ensuring reliable machine learning systems.
Currently, predictive models are evaluated on held-out test data, quantifying aggre-
gate model performance. Limitations of available test data make it challenging to
evaluate model performance on small subgroups or when the environment changes.
Synthetic test data provides a unique opportunity to address this challenge; instead
of evaluating predictive models on real data, we propose to use synthetic data.
This brings two advantages. First, supplementing and increasing the amount of
evaluation data can lower the variance of model performance estimates compared
to evaluation on the original test data. This is especially true for local performance
evaluation in low-density regions, e.g. minority or intersectional groups. Second,
generative models can be conditioned as to induce a shift in the synthetic data
distribution, allowing us to evaluate how supervised models could perform in
different target settings. In this work, we propose SYNG4ME: an automated suite
of synthetic data generators for model evaluation. By generating smart synthetic
data sets, data practitioners have a new tool for exploring how supervised models
may perform on subgroups of the data, and how robust methods are to distribu-
tional shifts. We show experimentally that SYNG4ME achieves more accurate
performance estimates compared to using the test data alone.

1 INTRODUCTION

For machine learning (ML) to be truly useful in safety-critical and high-impact areas such as medicine
or finance, it is crucial that models are rigorously audited and evaluated. Failure to perform rigorous
testing could result in models at best failing unpredictably and at worst leading to silent failures. There
are many examples such as models that perform unexpectedly on certain subgroups (
, ) or models not generahzmg across

domams due to distributional mlsmatches ( s

, ). Understanding such model limitations is vital to 1mbue trust in ML systems as well as
guide user understanding as to the conditions in which the model can be safely and reliably used.

Many mature industries involve standardized processes to evaluate performance under a variety of
testing and/or operating conditions ( , ). For instance, automobiles make use of
wind tunnels and crash tests to assess specific components, whilst electronic component datasheets
outline conditions where reliable operation is guaranteed. Unfortunately, current approaches to
characterize performance of supervised ML models do not have the same level of detail and rigor.
Instead, the prevailing approach in ML is to evaluate only using average prediction performance
on a hold-out test set. Average performance on a test set from the same underlying distribution has
two clear disadvantages. (1) No insight into granular performance: by treating all samples equally,
we may miss performance differences for smaller subgroups. Even if we would decide to evaluate
performance on a more granular level, we may not have enough real test data to get an accurate
evaluation for small subgroups. (2) Ignores distributional shifts: the world is constantly evolving,
hence the setting of interest may not have the same data distribution as the test set. This typically
leads to overestimated real-world performance ( s ; , ).

The community has attempted to address both of these issues. (1) Granular performance:
( ) and ( ) propose using model behavioral testing methods for model
evaluation — which manually craft tests of specific model use-cases, and (2) Distributional shifts:
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Figure 1: SYNG4ME is a framework for evaluating model performance using synthetic data gen-
erators. It has three phases: training the generative model, generating synthetic data and model
evaluation. Firstly, SYNG4ME enables (P1) reliable granular evaluation when there is (i) limited real
test data in small subgroups, by (ii) generating synthetic data conditional on subgroup information
X, thereby (iii) permitting more reliable model evaluation even on small subgroups. Secondly,
SYNG4ME enables assessment of (P2) sensitivity to distributional shifts when (i) the real test data
does not reflect shifts, by (ii) generating synthetic data conditional on marginal shift information of
features X, thereby (iii) quantifying model sensitivity to distributional shift. Required inputs are
denoted in yellow.

( ) and ( ) propose benchmark datasets from different
domains for model evaluation—either by finding a real dataset in the wild or through corrupted data.
Both approaches are largely manual, labor-intensive processes. This raises the following question:

Can we define a model evaluation framework where the evaluation is both low-effort and customizable
to new datasets such that practitioners can evaluate their trained ML model(s) under a variety of
conditions, customized for their specific tasks and datasets of choice?

With the above in mind, our goal is to build a model evaluation framework with the following desired
properties (P1-P2), motivated by practical, real-world ML failure cases (cited below):

(P1) Reliable granular evaluation: we want to accurately evaluate predictive model performance

on a granular level, even for regions with few test samples. For example, evaluating performance

on (i) subgroups ( s ; s ; s ; s
;b), (1) samples of interest ( R ; s ; s ) and (iii) low-density

regions ( , ; , ; , ).

(P2) Sensitivity to distributional shifts: we want to accurately evaluate model performance and

sensitivity when the deployment distribution is different, as this often leads to model degradation

( 2 ’ 2 > ’ )’

Contributions. This paper makes the following contributions.

1. Practical model evaluation framework: We propose Synthetic Data Generation for Model
Evaluation (SYNG4ME, pronounced: “sing for me”): an evaluation framework for characteriz-
ing ML model performance for both (P1) reliable granular evaluation and (P2) sensitivity to
distributional shifts (Sec. 4). At its core, SYNG4ME uses generative models to create synthetic
test sets for model evaluation. For example, as illustrated in Fig. 1 we can generate larger test
sets for small subgroups or test sets with shifts in distribution. To the best of our knowledge,
this is the first work that focuses on synthetic data for evaluating supervised models.

2. Accurate granular performance evaluation: We find that the use of synthetic test data
provides a more accurate estimate of the true performance on small subgroups compared to
just using the small (real) test set alone (Sec. 5.1). This is especially true when for evaluating
performance on minority and intersectional subgroups, for which we introduce the intersectional
model performance matrix (Fig. 4).

3. Quantifying model sensitivity to distributional shifts: We show how synthetic test data is able
to quantify predictive model performance changes as a result of common distributional shifts
(defined in Sec. 3), both in terms of model sensitivity across the operating range (Sec. 5.2.1)
and with only high-level knowledge of the shift (Sec. 5.2.2).



Under review as a conference paper at ICLR 2023

2 RELATED WORK

This paper primarily engages with the literature on model testing and benchmarking, synthetic data,
and data-centric AI. We include an extended discussion of related work in Appendix A.

Model testing. ML models are mostly evaluated on hold-out datasets, providing a measure of
aggregate performance ( , ). Such aggregate measures do not account for underperfor-
mance on specific subgroups ( , ) or assess performance under data shifts
( , ). The ML community has tried to remedy these
issues. The first approach is to create better benchmark datasets: either synthetic such as Imagenet-C
( s ) or by collecting real data such as the Wilds benchmark ( s

). Benchmark datasets are labor-intensive to collect and evaluation is limited to specific bench-
mark tasks, hence this approach is not flexible for any dataset or task. The second approach is model
behavioral testing of specified properties of an ML model, e.g. see Checklist ( , ) or
HateCheck ( s ). These methods are also labor-intensive, requiring humans to either
create or validate the tests. In contrast to both paradigms, SYNG4ME generates the evaluation suite
in an automated manner and is applicable to an end-user’s specific task.

Synthetic data. Improvements in generative models, such as GANs ( , ), have
propelled the development of synthetic data. Typically, synthetic data is used to overcome challenges
of real data, for example privacy concerns (i.e. to enable data sharing,

R ), and unfairness in real data ( s ; s ) SYN G4ME
provides a different use of synthetic data; improving testing and characterization of ML model
performance. This is most closely related to ( , ; ;

, ), who show that synthetic data can improve downstream model tra1n1ng, especrally
for making predictions on small subgroups ( , ). However, in
contrast to SYNG4ME, these works do not consider dlstrlbutlonal shifts (other than balancing the
training dataset), and do not explore the use of synthetic data for model evaluation.

3 PRELIMINARIES

Notation. Let X’ and )V’ be the feature and label space, respectively, together denoted as X = (X,Y).

Assume we have a trained black-box prediction model f : X — ) and also assume we have access

to a test dataset Dyest f = {xz,yl}N""” T with (z,9;) vd p(X,Y) , for underlying distribution

p(X,Y). Importantly, we do not assume access to the training data of the predictive models, Dyyqin, ;-

Generating synthetic datasets for testing. In the common benchmarking scenario, we compute
an average score (e.g. accuracy) of the predictor f over Dy, r. However, for our evaluation suite
we wish to get an indication of how the model performance may differ for different subgroups or
across different parts of the distribution and how it may change if the test distribution is shifted. To
evaluate this, we develop a variety of synthetic datasets {DS S ,DEW} based on Dicg, r, with
the desired properties. To do so, we use a deep generative model G trained on Dyygin,¢ = Drest, ¢
Note that any existing generative model class can be plugged into this framework, e.g. VAEs, GANs
or normalizing flows. Appendix C outlines how the generative model is selected and tuned.

4 MODEL EVALUATION USING SYNTHETIC DATA

Overview. Our goal is to generate datasets to evaluate predictive models, providing insight into
model performance on specific groups or new environments. The latter may consist of data limited to
a specific subspace or subgroup, or coming from a shifted distribution. We introduce an evaluation
suite SYNG4ME, which has the following workflow (Fig. 1): (1) train a (conditional) generative
model on the real test set, (2) generate synthetic data conditionally on the subgroup or marginal
shift specification, and (3) evaluate model performance on the generated data. As per Sec. 3, the
SYNG4ME framework is flexible w.r.t. the generative model. In this paper, we focus on tabular
data, the predominant format in many domains, e.g., medicine, finance, manufacturing (

, ), and hence illustrate SYNG4ME using CTGAN ( , ) as the generative
model—see Appendix C other generative model results and more details on the generative training
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process. Below, we elaborate on how SYNG4ME is formulated to enable: (P1) Reliable granular
evaluation and (P2) Sensitivity to distributional shifts.

4.1 IMPROVING GRANULAR MODEL EVALUATION THROUGH SYNTHETIC DATA (P1)

Models have been shown to have variable performance for different subgroups (

s ;b). Reliable evaluation of model performance at
such granular levels is often challenglng, espe01a11y as we may have access to a limited number of
real test examples per subgroup. This challenge is more pronounced with intersectional subgroups.

In evaluating performance on subgroups, we assume that a subgroup S C X is given. To evaluate
the performance of some predictive model f on S, the usual way to assess performance is simply
restricting the test set Dy, ¢ to the subspace S. Specifically, given some prediction metric M :

YxY—=R:
A(fi D nS) = ———— S M), fw)), (1)

D
test,f S (2,Y)€EDsest, ;NS

which with increasing |Dyest f| converges to the true performance A*(f;p,S) =
Exy [M(f(X),Y)[(X,Y) € S].

However, what happens when |D;.; ; N S| is small? The variance Vp,._, ;~pA(f, Diest,r; S) will
be large. Therefore, if we use a normal test set for evaluation, this could mean performance estimates
for minority groups are likely to be inaccurate. Since over- and underestimated performance on
these sensitive groups may have negative consequences, this is highly undesirable.

Instead of using D¢, r, We use a generative model G trained on Dy, ¢ to create a large synthetic
dataset D,,,,. Subsequently, we measure performance with respect to the synthetic dataset, i.e.
A(f; Dsyn,S). In Sec. 4.3 we explore why synthetic data may give better estimates compared to test
data, i.e. why |A* — A(f; Dsyn,S)| < |A* — A(f; Diest, r, S)| in expectation.

Defining subgroups. The actual definition of subgroups is flexible. Examples include a specific
category of one feature (e.g. female), intersectional subgroups ( , ) (e.g. black, female),
slices from continuous variables (e.g. over 75 years old), particular points of interest (e.g. people
similar to patient X), and outlier groups. In Appendix D.1 we elaborate on some of these further.

4.2 PREDICTING SENSITIVITY TO DISTRIBUTIONAL SHIFTS (P2)

Distributional shifts between training and test sets are not unusual in practice and have been shown to
degrade model performance ( s s ).
Unfortunately, often there may be no or 1nsufﬁc1ent data available from the shlfted target domain.

To address this, we can consider a family of shifts 7 and test how a model would behave under
different shifts in the family. Recall, we consider the shifts defined in Sec. 3. Let P be the space of
distributions defined on X'. We test models on data from 7'(p)(X), forall T' € T, with T : P — P.
The recipe is simple and as follows: (1) Train generator G on Dy;.qr, ¢ to fit p(X), (2) Define family
of possible shifts T, either with or without background knowledge. Denote shift with magnitude s by
15 (3) Set s and generate data D, ,, from 7°(p); (4) Evaluate model on D7, ; (5) Repeat steps 2-4
for different families of shifts and magnitudes s.

syn’

Defining shifts. In practice, we may expect a d1str1but10nal shift between the training set and target
environment ( s s ). In some
cases, there is prior knowledge to deﬁne shlfts For example, covarlate shift (

, ) focuses on a changing covariate distribution p(X ), but a constant label
distribution p(Y'|X') conditional on the features. Label (prior probability) shift ( ;

, ) is defined vice versa, with fixed p(X|Y") and changing p(Y). !

Generalizing this slightly, let ¢ C {1, ..., | X|} be the indices the features or targets in X, of which
the marginal distribution may shift. Equlvalent to covariate and label shift literature, we assume

the distribution p(Xz|X,) remains constant (¢ denoting the complement of ¢).2 Let us denote the

!Concept drifts are beyond the scope of this work. ~
2This reduces to label and covariate shift for X, = Y or X. = X, respectively.
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marginal’s shifted distribution by p*(X_.) with s the shift magnitude, with p°(X,) having generated
the original data. The full shifted distribution is p(Xz| X.)p®(X,).

Characterizing sensitivity for single marginal shifts. We consider the typical distributional shift
setting, where we assume the marginal of some variables X, changes, but the distribution of the
other variables conditional on X, remains fixed (see Sec. 3). Without further knowledge, we study
the simplest case first: only X;’s marginal is shifted. Letting po(f( ;) denote the original marginal,
let us define a family of shifts pS(X'Z-) with s the shift magnitude. For illustration, we choose a
mean shift for continuous variables, p*(X;) = p°(X; — s), and a logistic shift for any binary,
logit p*(X; = 1) = logit (p*(X;)) — s. > Following Sec. 3, we assume p(X_;| X;) remains constant.
This implies 7% (p)(X) = p*(X;)p(X_;|X;). This can be repeated for all i and multiple s, in order
to get characteristic curves of the sensitivity of the model performance to distributional shifts. The
actual shift can be achieved using any conditional generative model, with the condition given by X;.

Incorporating prior knowledge on shift. In many scenarios, we may want to make stronger
assumptions about the types of shift to consider. Let us give two use cases. First, we may acquire
high-level statistics of some variables in the target domain—e.g. we may know that the age in
the target domain approximately follows a normal distribution A'(50, 10). In other cases, we may
actually acquire data in the target domain for some basic variables (e.g. age and gender), but not
all variables. In both cases, we can explicitly use this knowledge for sampling the shifted variables
X, and subsequently generating X |X.—e.g. sample (case 1) age from N (50, 10) or (case 2)
(age,gender) from the target dataset. Variables X 5|X ¢ are generated using the original generator G,
trained on Dyeyy, ¢

4.3 WHERE THE MAGIC HAPPENS

We should consider why evaluating
granular performance on the synthetic
data (A(f; Dsyn,S)) could give bet-
ter estimates than using just the test
data itself (A(f; Diest,f,S))). This is
somewhat counterintuitive, since we
are training the generative model on
the original test set, thereby adding the = Figure 2: Illustration why synthetic data can give more
additional complexity of a generative accurate estimates for low-density regions. Assume we
model and (potentially) no other infor- want to evaluate f (decision boundary=dashed line), which
mation (cf. typical data augmentation  aims to discriminate between Y = 1 (green stars) and Y = 0
that benefits from known invariances). (red circles). Due to the low number of samples for Y = 1,
The value does not come from simply  evaluating f using the test set alone (Eq. 1) has a high
generating more data—a very large variance. On the other hand, a generative model can learn
synthetic dataset would reduce vari- the manifold from Diest, s, and generate additional data for
ance of the downstream predictions Y = 1 by only learning the offset (b, green triangles). This
w.r.t. the generative model random- can reduce variance of the estimated performance of f.
ness, but not necessarily w.r.t the un-

derlying test distribution from which the generator’s data was drawn (which we cannot change).

(a) Original data (b) With synthetic data

Instead, the answer may lie in the implicit data representations that the generative model learns
( , ); i.e. generative models can learn relationships within the data (e.g. low-
dimensional manifolds) from the entire dataset and transfer this knowledge to low-density regions
(e.g. small subgroups). We give an example in Fig. 2.

Evidently, synthetic data cannot always help model evaluation; e.g. if there is little structural
knowledge that can be transferred from the high- to low-density region, or if there is not enough data
to do so. In Appendix C.2, we experimentally explore when synthetic data helps—and when it does
not. By combining synthetic data with real data, we observe almost consistent benefits (see Sec. 5).

3We consider any categorical variable with m classes using m different shifts of the individual probabilities,
scaling the other probabilities appropriately.
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Figure 3: Qualitative assessment of synthetic data. T-SNE on the Adult dataset comparing the real test data
Diest, f, oracle data Doyacie and SYNG4ME data D, We find that SYGN4ME generates synthetic test data
that covers the oracle dataset well, despite only having access to D;cs¢, ¢ during training.

5 USE CASES OF SYNG4ME

This section demonstrates how SYNG4ME satisfies (P1) Reliable granular evaluation and (P2)
Sensitivity to distributional shifts. We re-iterate that the aim throughout is to estimate the true
prediction performance of model f as closely as possible. We tune and select the generative model

itself based on Maximum Mean Discrepancy ( , ), see Appendix C for details.
Datasets. We conduct experiments with the following real-world datasets. (P1) Reliable granular
evaluation (Sec. 5.1) using UCI’s Adulr dataset ( s ), known to exhibit
performance variations between subgroups due to data imbalances ( , ;b) and a
Covid-19 dataset of Brazilian patients ( , ), where ethnic subgroups exhibit variations
in representation. (P2) Sensitivity to distribution shift (Sec. 5.2) using Adult, but also two medical
prostate cancer datasets; SEER ( , ) from the USA and CUTRACT (

) from the UK, which have the same features, yet have real covariate shift. We describe
the datasets, as well as specific experimental details, in Appendix B.

5.1 (P1) RELIABLE GRANULAR EVALUATION

Methodology. This experiment illustrates the value of synthetic data when evaluating model perfor-
mance on data subgroups. We consider two types of groups.* () Minority subgroups: we evaluate
the race subgroup of the Adult dataset, which has severe imbalances in proportional representation
of different race groups, with one subgroup accounting for 0.86 of the data, while the remaining
minority subgroups are < 0.1 each. We conduct similar ethnicity subgroup evaluation using the
Covid-19 dataset (see Appendix D.3.4). The challenge with minority subgroups is that the conven-
tional paradigm of using a hold-out evaluation set might have high-variance in performance estimates
due to the small sample size of the subgroup of interest. (2) Intersectional subgroups: we go beyond
a single minority group and evaluate intersectional subgroups ( , ) (e.g. black males or
young females)—for which we introduce the intersectional model performance matrix (see Fig. 4).

Set-up. We evaluate the subgroup performance of trained model f using different evaluation
sets. The baseline is Dy, r: a typical hold-out test dataset. We compare this to two SYNG4ME
test datasets, which generate to balance the subgroup samples: (i) SYNG4ME (D,,,,): synthetic
data generated by G, which is trained on Dy, r and (ii) SYNG4ME+ (Dsyy, U Dyest, f): test data
augmented with synthetic dataset. For some subgroup S, each test set gives an estimated model
performance A(f; D.,S), which we compare to the pseudo-oracle performance A(f; Doracie, S): the
performance of model f evaluated on a large amount of unseen real data D,;.qc1e ~ p(X,Y), where
|Doracte| = |Diest,|.> We desire that the evaluated model performance estimate approximates the
model performance on Dy,.qc1e. This is quantified with the following metrics: (1) mean absolute
error between A(f; Dyracie,S) and A(f;D.,S), and (2) worst-case performance difference (see
Appendix D.3.2).

Analysis. Fig. 3 illustrates that the SYNG4ME synthetic data closely resembles the oracle data.
Table 1 illustrates that for small subgroups (i.e. racial minorities), SYNG4ME provides a more
accurate evaluation of model performance (i.e. with estimates closer to the oracle) compared to a

* Appendix D.1 contains experiments for other definitions of subgroups, including performance on low-density
regions and performance estimates for single samples of interest.
SspeCiﬁcaHy, {Dtrai'rL,f,Dtest,f,Dor'acle} = {84k7 21k, 196k}
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hours-perweek
country.
mployment_typ

Table 1: Mean absolute difference between pre-
dicted performance and performance evaluated by
oracle. SYNG4ME better approximates true per-
formance on minority subgroups, compared to test
data (Diest,r). SYNGAME+ enjoys the best of
both worlds by combining synthetic and real data.

Model | Subgroup (%) Mean Absolute Error % | employment type
Race SYNG4ME SYNG4ME+ Diest.f
#1 (86%) 7.26+094 231+156 10.02+3.36
RF #2 (9%) 433+034 4554038 6.83 +2.67

#3(3%) | 3484082 298+£079 13.68+£4.39
#4 (1%) 1.14 £ 0.62 1.18 £ 0.62 7.26 +£3.79
#5 (1%) 1.03+0.85 0.96 +0.84 8.06 +2.00
#1 (86%) 747+083 297 +0.85 1.39 +0.98 : . 3 o

Gepr | RO | 4255036 407031 214+10 Figure 4: Ir}terseptlonal performance matrix for RF
zi 83; ‘1"2? i gz; ﬁllé? i g-g; i-gg i ‘I‘gg model, which diagnoses underperforming (blue)
¥5(1%) | 068058 068L0356 631+329 2-feature subgroups. For example, there is under-
#1 (86%) 6.79+1.09 2.85+0.74 1.07 £ 0.83 L k& :

wip | BO% | Soero amiozr 1 iss perfoqnance on “wives” with 2 or less years of
#3(3%) | 3.60+082 343+£083 4754094 education, and self-employed who work more than
#4 (1%) 0.55+0.29 0.57+0.31 6.21 +3.44
#5 (1%) 0.48+£0.53 047+0.54 4.46+2.85 80 hours a week (see arr OWS).

conventional hold-out dataset (D;cg, ¢). In addition, SYNG4ME estimates have reduced standard
deviation. Thus, despite SYNG4ME using the same (randomly drawn test set) Dy, ¢ to train its
generator, its estimates are more robust to this randomness. The results highlight an evaluation pitfall
of the standard hold-out test set paradigm: the estimate’s high variance w.r.t. the drawn D;cg; ¢
could lead to potentially misleading conclusions about model performance in the wild, since an
end-user only has access to a single draw of Dy f. €.g., we might incorrectly overestimate the true
performance of minorities. The use of synthetic data solves this.

That said, we observe that SYNG4ME sometimes degrades the estimate for the majority group—
where there is already enough data for an accurate estimate, the added randomness of the generative
model is not outweighed by any potential benefits. SYNG4ME+ achieves the best of both worlds by
using a mixture of real and synthetic data, however its majority class performance is still sometimes
poorer than that of test data alone. Consequently, we conclude that synthetic data is recommended
for small subgroups, but has limited application to subgroups that are already large.

Next, we move beyond single-feature minority subgroups and show that synthetic data can also be
used to evaluate performance on intersectional groups — subgroups that are typically even smaller
due to the intersection. SYNG4ME performance estimates on 2-feature intersections are shown in
Fig. 4. Intersectional performance matrices provide model developers insight into where they can
improve their model most, as well as inform users how a model may perform on intersections of
groups (especially important to evaluate sensitive intersectional subgroups).® Appendix E further
illustrates how these intersectional performance matrices can be used as part of model reports.

We evaluate the intersectional performance estimates of SYNG4ME and the baseline Dy, ¢ using the
Mean Absolute Error of the performance matrices compared to the oracle. The error, averaged across
3 models (i.e, RF, GBDT, MLP), of SYNG4ME (0.13 £ 0.002) is significantly lower than Dy, ¢
(0.21 £ 0.002), hence demonstrating SYNG4ME provides more reliable intersectional estimates.

Takeaway. Synthetic data provides more accurate performance estimates on small subgroups
compared to just evaluating on a standard test set. This result coupled with the intersectional model
performance matrix is especially relevant from a representational bias and fairness perspective—
allowing more accurate evaluation of how models will perform on minority subgroups.

5.2 (P2) SENSITIVITY TO DISTRIBUTIONAL SHIFTS

ML models deployed in the wild often encounter data distributed differently from the training set.
We simulate distributional shifts in order to evaluate model performance under different operating

N.B. low performance estimates by SYNG4ME only indicate poor model performance; this does not
necessarily imply that the data itself is biased for these subgroups. However, it could warrant further investigation
in potential data bias and how to improve the model.
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conditions that might be encountered post-deployment. In the first experiment, we assume no prior
knowledge of the shift, whereas in the second we assume some target data is available.

5.2.1 NO PRIOR KNOWLEDGE: CHARACTERIZING SENSITIVITY ACROSS OPERATING RANGES

Methodology. Assume we have no prior information about the future model deployment environment
or how it might change. In this case, we still wish to characterize model behavior and sensitivity for
different potential operating conditions, such that a practitioner understands trends of model behavior
under different conditions, which can guide as to when the model can and cannot be used.

Set-up. We consider shifts in the marginal of some feature X;, keeping p(X_;|X;) fixed (see
Sec. 3). We consider a shift in the marginal’s mean (see Sec. 4.2). We name the resulting shift-
performance plots model sensitivity curves; analogous to component characteristic curves widely used
in engineering fields. To assess the validity of the behavioral trends captured by model sensitivity
curves, we compare estimated performance w.r.t. a pseudo-oracle test set. As in Sec. 5.1, oracle
consists of a large unseen test set, which we shift using rejection sampling (see Appendix B).

Analysis. To showcase the ' aoremerm ] F = oo et o1
potential udlity, we produce =\ CEEE e
model sensitivity curves Vs or- e B Sl
acle (Fig. 5) on two datasets: i oazsp= e
SEER and Adult. We demon-

strate the use of SYNG4ME

to understand the potential ef-

fect on model performance if § IDUNN SN U N SO 3 . i .
the age (Adult) or PSA severity peen ase Glsrbtion ean PSA @istibution)
score (SEER) distributions were (a) Adult: Age curve (b) SEER: PSA curve

to shift in mean. The synthetic Figure 5: Model sensitivity curves. SYNG4ME (solid) closely approxi-
data curve closely captures the  1ates the trends of the oracle (dotted). Model performance ranks to the
true performance trends across  oracle are retained. Error bars represent variation in performance on data
the range of feature shifts. This generated over 5 runs. (a) Adult (Age): Performance decreases as mean
insight into model performance age increases. (b) SEER (PSA): Performance decreases at lower cancer
trends goes much further than severity levels (PSA). The x-axis represents marginal’s mean.
“shift = degradation”( ,

), e.g. some shifts lead to better predictions. We also capture the correct model performance
ranking, which could help practitioners better understand which model is best for their setting.
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Takeaway. Synthetic data can be used to generate model sensitivity curves to characterize model
performance across the operating range, closely capturing the trends reflected in the oracle data.

5.2.2 INCORPORATING PRIOR KNOWLEDGE ON SHIFT

Methodology. Consider the scenario where we have some knowledge of the shifted distribution.
Specifically, here we assume we only observe a few of the features, e.g. age and gender, from the
target domain. We sample from this data and generate the other features conditionally (Sec. 4.2).

Set-up. We use datasets SEER (US) and CUTRACT (UK), two cancer datasets with the same
features, but with shifted distributions. We train models f and G on data from the source domain
(SEER). We then wish to estimate likely model performance in the shifted target domain (CUTRACT).
We assume access to data from n features in the target domain (features X.), sample X, from this
empirical marginal, conditionally generate Xz| X, and evaluate performance on the resulting Dy,
To validate our estimate, we use the actual CUTRACT dataset (Target) as ground-truth. As baselines,
we use estimates on the source test set, along with Source Rejection Sampling (RS), which achieves a
distributional shift through rejection sampling the source data using the observed target features (see
Appendix B for details).

Analysis. In Fig. 6a, we show the model ranking of the different predictive models based on
performance estimates of the different methods. Using the synthetic data from SYNG4ME, we
determine the same model ranking as the true ranking on the target—showcasing how SYNG4ME
can be used for model selection with distributional shifts. On the other hand, baselines provide
incorrect rankings. Fig. 6b shows the average estimated performance of f, as a function of the number



Under review as a conference paper at ICLR 2023

age #1+psa #2+treatments #3+stages
1.00 . v

Model performance rank —— Target
Dataset | MLP__GBDT RF o o Souree () 3
0.90 e ource (RS) §
G I W ) W .. —e— SYNG4ME |
Target @ ossE

SYNGAME|-{ 1 ) 2 @I 0.80

Source (All) @ 1 (D x Z::Z |
Source (RS) @ o D Ve 4 x 0-55\\‘ é

0.60.

2 3 4
n features (Prior knowledge)

(a) Model performance rank compared. (b) Average accuracy vs increased prior knowledge

Figure 6: Incorporating prior knowledge of the shift. We showcase in (a) Dsyy, is able to match the performance
rank of the true target domain, which can help to select which model is best to use in the target domain and (b)
Dsyn is better able to approximate performance in the target domain compared to baselines and that performance
improves as more prior knowledge is incorporated via added features. Points are connected to highlight trends.

of features observed from the target dataset. We see that the SYNG4ME estimates are closer to the
oracle across the board compared to baselines. Furthermore, for increasing number of features (i.e.
increasing prior knowledge), we observe that SYNG4ME estimates converge to the oracle. This is
unsurprising: the more features we observe in the target data, the better we can model the true shifted
distribution. Source RS does so too, but more slowly and with major variance issues.

Takeaway: Synthetic data can approximate target domain model performance as well as select the
best model to use on shifted data when we have high-level information about the potential shift.

6 DISCUSSION

Synthetic data for model evaluation. Many datasets contain representational bias, in which some
sensitive groups (e.g. minority race groups) are poorly represented. In addition, we often wish to
understand how models would perform under distributional shifts. We have shown that it is difficult
to accurately assess model performance for such subgroups and shifts using available test data, due to
a lack of samples. Instead, we have shown that synthetic data can be used to more accurately (and
with lower variance) evaluate the performance of a prediction model, even when the generative model
is trained on the same test set. This result is surprising and shows the potential value of synthetic
data—e.g. SYNG4ME—for model evaluation purposes.

Model reports. We envision performance estimates using synthetic data could be published alongside
models to give insight into when a model should and should not be used. In particular, SYNG4ME
could be used to complete model evaluation templates such as Model Cards for Model Reporting
( , ). Appendix E illustrates an example model report using SYNG4ME.

Limitations. Though we have shown that SYNG4ME usually leads to better evaluation compared
to simply using a test set, there are limitations to its application. Firstly, SYNG4ME is limited to
tabular data. Extending this to other modalities (e.g. text and image) is non-trivial unless annotations
are available for meaningfully defining subgroups or shifts, since individual features (e.g. pixels)
carry little high-level meaning. Secondly, evaluating the performance under distributional shifts
requires assumptions on the shift. These assumptions affect model evaluation and require careful
consideration from the end-user. This is especially true for large shifts or other scenarios where we
do not have enough training data to describe the shifted distribution well enough. However, even if
absolute estimates are inaccurate, we can still provide insight into trend behavior (Fig. 5) and model
ranking (Fig. 6). Thirdly, training and tuning a generative model is non-trivial. To counter this, we
have included an automatic tuning step in the training process, see Appendix C.

Including uncertainty in downstream predictions. Generative models usually do not perfectly
approximate the underlying distribution. An interesting avenue for further research is to estimate
SYNG4ME's confidence in the performance evaluation, such that an end-user knows when to trust the
estimates. In Appendix C.3 we include preliminary results using an ensemble of generative models.

Training data availability. In general, we assume no access to any data other than Dy, . However,
in some scenarios Dyyqin, f, the training data of the predictive models, will be available and could be
used to improve the generative model. Even though using this data to train the generative model may
induce some bias, this may outweigh the reduced variance. We include results in Appendix D.2.
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ETHICS STATEMENT

Like all methods, SYNG4ME relies on the performance of the underlying method - in this case G.
We have highlighted settings where SYNG4ME should not be used or might not be needed in practice.
Assessment of the quality and reliability of the synthetic data is also important, which we cover in
Appendix B in terms of both metrics and uncertainty estimates. In this work, we evaluate SYNG4ME
using multiple real-world datasets. The Adult dataset is provided by UCI. The three medical datasets
namely SEER, CUTRACT and COVID are de-identified and used in accordance with the guidance of
the respective data providers.

REPRODUCIBILITY STATEMENT

Further details of the method, experimental setup and datasets are included in Appendices B and C.
Code will be released upon acceptance.
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